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Abstract 

Background:  Identification of causal genes for polygenic human diseases has been extremely challenging, and our 
understanding of how physiological and pharmacological stimuli modulate genetic risk at disease-associated loci is 
limited. Specifically, insulin resistance (IR), a common feature of cardiometabolic disease, including type 2 diabetes, 
obesity, and dyslipidemia, lacks well-powered genome-wide association studies (GWAS), and therefore, few associated 
loci and causal genes have been identified.

Methods:  Here, we perform and integrate linkage disequilibrium (LD)-adjusted colocalization analyses across nine 
cardiometabolic traits (fasting insulin, fasting glucose, insulin sensitivity, insulin sensitivity index, type 2 diabetes, 
triglycerides, high-density lipoprotein, body mass index, and waist-hip ratio) combined with expression and splicing 
quantitative trait loci (eQTLs and sQTLs) from five metabolically relevant human tissues (subcutaneous and visceral 
adipose, skeletal muscle, liver, and pancreas). To elucidate the upstream regulators and functional mechanisms for 
these genes, we integrate their transcriptional responses to 21 relevant physiological and pharmacological perturba‑
tions in human adipocytes, hepatocytes, and skeletal muscle cells and map their protein-protein interactions.

Results:  We identify 470 colocalized loci and prioritize 207 loci with a single colocalized gene. Patterns of shared 
colocalizations across traits and tissues highlight different potential roles for colocalized genes in cardiometabolic 
disease and distinguish several genes involved in pancreatic β-cell function from others with a more direct role in 
skeletal muscle, liver, and adipose tissues. At the loci with a single colocalized gene, 42 of these genes were regulated 
by insulin and 35 by glucose in perturbation experiments, including 17 regulated by both. Other metabolic pertur‑
bations regulated the expression of 30 more genes not regulated by glucose or insulin, pointing to other potential 
upstream regulators of candidate causal genes.
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Background
Cardiometabolic diseases including type 2 diabetes 
(T2D) and the metabolic syndrome (MetS), which is 
characterized by a cluster of abnormalities including 
central obesity, high blood pressure, high plasma triglyc-
erides (TG), low high-density lipoprotein (HDL) cho-
lesterol, and insulin resistance (IR) [1–3], have reached 
staggering prevalence and are major causes of morbidity 
and mortality [4]. IR precedes the development of T2D 
and the MetS and is a prominent risk factor for car-
diovascular disease and non-alcoholic fatty liver disease 
(NAFLD) [5–7].

Genome-wide association studies (GWAS) have identi-
fied hundreds of loci containing thousands of candidate 
genes associated with these cardiometabolic diseases and 
have shown that they have partially overlapping genetic 
architectures. For instance, in the case of T2D, GWAS 
have identified hundreds of distinct susceptibility loci 
[8–12] that harbor thousands of genes. A recent work [13] 
has identified subgroups of individuals with differential 
risk for other cardiometabolic traits, e.g., fasting insulin, 
fasting glucose, waist-hip ratio (WHR), body mass index 
(BMI), TG, and HDL, helping to account for the observed 
clinical heterogeneity in T2D. Thus, the combination of 
different polygenic risk pathways, including insulin action, 
insulin secretion, obesity, fat distribution, and lipids/
liver function, forms an overall palette of risk [13–17]. 
These polygenic clusters highlight the close relationship 
between IR, T2D, and cardiometabolic traits and confirm 
the central role of peripheral tissues (adipose tissue, skel-
etal muscle, and liver) in IR [18].

While most T2D causal genes discovered so far are 
related to insulin production or secretion [19–24], partly 
because GWAS for direct measures of insulin sensitiv-
ity have been small [25, 26], mounting evidence suggests 
that some T2D loci increase risk directly through IR 
[25, 27–30], and many other loci have not yet been cat-
egorized. This knowledge gap has hampered therapeutic 
advances. However, large-scale GWAS of various cardio-
metabolic traits now provide a new opportunity for iden-
tifying cardiometabolic risk genes and partitioning them 
into IR and non-IR-related sets by jointly analyzing mul-
tiple intermediate traits for cardiometabolic disease.

Beyond genetic variation alone, risk genes for human 
disease are also modulated by various physiological and 

pharmacological stimuli whose biological effects are not 
yet fully characterized. In addition to fundamental stim-
uli like glucose and insulin, inflammatory cytokines such 
as TNF-α and IL-6 can also impair glycemic control and 
affect cardiometabolic disease-related transcriptional 
regulation [31]. In conjunction with these physiologi-
cal factors, drugs used for the treatment of cardiometa-
bolic diseases, such as atorvastatin, metformin, and 
rosiglitazone, modulate the activity of disease-relevant 
genetic pathways. A precise model of how these and 
other extrinsic factors affect cardiometabolic disease via 
intermediary genes is complex and still growing [31]. 
Thus, determining how these known upstream regulators 
modify the transcription of risk genes will enhance our 
mechanistic understanding of cardiometabolic disease 
and IR biology.

