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Abstract 

Background:  Low-energy diets (LEDs) comprise commercially formulated food products that provide between 800 
and 1200 kcal/day (3.3–5 MJ/day) to aid body weight loss. Recent small-scale studies suggest that LEDs are associated 
with marked changes in the gut microbiota that may modify the effect of the LED on host metabolism and weight 
loss. We investigated how the gut microbiota changed during 8 weeks of total meal replacement LED and deter-
mined their associations with host response in a sub-analysis of 211 overweight adults with pre-diabetes participating 
in the large multicentre PREVIEW (PREVention of diabetes through lifestyle intervention and population studies In 
Europe and around the World) clinical trial.

Methods:  Microbial community composition was analysed by Illumina sequencing of the hypervariable V3-V4 
regions of the 16S ribosomal RNA (rRNA) gene. Butyrate production capacity was estimated by qPCR targeting the 
butyryl-CoA:acetate CoA-transferase gene. Bioinformatics and statistical analyses, such as comparison of alpha and 
beta diversity measures, correlative and differential abundances analysis, were undertaken on the 16S rRNA gene 
sequences of 211 paired (pre- and post-LED) samples as well as their integration with the clinical, biomedical and 
dietary datasets for predictive modelling.

Results:  The overall composition of the gut microbiota changed markedly and consistently from pre- to post-LED (P 
= 0.001), along with increased richness and diversity (both P < 0.001). Following the intervention, the relative abun-
dance of several genera previously associated with metabolic improvements (e.g., Akkermansia and Christensenel-
laceae R-7 group) was significantly increased (P < 0.001), while flagellated Pseudobutyrivibrio, acetogenic Blautia 
and Bifidobacterium spp. were decreased (all P < 0.001). Butyrate production capacity was reduced (P < 0.001). The 
changes in microbiota composition and predicted functions were significantly associated with body weight loss (P < 
0.05). Baseline gut microbiota features were able to explain ~25% of variation in total body fat change (post–pre-LED).

Conclusions:  The gut microbiota and individual taxa were significantly influenced by the LED intervention and 
correlated with changes in total body fat and body weight in individuals with overweight and pre-diabetes. Despite 
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Background
To combat the obesity epidemic and its comorbidities 
such as type 2 diabetes (T2D) [1], energy-restricted diets 
have been at the forefront of weight management and 
glucose control. Low-energy diets (LEDs) represent one 
of the most effective options for weight management 
[2], with established efficacy for weight loss, but which 
recently have also proven to be highly successful in nor-
malizing glycaemia in high-risk obese individuals with 
T2D [3, 4]. However, the success of diet-induced weight 
loss may vary considerably between individuals and the 
underlying factors are largely unclear. Mounting evidence 
suggests that the gut microbiota, one of the most salient 
features contributing to physiological inter-individual 
variability [5], is implicated in obesity [6] and influences 
the host’s metabolic response to diet [7]. In mice, deple-
tion of the gut microbiota nullified the metabolic 
improvements, especially the decrease in body weight, 
following energy restriction [8].

The gut microbiota is inextricably linked with the quan-
tity and quality of nutrients in the diet, as gut microbes 
mainly rely on host diet composition to obtain metabolic 
substrates [9]. Subsequently, the gut microbiota exerts 
its impact on host physiology by producing microbial 
metabolites (e.g., short-chain fatty acids, SCFA) and 
microbial structural components (e.g., lipopolysaccha-
rides and flagella) that modulate the metabolism of lipids, 
cholesterol, glucose [10] and inflammatory response [11].

While an association between the gut microbiota 
and obesity exists, the tripartite interaction between 
the microbiota, energy restriction and host metabolic 
response remains little studied in humans. In the context 
of energy-restricted diets such as LEDs, existing inter-
ventions have failed to generate a consensus on changes 
in the gut microbiota during diet-induced weight loss 
[12]. For example, Ott and colleagues reported a 4-week 
LED (3.4 MJ/day) had no effect on the overall gut micro-
biota [13], whereas another German study by Frost et al. 
more recently documented distinct shifts of microbiota 
composition and diversity during a 6-week LED inter-
vention [14]. Variable outcomes regarding specific bac-
terial taxa affected by LED have been reported in other 
LED interventions [15–20]. Similarly, the few stud-
ies exploring the feasibility of predicting diet-induced 
weight modulation using baseline features of the gut 
microbiota arrived at divergent conclusions [7, 21]. This 

inconsistency is likely due to small sample size (as few 
as 5 participants), differences in bacterial profiling tech-
niques, population, ethnicity of participants and the 
intervention diets [12, 22, 23], which preclude generaliza-
tion of the results. Recently, a re-analysis of omics data 
collected in two Danish dietary interventions introducing 
whole grain-rich or low-gluten diets found that inclusion 
of data on gut microbiota and urine metabolites signifi-
cantly improved the classification accuracy for weight 
loss responders [24]. Nevertheless, the definition for 
weight loss success or responders could vary arbitrarily 
across studies.

Due to the potential malleability and inter-individ-
ual variance in the microbiota, the gut microbiota has 
increasingly become the focus of precision nutrition, 
whereby personalized responses to diet predicted and 
dietary advice tailored to the individual [23]. Therefore, 
a better understanding of the changes and contribu-
tion of the gut microbiota to inter-individual variability 
in response to a LED may improve the effectiveness of 
weight-loss interventions.

PREVention of diabetes through lifestyle Intervention 
and population studies in Europe and around the World 
(PREVIEW) was a multi-centre, 3-year lifestyle interven-
tion in overweight adults with pre-diabetes conducted in 
8 countries that aimed to decrease the incidence of T2D. 
We have previously reported the clinical outcomes from 
the first phase of PREVIEW, where eligible adult partici-
pants followed an 8-week total meal replacement LED 
[25]. The LED was accompanied by significant weight 
loss and associated improvements in anthropometry 
(e.g., body mass index (BMI) and total body fat) and met-
abolic parameters (e.g., fasting plasma glucose (FPG)), 
with gender-specific changes [25]. Here we study the 
gut microbiota from a subset of participants in the PRE-
VIEW trial, from Finland and New Zealand (N = 211), 
by Illumina sequencing of the 16S rRNA gene. We com-
pared pre- and post-LED differences in the composition 
and function of the gut microbiota and to determine 
whether baseline microbiota configuration is predictive 
of host metabolic response to the LED.

Methods
Study participants and design
PREVIEW was a multi-centre randomized controlled 
trial (RCT) based on a 3-year lifestyle intervention for 

inter-individual variation, the baseline gut microbiota was a strong predictor of total body fat change during the 
energy restriction period.

