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Abstract 

Background:  Previous large-scale studies of de novo variants identified a number of genes associated with neurode‑
velopmental disorders (NDDs); however, it was also predicted that many NDD-associated genes await discovery. Such 
genes can be discovered by integrating copy number variants (CNVs), which have not been fully considered in previ‑
ous studies, and increasing the sample size.

Methods:  We first constructed a model estimating the rates of de novo CNVs per gene from several factors such as 
gene length and number of exons. Second, we compiled a comprehensive list of de novo single-nucleotide variants 
(SNVs) in 41,165 individuals and de novo CNVs in 3675 individuals with NDDs by aggregating our own and publicly 
available datasets, including denovo-db and the Deciphering Developmental Disorders study data. Third, summing 
up the de novo CNV rates that we estimated and SNV rates previously established, gene-based enrichment of de 
novo deleterious SNVs and CNVs were assessed in the 41,165 cases. Significantly enriched genes were further pri‑
oritized according to their similarity to known NDD genes using a deep learning model that considers functional 
characteristics (e.g., gene ontology and expression patterns).

Results:  We identified a total of 380 genes achieving statistical significance (5% false discovery rate), including 31 
genes affected by de novo CNVs. Of the 380 genes, 52 have not previously been reported as NDD genes, and the data 
of de novo CNVs contributed to the significance of three genes (GLTSCR1, MARK2, and UBR3). Among the 52 genes, we 
reasonably excluded 18 genes [a number almost identical to the theoretically expected false positives (i.e., 380 × 0.05 
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Background
Whole-exome sequencing (WES) enabling comprehen-
sive detection of de novo mutations (DNMs) in protein-
coding regions has revealed many novel causative genes 
of neurodevelopmental disorders (NDDs) [1–4]. How-
ever, studies have suggested that many NDD-associated 
genes still await discovery [1, 2]. Such unidentified genes 
could be discovered by first developing more sophisti-
cated methods for statistical analysis and second increas-
ing the sample size.

To robustly identify genes responsible for NDDs, the 
enrichment of DNMs in affected individuals should be 
statistically evaluated. For this purpose, an approach 
comparing the observed and expected numbers of DNMs 
referring to the theoretical DNM rate is often utilized. 
Specifically, Samocha et al. developed a model of rates of 
de novo single-nucleotide variants (dnSNVs) considering 
the trinucleotide context (e.g., a high rate of transitions at 
CpG sites) and calculated the theoretical per-gene muta-
tion rates of SNVs [5]. Enrichment analyses of dnSNVs 
using this model of theoretical mutation rates have iden-
tified a number of novel disease-causing genes [4]. By 
contrast, a model of theoretical per-gene mutation rates 
has not yet been established for copy number variations 
(CNVs), another class of important disruptive genetic 
variation. Therefore, previous studies of DNMs aiming 
at identifying novel causative genes could not integrate 
information of dnSNVs and de novo CNVs (dnCNVs) in a 
uniform manner [2].

To identify new NDD-associated genes, we first 
addressed the problem in this study by developing a 
model estimating per-gene rates of dnCNVs consid-
ering several factors, such as gene length, number of 
exons, and information on segmental duplications (SDs) 
(Fig.  1). Subsequently, we compiled comprehensive lists 
of dnSNVs and dnCNVs in 41,165 and 3675 individu-
als with NDDs, respectively, by combining our own new 
dataset and data from published studies. By using the 
existing per-gene mutation rates for SNVs, the per-gene 
mutation rates for CNVs developed in this study, and 
the comprehensive lists of dnSNVs and dnCNVs from 
this and previously reported studies, we identified a 

large number of novel NDD-associated genes achieving 
exome-wide significance. We also propose a framework 
to assess the validity of new candidates for disease genes 
and to prioritize them by integrating various information.

Methods
Sample collection
We analyzed 13,851 individuals including 2536 trios in 
which the child was affected by rare diseases. They were 
recruited for genetic diagnosis and various studies, such 
as on autism spectrum disorder (ASD) [6] or epileptic 
encephalopathy [7] and series of case reports [8, 9], from 
hospitals in Japan and other countries including Malay-
sia, Vietnam, Israel, Iran, Turkey, Brazil, Chile, and New 
Zealand (termed as Yokohama City University [YCU] 
samples). In a subset of these trios, the child was diag-
nosed by attending physicians as having an NDD such 
as intellectual disability (n = 1317). Written informed 
consent was obtained from all of the participants or 
their guardians. In addition, NDD cases in publicly avail-
able data such as a previous Deciphering Developmen-
tal Disorders (DDD) study (DDD31k, n = 31,058) [1], 
denovo-db (n = 8790) [10], and Simons Simplex Col-
lection (SSC, n = 2385) [11] were included in this study 
(see “Analysis of DDD31k and denovo-db data” below 
and Additional file 1: Supplementary Methods). The total 
number is 41,165 (1317 + 31,058 + 8790) for the analy-
sis of SNVs and small indels while 3675 for CNVs (1298 
+ 2377) because 19 (1317–1298) samples did not pass 
CNV-based quality checks (QCs). For two samples with a 
de novo c.662A>G variant in PIP5K1C, their phenotypes 
were collected by attending physicians and described in 
detail (see “Case reports” in Additional file 1: Supplemen-
tary Methods). This study was approved by the institu-
tional review board of Yokohama City University School 
of Medicine.

Genetic drift simulation
We performed genetic drift simulation of a gene under a 
constant population size model by using a custom script 
(https://​github.​com/​haman​akako​hei/​AmJHu​mGene​
t2020/​blob/​master/​fig.​s1.​sh.R), as previously described 

= 19)] given their constraints against deleterious variants and extracted 34 “plausible” candidate genes. Their validity 
as NDD genes was consistently supported by their similarity in function and gene expression patterns to known NDD 
genes. Quantifying the overall similarity using deep learning, we identified 11 high-confidence (> 90% true-positive 
probabilities) candidate genes: HDAC2, SUPT16H, HECTD4, CHD5, XPO1, GSK3B, NLGN2, ADGRB1, CTR9, BRD3, and MARK2.

Conclusions:  We identified dozens of new candidates for NDD genes. Both the methods and the resources devel‑
oped here will contribute to the further identification of novel NDD-associated genes.

Keywords:  Neurodevelopmental disorder, Intellectual disability, Epileptic encephalopathy, Autism spectrum disorder, 
Rare disease, De novo variant, Copy number variant, Copy number variation, Mutation rate, Deep learning
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[12–14]. Parameters of the gene were set as follows: 
selection coefficient: 0; dominance coefficient: 0; con-
stant population size: 100,000; generations: 1,000,000; 
number of mutation sites (de novo events) in the gene: 
100, 320, or 1000; and mutation rate per mutation site in 
the gene: 1.0e-10, 1.0e-9, 1.0e-8, or 1.0e-7. The settings of 
the selection coefficient and the dominance coefficient 
indicate that the variants were under no natural selec-
tion. Each simulation generated the number of variant 
sites observed in 10,000 individuals randomly selected 

from the last generation, which was about the sample size 
of Genome Aggregation Database (gnomAD) structural 
variation (gnomAD-SV) [12, 15]. We set the mutation 
rate at each mutation site as 1e-7 or less, assuming that 
CNV mutation rates are likely lower than SNV mutation 
rates (from 8.0e-10 to 1.2e-7) [16, 17]. This is because the 
total number of dnCNVs per individual was far lower 
than that of dnSNVs, even though possible mutation 
sites of CNVs are far more numerous than those of SNVs 
[16, 18, 19]. The simulation was repeated > 300 times for 

Fig. 1  Framework for estimating mutation rates of < 1 Mb LOF CNVs per gene. a A conceptional overview showing the method for calculating the 
mutation rates of < 1 Mb LOF dnCNVs per gene. b A scheme depicting the method for selecting training genes. We selected training genes (here, 
the gene in red) that are LOF-tolerant and flanked by upstream and downstream > 1 Mb regions without any LOF-intolerant genes
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each parameter setting. Across the simulations with the 
same parameter setting, the numbers of variant sites in 
the gene that were observed in the 10,000 individuals in 
the last generation were averaged. This average was com-
pared with the total mutation rate in the gene [= (the 
number of mutation sites in the gene) × (the mutation 
rate per mutation site in the gene)].

