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OPINION

Addressing the routine failure to clinically 
identify monogenic cases of common disease
Michael F. Murray1*  , Muin J. Khoury2 and Noura S. Abul‑Husn3 

Abstract 

Changes in medical practice are needed to improve the diagnosis of monogenic forms of selected common diseases. 
This article seeks to focus attention on the need for universal genetic testing in common diseases for which the 
recommended clinical management of patients with specific monogenic forms of disease diverges from standard 
management and has evidence for improved outcomes.

We review evidence from genomic screening of large patient cohorts, which has confirmed that important mono‑
genic case identification failures are commonplace in routine clinical care. These case identification failures consti‑
tute diagnostic misattributions, where the care of individuals with monogenic disease defaults to the treatment plan 
offered to those with polygenic or non‑genetic forms of the disease.

The number of identifiable and actionable monogenic forms of common diseases is increasing with time. Here, we 
provide six examples of common diseases for which universal genetic test implementation would drive improved 
care. We examine the evidence to support genetic testing for common diseases, and discuss barriers to widespread 
implementation. Finally, we propose recommendations for changes to genetic testing and care delivery aimed at 
reducing diagnostic misattributions, to serve as a starting point for further evaluation and development of evidence‑
based guidelines for implementation.
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permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
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mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Adding a particular laboratory test to the standard man-
agement of a condition can be complex; however, the 
decision for routine inclusion can be reduced to two sets 
of issues: the evidence-base that supports testing, and 
implementation facilitators and barriers that impact the 
testing process. While laboratory tests to identify the 
underlying monogenic etiology of common diseases such 
as cancers and cardiovascular diseases have been avail-
able for decades [1, 2], genetic testing is not routinely 
incorporated into common disease management in most 
settings. As such, a failure to correctly ascribe a mono-
genic etiology to common disease occurs routinely [3–5]. 

This failure to test causes a “diagnostic misattribution,” 
and the consequence is that untested individuals with 
monogenic causes for their disease are managed in the 
same way as other cases who are assumed to have a poly-
genic or non-genetic etiology for their disease. We are 
writing to bring attention to diagnostic misattribution in 
common disease occurring when clinically useful genetic 
testing is available but not offered. This type of omission 
needs to be addressed in a manner that both meets the 
moment and lays an evidentiary foundation for moving 
forward.

The concept of diagnostic misattribution is not limited 
to genetics. It can be applied to other clinical scenarios 
where diagnostic studies are both available and useful but 
are not offered as part of the patient’s care management. 
As such, the decision to not offer the study leads to a lack 
of specificity in the diagnosis that results in sub-optimal 
care for some patients. Consider a hypothetical case 
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of a health system deciding to limit brain imaging for 
patients presenting with acute stroke to those meeting a 
set of clinical criteria, despite the availability of imaging 
technology and evidence that the accurate identification 
of hemorrhagic strokes (15% of acute stroke cases) opti-
mizes care and improves outcomes for acute stroke [6, 
7]. Suppose the data show that these clinical criteria are 
insufficiently sensitive for identifying one in seven cases 
of hemorrhagic stroke, and therefore, these cases do 
not receive imaging. This hypothetical approach would 
undoubtedly lead to cases of hemorrhagic stroke being 
diagnostically misattributed to the more common type 
of stroke (i.e., ischemic stroke) and consequently result in 
missed opportunities for optimal care management [7].

When BRCA1 genetic testing was first introduced 
in the mid-1990s, it was a new type of test to identify 
monogenic cases of breast cancer, and a positive result 
was informative but not associated with evidence-based 
management options [2]. The test was costly to perform 
and difficult to interpret, and additional research would 
still be required to determine how to assess novel vari-
ants encountered in such testing. For BRCA1 and sub-
sequently identified cancer predisposition syndromes, 
significant work was undertaken to identify individuals 
with the highest pre-test probability of a positive test 
result, and strategies were developed to limit testing to 
those individuals [8]. In addition, important ethical, legal, 
and social considerations were being addressed for the 
first time in relation to clinical genetic tests [9]. In this 
context, early implementation barriers, such as restricted 
insurance coverage for testing and an expectation for 
ordering providers to have genetics expertise, were in line 
with the state of knowledge at the time.

The current era is one where the consequences of diag-
nostic misattribution for BRCA1 and other genes include 
missed opportunities for targeted evidence-based care of 
the patient [10]. We propose a new approach that starts 
with the question: Which clinical scenarios have reached 
a point where diagnostic attribution through genetic test-
ing is actionable? In those instances where attribution 
prompts specific distinct care management steps, and 
where misattribution leads to missed opportunities for 
optimal care, health systems need to begin supporting 
reflexive genetic testing, i.e., genetic testing solely on the 
basis of the existing diagnosis.