To advance the identification and prioritization of 
causal genes for cardiometabolic traits and IR, and to 
shed light upon their functional contexts, we systemati-
cally integrate GWAS- and QTL-derived genetic signals 
with metabolic regulators. Specifically, we perform a cus-
tom colocalization analysis on twelve publicly available 
GWAS comprising nine different IR and cardiometabolic 
traits (fasting insulin, fasting glucose, insulin sensitiv-
ity, insulin sensitivity index, T2D, TG, HDL, BMI, and 
WHR) and expression and splicing quantitative trait loci 
(eQTLs and sQTLs) detected in five metabolically rel-
evant tissues that directly impact glucose homeostasis: 
subcutaneous adipose and visceral adipose tissue, liver, 
skeletal muscle, and pancreas. Using pancreas colocali-
zation as an exclusion criterion to distinguish between 
genes likely involved in insulin secretion versus insulin 
action, we identify patterns of both pancreatic and non-
pancreatic tissue specificity and trait sharing at colocal-
ized loci, establishing a knowledge-based priority list of 
uniquely colocalized candidate causal genes. To elucidate 
the functional mechanisms of these candidate causal 
genes, we integrate data on transcriptional responses to 
21 cardiometabolically relevant perturbations in human 
adipocytes, hepatocytes, and skeletal muscle cells. Inte-
grating these results, we annotate and prioritize 48 
candidate cardiometabolic causal genes with associa-
tion to IR or T2D, 64 with association to WHR, and 57 
with association to TG or HDL. Our results enable fine-
scale dissection of these candidates and prioritization of 

Conclusions:  Our use of transcriptional responses under metabolic perturbations to contextualize genetic associa‑
tions from our custom colocalization approach provides a list of likely causal genes and their upstream regulators in 
the context of IR-associated cardiometabolic risk.

Keywords:  Genome-wide association studies, Integrative gene prioritization, Colocalization, Differential expression, 
Perturbation experiments, Insulin resistance, Type 2 diabetes, Cardiometabolic disease
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high-confidence cardiometabolic risk genes as potential 
therapeutic targets.

Methods
Preprocessing of GWAS and QTL files
We downloaded publicly available association summary 
statistics for 9 cardiometabolic traits (12 total GWAS, 
Additional file 1: Table S1) and Genotype-Tissue Expres-
sion Project (GTEx) v8 eQTLs and sQTLs summary 
statistics for five relevant human tissues, i.e., adipose 
visceral and subcutaneous, skeletal muscle, liver, and 
pancreas (Additional file  1: Table  S2). Unless otherwise 
specified, eQTLs and sQTLs were analyzed identically 
in all subsequent steps, except that the feature of inter-
est for sQTLs is the number of splice events detected at a 
single intragenic splice junction rather than the number 
of transcripts detected for a single gene. All splice junc-
tions were already assigned to a single gene (Ensembl ID) 
in the GTEx v8 data.

We used the gwas-download toolkit (https://​www.​
github.​com/​mikeg​loude​mans/​gwas-​downl​oad) [32] to 
sort, consistently re-format, and generate tabix index files 
for each of the GWAS and QTL summary statistics files.

Selection of overlapping GWAS and QTL loci 
for colocalization tests
Here, we define a “colocalization test locus” as a unique 
combination of a specific GWAS trait, a locus of the 
genome, a QTL tissue, and a gene measured within that 
tissue. The goal of the colocalization test is to determine 
whether the GWAS signal matches the QTL signal for 
that gene in that tissue: that is, whether the GWAS trait 
and gene expression share a common genetic causal vari-
ant. Because the total number of loci and QTL genes 
in the genome is large and therefore computationally 
expensive to test, and to minimize the potential for false 
positives, we limited our analysis to loci that have both 
a GWAS association and a QTL association in a speci-
fied tissue and gene. For two loci to be considered inde-
pendently, we required them to be located at least 500 kb 
apart. To increase our sensitivity to relevant loci, we set 
these thresholds at GWAS P < 5e−8 and QTL P < 1e−5. 
For two traits directly measuring insulin response (insulin 
sensitivity [25] and insulin sensitivity index [26]), which 
were limited in GWAS power by small sample sizes, we 
lowered the GWAS significance threshold to P < 1e−5 
to increase sensitivity, since any spurious GWAS loci are 
unlikely also to pass the subsequent colocalization tests. 
This selection process is depicted in Additional file  1: 
Fig. S1 and is also implemented in the “gwas-download” 
GitHub repository described previously in the “Preproc-
essing of GWAS and QTL files” section (https://​www.​
github.​com/​mikeg​loude​mans/​gwas-​downl​oad) [32].

Clustering of GWAS lead variants into individual loci 
with LDetect
To determine which nearby GWAS signals for different 
traits were part of the same genomic locus, we parti-
tioned the genome into 1724 loci. We used a pre-defined 
set of linkage disequilibrium (LD)-independent regions 
(LDetect, using European-derived LD regions, Addi-
tional file  2) [33]; an advantage to this approach is that 
the resulting loci are invariant to the number of traits and 
tissues included in the colocalization analysis. We note 
that it is possible for a single locus as defined by LDetect 
still to contain multiple GWAS associations for the same 
GWAS trait, as long as they are 500 kb apart.

Fine‑mapping and colocalization testing
Colocalization analysis computes the probability that 
genetic association signals for a GWAS trait and a QTL 
feature are produced by a common causal variant, and 
importantly removes misleading signals with incidental 
GWAS-QTL overlaps due to complicated LD tagging 
patterns [34]. Several methods have been designed for 
this purpose, such as eCAVIAR [35], which first per-
forms fine-mapping to infer posterior probabilities of 
causality for each variant in the GWAS and in the QTL 
study separately, and then combines and integrates 
these probabilities to compute a probability that a single 
variant is causal for both the GWAS trait and the QTL 
trait. The resulting metric is an intuitive colocaliza-
tion posterior probability (CLPP) score, which directly 
measures the probability of a shared causal variant 
between a tested GWAS and QTL study. One limita-
tion we observed with this approach, however, is that it 
becomes overly conservative when several assayed vari-
ants are in near-perfect LD with the true causal variant, 
in which case, it yields very low probabilities even for 
loci where the causal gene is known (e.g., WFS1, see 
Additional file 1: Fig. S2).