Regression analyses predicting the number of < 1 Mb 
loss‑of‑function (LOF) CNV sites per gene in gnomAD‑SV
We performed binomial regression analyses of the num-
ber of 50 to 1 Mb LOF (deleting exonic regions) CNVs 
per gene in gnomAD-SV (https://​gnomad.​broad​insti​
tute.​org/​downl​oads/​gnomad_​v2_​sv.​sites.​bed.​gz) [15] by 
using a script (CnvModelConstruction_FigS1.R) on our 
GitHub repository [20]. The lower cut-off of the CNVs 
was derived from that in gnomAD-SV and a previously 
proposed definition [21]. For each gene, we used tran-
scripts that were as follows: (1) in GENCODE (gencode.
v19.annotation.gff3.gz) and (2) annotated as canonical 
and protein-coding in snpEff (n = 20,034). Among the 
genes, we selected LOF-tolerant genes flanked by 1 Mb 
regions free from LOF-intolerant genes at autosomes as 
training genes (n = 2225) (Additional file 1: Fig. 1a and 
Additional file  2: Table  S1). We defined LOF-intolerant 
and LOF-tolerant genes as genes at the first decile of 
loss-of-function observed/expected upper bound frac-
tion (LOEUF) (< 0.278), a metric for intolerance to LOF 
(gnomad.v2.1.1.lof_matrics.by_transcript.txt.bgz), and 
the other genes (0.278 or more), respectively [19]. For the 
regression analysis, we used the number of < 1 Mb LOF 
CNVs per gene in gnomAD-SV as a response variable. 
As explanatory variables, we used gene length, transcript 
length, number of exons, distance from the telomere, and 
number of SD pairs involving or surrounding the gene 
that are < 1 Mb apart. Locations of SDs were downloaded 
from the UCSC Genome Browser [22]. We set the dis-
tance from the telomere as 25 Mb when it was > 25 Mb 
because the numbers of < 1 Mb LOF CNV sites at genes 
in that range appeared to be constant. Despite setting this 
variable as 25 Mb, the distance from the telomere and the 
count of < 1 Mb LOF CNV sites showed a negative cor-
relation (r = −0.069, p = 1.2e-3).

Correlation between o/e ratios of LOF SNV and LOF CNV 
sites
We analyzed the correlation between the o/e ratios of 
LOF SNV sites per gene in gnomAD and < 1 Mb LOF 
CNV sites per gene in gnomAD-SV by using our script 
(CnvModelConstruction_FigS1.R) [20]. The o/e ratios of 
LOF SNV sites per gene in gnomAD were downloaded 
from the gnomAD portal site (https://​gnomad.​broad​insti​
tute.​org/​downl​oads/​gnomad.​v2.1.​1.​lof_​metri​cs.​by_​trans​

cript.​txt.​bgz) [19]. The o/e ratios of < 1 Mb LOF CNV 
sites per gene in gnomAD-SV were calculated based on 
our model, which predicted the number of < 1 Mb LOF 
CNV sites per gene in gnomAD-SV (see “Regression 
analyses predicting the number of < 1 Mb LOF CNV sites 
per gene in gnomAD-SV”).

Estimation of the total absolute mutation rate of < 1 Mb 
LOF CNVs at training genes
We estimated the total mutation rate of < 1 Mb LOF 
CNVs at the 2225 training genes using the Watterson 
estimator as the original analysis of gnomAD-SV [15] 
by using our script (CnvTotalMutationRate_FigS1.R) 
[20]. Briefly, the Watterson estimator calculates the total 
mutation rate of CNVs from K (the number of polymor-
phic sites in a population), Ne (the effective population 
size), and n (the number of alleles). We calculated this 
estimate in each ethnicity in gnomAD-SV—African/Afri-
can-American, Latino, East Asian, European, and other 
populations—and averaged all of the estimates. To exper-
imentally validate the average estimate, we used the total 
mutation rate of < 1 Mb LOF CNVs at the 2225 training 
genes in ASD probands or healthy siblings of 519 SSC 
quads, whose dnCNVs were detected with the gnomAD-
SV pipeline and confirmed by quantitative polymerase 
chain reaction (qPCR) in a previous study [23].

Mutation rates of SNVs and small indels per gene
We calculated the mutation rates of SNVs and small 
indels per gene using the trinucleotide-context model 
(https://​github.​com/​pjsho​rt/​dddMA​PS) [17], which 
gives mutation rates in each trinucleotide context, as 
described in our previous report (script: https://​github.​
com/​haman​akako​hei/​AmJHu​mGene​t2020/​blob/​master/​
table.​s1.​s2.​fig.​s2a.1.R) [13, 20]. Briefly, the functional cat-
egory (e.g., missense) of all possible SNVs in each gene 
was annotated with SnpEff [24]. Then, the per-gene rates 
of synonymous, missense, and nonsense mutations were 
determined by summing the rates of all possible variants 
in one of the three categories in each gene. For the calcu-
lation of the mutation rate of frameshift indels, we multi-
plied the mutation rates of nonsense variants per gene by 
1.1, which was the ratio of frameshift to nonsense DNMs 
identified by exome sequencing in a previous DDD study 
[3]. Because sequencing depth can affect the number of 
observed variants, we adjusted the mutation rate at each 
base according to the median depth per nucleotide, as 
previously performed [13]: mutation rate × 0.025 × 
depth, when depth was < 40. The formulas were gener-
ated from a curve of the median depth plotted against 
the ratio of the mutation rate of synonymous variants 
per nucleotide to the observed number of de novo syn-
onymous variants per nucleotide in our previous study 
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[13]. For the depth adjustment, we randomly selected 100 
samples analyzed with respective SureSelect Human All 
Exon V4, 5, or 6 Kit in YCU and calculated the median 
depth per nucleotide for the respective kits using sam-
tools. For DDD31k and denovo-db data [1, 10], we could 
not obtain the median depth per nucleotide and could 
not adjust the mutation rates per gene with the median 
depth per nucleotide. Instead, for DDD31k and denovo-
db data, to match the expected and observed numbers of 
DNMs in each set of data, we multiplied per-gene muta-
tion rates by 0.76 and 0.67 for DDD31k and denovo-db 
data, respectively, which were the o/e ratios of rare (< 
0.001% minor allele frequency in 5575 healthy YCU sam-
ples and the “non-neuro” subset of gnomAD) synony-
mous DNMs in each dataset (6028/7938 in DDD31k data 
and 1502/2246 in denovo-db data).

Analysis of DDD31k and denovo‑db data
We downloaded DNMs detected in the latest DDD31k 
study [1] (https://​www.​biorx​iv.​org/​conte​nt/​10.​1101/​
79778​7v2) and denovo-db [10] (https://​denovo-​db.​
gs .​washi​ngton.​edu/​denovo-​db.​non-​ssc-​sampl​es .​
varia​nts.v.​1.6.​1.​vcf.​gz and denovo-db.ssc-samples.
variants.v.1.6.1.vcf.gz in http://​denovo-​db.​gs.​washi​
ngton.​edu/​denovo-​db/​Downl​oad.​jsp). We excluded 
“DDD_2017” and “Lelieveld2016” data from denovo-db 
due to their overlapping of samples with data in the lat-
est DDD31k study. Because denovo-db contained multi-
ple studies using the same samples (i.e., SSC samples in 
“Iossifov,” “Krumm,” “Turner2016,” “Turner 2017,” and 
“Werling 2018” and MSSNG samples in “Yuen2016” 
and “Yuen2017”), we removed duplicated variants in the 
same sample from these studies, and the total number 
of samples from these studies turned out to be 2508 in 
SSC and 1625 in MSSNG, according to the release notes 
(denovo-db.v.1.6.1.pdf ). We excluded studies of target 
sequencing: “ASD1_2” and “ASD3.” Because denovo-db 
contained data from multiple studies targeting vari-
able diseases, we only selected studies about “autism,” 
“congenital_heart_disease,” “developmentalDisorder,” 
“intellectualDisability,” “epilepsy,” and “sporadic_infan-
tile_spasm_syndrome.” We included the studies about 
congenital heart diseases because congenital heart dis-
eases and NDDs could coincide, and their genetic causes 
could overlap [4]. Consequently, we used the following 
data in denovo-db: SSC data (n = 2508), MSSNG data 
(n = 1625), “Hashimoto2015” (n = 30), “Homsy2015” 
(n = 1213), “Sifrim2016” (n = 859), “Michaelson2012” 
(n = 10), “DeRubeis2014” (n = 1445), “Lifton” (n = 
362), “deLigt2012” (n = 100), “epi4k2013” (n = 264), 
“Halvardson2016” (n = 39), “Veeramah2013” (n = 10), 
“Rauch2012” (n = 51), “Helbig2016” (n = 254), “Tavas-
soli2014” (n = 1), “Lee2014” (n = 1), “Veeramah2012” (n 

= 1), “Moreno-Ramos2015” (n = 4), “Barcia2012” (n = 
3), and “Dimassi2015” (n = 10).