Trial registration:  The PREVIEW trial was prospectively registered at ClinicalTrials.gov (NCT01​777893) on January 29, 
2013.

https://clinicaltrials.gov/ct2/show/NCT01777893
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T2D prevention across 8 countries, which comprised 2 
intervention phases. Phase 1 is an 8-week, weight-loss 
phase using a formula LED intended to induce weight 
loss of ≥8% to qualify for the next phase. Phase 2 is a 
148-week randomized lifestyle intervention that focuses 
on diet, physical activity and behaviour modification for 
maintenance of weight loss [26]. The study population 
of PREVIEW consisted of 2224 adults with overweight 
or obesity (BMI≥25 kg/m2) and pre-diabetes (accord-
ing to the American Diabetes Association (ADA) criteria 
[27]), aged between 25 and 70 years. Overweight men 
and women with pre-diabetes were eligible for inclu-
sion. Participants were recruited via advertisements in 
newspapers and newsletters, radio and television adver-
tisements/interviews and by contacting primary and 
occupational health care providers [25]. The first par-
ticipant was enrolled on June 1, 2013, and the last par-
ticipant was enrolled on February 27, 2015. The last 
participant visit was in March 2018. Participants self-
reported not being engaged in competitive sports, with 
stable body weight (±5 kg) for at least 2 months prior, 
and no current glucose medications or changes in pre-
scribed medications for 3 months prior to sample collec-
tion. Exclusion criteria included diagnosed T2D, other 
significant diseases including cardiovascular, liver, gas-
trointestinal, or kidney disease, malignancy, bariatric or 
any major surgical procedure in the previous 3 months, 
pregnancy, or breastfeeding. The PREVIEW primary 
outcome was incidence of T2D at 3 years; secondary 
outcomes were incidence of T2D at 2 years, gut micro-
biota analysis and all relevant clinical and biochemi-
cal parameters related to metabolic control, at different 
time-points (8 weeks, 2 years and 3 years). The analy-
sis described in the present study is based on the LED 

phase of PREVIEW derived from a multi-ethnic cohort 
recruited from the University of Auckland (UoA), New 
Zealand, and the University of Helsinki (HEL), Finland 
(total N = 217), from whom paired faecal samples were 
available (baseline/pre- and post-LED; Fig. 1A). None of 
the participants reported antibiotic use 3 months prior to 
or during the LED. As the microbiota analysis involved 
two of the eight PREVIEW study centres, we termed 
the present study a PREVIEW sub-study herein for clar-
ity. Detailed methods for the LED intervention were 
described previously [25]. Briefly, all participants were 
provided with total meal replacement sachets from Cam-
bridge Weight Plan® (Northants, UK) for the 8 weeks 
duration. In total, the LED provided an estimated 3.4 
MJ/day (810 kcal/day), of which 44 energy % (en%) was 
from protein, 41 en% from carbohydrate and 15 en% 
from fat. The total dietary fibre content of the LED was 
13.3 g/day (participants’ pre-LED intake of dietary fibre 
was 22.3 g±7.5 (mean±SD)). Participants were advised 
that psyllium fibre could be used in case of gastrointesti-
nal side effects, mainly constipation. A maximum of 400 
g of non-starchy vegetables could be consumed, such as 
tomatoes, cucumber and lettuce, making the total energy 
content approximately 4 MJ (1000 kcal). Participants 
were advised to avoid intense physical activity and main-
tain current activity levels during the LED intervention. 
The work of PREVIEW is carried out in full compliance 
with the relevant requirements of the latest version of 
the Declaration of Helsinki (59th WMA General Assem-
bly, Seoul, Korea, October 2008), and the ICH-GCP, The 
International Conference on Harmonisation (ICH) for 
Good Clinical Practice to the extent that this is possible 
and relevant. The study protocol was approved by the 
Ethical Committees of participating countries (Health 

Fig. 1  Overview of the study and variation of host variables. A Schematic overview of the study design. B Density plots showing inter-individual 
variation in host variables in response to the LED. The density plots display the distribution of the observed data (relative changes in host variables). 
The density function reflects the estimated underlying continuous probability from which the observed data have been sampled. BMI, body mass 
index; HOMA, homeostasis model for assessment of insulin resistance; FPG, fasting plasma glucose
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and Disability Ethics Committee in New Zealand, ref. 
14/191 and Medical Ethical Committees of the Hospital 
District of Helsinki and Uusimaa and HUCH in Finland, 
ref. 171/13/03/00/2013). All participants provided writ-
ten informed consent prior to commencing screening 
procedures in clinic. All information obtained during 
the trial is handled according to local regulations and the 
European Directive 95/46/CE (directive on protection of 
individuals with regard to the processing of personal data 
and on the free movement of such data). The PREVIEW 
trial was prospectively registered at ClinicalTrials.gov 
(NCT01777893). Additional information can be found on 
the PREVIEW website (https://​previ​ew.​ning.​com/).

Sample collection and clinical outcome measurements
Detailed protocols for clinical sample collection and 
outcome measurements have been described elsewhere 
[25, 26]. Before and after the 8-week LED, participants 
attended the research clinic on clinical investigation days 
(CIDs) for anthropometry measurements, collection of 
fasting blood samples and delivery of faecal samples and 
4-day food records to assess habitual diet. The faecal 
samples were collected at home, frozen immediately at – 
20 °C in the home freezer and taken in frozen form to the 
study centres within 1–3 days of collection, then stored 
at – 80 °C until processing. Body weight and height were 
measured in duplicate wearing light clothing, without 
shoes and after voiding the bladder. Body composition 
including fat mass and fat-free mass was assessed by bio-
electrical impedance analysis, BIA (Finland, InBody720 
Body Composition Analyzer, Biospace Co., Ltd, Seoul, 
Korea) and dual-energy X-ray absorptiometry, DXA 
(New Zealand, iDXA, model DPX+, software version 
3.6y, GE-Lunar, Madison, WI). Fasting venous blood 
samples were collected for laboratory measurements, 
including FPG, HbA1c, insulin and C-peptide. Labora-
tory analyses were performed on an Architect ci8200 
integrated system (Abbott Laboratories, Abbott Park, 
Illinois, USA). The Homeostasis Model for Assessment 
(HOMA) was calculated as a proxy for insulin resistance 
(IR). The equation used was HOMA-IR = fasting insulin 
(mU/L) × FPG(mmol/L))/22.5.