To address these limitations, we performed our 
colocalization analysis using a novel custom integra-
tion of the FINEMAP [36] and eCAVIAR [35] meth-
ods (https://​github.​com/​mikeg​loude​mans/​produ​ction_​
coloc_​pipel​ine [37]). For each previously selected test 
case (see the “Selection of overlapping GWAS and QTL 
loci for colocalization tests” section), we narrowed our 
summary statistics to the set of the variant tested for 
the association with both the given GWAS trait and 
the given QTL trait and removed all sites containing 
less than 10 variants after this filter. Using the full 1000 
Genomes dataset from phase 3 (2504 individuals) as a 
reference population [38], we estimated LD between 
every pair of variants. We then ran FINEMAP [36] 
independently on the GWAS and the QTL summary 
statistics to obtain posterior probabilities of causality 

https://www.github.com/mikegloudemans/gwas-download
https://www.github.com/mikegloudemans/gwas-download
https://www.github.com/mikegloudemans/gwas-download
https://www.github.com/mikegloudemans/gwas-download
https://github.com/mikegloudemans/production_coloc_pipeline
https://github.com/mikegloudemans/production_coloc_pipeline
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for each of the remaining variants, constraining the 
search space to configurations with exactly one causal 
variant in the GWAS and one in the QTL associations, 
for computational efficiency. We combined the result-
ing probabilities to compute a colocalization posterior 
probability (CLPP) using the formula described in the 
eCAVIAR method [35].

Because the canonical CLPP score is highly conserva-
tive in regions with densely profiled, high-LD variants, 
we modified the score formula to produce an LD-modi-
fied CLPP score, which we refer to as the CLPPmod score.

The original CLPP is defined as:

where:

•	 gi is the probability that the ith variant is the causal 
variant for the GWAS trait.

•	 ei is the probability that the ith variant is the causal 
variant for the QTL trait.

•	 N is the total number of variants at the locus.

Our LD-modified CLPP score is a generalization of this 
score, given by:

where LDij is the LD (r2) between the ith and the jth vari-
ant in a reference population.

This modified approach produces an LD-modified 
colocalization posterior probability (CLPP) score, the 
CLPPmod score. It intuitively represents the sum over 
joint causal probabilities across all pairs of GWAS + 
QTL variant at the locus, with each pair’s contribution 
to the final score weighted by the LD between these two 
variants. Like the original CLPP score, the CLPPmod at a 
locus will always be between 0 and 1. Subsequent visual 
inspection of juxtaposed GWAS and QTL LocusCom-
pare plots at high and low CLPPmod score loci confirmed 
that our LD-modified CLPP score detects true colocal-
ized loci, but without disproportionately penalizing high-
LD loci (Additional file 1: Fig. S2), and the CLPPmod score 
still remains strongly correlated with the original CLPP 
score (Spearman’s ρ = 0.64).

Quantification of number of genes and loci tested/
colocalized
We counted the total number of GWAS loci and 
expressed genes (protein-coding and others) selected for 
each locus before filtering to the genes with overlapping 

CLPP =

N∑

i=1

giei

CLPPmod =

N∑

i=1

N∑

j=1

giejLDij

QTLs. We additionally determined the number of inde-
pendent loci across all included GWAS traits by grouping 
nearby loci for different traits into the same numbered 
locus with LDetect, as described above [33]. Given that 
a typical locus has 20–50 genes located within 1 Mb, the 
number of candidate genes is quite large. We then quan-
tified the effect of filtering locus-gene pairs to those in 
which the lead GWAS variant is a significant eQTL or 
sQTL for that gene in at least one of our five QTL tis-
sues (P < 1e−5). We recomputed the number of loci and 
genes for the filtered set. Finally, we computed the num-
ber of loci and genes one more time for those loci and 
genes colocalizing with at least one trait in one tissue 
(CLPPmod > 0.35, representing the top 20% of all tested 
combinations). The numbers of genes and loci passing 
each of these filtering steps are shown in Fig. 1a. For later 
heatmap summaries of colocalization results, the results 
from all four of the T2D studies are collapsed into a sin-
gle column representing the top colocalization score in 
any study.

Definition of tissue specificity
A gene was considered tissue-specific if it had colocali-
zations in one tissue, but colocalized in no other tissues 
for any trait. A locus was considered tissue-specific if it 
contained one or more genes with colocalizations in one 
specific tissue, but no genes colocalized in any other tis-
sues for any trait.

GTEx coexpression modules and cell type specificity
The inference of GTEx coexpression modules is 
described in a previous publication [39]. (A module 
for a specific tissue comprises a set of genes whose 
expression levels are correlated across donors for 
that tissue, suggesting common regulatory programs 
within that tissue.) To ascertain potential functions 
of individual modules, we treated the genes in each 
module as a gene set and tested for functional enrich-
ment using clusterprofiler [40] with candidate enrich-
ments from consensusDB [32, 41]. Cell type-specific 
gene sets were inferred from the Human Cell Land-
scape [42] using the specificity probability index (pSI) 
R package [43, 44].

For the analyses of coexpression module member-
ship and cell type specificity described in this paper, 
we determined whether each candidate causal gene 
was included in any coexpression networks or cell 
type-specific gene sets.

Assigning directional effects to colocalized loci
For all loci with a single colocalized eQTL gene, we com-
pared the effect direction of the lead variant on expres-
sion with its effect direction on the risk or level of the 
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colocalized GWAS trait. Some alignment was required to 
ensure consistency of the reported effect alleles between 
the QTL and GWAS summary statistics files. For each 
colocalization, we thus determined whether an increase 
in the eQTL target gene’s expression was associated with 
an increase or decrease in the GWAS trait risk or level. 
This analysis applies only to eQTL colocalizations since 
sQTLs do not have a naturally interpretable direction of 
increased or decreased expression.