Enrichment analyses of DNMs per gene
The enrichment of DNMs per gene was analyzed by 
testing the null hypothesis that the observed number 
of DNMs follows a Poisson distribution whose mean is 
equal to the expected number of DNMs (script: DnvEn-
richment_Fig2FigS4.R) [20]. The expected number 
of DNMs was calculated as follows: (mutation rate of 
DNMs per gene in an individual) × (number of analyzed 
trios). Three patterns of enrichment analyses of DNMs 
were performed: (1) only LOF analysis, (2) only d-MIS 
analysis, and (3) LOF + d-MIS analysis. The threshold 
of the p-value for statistical significance was Bonferroni-
corrected for the total number of tests: 0.05/(20,034 × 3) 
(= 8.3E-7).

Plotting of DNMs
We plotted the locations of de novo SNVs and small 
indels along with gene structures, read depth per nucle-
otide in WES in gnomAD, moving average of missense 
counts per nucleotide in WES in gnomAD, and Pfam 
domain locations using our script (DnmPlot_FigS7.R) 
[20]. We downloaded the gene structures from GEN-
CODE (gencode.v19.annotation.gff3.gz) [25], the depth 
and number of missense variants per nucleotide from 
the gnomAD portal site (gnomad.exomes.r2.1.coverage.
tsv.bgz and gnomad.exomes.r2.1.1.sites.vcf.bgz) [19], 
and Pfam domains from the Table Browser of the UCSC 
Genome Browser [22, 26]. To calculate the moving aver-
age of the number of missense variants per nucleotide, 
we annotated the gnomAD variants with SnpEff [24], 
counted the missense variants at each base, and calcu-
lated the moving average of the counts in the surround-
ing seven bases on each side (15 bases in total).

Spatiotemporal gene expression analyses
We analyzed whether genes preferentially expressed 
in each tissue or cell type were enriched in the DNM-
enriched genes using the tissue-or cell-specific expres-
sion analysis (TSEA or CSEA) tools [27]. The gene 
expression data for human tissues and human brain 
subregions were derived from RNA-seq data of the 
Genotype-Tissue Expression (GTEx) project and the 
BrainSpan Atlas, respectively [28, 29]. The lists of spe-
cifically expressed genes are contained in the specific-
ity index probability (pSI) package of R (http://​genet​ics.​
wustl.​edu/​jdlab/​psi_​packa​ge/​pSI.​data_1.​0.​tar_.​gz/​data/​
human.​rda) [30]. The specificity was represented as a pSI 
score, with a smaller score indicating higher specificity. 
Whether genes specifically expressed in each tissue or 
cell type were enriched in the DNM-enriched genes was 

https://www.biorxiv.org/content/10.1101/797787v2
https://www.biorxiv.org/content/10.1101/797787v2
https://denovo-db.gs.washington.edu/denovo-db.non-ssc-samples.variants.v.1.6.1.vcf.gz
https://denovo-db.gs.washington.edu/denovo-db.non-ssc-samples.variants.v.1.6.1.vcf.gz
https://denovo-db.gs.washington.edu/denovo-db.non-ssc-samples.variants.v.1.6.1.vcf.gz
http://denovo-db.gs.washington.edu/denovo-db/Download.jsp
http://denovo-db.gs.washington.edu/denovo-db/Download.jsp
http://genetics.wustl.edu/jdlab/psi_package/pSI.data_1.0.tar_.gz/data/human.rda
http://genetics.wustl.edu/jdlab/psi_package/pSI.data_1.0.tar_.gz/data/human.rda
http://genetics.wustl.edu/jdlab/psi_package/pSI.data_1.0.tar_.gz/data/human.rda
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analyzed using one-tailed Fisher’s exact tests followed by 
Benjamini–Hochberg (BH) adjustments. We also ana-
lyzed whether genes of respective co-expression modules 
were enriched in the DNM-enriched genes using hyper-
geometric tests followed by BH adjustments. The mod-
ules were previously constructed from microarray data of 
1061 samples of various brain regions (frontal, temporal, 
parietal, occipital, subcortical, and cerebellar regions) at 
various ages (from 6 weeks post-conception to 30 years 
of age) by weighted gene co-expression network analyses 
[31].

Gene ontology (GO) analyses
We analyzed which GO terms were enriched in the 
DNM-enriched genes using ToppGene [32] by using our 
script (GeneOntology_Fig4.py) [20]. We analyzed three 
different GO terms: GO biological process (BP), GO 
molecular function (MF), and GO cellular component 
(CC). We analyzed only GO terms with 20 to 500 genes 
because GO terms with > 500 genes are less specific 
and give little insight into the genes’ functions. Cluster-
ing of the enriched GO terms according to the similarity 
between terms was performed using the EnrichmentMap 
plugin of Cytoscape [33, 34]. A gene pair was connected 
by an edge when the Jaccard and overlap combined coef-
ficient was greater than 0.375. The functions of clusters 
of ten or more GO terms were manually annotated. Edge 
width represents the overlap coefficient, and node size 
represents the number of genes belonging to the node. 
After clustering GO terms, we inspected each clus-
ter and manually annotated them with what the cluster 
represents.

Protein‑protein interaction (PPI) network analysis
We used Search Tool for the Retrieval of Interacting 
Genes/Proteins (STRING), a comprehensive database 
of PPIs. STRING provides information about clusters 
of interacting human proteins (hereafter, STRING clus-
ters), annotated with several databases such as Reactome 
and UniProt [35]. To analyze which STRING cluster’s 
components are enriched in the proteins encoded by the 
DNM-enriched genes, we downloaded cluster descrip-
tions (clust​ers.​info.v11.0.txt.gz) and protein members 
of all clusters (clusters.proteins.v11.0.txt.gz) from the 
STRING web server [35], and then calculated p-values 
for each cluster using hypergeometric tests and corrected 
them for multiple testing with the BH method by using 
our script (String.py) [20].

Preprocessing of predictors for neural network (NN) model 
construction
We used seven predictors for NN model: the probabil-
ity of being loss-of-function intolerant (pLI) [16, 19]; 

LOEUF, a conservative estimate of the observed/expected 
ratio [19]; missense z-score of the observed missense 
counts compared to expected [16, 19]; and the results of 
TSEA, brain subregion/stage-specific expression analy-
sis, co-expression module analysis, and STRING analysis. 
We preprocessed these as follows: For the TSEA results, 
we set genes with pSI < 0.05 in the brain as one and the 
other genes as zero. For brain subregion/stage-specific 
expression analysis results, we used the number of brain 
subregions/stages with pSI score < 0.05 among the brain 
subregions/stages enriched in the 328 known genes. For 
co-expression module analysis results, we regarded this 
variable as categorical and set modules except for M1, 
M4, M7, and M13 as “Others.” For GO analysis results, 
we used the number of GO terms enriched in the 328 
known genes. For STRING analysis results, we set genes 
that are a member of STRING clusters enriched in the 
328 known genes as one and the other genes as zero.

NN model construction
We designed the model architecture, trained the model, 
and evaluated the model using the Keras application 
programming interface of the TensorFlow2 package in 
Python3 by using our script (Fig.6bcd_S9_TableS15.py) 
[20, 36]. We trained an NN comprising one input layer 
(8 neurons), two hidden dense layers with rectified linear 
unit functions (128 neurons), and one output layer with 
a sigmoid function (1 neuron). The last sigmoid function 
outputs a score of 0-1. We used Adam as the model opti-
mization algorithm and binary cross entropy as the loss 
function. For training, the parameters of the model were 
updated in each of the five genes. The model was trained 
for the whole training gene set five times.