DNA extraction and 16S rRNA gene amplicon sequencing
DNA was extracted from all faecal samples with a pre-
viously described repeated bead-beating method that 
efficiently extracts bacterial community DNA including 
hard-to-lyse Gram-positive bacteria [28]. The quantity 
of extracted DNA was assessed using the Qubit Fluo-
rometer (Thermo Fisher Scientific). Bacterial community 
composition was analysed by sequencing the PCR-ampli-
cons of hypervariable V3-V4 regions of the 16S riboso-
mal RNA (rRNA) gene using primers 341F/785R and 

Illumina MiSeq (New Zealand, N = 126) or Illumina 
HiSeq (Finland, N = 308) as previously described [29]. 
The comparability of sequences generated by the two 
Illumina platforms was validated by evaluating two arti-
ficial communities and nine PREVIEW samples that were 
sequenced by both MiSeq and HiSeq (Additional file  1: 
Fig. S1A&B).

Quantification of butyrate production capacity 
and absolute bacterial abundance by quantitative PCR 
(qPCR)
Based on sample availability, the butyryl-CoA:acetate 
CoA-transferase gene and total bacterial abundance 
were quantified using faecal DNA for a subset of 139 
participants (pre- and post-LED sample N = 278) with 
the degenerate primers BCoATscrF/R and the universal 
primers 331F/797R by qPCR, respectively. The qPCR 
assays have been described in detail previously [30, 31] 
and were performed in triplicate on a BioRad iCycler 
iQ thermal cycler system (BioRad, Hercules, CA) with 
HOT FIREPol® EvaGreen® qPCR Mix Plus (Solis Bio-
Dyne, Tartu, Estonia). For quantification of the butyryl-
CoA:acetate CoA-transferase gene, the mean threshold 
cycle (Ct) per sample (after excluding triplicates with 
Ct values that differed >0.5) was used as a proxy for the 
abundance of the target gene. For quantification of total 
bacterial abundance, the 10-log-fold standard curves 
ranging from 102 to 107 copies were produced using full-
length amplicons of 16S rRNA gene of Bifidobacterium 
longum to convert the threshold cycle (Ct) values into the 
average estimates of target bacterial genomes present in 
1 g of faeces (copy numbers/g of wet faeces) in the assays 
[31]. The absolute abundances of individual bacterial taxa 
were estimated as previously described [31], adjusting for 
16S rRNA gene copy-number variation using the rrnDB 
database [32].

Data processing and statistical analysis
Demultiplexed reads after adaptor removal were pro-
cessed using the QIIME2 v.2019.4. pipeline [33]. The 
high-quality forward reads were truncated to 150 bases 
and error-corrected using the DADA2 plugin [34] to 
generate amplicon sequence variants (ASVs). Taxo-
nomic classification was performed using a pre-trained 
naive Bayes classifier implemented in QIIME2 against 
the SILVA 132 reference database [35]. Sample pairs 
from 6 participants (N = 12) were excluded from down-
stream analysis due to one or both of the samples hav-
ing low reads after processing (<3500 reads), leaving 
a total of 211 participants with paired samples (N = 
422) for downstream analysis. Samples meeting qual-
ity criteria (N = 422) had a mean sequencing depth of 
67,453 reads (63,638–71,268, 95% CI). The sequencing 

https://preview.ning.com/
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files are deposited in the European Nucleotide Archive 
(https://​www.​ebi.​ac.​uk/​ena) under accession number 
PRJEB43667.

To infer the functional contribution of bacterial com-
munities from 16S rRNA gene sequencing data, metage-
nome prediction was carried out using PICRUSt2 
(Phylogenetic Investigation of Communities by Recon-
struction of Unobserved States) [36] evaluating KEGG 
(Kyoto Encyclopedia of Genes and Genomes) pathways 
[37].

Differential abundance for bacterial taxa or KEGG 
pathways between time points was identified with the 
DESeq2 package [38] accounting for sample pairing. 
DESeq2 employs a generalized linear model of counts 
based on a negative binomial distribution, scaled by a 
normalization factor that accounts for differences in 
sequencing depth between samples. Significance test-
ing was then assessed using the Wald test. Non-count 
variables (anthropometric and biochemical measure-
ments, microbiota diversity and richness) were analysed 
with Wilcoxon signed-rank test or paired t-test for non-
normally distributed and normally distributed variables, 
respectively.

Microbiota richness and Shannon diversity index were 
estimated using the vegan package [39]. Overall microbi-
ota structure was assessed by principle coordinate analy-
sis (PCoA) on beta diversity computed using Bray-Curtis 
distances, representing the compositional dissimilarity 
between the samples. Permutational multivariate analysis 
of variance (PERMANOVA; adonis function in the vegan 
package [39]) with Bray-Curtis dissimilarities was used 
to identify factors contributing to variation in microbiota 
composition. At baseline, variation in the microbiota was 
significantly associated with gender (P = 0.006), eth-
nicity (P = 0.004) and age (P = 0.003). Hence, analyses 
were performed with and without adjustment for gen-
der, ethnicity and age when applicable. Associations 
between bacterial taxa or KEGG pathways (post–pre-
intervention) and clinical measurements (post–pre-inter-
vention) were assessed using Spearman’s correlation as 
well as a linear mixed-effects model implemented in the 
mare package [40] for normal and adjusted correlations, 
respectively.

For prediction of host responses to LED, stepwise 
regression based on Akaike information criterion (AIC) 
(PathModel function in the mare package [40]) was used 
to select baseline features (microbiota, diet, host physi-
ological variables, or a combination of them) that fit 
parsimonious models for %change in clinical measure-
ments (post–pre-intervention). The PathModel function 
employs generalized or general linear models (in this case 
using the function lm in R), identifying first the variables 

that are most significantly associated with the response 
variable, combining them all into one model and per-
forming stepwise model reduction using the functions 
step and stepAIC in the packages stats and MASS to 
finally arrive at the best model. To assess model perfor-
mance based on AIC, we adopted the conventional rules 
of thumb by comparing the difference between the AICs 
of two models [41]:

where AIC¡ is the AIC of model ¡ with the second low-
est AIC, and AICmin is the model with the lowest AIC 
among the set of models examined. If Δ¡ < 2, there is 
substantial support for model ¡, whereas models with Δ¡ 
> 10 have essentially no support. Considering potential 
non-linear relationships between the microbiota features 
and the target variables, the prediction based on the 
baseline microbiota features was also done by Random 
Forest regression (R package randomForest [42]) using 
the following parameters: ntree = 10001 and mtry = 
p/3, where p is the number of input features. We then 
used repeated cross-validation (5-fold, 10 repetitions) 
of random forests in the caret package [43] in order to 
evaluate the R2 of the selected features to predict clinical 
indices. This method involves repeatedly using a subset 
of samples as a training set and the remaining samples 
as the test set to predict the outcome. The importance 
of each input feature was subsequently ranked accord-
ing to %increase in mean squared error (%IncMSE). In 
both approaches, the prediction models based on the 
microbial features were generated using all prevalent 
(present in >30% of samples) bacterial genera detected 
at baseline, Shannon diversity and richness. For the 
stepwise regression models based on diet, the input fea-
tures included intake of dietary nutrients; demographic 
characteristics, anthropometric and metabolic meas-
urements (Table  1) were included in the models based 
on host physiological variables. For the microbiota and 
diet-based models, we included potential confounding 
variables (gender, ethnicity and age) in separate mod-
els (adjusted model) to account for confounding effects, 
since these variables may impact both exposure (e.g., 
baseline gut microbiota and dietary pattern) and out-
come (e.g., change in adiposity).