Perturbation experiments
We tested our list of uniquely colocalized genes for dif-
ferential expression under 21 metabolic perturbations 
in three cell types. Human skeletal muscle (HMCL-7304 
myocytes; provided by the Institute of Child Health, Uni-
versity College London), adipocytes (SGBS adipocytes; 
provided by Dr. Martin Wabitsch, Ulm University, Ulm, 
Germany), and hepatocytes (HepG2; ATCC) were used 
for the perturbation experiment. SGBS and HMCL-7304 
cells were differentiated as described previously [45, 46]. 
The differentiated cells or HepG2 cells were starved for 
6 h in EMEM medium for hepatocytes, DMEM/F12 for 
adipocytes, or HMCL growth medium (PromoCell) for 
the differentiated myocytes without fetal bovine serum 
or growth factors. Specifically, for the glucose condition, 

DMEM with no glucose (Thermo) was used as a control 
for all cell types. After starvation, the cells were incubated 
for 2 h with one of the perturbations at the concentration 
shown in Additional file 1: Table S3. The experiment was 
carried out in triplicate for each cell line-perturbation 
combination. RNA isolation, sequencing, quality control, 
and differential expression analysis were performed as 
previously described [47].

Protein‑protein interaction networks
We obtained a list of experimentally confirmed protein-
protein interactions (PPIs) from the BioGRID public 
database [48]. For each of the 63 IR-relevant perturba-
tions, we constructed a pruned PPI network with igraph 
[49] consisting of only protein pairs that (1) interacted 
in the original PPI network and (2) were both differen-
tially expressed under the given perturbation condition, 
indicating that they likely interact within that context. 
This pruning was performed to reduce the total number 
of unique gene pairs with PPIs from 525,275 to 121,206 
(23%), with a median of 2738 (0.5%) gene pairs interact-
ing in any single perturbation × cell type combination.

Once these pruned PPI networks were obtained for 
each perturbation context, we determined all uniquely 
colocalized genes that interact in these networks with 

Fig. 1  Colocalization testing narrows candidate genes across cardiometabolic traits, tissues, and QTL types. a Candidate genes are filtered based 
on GWAS proximity (filter 1), GWAS/QTL overlap (filter 2), and colocalization testing (filter 3). The per-gene filtering process is further described in 
Additional file 1: Fig. S1. b Scatterplot of the relationship between sample size and number of eQTL/sQTL colocalizations in a given tissue. c Number 
of loci and number of individual genes with colocalizations for sQTLs, eQTLs, or both. d Scatterplot of the relationship between the number of 
candidates (number genes with QTL overlapping a lead GWAS variant) and the number of colocalizations at each locus
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one or more of the previously reported monogenic IR/
T2D genes or known T2D genes from genetic studies 
listed in Additional file 1: Tables S4 and S5, either directly 
or via a single intermediary protein.

Results
Colocalization analysis associates GWAS traits with QTLs 
in disease‑relevant tissues
To identify candidate causal genes for cardiometa-
bolic disease, we first performed colocalization analy-
sis of eQTLs and sQTLs in five human tissues across 9 
cardiometabolic traits from 12 separate GWAS (Addi-
tional file 1: Tables S1 and S2). Additional file 1: Fig. S1 
illustrates the process we used to select genome-wide 
significant loci and overlapping eQTL/sQTL features 
for colocalization testing. We first identified 2859 inde-
pendent variant-trait associations (Additional file  3). 
Since these traits can share causal variants, we binned 
each locus into one of 1724 independent and previously 
defined partitions of the genome [33] (Additional file 2). 
This assured that the mapping of associations to loci was 
invariant to the total number of GWAS traits. Of these 
1724 loci, 1071 contained at least one GWAS association 
(Fig. 1a) and were considered in subsequent analyses.

We identified all genes expressed in at least one of five 
relevant GTEx tissues (subcutaneous and visceral adi-
pose, skeletal muscle, liver, and pancreas) with a tran-
scriptional start site (TSS) less than 1 Mb from one or 
more GWAS lead variants, rendering a total of 22,105 
candidate genes, including protein-coding genes, long 
non-coding RNAs, and other non-coding transcripts 
(Fig. 1a). We then filtered to the genes with at least one 
eQTL or sQTL (p < 1e−5) overlapping the GWAS lead 
variant (Additional file  1: Fig. S1), leaving 817 loci con-
taining 4704 candidate causal genes. Accordingly, 254 
GWAS loci (24%) had no traceable eQTL or sQTL 

association and were excluded from subsequent analyses 
(Fig. 1a).

We performed colocalization analysis to identify loci 
with a common causal variant affecting both a cardio-
metabolic GWAS trait and a transcriptional QTL phe-
notype. To avoid sensitivity to local variation in LD 
structures, we implemented our own LD-adjusted com-
bination of causal variant fine-mapping [36] followed by 
colocalization analysis [35] (see the “Methods” section 
and Additional file  1: Fig. S2). We observed colocaliza-
tion for 470 (44%) of the 1071 GWAS loci, across all 
QTL tissues and GWAS traits (Additional file  1: Tables 
S6 and S7 and Additional file 4). The number of colocal-
ized genes per tissue was correlated with tissue sample 
sizes in GTEx (ρ = 0.90, Fig. 1b). While in some instances 
both eQTL and sQTL colocalizations point to the same 
gene (Fig. 1c), 20% of colocalized genes would have not 
been detected without sQTLs. For example, the adipose-
specific colocalization BDNF-AS showed sQTL but not 
eQTL colocalization. The lead cluster of candidate causal 
variants at this locus is located within the body of the 
antisense BDNF-AS gene, farther away from the BDNF 
gene and the BDNF-AS promoter. Our results underscore 
the advantage of colocalization analyses with both eQTL 
and sQTL variants.