AUC comparison
We determined the area under the receiver operating 
characteristic curve (AUC) of our NN model, eight pre-
dictors, and three metrics for PC3 and NC3 by using our 
script (Fig.6bcd_S9_TableS15.py) [20]. Empirical p-values 
of the difference in AUC between our NN model and oth-
ers were based on a distribution of the AUC of 500 NN 
models. The p-values were further adjusted by the BH 
method. The three metrics were residual-variance intol-
erance score (RVIS) (http://​genic-​intol​erance.​org/​data/​
RVIS_​Unpub​lished_​ExACv2_​March​2017.​txt) [37], which 
indicates intolerance to functional variations, gene dam-
age index (GDI) (https://​lab.​rocke​feller.​edu/​casan​ova/​
GDI/​GDI_​full.​txt) [38], which indicates the load of func-
tional variations in the general population, and Human 
Gene Connectome (HGC) [39, 40], which measures the 
biological distance between two genes. For the HGC 
score, we manually give NDD genes in PC1 (n=243) and 
PC2 (n=33) as input for “Core Genes” and genes in PC3 

http://clusters.info
http://genic-intolerance.org/data/RVIS_Unpublished_ExACv2_March2017.txt
http://genic-intolerance.org/data/RVIS_Unpublished_ExACv2_March2017.txt
https://lab.rockefeller.edu/casanova/GDI/GDI_full.txt
https://lab.rockefeller.edu/casanova/GDI/GDI_full.txt
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(n=246) and NC3 (n=1000) for “Genes of Interest” in 
HGC server (https://​hgc.​rocke​feller.​edu/) and obtained 
the distance of a target gene to each of the 276 known 
NDD genes and regarded the minimum distance among 
the 276 scores as the HGC score of the target gene.

Application of the NN model to the 34 plausible candidate 
genes
The NN model cannot handle genes for which some of 
the data are missing. For 6 of the 34 plausible candi-
date genes, brain subregion/stage-specific expression 
or co-expression module analysis results were missing. 
Therefore, we converted the missing data in the brain 
subregion/stage-specific expression analysis results to the 
median (i.e., 1) of the 34 genes, while we converted the 
missing data in the co-expression module analysis results 
to “Others” (see “Preprocessing of predictors for NN 
model construction”).

Calculation of likelihood ratios
To calculate the likelihood ratios of the NN model scores, 
we approximated the score distributions of PC3 and NC3 
using Kernel density estimation implemented in scikit-
learn library [41], which was the same algorithm as the 
violin plots in Fig. 6a, by using our script (Fig.6bcd_S9_
TableS15.py) [20]. From the approximate distributions, 
we obtained probability densities of model scores in NC3 
and PC3. By dividing the probability densities in PC3 
with those in NC3, we calculated the likelihood ratios of 
NN model scores.

Results
Construction of models predicting the relative per‑gene 
mutation rates of LOF CNVs
We first aimed to construct a model calculating the 
mutation rates of LOF CNVs per gene (only focusing on 
deletions affecting one or more exons, but not including 
other types of LOF SVs such as intragenic duplications 
and mobile element insertions) [15] (Fig.  1). Previous 
studies demonstrated that the mutation rates of syn-
onymous SNVs per gene correlate with the number of 
synonymous SNV sites per gene in the general popula-
tions of the Exome Aggregation Consortium (ExAC) and 
gnomAD [16, 19], despite various local mutation rates at 
each base. From this finding, we hypothesized that the 
mutation rates of variants at selectively neutral loci cor-
relate with the counts of variant sites in a population, 
and thus, the de novo mutation rates of LOF CNVs per 
neutral gene can be estimated from the number of LOF 
CNV sites per gene in the gnomAD-SV dataset. To prove 
this, we performed simulations of mutational events 
and genetic drift through generations under various 
parameter settings [12, 13]. The simulations showed that 

mutation rates per gene and numbers of variant sites per 
gene observed in gnomAD-SV closely correlate when the 
variants are not under natural selection (Additional file 1: 
Fig. S1a).

The above result indicates that relative mutation rates 
of LOF CNVs per gene can be calculated from the num-
ber of LOF CNV sites per gene in gnomAD-SV, when 
the LOF CNVs are not under selection. We subsequently 
selected genes in such regions where LOF CNVs are 
unlikely to be under selection using the following criteria: 
(1) genes that are tolerant of LOF variants, as indicated 
by the LOEUF score [19] > 0.278 (genes not belonging to 
the most constrained decile) and (2) genes flanked by 1 
Mb upstream and downstream regions without any LOF-
intolerant genes (LOEUF < 0.278) (Fig. 1b). We then used 
the data of LOF CNVs that are smaller than 1 Mb in gno-
mAD-SV (“< 1 Mb LOF CNVs” in the following) to count 
the numbers of LOF CNV sites in these genes (Fig. 1b).

Using these genes as the training set, we next con-
structed a model predicting the number of < 1 Mb LOF 
CNV sites per gene in gnomAD-SV, which corresponds 
to relative de novo mutation rates of < 1 Mb LOF CNVs 
per gene as simulated above. For this purpose, we tested 
the following six variables possibly correlated to the num-
ber of CNV sites per gene: gene length, number of exons, 
transcript length, number of SD pairs involving or sur-
rounding a gene, distance from the centromere, and dis-
tance from the telomere (Additional file 2: Table S1). We 
selected the latter three because SD pairs could generate 
CNVs via non-allelic homologous recombination and 
genomic regions near the centromere and the telomere 
had more CNVs [15, 42]. As expected, gene length, num-
ber of exons, and transcript length positively correlated 
with the number of < 1 Mb LOF CNV sites in the train-
ing genes (n = 2225) in gnomAD-SV (Additional file  1: 
Fig. S1b). The number of SD pairs involving or surround-
ing a gene also showed a significant positive correlation, 
but with a non-linear pattern (Additional file 1: Fig. S1b). 
The distance from the centromere showed a weak corre-
lation with a fluctuation of the moving average. The dis-
tance from the telomere showed a negative correlation 
in the regions near the telomere (0–25 Mb, the left side 
of the black dotted vertical line in the rightmost panels 
of Additional file  1: Fig. S1b), whereas the correlation 
between per-gene < 1 Mb LOF CNV sites and the dis-
tance from the telomere was unclear in the distal regions 
(> 25 Mb, the right side of the black dotted vertical line in 
the rightmost panels of Additional file 1: Fig. S1b). From 
these results, we decided to use gene length, number of 
exons, transcript length, number of SD pairs, and dis-
tance from the telomere for the regions near the telomere 
(see “Methods”) as the explanatory variables. Using all 
possible combinations of these five explanatory variables 

https://hgc.rockefeller.edu/
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(25–1 = 31), we performed binomial regression analyses 
and constructed 31 models predicting the number of < 1 
Mb LOF CNV sites per gene based on the training genes 
(Additional file 2: Table S2).

Selection and validation of the best model
Among the 31 models constructed above, the 4th model 
considering gene length, number of exons, number of SD 
pairs involving or surrounding a gene, and distance from 
the telomere had the lowest AIC. We selected this model 
as the best one and used it for further analyses (Addi-
tional file 2: Table S2).

On the basis of this model, we predicted the number 
of CNV sites per gene in all genes, including those not 
in the training set. The observed number of CNV sites in 
gnomAD-SV and the expected number of those from the 
4th model are highly significantly correlated in the train-
ing genes (Pearson’s correlation coefficient: 0.38, p-value 
= 3.0e-79; Additional file  1: Fig. S1c). A highly signifi-
cant correlation with a smaller correlation coefficient 
was also observed among the other (non-training) genes 
(Pearson’s correlation coefficient: 0.24, p-value = 1.4e-
229; Additional file  1: Fig. S1c). These results suggested 
that the model works for all genes. When comparing the 
training genes with the non-training genes, the expected 
numbers were less than the observed numbers only in 
the non-training genes. This is reasonable because the 
non-training genes include LOF-intolerant ones where 
LOF CNVs should be under natural selection. We also 
performed validation of our model using the ratios of 
observed numbers of LOF CNV sites in gnomAD-SV to 
the expected numbers based on our model (o/e ratios). 
The o/e ratio of LOF CNVs for a gene is expected to be 
lower when the natural selection against LOF CNVs hit-
ting the gene is stronger. This should also be true for the 
o/e ratio of LOF SNVs because LOF CNVs and SNVs are 
considered to damage gene function equally. Therefore, 
we investigated the correlation between the o/e ratios 
of LOF SNV sites in gnomAD and LOF CNV sites in 
gnomAD-SV. We found that these two ratios are highly 
significantly correlated (r = 0.20, p-value = 5.9E-168; 
Additional file  1: Fig. S1d). In addition, the o/e ratio of 
LOF CNV sites negatively correlated with a gene-level 
score of intolerance to deletions (gs://gcp-public-data—
gnomad/legacy/exacv1_downloads/release0.3.1/cnv), 
which was computed based on ExAC WES data (Pear-
son’s r = -0.24, p = 1.2e-120; Additional file 1: Fig. S1e) 
[43]. These results collectively demonstrate that the 
model reasonably predicts theoretical counts of LOF 
CNV sites per gene on the assumption that the LOF 
CNVs are under no selection.