Statistical analyses were performed with the statistical 
program R version 3.5.0 and RStudio version 0.99.903. P 
values were corrected for multiple comparisons by using 
the Benjamini-Hochberg procedure (FDR) [44]. P val-
ues and FDR-adjusted P values <0.05 were considered 
significant.

https://www.ebi.ac.uk/ena
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Results
Baseline characteristics and post-LED measurements of 
the 211 participants included in our analysis are sum-
marized in Table  1. Concordant with the findings from 
the main PREVIEW trial [25, 45], participants lost an 
average of 11.5% body weight and 22% total body fat 
during the LED with a significant improvement in all 
metabolic parameters investigated (Table 1). Seventy-six 
participants (36%) reverted to normoglycemia (defined 
as FPG <5.6 mmol/L). Substantial inter-individual vari-
ation was found in the LED-induced changes in glucose 
metabolism-related variables and total body fat (Fig. 1B). 
Members of the bacterial phylum Firmicutes domi-
nated the baseline (pre-LED) gut microbiota of partici-
pants (86%±11; mean±SD), followed by Actinobacteria 
(9%±9) and Bacteroidetes (2%±3). Verrucomicrobia and 
Proteobacteria altogether represented on average less 
than 3% of the microbiota.

Impact of 8‑week LED on gut microbiota
The composition of the gut microbiota changed mark-
edly from pre- to post-LED, visualized in strong cluster-
ing of the samples by PCoA and reflected in a significant 

shift in overall phylogenetic makeup between the two 
time points (P = 0.001, PERMANOVA) (Fig.  2A). Both 
the principal component 1 and 2 scores were signifi-
cantly higher after LED (P < 0.001) (Fig. 2B,C), suggest-
ing a consistent response of the microbiota to the same 
energy-restricted diet. The LED did not alter total bac-
terial density, measured by qPCR-based quantification 
of 16S rRNA gene copies per gram of faeces (Additional 
file  1: Fig. S2). Microbiota richness and alpha diversity 
estimated by Shannon index were significantly increased 
after the intervention (P < 0.001, Fig.  3A,B). Inter-indi-
vidual Bray-Curtis values, representing how different the 
microbiota compositions are between participants, were 
significantly increased after LED weight loss (P < 0.001) 
(Fig.  3C). A significant decrease was observed in the 
ratio between Firmicutes and Bacteroidetes (P < 0.001) 
(Fig. 3D).

Having established pre- vs post-LED differences at 
the level of the entire bacterial community, we sought 
to identify specific bacteria that were affected by the 
LED. At the phylum level, the 8-week LED was accom-
panied by significant increases in Verrucomicrobia and 
Bacteroidetes (P < 0.001), and concomitant decreases in 

Table 1  Demographic characteristics, anthropometric and metabolic measurements of the study participants pre- and post-LED

FPG fasting plasma glucose, HOMA-IR homeostasis model assessment of insulin resistance

*P value pre-LED vs post-LED was calculated using paired t-test for FPG and body fat % and Wilcoxon signed-rank test for other variables

Characteristic pre-LED post-LED P value*

Demographic variables
  No. of participants 211 – –

  Female, No. (%) 156 (74) – –

Age (years), mean (95% CI) 54 (53–55) – –

Ethnicity, No. (%)

  Caucasian 194 (92) – –

  Polynesian 13 (6) – –

  Asian 3 (1) – –

  Other 1 (0.4) – –

Anthropometric variables
  BMI (kg/m2), mean (95% CI) 34.1 (33.3–34.9) 30.2 (29.5–30.9) <0.001

  Body weight (kg), mean (95% CI) 95.8 (93.3–98.2) 84.7 (82.5–86.9) <0.001

  Waist circumference (cm), mean (95% CI) 108.6 (106.9–110.2) 98.4. (96.8–100.0) <0.001

Body composition
  Body fat mass (kg), mean (95% CI) 40.1 (38.3–41.8) 31.8 (30.2–33.5) <0.001

  Body fat (%), mean (95% CI) 41.8 (407–42.9) 37.3 (36.0–38.6) <0.001

  Fat-free mass (kg), mean (95% CI) 55.6 (54.1–57.1) 52.9 (51.5–54.3) <0.001

Metabolic variables
  Insulin (mU/L), mean (95% CI) 13.1 (12.1–14.0) 7.9 (7.4–8.4) <0.001

  FPG (mmol/L), mean (95% CI) 6.2 (6.2–6.3) 5.8 (5.7–5.9) <0.001

  HOMA-IR, mean (95% CI) 3.6 (3.4–3.9) 2.0 (1.9–2.2) <0.001

  HbA1c (mmol/mol), mean (95% CI) 37.0 (36.6–37.5) 34.8 (34.3–35.2) <0.001

  C-peptide (pmol/L), mean (95% CI) 908.3 (867.2–949.3) 648.0 (616.9–679.1) <0.001
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Actinobacteria and Firmicutes (P < 0.001) (Fig.  3H). At 
the genus level, in addition to Akkermansia (P < 0.001), 
the abundances of five genera from family Ruminococ-
caceae (Ruminococcaceae UCG-002, Ruminiclostridium 
6, Ruminococcaceae NK4A214 group, UBA1819, Rumi-
nococcaceae UCG-005) as well as Bacteroides, Alistipes 
and Christensenellaceae R-7 group, were increased (P < 
0.001; Fig.  3I). Christensenellaceae R-7 group appeared 
to form the hub of the post-LED co-occurrence net-
work with other bacterial groups (Additional file  1: Fig. 
S3). By contrast, Pseudobutyrivibrio and some other 
genera belonging to Firmicutes including other butyrate 
producers such as Lachnospira, Subdoligranulum and 
Faecalibacterium but also the acetogen Blautia, were sig-
nificantly decreased (P < 0.001, Fig.  3I). There was also 
a significant decrease in the abundance of Bifidobacte-
rium (P < 0.001) after the intervention (Fig. 3I). Consist-
ent with the changes in relative abundance, the absolute 
abundances of Akkermansia and Christensenellaceae 
R-7 group were significantly increased, and Blautia, 

Pseudobutyrivibrio and Bifidobacterium significantly 
decreased after the LED (all P < 0.001) (Additional file 1: 
Fig. S2).