Disease loci harbor different causal architectures
The number of candidate genes within each locus (i.e., 
genes with a QTL overlapping a lead GWAS variant) 
and the number of colocalized genes varied extensively 
(Figs. 1d and 2a), as did the colocalized tissues and traits 
at these loci (Fig.  2b, c). To quantify the ability of colo-
calization analysis to narrow down the number of can-
didate causal genes within a locus, we classified the loci 
according to the number of initial candidate genes and 
the number of colocalized genes (Fig. 2a). Of the 197 loci 

Fig. 2  Colocalized loci show diverse causal architectures. a Mosaic plot categorizing all GWAS loci by the number of candidate genes (genes with 
GWAS signals overlapping QTLs) and the number of colocalized genes. Box sizes are proportional to the number of loci in the category. b Counts 
of tissue-specific and tissue-shared loci. c Total number of colocalized loci for each tested trait, separated by the presence or absence of pancreas 
colocalization
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with a single candidate gene, just under a quarter (46 
loci) colocalized, highlighting the utility of colocalization 
testing to inform functional follow-up, even at the loci 
for which there is only one candidate gene with an over-
lapping QTL. In total, we identified 207 loci with a single 
colocalized gene (25% of all tested loci). In line with pre-
vious estimates [50], 41% of uniquely colocalized genes 
were the nearest gene to the lead GWAS variant (Addi-
tional file  1: Fig. S3). This percentage was even lower 
(17%) when looking at all colocalized genes. These results 
emphasize the value of colocalization analyses over 
approaches that assume the nearest gene to be causal.

Of the 620 loci starting with multiple candidate genes, 
26% showed just one colocalized gene, while 42% showed 
multiple colocalized genes, suggesting that GWAS loci 
might often harbor several causal genes. Indeed, we 
observed that some such loci contained multiple inde-
pendent association signals that are located nearby on the 
genome but are neither LD-linked (r2 < 0.1) nor strictly 
overlapping. For example, a locus on chromosome 3 
spanning 2.5 Mb contained not only a T2D-associated 
variant in an intron that colocalized with RBM6, but also 
a fasting glucose variant, located 500 kb upstream of the 
RBM6-associated variant, regulating MST1 expression 
and splicing (Additional file 1: Fig. S4). At other loci, the 
various colocalized genes had QTL association signals 
that were both overlapping and LD-linked. For some of 
these loci, multiple co-regulated genes are functionally 
relevant to the disease, e.g., the FADS1/FADS2/FADS3 
locus [51] (Additional file  1: Fig. S4). For others, one of 
the colocalized genes may be the driver of disease risk, 
while the other genes may be co-regulated with the 
causal gene but not directly relevant to the colocalized 
trait. For example, at the well-studied SORT1 locus, func-
tional experiments have proven a causal role for SORT1 
in regulating lipid levels but saw none for PSRC1, another 
LD-linked and colocalized gene [52] (Additional file  1: 
Fig. S4). While these loci with multiple implicated genes 
are likely important contributors to disease risk, the abil-
ity of colocalization analyses to disentangle their roles is 
limited, and thus, we subsequently focused on the loci 
with only one colocalized gene.

Tissue specificity dissects different components of disease
Previous work has used tissue specificity to inform tis-
sues of action for causal genes [53], and others have fur-
ther partitioned cardiometabolic risk loci into groups 

with primary roles in the pancreas, liver, adipose tissues, 
and others [14]. We hypothesized that genes colocalized 
exclusively in a single tissue might similarly form func-
tional subgroups. Among the loci with a single colocal-
ized gene, we identified 30 subcutaneous adipose-specific 
(e.g., LPL and PDGFC; see Fig. 3a), 14 visceral adipose-
specific (e.g., NUP133 and HPGDS), 18 liver-specific (e.g., 
SLC22A3 and PNPLA3), 19 skeletal muscle-specific (e.g., 
CDKN2C and HMGB1), and 5 pancreas-specific (e.g., 
RYBP and CTRB2) loci. We found 16 additional (visceral 
and subcutaneous) adipose-specific loci including PLE-
KHA1 (TAPP1), which is known to affect insulin sensi-
tivity through its effect in adipose tissue [54] (Fig. 3a, b 
and Additional file 5), as well as an adipose sQTL-specific 
colocalization at BDNF-AS (Fig.  3c). Among tissue-spe-
cific colocalizations, the most muscle- and pancreas-spe-
cific colocalizations were associated with the glycemic 
traits T2D, fasting insulin, and fasting glucose; the most 
adipose-specific colocalizations with WHR; and the most 
liver-specific colocalizations with levels of HDL and TG 
(Additional file 1: Table S8), in accordance with heritabil-
ity enrichments for the same traits in a recent study [47].

To zoom in from the bulk tissue level to a finer reso-
lution of the biological pathways and cell types in which 
colocalized genes are active, we tested these genes for 
overlap with cell type-specific genes we inferred from 
the Human Cell Landscape [42] using the pSI R package 
[43, 44] (see the “Methods” section) and for member-
ship in co-expression modules that we generated from 
GTEx using weighted gene co-expression network analy-
sis [39, 55] (Additional files 6 and 7, see the “Methods” 
section). For example, the lipoprotein lipase (LPL) gene, 
whose eQTLs colocalize with fasting insulin, WHR, 
HDL, and TG exclusively in subcutaneous adipose tis-
sue in GTEx, was identified as a cell type-specific gene 
for adipocytes, in contrast with other adipose-colocalized 
genes that were specific to mast cells (e.g., HPGDS) and 
neutrophils (e.g., EPC2). Furthermore, LPL is a member 
of a GTEx co-expression module associated primarily 
with fatty acid metabolism and biosynthesis pathways, 
in accordance with the gene’s known functions [56]. As 
another example, the FGFR1 gene colocalized with T2D 
exclusively in GTEx muscle tissue and was ascribed to 
fibroblasts, myogenic precursor cells, and natural killer 
(NK) cells. In the GTEx co-expression networks, FGFR1 
belongs to a module associated with extracellular matrix 
organization, collagen formation, and cell adhesion.