In these validations, the 4th model considering mul-
tiple explanatory factors showed lower p-values than 

simpler models based on gene length (the 27th model) 
or transcript length (the 29th model) (Additional file  2: 
Table S2). Therefore, the 4th model, which demonstrated 
the best performance in predicting per-gene LOF CNV 
rates in the training genes, is thought to also be supe-
rior to the simpler models in predicting the non-train-
ing genes. On the basis of this 4th model, we obtained 
the relative per-gene mutation rates of LOF CNVs in all 
genes.

Conversion of the relative per‑gene mutation rates of LOF 
CNVs to the absolute mutation rates for DNM enrichment 
analysis
Using the best model described above (the 4th model), 
we can estimate the number of < 1 Mb LOF CNV sites 
per gene in gnomAD-SV, which should correspond to 
the relative per-gene dnCNV rates (Additional file  1: 
Fig. S1a). Meanwhile, we need to convert the relative 
per-gene rates into the absolute rates to determine the 
theoretically expected numbers of dnCNVs in each gene 
in a patient cohort. To this end, we estimated the total 
absolute mutation rate of < 1 Mb LOF CNVs in the train-
ing genes using the Watterson estimator, as previously 
described (Fig. 1b) [15]. The Watterson estimator, which 
considers the number of variant sites and the population 
size in gnomAD-SV, estimated the total absolute muta-
tion rate of < 1 Mb LOF CNVs in the training genes to 
be 0.00155. This estimate is comparable to the mutation 
rate in children in the SSC dataset (519 quads), in which 
CNVs were detected in the same way as for gnomAD-
SV and experimentally validated (Additional file  1: Fig. 
S1f ) [15, 23]. In this analysis, we included the probands 
because we assumed that even the affected children likely 
have a comparable number of dnCNVs at neutral genes. 
We further performed an adjustment of the total abso-
lute mutation rate considering that one CNV could affect 
multiple genes. On average, < 1 Mb LOF CNV sites in 
gnomAD-SV in the training genes affect approximately 
1.2 training genes (Additional file  1: Fig. S1f ). On the 
basis of this number, we calculated the adjusted (cumu-
lative) total mutation rate of < 1 Mb LOF CNVs in the 
training genes as 0.00186 (0.0155 × 1.2) (Fig. 1a).

From these results, we obtained the following absolute 
mutation rates of < 1 Mb LOF CNVs per gene for 20,034 
genes (protein-coding and canonical transcripts in GEN-
CODE and snpEff) (see “Methods”) (Additional file  2: 
Table  S3) (Fig.  1a): (the total absolute mutation rate in 
the training genes, 0.00155) × (the number of the train-
ing genes affected by dnCNVs in the training genes, 1.2)/
(the total relative mutation rate in the training genes, 
1824) × (the relative mutation rate of a gene of interest). 
Because the abovementioned validation of the estimated 
total mutation rate was performed by using a subset of 
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genes (n = 2225) (Additional file 1: Fig. S1f ), we repeated 
the analysis using all genes (n = 20,034) whose absolute 
mutation rates were finally obtained here. By summing 
up all mutation rates per gene, corresponding to the the-
oretical per-individual number of genes affected by LOF 
dnCNVs, and comparing this summed value to the total 
number of genes affected by experimentally validated 
LOF dnCNVs in 519 quads in SSC described above, we 
observed that the theoretically expected number is con-
sistent with the observed number, especially in healthy 
siblings (Additional file  1: Fig. S1h). This indicates that 
our estimate of the total mutation rate is reasonable. 
Thus, we could obtain per-gene mutation rates of all 
genes that can be used in the DNM enrichment analyses 
as shown below.

Gene‑based enrichment analyses of dnSNVs and dnCNVs 
in NDDs
Subsequently, we compiled comprehensive lists of 
dnSNVs and dnCNVs in NDD cases to maximize the 
chance of gene discovery. We collected the data of 
DNMs from the following four datasets: our YCU data 
for dnSNVs and dnCNVs; the study of ~31,000 devel-
opmental disorder cases combining healthcare and 
research data by the DDD project and others (DDD31k) 
for dnSNVs [1]; denovo-db, a collection of DNMs assem-
bled from the literature, for dnSNVs [10]; and the SSC 
dataset for dnCNVs (Additional file 1: Fig. S2) [11]. We 
combined these data while being aware of the overlaps 
across the datasets. For example, data of dnSNVs in the 
SSC dataset were not used as these are included in the 
denovo-db dataset. Variant- and sample-level QCs of 
the dnSNVs and dnCNVs in our YCU cohort and dnC-
NVs in the SSC dataset were performed as described in 
Additional file  1: Supplementary Methods and Fig. S2 
and S3. After the compilation, we included the data of 
dnSNVs in 1317 cases in YCU and dnCNVs in 1298 cases 
in YCU, dnSNVs in 31,058 cases in DDD31k, dnSNVs in 
8790 cases in denovo-db, and dnCNVs in 2377 cases in 
SSC quads in the downstream analyses (Additional file 2: 
Table S4, S5, and S6).

By using the above-described framework for the anal-
ysis of dnSNVs and dnCNVs in a uniform manner, and 
the compiled comprehensive lists of dnSNVs and dnC-
NVs in NDD cases, we performed enrichment analyses 
of dnSNVs and dnCNVs. To combine the datasets from 
different cohorts, we matched the expected and observed 
numbers of synonymous dnSNVs (see Additional file  1: 
Fig. S4 and Supplementary Methods). To calculate the 
total expected count of dnSNVs and dnCNVs in a gene, 
we added up each expected count because the sum of 
two Poisson random variables, each with the mean λ1 or 
λ2, forms a Poisson random variable whose mean is λ1 + 
λ2. We performed the following three patterns of enrich-
ment analysis of DNMs for each gene (n = 20,034): (1) 
only LOF (nonsense, frameshift, splice acceptor site, 
splice donor site, and CNV) analysis; (2) only d-MIS 
[damaging missense: missense variants with > 2 Missense 
badness, PolyPhen-2, and Constraint (MPC [44]) score] 
analysis; and (3) LOF + d-MIS analysis using the data of 
both LOF and d-MIS DNMs.

For multiple testing corrections, we performed two-
step adjustments. We first applied a gene-level adjust-
ment based on the number of tests for each gene, that is, 
three for genes with MPC annotation and one for genes 
with no such annotation, using the Bonferroni method. 
After that, we selected the smallest Bonferroni-adjusted 
p-value for each gene. Next, we performed an exome-
wide adjustment based on the number of tested genes 
using the BH method to obtain a q-value for each gene. 
After corrections, we identified a total of 381 genes sig-
nificantly enriched for DNMs (q-value < 0.05) (Additional 
file 2: Table S7). Of these 381 genes, we identified dnC-
NVs in 32 genes (Additional file  2: Table  S8), and these 
dnCNVs contributed to lower q-values (Fig. 2a): MECP2, 
STXBP1, SCN2A, EHMT1, WAC​, FOXG1, ZBTB18, 
HNRNPU, BCL11A, SMC1A, SLC2A1, SMARCB1, 
MYT1L, FBXO11, TAOK1, KDM6A, UBE3A, KMT2B, 
ITPR1, ATP6V0C, NRXN1, ARID1B, CHD2, CSNK2A1, 
MEIS2, KMT2C, TCF7L2, TNRC6B, ZNF462, GLTSCR1, 
MARK2, and UBR3. We confirmed these CNVs in YCU 
samples by qPCR (Fig. 2b and Additional file 1: Fig. S5) 
and those in SSC samples by manual inspection with 