To understand the functional implications of the 
observed taxonomic changes, we inferred metagenomes 
using the PICRUSt2 algorithm. Of 173 KEGG pathways 
predicted, 6 pathways significantly differed in abundance 
between the sampling points; these included pathways 
pertinent to microbial metabolic processes (glycosami-
noglycan degradation, lipoic acid metabolism and N-gly-
can biosynthesis) and the assembly process of flagella 
(Fig. 3J).

Post–pre‑LED changes in butyrate production capacity
As relative abundances of several butyrate-producing 
bacterial genera were significantly decreased post-
LED, we hypothesized that direct quantification of the 
butyryl-CoA:acetate CoA-transferase gene (responsible 
for a major route for butyrate production in bacteria) 
would allow us to gauge changes in butyrate production 

Fig. 2  Principal coordinate analysis (PCoA) of microbiota variation in pre-(blue dots) and post-(red dots) LED samples based on Bray-Curtis 
distances (A). Arrows link the baseline pre- and post-intervention sample of each individual, indicating direction of change. The blue and red 
dispersion ellipses represent standard deviations within the groups of pre- and post-intervention samples, respectively. The principal component 
(PC) scores of PC1 (B) and PC2 (C) are plotted by the sampling time points
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capacity more precisely. As expected, the post-LED 
capacity for butyrate production, estimated by qPCR for 
a subset of participants (N = 139) with available samples, 
was significantly reduced (P < 0.001, Fig. 4A). Among all 
the measured clinical indices (Fig.  1B), change in body 
fat (%) was significantly and positively associated with 
butyrate production capacity (FDR-P<0.001, Fig. 4B).

Associations between changes in the gut microbiota 
and clinical variables (post–pre‑LED)
Associations between changes (post–pre diet) in the 
bacterial genera or predicted functions and clinical 
indices were first explored by nonparametric cor-
relation analysis to provide an overview of micro-
biota-host associations (Fig.  5), from which linear 

mixed-effects models adjusting for demographic 
variables were fitted to identify significant asso-
ciations that are potentially generalizable across 
populations. After the adjustment, changes in BMI 
and body weight were positively associated with 
the change in the abundance of Pseudobutyrivibrio 
(estimate = 0.58, FDR-P<0.01) and negatively with 
Christensenellaceae R7 group (estimate = − 0.3, 
FDR-P=0.03). Change in total body fat mass was 
consistently positively associated with changes in 
the relative abundances of Pseudobutyrivibrio (esti-
mate=0.16, FDR-P<0.01) and Dorea (estimate=0.04, 
FDR-P<0.01). These significant associations were not 
present at baseline (pre-LED) (Additional file 1: Fig. 
S4). Changes in BMI had a weak but significant nega-
tive association with intra-individual Bray-Curtis 

Fig. 3  The LED intervention reshapes the overall microbiota structure, alters relative abundances of individual bacterial taxa and predicted 
functions. Pre- and post-LED A richness, B diversity within samples (Shannon index), C average dissimilarities (beta diversity) estimated by 
Bray-Curtis distances between participants, and D Firmicutes to Bacteroidetes ratio. Differentially abundant E phyla, F genera (coloured by 
respective phyla) and G KEGG modules following the LED ranked by log-fold change are visualized by divergent bar plots. Only the 15 most 
abundant genera and KEGG modules are shown in F and G. Log2 fold change is calculated as post-LED/pre-LED; only significant results (FDR-P < 
0.05) are plotted. The genera known to be able to produce butyrate are marked with an asterisk (*) in I 
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distance (Additional file  1: Fig. S5), suggesting that 
the magnitude of microbiota change is associated 
with individual weight loss.

With respect to microbiota function, after the 
adjustment, BMI and body weight remained posi-
tively and negatively associated with flagellar assembly 

Fig. 4  The LED intervention and body fat (%) reduction associated with reduced capacity for butyrate production in the gut microbiota. A qPCR 
quantification of the butyryl-CoA:acetate CoA-transferase gene in pre- and post-LED faecal samples. Data are expressed as 1/mean threshold cycle 
(Ct). B Relative changes (post–pre-LED) in body fat (%) (ΔBody fat %) significantly correlated with relative changes in butyrate production capacity 
(ΔButyryl CoA:acetate CoA transferase)

Fig. 5  Correlation heatmaps for changes (post–pre-LED) in A bacterial genera and B KEGG functional modules. For readability of the figures, only 
prevalent bacterial genera (present in >30% of samples) or functional modules that had at least one significant association with changes in clinical 
measurements are shown. * FDR-P < 0.05; ** FDR-P < 0.01; *** FDR-P < 0.001
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(estimate=0.003, FDR-P<0.01) and glycosaminoglycan 
degradation (estimate = − 0.008, FDR-P<0.01), respec-
tively. These two functional modules were significantly 
affected by LED as mentioned previously (P < 0.001, 
Fig.  5B). The changes were attributable to changes in 
the abundance of Pseudobutyrivibrio (contributing to 
flagellar assembly) and Akkermansia (contributing to 
glycosaminoglycan degradation) (Additional file 1: Fig. 
S6).

Prediction of host responses to LED using baseline 
microbiota
Given the above connection between the microbiota 
changes and changes in adiposity, we asked whether the 
extent of host response to LED could be predicted based 
on an individual’s baseline microbiota. Our results from 
stepwise and random forest (RF) regressions indicated 
that baseline features of the gut microbiota explained a 
significant proportion of variance in both unadjusted 
and adjusted models (ca. 26–38% in stepwise regression; 
22–25% in RF) in %change of total body fat, but not other 
clinical indices during the LED (Fig.  6). Similar results 
were obtained by applying the same set of predictors in 
the Finnish participants only (N = 151) (Additional file 1: 
Fig. S7). The baseline microbiota features predictive of 

total body fat change are listed in Table 2 for the stepwise 
regression model and in Additional file  2: Table  S1-S2 
for the RF regression models. Erysipelotrichaceae UCG-
003 emerged as consistently predictive of total body fat 
change in both stepwise and RF regressions and had 
the strongest correlation with changes in total body fat 
(Additional file  1: Fig. S8). We next constructed predic-
tive models for total body fat change based on 4 sets of 
baseline host features, including (1) microbiota-only, (2) 
diet-only, (3) host clinical characteristics (Table 1) and (4) 
a combination of 1–3. The prediction based on the com-
bined model outperformed the predictions based on all 
other models, as the difference in the Akaike information 
criterion (AIC) value between the best (i.e., combined 
model) and second best model (i.e., host clinical char-
acteristics) was larger than the conventional cutoff of 10 
AIC units for significant model support. The predicted 
and measured total body fat (%) change based on the 
combined model had Spearman’s R of 0.74, correspond-
ing to 55% of the variance in total body fat (%) change (P 
< 0.001, Fig. 7). The combined model indicated that the 
higher the baseline body fat (%), monounsaturated fatty 
acid intake in the habitual diet, and gut microbiota rich-
ness, the less successful was the intervention in terms 
of fat loss (%). Conversely, a high relative abundance of 