(See figure on next page.)
Fig. 3  Post-colocalization follow-up identifies various patterns of shared colocalization across tissues and traits. a Unique genes colocalizing with 
T2D (in any of the 4 studies), fasting insulin, or fasting glucose GWAS at selected loci (each row represents one locus). Adipose (S), subcutaneous 
adipose; adipose (V), visceral adipose. b LocusCompare plots illustrating an adipose-specific colocalization in PLEKHA1 (TAPP1). c LocusCompare 
plots illustrating an sQTL-specific colocalization for BDNF-AS. The eQTL association signal for another nearby gene, LIN7C, is shown for comparison
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Fig. 3  (See legend on previous page.)
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Tissue specificity can further dissect different compo-
nents of diseases. Cardiometabolic functions associated 
to IR are more likely to be mediated by loci colocalized 
only in non-pancreas tissues, while the loci colocalizing 
with the pancreas may act through molecular mecha-
nisms related to insulin production or secretion. Tissue-
specific loci outside of the pancreas comprised a third of 
all colocalized loci (156 of 470, 33%), implicating a pleth-
ora of potential IR candidate genes. Even among the 301 
loci with tissue-shared colocalization, 86 had no colo-
calization detected in the pancreas (Fig. 2b), such as the 
locus associated with ZBTB20 (Fig. 3a), further increas-
ing the number of potential IR candidate genes.

Sharing across traits places causal genes within functional 
disease subgroups
Previous joint analyses of T2D along with similar traits 
have sorted GWAS loci and coding variants into sub-
groups [13–17] representing different components of car-
diometabolic disease biology. These subgroups include 
insulin production- and secretion-related clusters deemed 
“proinsulin” and “β-cell” clusters, as well as “obesity,” “lipo-
dystrophy,” and “liver/lipid” clusters [14]. Thus, we used 
our colocalization results to distinguish between candi-
date causal genes belonging to specific subgroups. Among 
the loci colocalized in the pancreas, we observed several 
genes assigned previously to the β-cell cluster, indicating a 
likely role in dysfunctional insulin production or secretion 
[14]. CTRB2, for example, colocalized with T2D exclu-
sively in the pancreas, giving further credence to its previ-
ous placement in this cluster [14] (Fig. 3a). Similarly, other 
genes with pancreas-specific colocalization, such as RYBP 
and G6PC2, may also contribute to the β-cell cluster. In 
subsequent sections, we focus primarily on non-pancreas 
colocalizations for their relevance in insulin resistance 
and insulin action; however, other investigators interested 
in the β-cell-mediated pathways of T2D may find these 
pancreas-specific colocalizations especially relevant.

Among non-pancreatic colocalized genes, sharing 
across traits also informs the functional subgroup. For 
example, we saw adipose-specific TG and HDL colo-
calizations for both KLF14 and LPL (Fig. 3a), two genes 
assigned previously to a lipodystrophy cluster [14] that 
has been shown to overlap with IR biology. LPL further 
colocalized with WHR in adipose tissue, the main tissue 
characterizing the lipodystrophy phenotype. By contrast, 
we found liver-specific colocalizations with T2D, TG, 
and HDL in PNPLA3, which was previously assigned to 
a cluster involving liver/lipids and lower overall TG levels 
[14]. Thus, T2D-colocalized genes that also colocalized 
in non-pancreas tissues with TG/HDL or with WHR are 
likely candidates for either the liver/lipids or lipodystro-
phy clusters, respectively. Furthermore, tissue specificity 

can reinforce the trait sharing-based categorization. A 
gene such as PDGFC that colocalizes with T2D, fasting 
insulin, WHR, HDL, and TG, all in adipose tissue, is a 
stronger candidate for a role in lipodystrophy, whereas a 
gene like SLC2A2 with liver colocalization for T2D, fast-
ing glucose, triglycerides, and BMI may be more relevant 
to the liver/lipids cluster.

Among all the loci containing a single colocalized gene, 
13 colocalized with more than one broad trait category 
(glycemic, anthropometric, or lipid traits) (Fig. 4a). These 
loci harbor several previously known cardiometabolic 
causal genes such as KLF14 and LPL, but also novel can-
didates such as PDGFC. The relative directional effects 
of these genes across traits reflected known relationships 
between traits; i.e., genes whose expression was asso-
ciated with higher risk and/or levels of IR, T2D, WHR, 
fasting insulin, fasting glucose, and TGs were generally 
also associated with lower levels of HDL, and vice-versa 
(Fig. 4b, Additional file 1: Fig. S5, and Additional file 8). 
Similarly, they confirmed the directions of several previ-
ously studied genes; for example, decreased expression 
of KLF14 correlated with increased risk of T2D, which 
has also been demonstrated previously in subcutaneous 
adipose tissue [57]. Moreover, these genes’ directions of 
effect are important for drug development, as they indi-
cate whether inhibition or activation of a genetic target 
will be therapeutically beneficial.

Perturbation with physiological and pharmacological 
regulators contextualizes candidate causal genes
Even if we can ascertain in which system(s) a likely causal 
gene is involved, we still remain far from a true mecha-
nistic understanding of the gene’s role. For example, if 
a gene is thought to be involved in insulin resistance, is 
this gene most proximally modulated by insulin, glucose, 
or both? Is its role in cardiometabolic regulation located 
upstream or downstream of the insulin/glucose action?

To answer such questions, we tested every candidate 
causal gene for differential expression under 21 physi-
ological and pharmacological cardiometabolic regulators 
in human adipocytes, hepatocytes, and skeletal muscle 
cells [47] (Additional file 1: Table S3). We thus generated 
a canvas of upstream molecular signals controlling the 
expression of candidate causal genes in relevant meta-
bolic contexts (Fig. 5a, Additional file 1: Fig. S6, and Addi-
tional file 9). Of the 152 uniquely colocalized genes for IR/
T2D, WHR, and TG/HDL, 42 were regulated by insulin 
and 35 by glucose, including 17 regulated by both, point-
ing to clear upstream regulators in the context of disease. 
Other metabolic perturbations regulated the expression 
of 30 more genes not regulated by glucose or insulin. For 
example, the uniquely colocalized fibroblast growth factor 
receptor 4 (FGFR4) shows increased expression in muscle 
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cells in response to insulin-like growth factor 1 (IGF1) but 
decreased expression in response to the glucocorticoid 
dexamethasone. Dexamethasone inhibits insulin signal-
ing in other systems [58, 59], and the observed effect on 
FGFR4 suggests that it may oppose signaling by IGF1.