(See figure on next page.)
Fig. 2  Contribution of dnCNVs to statistical significance of DNM enrichment analyses. a A plot of q-values of DNM enrichment analyses for each 
gene before (x-axis) and after (y-axis) combining dnCNV data. The gray diagonal line indicates the line of y = x. The small inset is a magnified 
image. The dotted lines in the small inset: thresholds for exome-wide statistical significance (q-value = 0.05). b Visualization of the LOF dnCNVs 
affecting GLTSCR1 in a YCU case. From top to bottom, the plots show the exon–intron structures of the canonical transcripts, LOEUF, CNVs called 
by the exome hidden markov model (XHMM), and z scores of depth in the XHMM analysis. LOEUF of each gene is shown as a horizontal line 
corresponding to its genomic region. In the plot of z score for depth, the red line indicates the z score of the case with the LOF dnCNV, and the 
black lines indicate the z scores of 500 randomly selected control individuals. c IGV images of WGS data of a family with a UBR3 dnCNV (13302) 
and a family with a MARK2 dnCNV (12103). At the top, coverage and paired-end reads of all family members and exon–intron structures of genes 
are shown. At the bottom, magnified images of coverage and paired-end reads of the affected proband are shown. In the magnified images, 
discordant read pairs, whose read one and read two surround a dnCNV, are connected with a black line, and split reads, which span a breakpoint, 
are connected with a red line. p1, the affected proband; fa, the father; mo, the mother; s1, the healthy sibling
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Fig. 2  (See legend on previous page.)
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Integrative Genomics Viewer (IGV) (Figs.  2c and S6). 
We noted that both ZBTB18 and HNRNPU were affected 
by one dnCNV, and the dnCNVs at STXBP1, EHMT1, 
BCL11A, KDM6A, and ATP6V0C also affected other 
LOF-constrained (> 0.9 pLI and < 0.35 LOEUF) genes 
such as RALGPS1 and ENG, ZMYND19, PAPOLG and 
REL, EFHC2, and PDPK1, respectively (Additional file 1: 
Fig. S6b, d, g, h, o, and s). According to previous litera-
ture, the pathogenicity of STXBP1, EHMT1, ZBTB18, 
HNRNPU, BCL11A, and KDM6A deletions have been 
established [45–51]. Meanwhile, the deletion of PDPK1, 
but not ATP6V0C, may be truly pathogenic. There-
fore, we conservatively excluded the dnCNV count 
at ATP6V0C. After that, the enrichment of DNMs at 
ATP6V0C was no longer statistically significant.

Identification of plausible candidates for novel NDD genes
Among the 380 genes, in which ATP6V0C is not 
included, we analyzed whether each gene was previously 
reported as (1) an autosomal dominant or X-linked can-
didate NDD gene in the DDG2P (Development Disorder 
Genotype Phenotype Database) [52], (2) an NDD-related 
haploinsufficient gene in ClinGen Dosage Sensitivity 
Map (https://​ftp.​clini​calge​nome.​org/​ClinG​en_​gene_​
curat​ion_​list_​GRCh38.​tsv) [53], (3) statistically signifi-
cant in three previous large studies of DNMs [1, 2, 54], 
or (4) a gene causative of NDDs in PubMed, excluding 
case reports (Additional file 2: Table S7). We found that 
328 genes fell into at least one of the above categories. 
Therefore, we defined them as known NDD genes. Mean-
while, no such reports on the remaining 52 genes had 
been published, indicating that they can be new candi-
date genes for NDDs (Additional file 1: Fig. S7). Of these 
52 candidates, dnCNVs contributed to the significance of 
GLTSCR1, MARK2, and UBR3 (Fig. 2b, c).

Among the 52 candidates, 43 and 26 genes are enriched 
for LOF and d-MIS DNMs, respectively, in NDDs (17 
genes are enriched for both). By evaluating the 43 genes 
with LOF enrichment in light of their constraints against 
LOF variants in the general population using two estab-
lished metrics (the pLI and LOEUF scores) [16, 19], we 
found that these genes are significantly LOF-constrained 
compared with the others (Wilcoxon rank sum test p-val-
ues = 1.6e-8 and 6.8e-5) (Additional file 1: Fig. S8a). This 
further supports the candidacy of these genes as novel 
NDD genes and suggests that haploinsufficiency of these 
genes is the relevant pathomechanism (Additional file 2: 
Table  S9). In particular, genes with strong constraints 
against LOF variants can be good candidates. We found 
that there are 23 such genes with pLI > 0.9 and LOEUF 
< 0.35 (Additional file  2: Table  S9). We also noted that 
ELAVL3 has very low observed/expected ratios of LOF 
variants (0.15), while the LOEUF (0.46) and pLI scores 

(0.77) of this gene were modest, probably due to its small 
gene size. Similarly, we evaluated the 26 genes enriched 
for d-MIS variants in NDDs using the missense z-score 
in gnomAD, an indicator of a constraint against missense 
variants in the general population. We found that there 
is an overall bias toward a constraint against missense 
variants among the 26 genes with d-MIS DNM enrich-
ment (Wilcoxon rank sum test p-value = 2.9e-14) (Addi-
tional file 1: Fig. S8b). We found that 20 of the 26 genes 
were highly depleted of missense variants (> 2.5 missense 
z-score) and were thus considered as good candidate 
genes (Additional file 2: Table S9). Notably, 7 of these 26 
candidates harbor recurrent (affecting the same amino 
acids) d-MIS DNMs (Additional file 2: Tables S8 and S9), 
that is, PSMC3, PIP5K1C, KIAA0100, SEPT2, KBTBD7, 
REST, and MAST3. This observation strongly indicates 
the pathogenicity of these specific variants as well as the 
association of these genes with NDDs, considering the 
very low probability of observing multiple DNMs at the 
same amino acids. Furthermore, we identified another 
individual, recruited after performing the above enrich-
ment analyses, with the c.662A>G DNM at PIP5K1C 
and found that the individual showed phenotypes such 
as delayed language acquisition and facial dysmorphism, 
which are consistent with those of the YCU case of the 
same variant, included in the enrichment analyses (case 
report in Additional file 1: Supplementary Results).

On the basis of these observations, we considered the 
genes meeting either of the following criteria as plausi-
ble candidate genes for NDDs: (1) genes enriched for 
LOF DNMs in NDDs and constrained for LOF variants 
in the general population or (2) genes enriched for d-MIS 
DNMs in NDDs and constrained for missense variants in 
the general population and/or harboring recurrent d-MIS 
DNMs (n = 34, Additional file 2: Table S9). This number 
of plausible candidate genes, 34, is quite consistent with 
the expected number of true-positive genes among the 
52 candidates for novel NDD genes, which we estimated 
as 380–328–19 = 33, based on the fact that 328 known 
NDD genes are highly likely to be true positives and that 
there should be 19 false positives among the 380 genes, 
according to the false discovery rate (FDR) used in our 
analysis (i.e., 380 × 0.05 = 19). We subsequently analyzed 
the properties of these 34 plausible candidate genes.

Evaluation of plausible candidate genes by comparison 
with known NDD genes
To further evaluate the validity of these 34 plausible 
candidates as novel NDD genes, we performed a series 
of bioinformatic analyses in which we characterized 
the properties of the 328 known NDD genes and then 
tested whether the same or similar characteristics were 
observed in the 34 plausible candidates.

https://ftp.clinicalgenome.org/ClinGen_gene_curation_list_GRCh38.tsv
https://ftp.clinicalgenome.org/ClinGen_gene_curation_list_GRCh38.tsv
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First, we performed an analysis informed by various 
resources of gene expression patterns. When we tested 
in which tissues the 328 known genes were preferentially 
expressed using the data of various human tissues from 
the GTEx study [28], we found that genes preferentially 
expressed in the brain (pSI score [27] < 0.05, see “Meth-
ods”) are significantly enriched among the 328 genes 
(q-value < 2.0e-4). By contrast, there was no such enrich-
ment in the other 24 tissues (Additional file 2: Table S10). 
In the 34 genes, we observed a similar pattern: a trend 
toward the enrichment of brain-specific genes (p = 0.07, 
pSI < 0.01) and no trend toward the enrichment of genes 
specific to other tissues (Additional file  2: Table  S10). 
To obtain a higher spatiotemporal resolution within the 
brain, we then used the expression patterns in various 
brain regions and developmental periods in the Brain-
Span atlas [29]. Among the 60 spatiotemporal coordi-
nates (6 brain regions × 10 developmental periods), we 
found that genes preferentially expressed in 14 coor-
dinates, mainly consisting of broad regions in the fetal 
period and the postnatal cortex and cerebellum, were 
enriched in the 328 genes (pSI < 0.05, q-value < 0.01) 
(Additional file  2: Table  S11 and Fig.  3a). We then ana-
lyzed whether the genes preferentially expressed in these 
14 coordinates were also enriched in the 34 plausible can-
didate genes. The analysis showed significant enrichment 
in the six coordinates in the fetal period (q-value < 0.05), 
an observation unlikely to have occurred by chance. We 
also analyzed co-expression modules observed in vari-
ous brain regions and developmental periods [31]. We 
found that genes assigned to modules (M)1, 4, 7, and 13 
were enriched in the 328 genes (q-value < 0.05) (Fig. 3b 
and Additional file  2: Table  S12). Regarding the general 
characteristics of these modules, M1 is enriched for 
genes expressed specifically in the fetal period and asso-
ciated with chromatin organization, M4 is enriched for 
genes expressed specifically in the fetal and perinatal 
periods and associated with neuronal differentiation, M7 
is enriched for genes expressed across development and 
associated with RNA processing and splicing, and M13 
is enriched for genes expressed preferentially in the cor-
tex and cerebellum from childhood and associated with 
neuronal excitability [31]. Therefore, it is reasonable to 
assume that these four modules are associated with the 
pathomechanisms of NDDs. Among the genes in these 
four modules, M13 genes were significantly enriched in 
the 34 plausible candidate genes (q-value < 0.05), and 
M1 and M4 genes showed nominal significance (q-values 
= 0.053) (Fig.  3b). Taken together and considering the 
smaller number of plausible candidate genes when com-
pared with known genes, these results indicate that the 
328 known and the 34 plausible candidate genes exhibit 
similar expression characteristics.