Fig. 6  Amount of variation in changes of clinical indices explained by baseline gut microbiota. The bar graph shows the estimated R2 in Random 
Forest (RF) and stepwise regressions. The error bars show 95% confidence intervals from repeated cross-validation of the random forests to predict 
the delta (post–pre-LED) clinical indices. In both regression models, the adjusted model includes demographic variables (age, gender and ethnicity) 
in addition to microbiota features. The unadjusted model is included as a contrast to showcase the predictive power of gut microbiota features for 
specific clinical indices without conflating the information related to host clinical characteristics
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Clostridium sensu stricto 1, Ruminococcaceae UCG-
003 and Parabacteroides at baseline were predictive of 
increased fat loss (%) during the intervention (Table  2). 
In the model without adjustment for host characteristics 
and habitual diet, also Lactococcus and an unclassified 
genus of Peptostreptococcaceae were significantly asso-
ciated with a good response, while Erysipelotrichaceae 
UCG-003 was predictive of poor response. Their effects 
were, however, explained by the host characteristics, 
rather than being predictive in their own right.

Discussion
Recent preclinical and clinical studies suggest that, along 
with other host and environmental factors [46, 47], the 
gut microbiota contributes to individual variability in 
diet-induced weight loss [7]. Here we present microbiota 
data derived from PREVIEW, the largest intervention 

to date in overweight or obese adults with pre-diabe-
tes undertaking an 8-week LED for weight loss. To our 
knowledge, the participants included in this PREVIEW 
sub-study represent the largest cohort to date investigat-
ing the impact of a commercial total meal replacement 
LED on the gut microbiota. Our results show that (1) the 
LED intervention significantly altered the overall com-
munity structure, relative and absolute abundances of 
bacterial taxa and functional potential of the microbiota; 
(2) changes in the gut microbiota were strongly associ-
ated with changes in adiposity-related variables; and ( 3) 
decrease in body fat during the LED was predicted by the 
baseline features of the gut microbiota.

We observed drastic shifts in the overall microbiota 
structure measured by beta diversity after 8-weeks of 
LED, which is consistent with the previous results from 
Frost and colleagues’ 6-week energy restriction trial in 
obese individuals with T2D [14] and Heinsen’s 12-week 
intervention in obese adults with various chronic dis-
eases [17], both of which used total meal replacements of 
similar macronutrient composition and energy content 
(3.4 MJ/day). Similarly, Simões et  al. showed significant 
changes in dominant faecal bacteria following a 6-week 
very low-energy diet (VLED; providing fewer than 800 
kcal/day (3.3 MJ)) in adults with obesity [16]. Moreo-
ver, a recent intervention analysing the effects of VLED 
(2.5 MJ/day) in 30 adults with overweight or obesity and 
non-alcoholic fatty liver disease (NAFLD) also found 
that 4 weeks of VLED had a significant impact on the 
overall gut microbiota [18]. One weight loss study not 
using total meal replacement products reported that a 
6-week high-protein energy-restricted diet significantly 
increased microbial gene richness that was associated 
with improved clinical phenotypes in obese and over-
weight adults [48]. In contrast, many other weight loss 
interventions with duration ranging from 4 to 12 weeks 
did not find a significant difference in microbiota struc-
ture before and after energy restriction in overweight and 
obese individuals with a range of metabolic syndrome 
and NAFLD conditions [13, 15, 19, 20]. Evidence indi-
cates that the microbiota may respond to diet within 1–3 
days [49–51], suggesting a 4-week timeframe should have 
been sufficient to observe changes in the microbiota. The 
differences are unexpected since most of these trials used 
a very similar approach to weight loss, namely LED com-
plete meal replacement. The discrepancy may perhaps 
arise from small differences in macro and micronutri-
ent composition, compliance to the LED, or more likely 
differences in microbiome methodologies which may be 
exacerbated in these studies of very small sample size [12, 
22]. Interestingly, the microbiota responses to the same 
LED in the PREVIEW participants were highly consist-
ent, as opposed to personalized microbiota responses to 

Table 2  Variables retained in the prediction models for relative 
change in total body fat (%) based on stepwise selection

BMI body mass index, FPG fasting plasma glucose, CHO carbohydrate, SFA 
saturated fat, MUFA monounsaturated fat, PUFA polyunsaturated fat

Variable Coefficient SE z P

Combined
  Body fat (%) 0.049 0.0048 10.23 <0.001

  Gut microbiota richness 0.01 0.005 1.9 0.05

  Clostridium sensu stricto 1 − 0.007 0.0045 − 1.58 0.1

  Parabacteroides − 0.008 0.0046 − 1.8 0.07

  FPG (mmol/L) − 0.01 0.004 − 2.54 0.01

  Ruminococcaceae UCG-003 − 0.01 0.0047 − 2.63 0.009

  MUFA intake (en%) 0.01 0.0044 2.29 0.02

Host clinical characteristics
  Gender − 0.024 0.017 − 1.443 0.15

  Waist circumference (cm) − 0.522 0.19 − 2.73 0.007

  BMI (kg/m2) − 0.01 0.004 − 2.37 0.02

  Body fat (%) 0.012 0.002 5 <0.001

  FPG (mmol/L) − 0.017 0.007 − 2.26 0.02

Gut microbiota
  Ruminococcaceae UCG-003 − 0.013 0.005 − 2.35 0.02

  Lactococcus − 0.01 0.006 − 1.88 0.06

  Parabacteroides − 0.013 0.005 − 2.46 0.01

  Peptostreptococcaceae_
unclassified

− 0.021 0.006 − 3.76 <0.001

  Erysipelotrichaceae UCG-003 0.014 0.006 2.56 0.04

Diet
  Total fat intake (en%) − 11.1 6.12 − 1.82 0.07

  Total CHO intake (en%) 0.936 0.425 2.21 0.03

  Sugars intake (en%) − 1.02 0.66 − 1.54 0.1

  Fibre intake (en%) − 3.08 2.2 − 1.4 0.16

  SFA intake (en%) 11.06 7.57 1.46 0.14

  MUFA intake (en%) 14.2 6.43 2.21 0.03

  PUFA intake (en%) 14 8.41 1.67 0.1
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similar foods previously reported in 34 healthy individu-
als [51].