Effects of causal genes can be further modified by phar-
macological intervention. For 30 of our candidate causal 
genes, we observed a response to atorvastatin, met-
formin, or rosiglitazone, three drugs used for the treat-
ment of cardiometabolic diseases. For instance, COBLL1, 
a gene with liver-specific colocalization for fasting insulin 
and BMI and previously associated with non-alcoholic 
fatty liver disease [12, 60], showed decreased expres-
sion under both atorvastatin and metformin in the liver. 
Another gene, GPAM, which colocalized with HDL and 
TG also in the liver, showed reduced expression under 
all three of these treatments (atorvastatin and metformin 
in the liver, rosiglitazone in fat cells). A further network-
based investigation will be essential for understanding 
how a given drug affects disease outcomes via collective 
modulation of these and other risk genes.

We hypothesized that our uniquely colocalized genes 
might also interact with other key cardiometabolic genes 
regulated under the same conditions. Starting from the 
full list of known protein-protein interactions (PPIs) 
identified in BioGrid [48], we pruned this list to define 
perturbation-specific PPI networks of protein-coding 
genes active (differentially expressed) under each pertur-
bation, which included many of the uniquely colocalized 
genes (Additional file  10). We then identified interac-
tions between candidate causal genes and a curated list 
of 49 known IR or T2D gene(s) (Additional file 1: Tables 
S4 and S5). The resulting network of known and candi-
date IR/T2D genes (Fig. 5b, Additional file 1: Fig. S7 and 
Additional file  11) revealed a tight web of connections 
between our colocalized genes and those known IR/T2D 
genes. Eight candidate causal genes interact directly with 
an IR/T2D gene (7 total) in at least one perturbation con-
dition, and 54 other candidates interact via one interme-
diary protein (Fig. 5b). For example, the fibroblast growth 
factor receptor FGFR1 interacts directly with the known 
monogenic IR kinase PIK3R1 [61], and its family member 

Fig. 4  A prioritized set of uniquely colocalized candidate genes for follow-up testing. a The set of genes that are uniquely colocalized at their 
respective loci with insulin sensitivity, fasting glucose, fasting insulin, T2D, WHR, TG, or HDL. The highlight color indicates the tissues of colocalization. 
b Directions of the effect of uniquely colocalized IR/T2D genes on GWAS trait risks and levels. IS, insulin sensitivity from [25]
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FGFR4 also interacts with several IR/T2D genes (Fig. 5b). 
Together, these results showcase the value of study-
ing colocalization-based candidate causal genes within 
the appropriate cellular contexts and, in our case, under 
metabolically relevant cell-extrinsic signals as part of a 
broader network of disease-associated genes.

High‑priority list of causal candidate genes 
for cardiometabolic disease
To facilitate informed selection of candidate causal genes 
for follow-up, we summarize in Fig.  6 and Additional 
file 1: Table S9 our complete list of uniquely colocalized 
genes for IR/T2D, WHR, and TG/HDL, which represent 
both tissue-specific and tissue-shared candidate causal 
genes. These associations can be exclusive or overlapping 
among eQTLs and sQTLs and in some instances shared 
across metabolic traits. Moreover, we provide direc-
tions of the effect on metabolic traits, empirical data on 
potential upstream regulators, and mechanistic insights 
through PPI networks.

Using these results, we can prioritize candidate causal 
genes, further dissecting the set based on additional rele-
vant features. As an example, the previously characterized 
cardiometabolic risk gene FAM13A [25] not only colocal-
izes in subcutaneous adipose tissue with fasting insulin, 
T2D, WHR, TG, and HDL, but it also has second-order 
PPI interactions with 10 known IR/T2D genes and is differ-
entially expressed under both glucose and insulin stimuli. 
Similarly, another gene, PDGFC, which has been studied in 
the context of angiogenesis [62] and vascular diseases [63] 
but not yet extensively within IR/T2D, colocalizes in the 
same tissue (subcutaneous adipose) with all the same traits 
as FAM13A, although its direction of effect is opposite to 
FAM13A. PDGFC also responds to glucose and insulin 
stimuli and interacts with six known IR/T2D genes, two of 
which also interact with FAM13A (CAV1 and ZMPSTE24). 
As one more example, we highlight the gene CDKN2C, 
which colocalizes in the muscle with T2D, WHR, and TG 
despite that the GWAS variant lies directly within an intron 
of another gene, FAF1. CDKN2C has seven PPI interactions 
with known IR/T2D genes and is differentially expressed 

Fig. 5  Genes prioritized through colocalization analysis respond to metabolic perturbations. a Candidate causal genes with differential expression 
(DE) under five metabolic perturbations (FDR < 5%). b Protein-protein interaction (PPI) network interactions in perturbation conditions between 
uniquely colocalized genes and seven known monogenic insulin resistance (IR) or T2D genes. Colocalized genes in blue nodes interact directly 
with the monogenic IR/T2D genes in red nodes; colocalized genes in yellow nodes interact via one intermediary gene. All genes in the central gray 
circle interact with multiple monogenic IR/T2D genes on the periphery, and genes closer to the center interact with more of the monogenic IR/T2D 
genes. To simplify visualization, not all direct links are depicted for genes with multiple interactions
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under glucose stimulation. These and other examples dem-
onstrate that the combination of our newly implemented 
colocalization approach with our large-scale perturbation 
data in metabolic cell types provides a testable list of highly 
probable causal genes for GWAS loci in the context of IR, 
T2D, and the associated cardiometabolic traits.