Second, we investigated the similarity between the 
328 known and 34 plausible candidate genes in terms of 
their biological properties by performing GO enrichment 
analyses using ToppFun [32]. Among the 328 known 
genes, we observed significant (q-value < 0.01) enrich-
ment of 1086 terms, comprising 843 BP, 130 CC, and 
113 MF terms (Additional file 2: Table S13) [32]. When 
we visualized this result by clustering GO terms con-
taining similar genes using Cytoscape (Fig.  4a) [33], we 
observed multiple clusters of terms associated with neu-
ron or brain development, such as “regulation of neuro-
genesis” and “central nervous system development,” as 
well as clusters of terms associated with processes that 
are related to NDD pathogenesis, such as “histone meth-
ylation” and “synapse assembly.” We subsequently inves-
tigated whether the 1086 NDD-associated terms were 
enriched in the 34 plausible candidate genes. Of the 1086 
terms, 90 BP, 31 CC, and 6 MF terms were enriched at 
q-value < 0.1 (Fig. 4, red nodes). By statistically evaluat-
ing these observed numbers of BP, CC, and MF terms, 
we found that all of them are unlikely to be observed by 
chance (empirical p-values = 0.001, 0.001, and 0.014, 
respectively; calculated by 1000× random sampling of 34 
genes) (Fig. 4b). Therefore, it was considered that the bio-
logical properties of the 34 plausible candidate genes are 
similar to those of the 328 known genes.

Third, we performed a protein-level analysis because 
proteins encoded by NDD-associated genes are highly 
interconnected within PPI networks [2, 55]. Clusters of 
interacting human proteins are provided in STRING, 
a comprehensive database of PPIs [35]. We analyzed 
whether the component proteins of each STRING clus-
ter significantly overlap with the proteins encoded by 
the 328 known genes. We identified 54 STRING clusters 
with significantly more overlaps (hypergeometric test 
q-value < 0.01) (Additional file 2: Table S14 and Fig.  5). 
Of these 54 STRING clusters, we found that component 
proteins in four clusters (cluster ID: 11115, 11116, 11117, 
and 11339) overlapped with the 34 plausible candidates 
at q-value < 0.1 (red nodes in Fig. 5 and Additional file 2: 
Table  S14). This observed number of overlaps (4 out of 
54) was, again, statistically significant when compared 
with the expectation from 1000× random sampling of 
34 genes (empirical p-value = 0.008). Thus, protein-level 
evidence also supports the validity of the 34 plausible 
candidate genes as NDD genes.

Prioritization of plausible candidate genes using deep 
learning
These bioinformatic analyses comparing the 328 known 
and 34 plausible candidate genes collectively support 
the relevance of the 34 plausible candidate genes in the 
pathogenesis of NDDs. Lastly, we sought to construct a 
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Fig. 3  Spatiotemporal expression patterns of the 328 known and 34 plausible candidate genes. a Enrichment analyses of genes specifically 
expressed in each brain region at each developmental stage in the 328 known (the six columns of large hexagons) and 34 plausible new genes 
(columns of small hexagons on the right of the columns of large hexagons). Sizes of the hexagons for the 328 genes correlate with their gene 
set sizes. The red colors correspond to q-values of Fisher’s exact tests adjusted by the BH method. The regions of the hexagons for the 328 genes 
closer to the center of each hexagon correspond to genes with smaller pSI scores, namely, increasing specificity (< 0.05, < 0.01, < 0.001, and < 
0.0001, respectively), while the hexagons for the 34 genes correspond to genes with pSI scores < 0.05. b Enrichment analyses of genes of each 
co-expression module in the 328 known (the upper row) and 34 plausible candidate genes (the lower row). The circle colors correspond to q-values 
of hypergeometric tests adjusted by the BH method. The circle sizes indicate the ratio of each module proportion in the 328 or 34 genes relative to 
that in all genes

(See figure on next page.)
Fig. 4  GO terms enriched in the 328 known and 34 plausible candidate genes. a Clusters of GO terms enriched (q-value < 0.01) in the 328 known 
and 34 plausible candidate genes. Only clusters of ten or more nodes are shown. Each node represents a GO term. Nodes are connected by an 
edge when the Jaccard and overlap combined coefficient for their gene members is > 0.5. Node size represents the number of gene members. 
Nodes are colored red when the nodes are statistically significant in the 34 plausible candidate genes. Gray ovals represent manually annotated GO 
groups. b Histograms of numbers of GO terms enriched (q-value < 0.01) in 34 randomly selected genes. This simulation was repeated 1000 times. 
In each simulation, only the 1086 terms enriched in the 328 known genes (Additional file 2: Table S13) were analyzed. Red bars indicate the number 
of GO terms enriched in the 34 plausible candidate genes. Empirical p-values of the enrichment in the 34 genes are the proportion of simulations 
with a number of GO terms equal to or more than that of the red bars. BP, GO biological process terms; CC, GO cellular component terms; MF, GO 
molecular function terms
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model enabling the prioritization of the 34 plausible can-
didate genes by integrating various information about 
them. For this purpose, we constructed an NN model 

estimating the similarity of an input gene to the 328 
known genes using the following eight predictors: pLI, 
LOEUF, missense z-score, and the results of TSEA, brain 

Fig. 4  (See legend on previous page.)
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subregion/stage-specific expression analysis, co-expres-
sion module analysis, and STRING analysis (Fig. 6a). In 
addition to these predictors, we used coding sequence 
(CDS) length as another input feature, which may affect 
pLI and LOEUF, such that the model could control for 
the effect. To accurately train and evaluate this model, we 
only used genes for which all of the eight predictors were 
available. We initially trained a model using 243 ran-
domly selected genes of the 328 known genes as positive 
controls (PC1) and 10,164 non-NDD genes as negative 
controls (NC1). We then evaluated its performance using 
the remaining known genes (n = 33) and 1124 non-NDD 
genes (NC2). The model outputs a score for a given gene, 
and a higher score indicates that the gene is more similar 
to the 243 known genes. We observed that the scores of 
the PC2 genes were much higher than those of the NC2 
(one-sided Wilcoxon rank-sum test p-value = 6.8e-20), 
and the score distribution of the PC2 was comparable 
to that of the PC1 (Fig. S9), confirming that the training 
worked well and the hyperparameter setting prevented 
overfitting towards the training genes. We then trained 

the NN model using all the 276 genes and compared this 
full model with the eight predictors above and three met-
rics for disease gene prioritization: RVIS, GDI, and HGC 
[37–40]. Our full NN model had significantly larger AUC 
for the classification of 246 NDD genes in DDG2P (PC3) 
and 1000 non-NDD genes (NC3), which are independent 
of PC1-2 and NC1-2, than the predictors or existing met-
rics (q-value = 0.010 for LOEUF and 0.0023 for the other 
predictors and metrics, see “Methods”) (Fig. 6b), indicat-
ing that our NN model outperformed the others.

Next, we applied this model to the 34 plausible candi-
date genes. We found that their scores were also much 
higher than those of the NC3 (one-sided Wilcoxon rank-
sum test p-value = 7.8e-17), confirming the overall valid-
ity of the 34 plausible genes as candidate NDD genes. On 
the basis of the obtained scores, we estimated the prob-
abilities that each of the 34 genes is a true-positive NDD 
gene using the naïve Bayes algorithm. The algorithm cal-
culates posterior probabilities using prior probabilities 
and likelihood ratios of predictors. We set the prior prob-
abilities that each of the 34 genes is true positive as 63% 

Fig. 5  STRING clusters enriched in the 328 known and 34 plausible candidate genes. STRING clusters whose members are enriched (q-value < 0.01) 
in the proteins encoded by the 328 known and 34 candidate genes. Nodes are clustered according to the similarity of their members. Nodes are 
connected by an edge when the Jaccard and overlap combined coefficient for their members is > 0.375. Gray nodes: STRING clusters significantly 
enriched in the 328 known genes; red nodes: STRING clusters significantly enriched in the 34 candidate genes. Gray ovals: groups of nodes with 
similar annotations
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(33/52), assuming that (1) of the 380 genes with FDR < 
0.05, 19 (380 × 0.05) are false positive, (2) the 19 genes 
are included in the 52 (380−328) new candidate genes 
whose association with NDD is not known, and (3) the 
remaining 33 (52−19) genes are true positives. The likeli-
hood ratios of NN model scores were calculated from the 
score distributions of the PC3 and NC3 (Fig. 6c). Using 
these prior probabilities and likelihood ratios, we calcu-
lated posterior probabilities of the 34 plausible candidate 
genes (Fig. 6d and Additional file 2: Table S15). We found 
that 11 out of the 34 genes—HECTD4, CHD5, NLGN2, 
XPO1, SUPT16H, ADGRB1, CTR9, HDAC2, BRD3, 
MARK2, and GSK3B—had > 90% posterior probabilities. 
Thus, it is considered that these genes in particular are 
highly likely to be true-positive NDD genes.