In contrast to a recent VLED study in 40 post-meno-
pausal women with overweight or obesity [52], we did 
not observe a reduction in total bacterial density after the 
8-week LED. This difference is possibly owing to the dif-
ferent macronutrient compositions of the OPTIFAST® 
Liquid Diet [52] and the Cambridge Weight Plan® used 
in our study. Other indices that reflect microbiota struc-
ture, namely microbiota richness and alpha diversity, 
increased significantly following the LED as also reported 
by previous studies using similar energy-restricted 
regimes [14, 48]. While greater microbiota diversity does 
not necessarily imply better health [53], low diversity has 
been linked to poor metabolic health due to, e.g., loss of 
metabolically important functional capacity [54]. In com-
parison with the baseline, the post-LED microbiota can 
be delineated by (1) reduced fibre-degrading Firmicutes 
(mainly the Lachnospiraceae family as well as other key 
butyrate producers), (2) decreased relative and abso-
lute abundance of Bifidobacterium and (3) concomitant 
increases in Akkermansia and the Christensenellaceae 
family. Pseudobutyrivibrio in the Lachnospiraceae family 
was the genus that decreased the most following the LED 
in our study; this genus has an elusive role as it has been 

associated with both weight loss [55] and the pro-inflam-
matory response [56] in animal models.

By inferring metagenomes, we show that reduced Pseu-
dobutyrivibrio may have contributed to lower microbiota 
capacity in flagellar assembly, the changes in which asso-
ciated positively to that of body weight and fat mass. This 
is relevant as flagellins are canonical effectors of Toll-
like receptor 5 and have been suggested to contribute to 
obesity [57]. Reductions in Bifidobacterium and several 
butyrate-producing bacteria are not surprising consider-
ing these bacteria thrive on indigestible polysaccharides 
that were scarce during the LED. While decreased Bifi-
dobacterium is often associated with metabolic disorders 
[58], the change in Bifidobacterium did not correlate with 
clinical measurements investigated here in PREVIEW. 
The observed small reduction of Blautia is of interest, as 
Blautia is a highly abundant and acetogenic group and 
recent studies have shown that the intestinal levels of 
Blautia spp. are increased in patients with T2D as com-
pared to healthy controls [59]. Akkermansia, previously 
shown to be inversely correlated with metabolic derange-
ments [60] and recently shown to improve barrier func-
tions and insulinemia in obese individuals [61], was 
significantly increased following the LED in PREVIEW. 
This contributed to the elevated microbiota capacity for 

Fig. 7  Comparison of the association strengths between the true and predicted total body fat (%) change during the LED based on the four 
different models. The lines represent the fitted regression lines (Spearman’s rank correlation coefficients displayed at the upper left corner) and the 
corresponding shaded area represents the 95% confidence intervals for each model. GM, gut microbiota; host, host clinical characteristics including 
demographic characteristics, anthropometric and metabolic measurements as presented in Table 1



Page 13 of 18Jian et al. Genome Medicine           (2022) 14:54 	

glycosaminoglycan degradation, in line with the extensive 
capacity of Akkermansia for genes capable of metaboliz-
ing host glycans, e.g., mucins [62] to gain an edge over 
competitors during scarcity of dietary glycans as also 
noted in fasting animals [63]. Increases in Christensenel-
laceae R-7 group were likely partly promoted by the ade-
quate protein content in the LED (43.7 E%, 88 g/day), as 
this bacterial group specializes in protein fermentation 
and may produce butyrate [64]. Members of the Chris-
tensenellaceae family have been linked to decreased 
adiposity [65], which is consistent with our correlation 
analysis. It has been hypothesized that the protective 
effect of Christensenellaceae against excess adiposity 
gain involves remodeling the microbial community [64], 
which is supported by the Christensenellaceae-centred 
co-occurrence network after the LED as well as in a pre-
vious study [66].

Akkermansia was the only genus found to negatively 
associate with insulin resistance index (HOMA-IR) dur-
ing LED, but the significance disappeared after adjusting 
for demographics. While a recent study in ~1500 Swedes 
strongly associated insulin resistance and glycemic sta-
tus, specifically impaired glucose tolerance, with the gut 
microbiota [67], we found few associations between the 
gut bacteria and changes in glucose metabolism during 
the LED. A possible explanation is that one key mecha-
nism by which the gut microbiota mediates glucose 
metabolism is through colonic fermentation of dietary 
fibre [68], which was however relatively low in the inter-
vention diet. A recent post hoc analysis of a subgroup in 
Cotillard and colleagues’ calorie restriction (CR) inter-
vention [48], where the diet was rich in total fibre, found 
that fibre intake and gut metagenomic species that were 
interconnected in a biological network had the greatest 
contribution to CR-induced improvement in insulin sen-
sitivity [69].

The capacity for butyrate production in the post-LED 
gut microbiota, quantified by qPCR rather than inferred 
metagenomics, was significantly reduced. This mirrors 
the results from a recent VLED study [52]. Interestingly, 
we found that reduced butyrate production capacity was 
proportional to reduced body fat (%). While butyrate 
is generally considered anti-obesogenic, some stud-
ies reported higher concentrations of butyrate in obese 
humans than in lean individuals [70]. Greater stool 
calorie loss, a proxy of decreased nutrient absorption, 
has been linked to lower circulating [71] and faecal [52] 
levels of butyrate, suggesting decreased gut microbial 
capacity in processing nutrients. Our findings therefore 
lend credence to the new working model where weight 
loss and metabolic improvements in obese individuals 
induced by caloric restriction are potentially mediated by 
impaired nutrient absorption that is associated with gut 

microbiota changes, including reduced butyrate produc-
tion [52, 71]. This also implies that the effects of butyrate 
on body weight control likely depend on host health sta-
tus and/or dietary conditions. While the observations in 
the present study should not be taken as evidence of cau-
sality or causal mechanisms, the role of butyrate in nutri-
ent absorption under different clinical and nutritional 
conditions warrants further mechanistic investigation. 
Moreover, the long-term impact of reduced butyrate 
production capacity induced by the LED on host health 
requires clarification.