Discussion
Cardiometabolic diseases have now reached staggering 
levels around the globe. After almost two decades of 
GWAS and the discovery of hundreds of loci associated 

with cardiometabolic traits, few causal genes have been 
described in the context of IR, which is a key underly-
ing condition of cardiometabolic disease. Our approach 
is the first of its kind to integrate colocalizations across 
traits, tissues, and QTL types with experimental per-
turbations to prioritize candidate genes for human dis-
ease. Though the GWAS traits and QTL tissues used 
here are specifically relevant to cardiometabolic dis-
ease, this approach is broadly applicable to many other 
human complex diseases and traits.

Fig. 6  Integrative summary of causal evidence at 48 IR/T2D loci with a single colocalized gene. All loci with a colocalization for type 2 diabetes, 
fasting glucose, fasting insulin, and/or insulin sensitivity are included
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Our colocalization analysis incorporating both eQTLs 
and sQTLs found single colocalizations for 19% of the 
loci and multiple colocalizations in an additional 25% of 
the loci analyzed. Teasing apart the contribution of indi-
vidual genes to loci with multiple colocalizations remains 
an additional challenge. However, at loci with a single 
colocalization, we identify 152 candidate causal genes 
for IR/T2D, WHR, and TG/HDL. Our list is supported 
by colocalization of genes known to lead to Mendelian 
forms of diabetes (e.g., SLC2A2 and WFS1) [64, 65] and 
of genes with previously demonstrated mechanisms 
of association with IR/T2D (e.g., METAP2, PLEKHA1 
[TAPP1], FAM13A, and KLF14) [54, 57, 66, 67]. Although 
we did not detect colocalization at every single known 
IR/T2D gene, we expected that some would be absent 
from our results given that their pathological effect is 
primarily influenced by coding rather than expression- 
or splicing-based effects. For example, in the Mendelian 
neonatal diabetes gene KCNJ11, we observed no colo-
calization but found this unsurprising given the known 
influence of coding mutations in this gene [68]. Further-
more, while experiments in the model systems will be 
required to validate many of the most promising targets, 
some genes such as FAM13A [67] and PDGFC [69] have 
already been partially validated within the context of 
insulin resistance.

Our approach also points at a novel, shared genetic 
architecture of traits. For example, two genes previ-
ously associated with non-alcoholic fatty liver disease, or 
NAFLD (COBLL1 and PNPLA3) [12, 60], show colocali-
zation in the liver (Fig. 6), the former with fasting insulin 
and BMI and the latter with T2D, HDL, and TG, impli-
cating them as shared genetic associations for IR/T2D 
and NAFLD. Similarly, BDNF-AS colocalizes with T2D 
and BMI in adipose tissue and may link obesity, adipos-
ity, and mood disorders [70, 71]. Finally, the FGFR family 
contributes broadly, with FGFR1 colocalized in skeletal 
muscle for IR/T2D, FGFR4 in visceral adipose tissue for 
IR/T2D, and FGFR2 in visceral adipose tissue for WHR, 
highlighting the relevance of this family of receptors in 
metabolic regulation [72]. Based on our approach, the 
different patterns of shared colocalizations across tissues 
and traits suggest how these genes fit into the broader 
landscape of human complex disease and, in the context 
of cardiometabolic disease, categorize the novel candi-
date causal genes into potential IR- and non-IR-related 
subgroups. However, we acknowledge that discrepancies 
in tissue sample sizes will limit detection power for QTLs 
in some tissues, as illustrated in Fig.  1b, and threshold-
ing effects for inclusion in the analysis will occasion-
ally miss similar sub-threshold QTLs that may exist in 
the excluded tissues. Similarly, as shown by Barbeira 
et al. [73], tissue-specific colocalizations for many genes 

represent the suspected primary tissue(s) of activity, 
though colocalizations also often occur in other tissues 
not likely to affect disease pathology. Thus, the extension 
of QTL repositories to include larger sample sizes, addi-
tional developmental stages, and even single-cell QTL 
analyses will further empower similar analyses in the 
future.

We identified upstream extrinsic regulators of the can-
didate causal genes through a large-scale gene expres-
sion assay of metabolically relevant signals, and using PPI 
networks, we further connected these candidate genes 
to the broader network of other previously established 
IR and T2D genes. The resulting regulators and interac-
tors for each candidate causal gene are a starting point 
to investigate the molecular mechanisms linking these 
genes to cardiometabolic disease. Moreover, it is entic-
ing to consider the different mechanistic implications for 
the subgroups of colocalized genes regulated by differ-
ent perturbations. On one hand, candidate causal genes 
regulated by insulin and/or glucose may be an integral 
part of the core metabolic signaling and transcriptional 
network associated to insulin sensitivity, glucose homeo-
stasis, and cardiometabolic trait regulation. On the other 
hand, those candidate genes regulated by any other per-
turbation (including pharmacological regulators) may 
reflect parallel signaling and transcriptional networks 
with a significant regulatory role or crosstalk with the 
core insulin/glucose network, as with for example the 
FGFR family members FGFR1, FGFR2, and FGFR4. By 
contextualizing candidate causal genes, our perturbation 
analysis strengthens the interpretation of the colocaliza-
tion results that bridge the gap from GWAS variants to 
actionable causal genes.

Conclusions
Our integrative list of high-confidence cardiometabolic 
genes is both a general resource for investigators and a 
tool for detailed dissection of genes into relevant disease 
subgroups. Together, the integration of these multi-tissue 
and multi-trait colocalization results with their upstream 
extrinsic regulators provides extensive, contextual gene-
by-gene annotations for genes involved in IR, T2D, and 
associated cardiometabolic traits and will enhance drug 
development for cardiometabolic diseases.
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