The persistence of once justified implementation bar-
riers to genetic testing in individuals with diagnosed dis-
ease now contributes to a recognized failure to routinely 
identify monogenic cases of common disease. We advo-
cate for reflexive universal genetic testing to be consid-
ered for diseases for which monogenic case identification 
impacts care management and clinical outcomes for the 
affected patient. We propose piloting the initiation of 

changes to practice in the most compelling clinical sce-
narios where diagnostic misattribution interferes with 
optimal care. We include six examples (Table 1) for which 
the evidence for actionability is clear and consensus for 
universal testing is likely achievable, and discuss ways to 
address operational barriers to universal testing. Twelve 
discrete recommendations for addressing the barriers 
are proffered here as the types of steps needed to change 
medical practice (Table 2). We hope that this serves as a 
starting point to prompt discussion and debate aimed at 
defining consensus lists of actionable diseases that war-
rant reflexive genetic testing and addressing operational 
barriers to initiate important changes to care delivery in 
this arena.

Evolving landscape of monogenic causes 
of common diseases
Recently published examples from large DNA-based pop-
ulation screening programs within health systems have 
unambiguously demonstrated that [1] currently endorsed 
medical and family history-based screening strategies are 
not sufficiently sensitive to identify all individuals with 
monogenic disease-associated variants [5, 36, 37] and [2] 
patients with monogenic causes of common disease are 
routinely cared for without genetic testing [3–5]. In two 
reports, approximately 10% of screen-positive patients 
first found out about their disease-associated variant 
through the population screening program even though 
they had a standing diagnosis of the common disease in 
question (breast cancer, ovarian cancer, colorectal cancer, 
or coronary artery disease), because clinical genetic test-
ing had not been previously performed [4, 5, 38].

In aggregate, an estimated 1–2% of the general adult 
population may have a readily identifiable genetic variant 
conferring a significantly elevated risk for cancer or cardi-
ovascular disease [39]. In adults with specific diagnoses, 
the frequency of underlying monogenic disease-associ-
ated variants can be significantly enriched (see Table 1). 
For example, the population prevalence of monogenic 
familial hypercholesterolemia in the USA is 0.4% [3], but 
its prevalence in patients with acute coronary syndrome 
(ACS) is 4.7%, and in patients with ACS under 60 years 
is 7.4% [28, 29]. Hypertrophic cardiomyopathy (HCM), 
which affects up to 1 in 200 individuals in the USA [32], 
has an identifiable monogenic cause in 30–60% of cases, 
including a subset of patients with treatable metabolic or 
infiltrative diseases that mimic HCM [34, 35]. Approxi-
mately 3% of individuals with colorectal cancer have a 
mismatch repair gene variant associated with Lynch syn-
drome [24].

In the case of ovarian cancer, a 15% prevalence of dis-
ease-associated variants in BRCA1 or BRCA2 (BRCA1/2) 
has been reported in multiple studies [11, 12]. A recent 



Page 3 of 10Murray et al. Genome Medicine           (2022) 14:60  

Ta
bl

e 
1 

Co
m

m
on

 d
is

ea
se

s 
in

 w
hi

ch
 a

 p
os

iti
ve

 g
en

et
ic

 te
st

 re
su

lt 
is

 a
ss

oc
ia

te
d 

w
ith

 c
ha

ng
es

 to
 c

lin
ic

al
 m

an
ag

em
en

t o
pt

io
ns

 fo
r t

he
 p

at
ie

nt

a  “O
va

ria
n 

ca
nc

er
s”

 in
cl

ud
e 

ov
ar

ia
n 

ep
ith

el
ia

l c
an

ce
r, 

fa
llo

pi
an

 tu
be

 c
an

ce
r, 

an
d 

pr
im

ar
y 

pe
rit

on
ea

l c
an

ce
r -

 w
w

w
. c

an
ce

r. g
ov

/ t
yp

es
/ o

va
ri a

n/
 pa

tie
 nt

/ o
va

ri a
n-

 ep
ith

 el
ia

l- t
re

at
 m

en
t-

 pd
q

b  W
hi

le
 th

e 
A

m
er

ic
an

 S
oc

ie
ty

 o
f B

re
as

t S
ur

ge
on

s 
ha

s 
re

co
m

m
en

de
d 

ro
ut

in
e 

te
st

in
g,

 th
e 

N
CC

N
 h

as
 n

ot
 re

co
m

m
en

de
d 

re
fle

xi
ve

 te
st

in
g

c  In
 2

00
9,

 E
G

A
PP

 n
ot

ed
 th

at
 th

er
e 

w
as

 s
uffi

ci
en

t e
vi

de
nc

e 
to

 re
co

m
m

en
d 

off
er

in
g 

ge
ne

tic
 te

st
in

g 
fo

r L
yn

ch
 s

yn
dr

om
e 

to
 in

di
vi

du
al

s 
w

ith
 n

ew
ly

 d
ia

gn
os

ed
 c

ol
or

ec
ta

l c
an

ce
r t

o 
re

du
ce

 m
or

bi
di

ty
 a

nd
 m

or
ta

lit
y 

in
 re

la
tiv

es
. 