Our previous studies [72, 73] and data from others 
[74, 75] have suggested that an individual’s metabolic 
response to different diets depends partly on baseline 
features of the microbiota. Recently, the baseline ratio 
between Prevotella and Bacteroides was proposed as a 
predictive biomarker for weight loss [76, 77]. However, 
the utility of this ratio may be limited by the sparsity of 
Prevotella [78]. A recent Chinese study in 83 partici-
pants on a 6-month self-managed dieting program sug-
gests that the baseline gut microbiota is predictive of 
weight loss [21], whereas body composition and other 
metabolic markers were not measured. Importantly, 
BMI or body weight per se is an inadequate indicator for 
metabolic health [79] or the success of any interventions 
[80]. As the variance in weight change in our PREVIEW 
cohort was relatively small due to the fully controlled 
LED and high compliance, we were able to focus on the 
variables representing the quality of the weight loss, 
e.g., body fat loss and lean mass loss. By applying pre-
dictive modelling in our current study, we show that the 
baseline microbiota alone was able to explain a signifi-
cant proportion of variance (up to 38%) in total body fat 
(%), but not in BMI or body weight, during LED. Since 
weight loss entails a reduction in both lean (fat-free) 
and fat mass, the baseline microbiota likely modifies the 
LED-driven effect on the fat tissue specifically. Indeed, 
preclinical and clinical studies have consistently shown 
that the gut microbiota modulates adipose tissue physi-
ology [65, 81–83]. Of note, the cross-sectional results 
from the large-scale PREDICT1 study (N = 1098) found 
that visceral fat was more strongly linked to gut micro-
bial composition than BMI [84]. Our findings from the 
PREVIEW intervention therefore extend on the findings 
from PREDICT1, highlighting the crucial role of the gut 
microbiota in adipose tissue physiology. In contrast, 
the baseline microbiota was not predictive of changes 
in clinical indices related to glucose metabolism in 
PREVIEW. Given the lack of association between the 
gut microbiota and glucose metabolism during weight 
loss, the LED-driven improvement in glucose metabo-
lism was likely microbiota-independent in our cohort. 
The baseline relative abundances of Erysipelotrichaceae 
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UCG-003 and Clostridium sensu stricto 1 were selected 
as important features for prediction of total body fat 
change by both feature selection techniques, but their 
abundances were otherwise unchanged during the LED 
phase. Analogous findings were reported in a recent 
Danish study [24] and this again suggests that the 
LED-induced change in body fat was modified by the 
baseline microbiota as an effect modifier [23]. Erysipel-
otrichaceae UCG-003 (the top feature in predicting total 
body fat change in PREVIEW) was recently identified as 
a key player in a cohort of lean patients with confirmed 
NAFLD [85], a consequence of increased non-adipose 
ectopic fat deposition into liver. Members of the Ery-
sipelotrichaceae family have also been repeatedly linked 
to host lipid and cholesterol phenotypes in humans [86] 
and experimental animals [87, 88]; likewise, Clostridium 
sensu stricto 1 has been associated with high-density 
lipoprotein (HDL) metabolism in a recent population-
based study [89].

For prediction of total body fat change during LED in 
PREVIEW, the combined model with host physiologi-
cal, dietary and microbial features had better predictive 
performance than the model with only host physiologi-
cal features. This suggests that microbial and habit-
ual dietary features modify host responses to dietary 
change, rather than acting as mere proxies for the bio-
clinical features. Notably, several species of Parabacte-
roides, one of the taxa predictive of fat loss, have been 
previously shown to reduce obesity in mice [90, 91]. 
Whether gut microbes influence fat loss via metabo-
lism, or e.g. via eating behaviour [92], is an intriguing 
question. SCFAs, neurotransmitters and peptides pro-
duced by gut microbes are all hypothesized to regulate 
appetite [93]. Weight loss success during a diet is largely 
an outcome of behaviour alongside physiology [94]. In 
this PREVIEW sub-study, we found unexpectedly that 
the higher the baseline body fat percentage, the poorer 
the response in terms of fat percentage loss, suggestive 
of lower compliance and/or more sedentary lifestyle. 
Taken together, our work and other recent studies [21, 
24] demonstrate that data integration using host and 
microbial features prior to an intervention is able to 
predict diet-induced metabolic changes over relatively 
long time spans, while this strategy has only been uti-
lized to successfully predict postprandial responses pre-
viously [75, 95].

As inter-individual variation in the gut microbiota is 
notably high and shaped by various factors such as long-
term diet and host genetics [7], small and homogenous 
cohorts as utilized by previous studies provide little gen-
eralizability and applicability. The main strength of our 
report is therefore a large novel cohort of overweight 

adults confirmed to be at high risk of T2D from two 
different. geographical regions and various ethnici-
ties, adhering to a well-controlled and uniform dietary 
regime for weight loss, rendering the study clinically 
relevant. Compliance to diet was confirmed by the sig-
nificant ≥8% body weight loss over 8 weeks. The results 
presented in this study should nonetheless be inter-
preted with some limitations in mind, including different 
methods for total body fat assessment (DXA and BIA) 
in the two study sites, which may have resulted in differ-
ences in absolute body fat mass and fat-free mass. How-
ever, we mitigated potential bias to the greatest extent by 
analysing change from baseline data, making the results 
from DXA and BIA more comparable [96]. We addi-
tionally tested the regression model in the Finnish par-
ticipants only (body composition assessed using BIA) to 
ensure consistent findings. While we cannot exclude the 
possibility that natural temporal fluctuation of the gut 
microbiota partly contributed to the observed changes, 
the gut microbiota is known to be rather stable in the 
absence of extreme external stressors even over a 2-year 
period [97].

Conclusions
Obesity and its most prevalent co-morbidity, T2D, could 
affect half of the world’s adult population by 2030 [98]. 
By identifying the gut microbiota as an important co-
determinant of LED-induced reduction in total body 
fat, our study lays the foundation for pre-intervention 
assessment and patient stratification using individual 
microbiota profiles. A recent study suggests that daily 
pre-diet gut microbiota variability, termed “plasticity,” 
is associated with diet-induced weight loss [99]. Hence, 
integration of baseline microbiota variability by daily 
sampling prior to weight loss might improve the pre-
diction of total body fat change, which warrants inves-
tigation in future studies. In conclusion, an 8-week LED 
weight loss intervention in adults with overweight and 
pre-diabetes significantly influenced microbiota struc-
ture, functional potential and relative abundance of 
several bacterial taxa. These correlated with favorable 
changes in adiposity that can be predicted by baseline 
features of the gut microbiota.
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