Discussion
In this study, we conducted multi-layered statistical 
and bioinformatic analyses and achieved the large-scale 
discovery of novel NDD candidate genes with different 
levels of confidence. First, we developed a statistical 
method to analyze dnSNVs and dnCNVs in a uniform 
framework and applied this to the combined dataset 
of dnSNVs in 41,165 individuals and dnCNVs in 3675 
individuals, including the data newly generated in this 
study (i.e., the YCU dataset). The analysis identified a 
total of 52 candidates for novel NDD-associated genes, 
and dnCNVs contributed to the higher statistical signif-
icance for 31 of them, including three novel ones. We 
next narrowed down the list of candidate genes based 
on their constraint for deleterious variants in the gen-
eral population and obtained 34 plausible genes. The 

Fig. 6  Integration of the bioinformatic analysis results using deep learning. a Scheme for the NN model. White circle: neurons of layers; line: 
connections between neurons. b AUC of the full NN model, the eight predictors, and the three existing gene prioritization metrics for PC3 and 
NC3. The blue violin plot for the NN model (“NN”) represents the distribution based on 500 full NN models, with a red dot indicating the median. c 
Violin plots of the full NN model scores of various gene sets. PL: the 34 plausible candidate genes. P-values of one-tailed Wilcoxon rank-sum tests 
are shown above. d Posterior probabilities that the 34 plausible candidate genes are true NDD-associated genes. The probabilities are the median 
of probabilities computed by 100 full NN models. NN model scores are shown in parentheses. Genes are arranged in the order of NN model scores. 
Dotted line: 90%
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overall validity of the 34 genes as NDD genes was sup-
ported by multiple lines of evidence from bioinformatic 
analyses. Lastly, we integrated the results of bioinfor-
matic analyses by constructing a deep learning model 
and identified 11 genes with > 90% true-positive prob-
ability. Besides, we found that many of our new candi-
dates have family genes that are known to be associated 
with NDDs (e.g., CHD2, CHD3, CHD4, CHD7, and 
CHD8 for CHD5; HDAC1, HDAC3, and HDAC8 for 
HDAC2; KCNA2, KCNA4, KCNC1, and KCNC3 for 
KCNA1; NLGN3 and NLGN4X for NLGN2; and TCF4 
and TCF12 for TCF3). Given the usefulness of gene 
family information in the identification of NDD genes 
[56], these candidates are considered as true NDD 
genes with a high level of certainty.

The method uniformly analyzing dnSNVs and dnC-
NVs that we developed here can be flexibly used in future 
studies and should accelerate new gene discovery. Indeed, 
the consideration of dnCNVs in addition to dnSNVs 
provides a clear advantage as follows. In our model, the 
number of genes affected by < 1 Mb LOF CNVs per indi-
vidual is 0.015 (Additional file 2: Table S3) and the num-
ber of genes affected by LOF dnSNVs in the trinucleotide 
context model is 0.085. Therefore, when we analyze dnC-
NVs together with dnSNVs, we can theoretically gain 
18% (0.015/0.085) more de novo LOF variants. Despite 
dnCNV data being available in a limited number of cases 
in this study, the addition of the dnCNV data contributed 
to the discovery of three new genes (GLTSCR1, MARK2, 
and UBR3). Considering these findings, applying our 
method to upcoming massive sequencing data obtained 
in future studies should be beneficial.

The list of dnSNVs and dnCNVs that we compiled can 
be reusable. We have provided the full list of de novo 
variants in YCU data and de novo deletions in SSC data 
(Additional file  2: Table  S4, S5, and S6), and this infor-
mation can be useful in any DNM enrichment analyses. 
Such future studies may show robust enrichment of dam-
aging DNMs in genes with marginal significance in this 
study, such as the 18 candidates that we excluded from 
the 52 candidates when we selected the 34 plausible ones.

The deep learning model that we have developed can 
objectively quantify how functionally valid a new can-
didate gene is from multiple types of and sometimes 
redundant information. Given the highly and eas-
ily customizable nature of this model, it may also be 
effective in prioritizing new candidate genes of other 
diseases based on any predictors though the accuracy 
depends on the number of known genes responsible for 
the diseases. While in this study, we used this model 
to identify better candidates from a limited number 
of selected genes, and it also enables ab  initio iden-
tification of good candidates from among all genes. 

For example, some of the genes that we considered as 
negative control genes, whose association with NDDs 
has never been reported, actually showed high scores 
comparable to those of known NDD genes (Additional 
file 2: Table S15). These genes may be good candidates 
for new NDD-associated genes.

Regarding the limitations of our study, first, the sizes of 
the dataset of CNVs used for construction and validation 
of the model predicting dnCNV rates are still insufficient 
(Additional file 1: Fig. S1d, f, and h), although we used the 
largest available datasets, such as those from gnomAD-
SV and SSC. Thus, larger data of SVs in populations are 
awaited. Second, for simplicity, in this study, we consid-
ered LOF-tolerant genes flanked by 1 Mb upstream and 
downstream regions without any LOF-intolerant genes 
as being “neutral” and used them for the model training. 
However, this method does not account for the possibil-
ity that there would be functional noncoding elements. 
By better understanding and integrating the information 
of such elements, we would be able to further improve 
the accuracy of the model. Third, in our gene-based 
enrichment analysis, we discarded the calls of dnCNVs 
larger than 1 Mb, which were observed in 2.1% (27/1298) 
of YCU and 0.59% (14/2377) of SSC probands. Most of 
these large dnCNVs are likely pathogenic in light of 
their very-low frequencies in SSC healthy siblings, that 
is, 0.052% (1/1922). Although we did not use the data 
of such large dnCNVs in our current study considering 
that the majority of dnCNVs larger than 1 Mb overlapped 
with two or more LOF-intolerant (pLI > 0.9 or LOEUF 
< 0.35) genes (83% and 79% in YCU and SSC probands, 
respectively), we would be able to identify additional 
NDD genes by efficiently incorporating the data of large 
dnCNVs. Fourth, we may underestimate the true-positive 
probabilities of the 34 plausible candidate genes (Fig. 6d) 
because positive controls used for the model construc-
tion (PC1-2) and those for the likelihood ratio calcula-
tion (PC3) had different characteristics. The PC1-2 and 
PC3 had similar but slightly different distributions of NN 
model scores (Fig. 6c). The reason for this may be that the 
PC1 could be biased due to the detection method, that 
is, our DNM enrichment analysis method, which is less 
capable of detecting genes with pathogenic missense var-
iants than those with pathogenic LOF variants because 
of difficulty in annotating the pathogenicity of missense 
variants. The lower NN model scores in the PC3 led to 
underestimation of the likelihood ratios and the resulting 
posterior probabilities of the 34 candidate genes (Fig. 6c). 
Therefore, we expect that the 34 candidate genes may be 
more likely to be true positives than estimated by this 
model. Lastly, while we focused only on DNMs, other 
inheritance patterns (e.g., autosomal recessive) can be 
involved in the genetic risks of NDDs. Future works 
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considering genes underlying NDDs of these inheritance 
modes should be fruitful.

Conclusions
To identify new NDD-associated genes, we developed 
a method that evaluates the burdens of dnSNVs and 
dnCNVs in a uniform framework and compiled com-
prehensive lists of dnSNVs and dnCNVs by aggregating 
data from our own new dataset and published studies. 
Leveraging these improvements, we identified a large 
number of new candidate genes. From these candidates, 
we obtained more than 10 genes with high true-posi-
tive probabilities using deep learning. These new genes 
should contribute to further elucidation of the genetic 
architecture of NDDs, and the methods and resources 
that we developed here can be used in future studies to 
identify more NDD-associated genes.
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