Th
is

 g
ro

up
 h

as
 n

ot
 re

vi
si

te
d 

th
is

 to
pi

c 
si

nc
e 

20
09

. T
he

re
 is

 re
ce

nt
 e

vi
de

nc
e 

fo
r b

en
efi

t t
o 

th
e 

pa
tie

nt
 in

 th
e 

fo
rm

 o
f F

D
A

-a
pp

ro
ve

d 
ta

rg
et

ed
 th

er
ap

ie
s 

[2
5]

, a
nd

 th
is

 in
fo

rm
at

io
n 

w
as

 n
ot

 a
va

ila
bl

e 
to

 E
G

A
PP

 w
he

n 
th

ey
 

ad
dr

es
se

d 
ge

ne
tic

 te
st

in
g

Co
m

m
on

 d
is

ea
se

G
en

es
Pr

ev
al

en
ce

 o
f “

D
is

ea
se

 
A

ss
oc

ia
te

d 
Va

ri
an

ts
” i

n 
ge

ne
ra

l p
op

ul
at

io
n

Pr
ev

al
en

ce
 o

f “
D

is
ea

se
 

A
ss

oc
ia

te
d 

Va
ri

an
ts

” 
in

 s
pe

ci
fic

 c
om

m
on

 
di

se
as

e

Po
te

nt
ia

l t
ar

ge
te

d 
in

te
rv

en
tio

ns
 a

ss
oc

ia
te

d 
w

ith
 

m
on

og
en

ic
 a

tt
ri

bu
tio

n
G

ui
de

lin
es

 re
la

te
d 

to
 d

ia
gn

os
is

 a
nd

/o
r 

m
an

ag
em

en
t o

f t
he

 c
om

m
on

 d
is

ea
se

 a
nd

 it
s 

m
on

og
en

ic
 fo

rm
s

Ph
ar

m
ac

ol
og

ic
 th

er
ap

y
N

on
-p

ha
rm

ac
ol

og
ic

 
in

te
rv

en
tio

ns
Pr

of
es

si
on

al
 

or
ga

ni
za

tio
n(

s)
Re

fle
xi

ve
 g

en
et

ic
 te

st
in

g 
re

co
m

m
en

de
d 

fo
llo

w
in

g 
di

ag
no

si
s

O
va

ria
n 

 ca
nc

er
sa

BR
CA

1
BR

CA
2

1:
20

0 
[5

]
1:

7 
[1

1,
 1

2]
Po

ly
 A

D
P 

rib
os

e 
po

ly
m

er
‑

as
e 

(P
A

RP
) i

nh
ib

ito
rs

 [1
3]

Bi
la

te
ra

l m
as

te
ct

om
y 

[1
4]

N
at

io
na

l C
om

pr
eh

en
si

ve
 

Ca
nc

er
 N

et
w

or
k 

(N
CC

N
) 

[1
5]

A
m

er
ic

an
 S

oc
ie

ty
 o

f 
C

lin
ic

al
 O

nc
ol

og
y 

(A
SC

O
) 

[1
6]

Ye
s

Br
ea

st
 c

an
ce

r
BR

CA
1

BR
CA

2
1:

20
0 

[5
]

1:
33

 [1
7,

 1
8]

PA
RP

 in
hi

bi
to

rs
 [1

3]
Co

nt
ra

la
te

ra
l m

as
te

c‑
to

m
y

Bi
la

te
ra

l o
op

ho
re

ct
om

y 
[1

9]

A
m

er
ic

an
 S

oc
ie

ty
 o

f 
Br

ea
st

 S
ur

ge
on

s 
[2

0]
b

Ye
s

Pa
nc

re
at

ic
 c

an
ce

r
BR

CA
1

BR
CA

2
1:

20
0 

[5
]

1:
10

 [2
1]

PA
RP

 in
hi

bi
to

rs
 [2

2]
‑‑

N
CC

N
 [1

5]
Ye

s

Co
lo

re
ct

al
 c

an
ce

r
M

LH
1

M
SH

2
M

SH
6

PM
S2

1:
28

0 
[2

3]
1:

25
 to

 1
:5

0 
[2

4]
Fi

rs
t‑

lin
e 

th
er

ap
y 

w
ith

 
pe

m
br

ol
iz

um
ab

 in
 

ad
va

nc
ed

 d
is

ea
se

 [2
5]

Tr
an

sv
ag

in
al

 u
ltr

as
ou

nd
, 

en
do

m
et

ria
l b

io
ps

y,
 

hy
st

er
ec

to
m

y 
[2

6]

Ev
al

ua
tio

n 
of

 G
en

om
ic

 
A

pp
lic

at
io

ns
 in

 P
ra

ct
ic

e 
an

d 
Pr

ev
en

tio
n 

(E
G

A
PP

) 
W

or
ki

ng
 G

ro
up

 [2
7]

Ye
sc

Co
ro

na
ry

 a
rt

er
y 

di
se

as
e

LD
LR

AP
O

B
PC

SK
9

1:
25

0 
[3

]
1:

20
 [2

8,
 2

9]
Li

pi
d 

lo
w

er
in

g 
fo

r 
se

co
nd

ar
y 

pr
ev

en
tio

n 
[c

om
bi

ne
 s

ta
tin

s 
w

ith
 

ot
he

r l
ip

id
‑lo

w
er

in
g 

th
er

ap
ie

s 
as

 n
ee

de
d]

‑‑
20

18
 A

H
A

/A
CC

/A
A

C
VP

R/
A

A
PA

/A
BC

/A
C

PM
/A

D
A

/
A

G
S/

A
Ph

A
/A

SP
C

/N
LA

/
PC

N
A

 G
ui

de
lin

e 
on

 th
e 

M
an

ag
em

en
t o

f B
lo

od
 

C
ho

le
st

er
ol

 [3
0]

N
ot

 a
dd

re
ss

ed

H
yp

er
tr

op
hi

c 
ca

rd
io

‑
m

yo
pa

th
y

M
YH

7
M

YB
PC

3
TN

N
I3

TN
N

T2
TP

M
1

M
YL

2
M

YL
3

AC
TC

1
H

C
M

 M
im

ic
s: 

[3
1]

PR
KA

G
2

LA
M

P2
G

AA
 

G
LA

TT
R 

1:
20

0 
to

 1
:4

00
 [3

1,
 3

2]
1:

2 
to

 1
:3

 [3
3,

 3
4]

If 
H

C
M

 m
im

ic
 id

en
tifi

ed
: 

en
zy

m
e 

re
pl

ac
em

en
t 

th
er

ap
y 

(G
AA

 , G
LA

)
A

nt
ia

rr
hy

th
m

ic
 d

ru
gs

, 
ab

la
tio

n 
(P

RK
AG

2)
Tr

an
st

hy
re

tin
 s

ta
bi

liz
in

g 
or

 s
ile

nc
in

g 
dr

ug
s 

(T
TR

 )

If 
H

C
M

 m
im

ic
 id

en
tifi

ed
:

IC
D

 im
pl

an
ta

tio
n 

(L
AM

P2
)

A
m

er
ic

an
 C

ol
le

ge
 o

f 
Ca

rd
io

lo
gy

/A
m

er
ic

an
 

H
ea

rt
 A

ss
oc

ia
tio

n 
Jo

in
t 

Co
m

m
itt

ee
 o

n 
C

lin
ic

al
 

Pr
ac

tic
e 

G
ui

de
lin

es
 [3

5]

Ye
s

http://www.cancer.gov/types/ovarian/patient/ovarian-epithelial-treatment-pdq


Page 4 of 10Murray et al. Genome Medicine           (2022) 14:60 

study that captured population-based data in Georgia 
and California found that genetic testing rates associ-
ated with ovarian cancer diagnosis were only 30% [40]. 
Guidelines are in place from the National Comprehensive 
Cancer Network (NCCN), the American Society of Clini-
cal Oncology, and other professional societies to offer 
reflexive testing of BRCA1/2 and other genes in all diag-
nosed cases of ovarian cancer, with specific changes to 
care when testing is positive [15, 16, 41]. Focused efforts 
within individual institutions have demonstrated the 
potential to drive genetic testing rates in ovarian cancer 
to > 80% in response to such guidelines [42–44].

Genetic testing to accurately diagnose monogenic dis-
ease has the power to change care options for patients 
with ovarian cancer and other common diagnoses (see 
Table  1). There is also the potential for secondary ben-
efits outside of direct disease management, such as 
better-informed prognoses, improved long-term preven-
tive screening strategies, and targeted cascade testing of 
at-risk family members [45]. Primary disease manage-
ment benefits for monogenic causes of common disease 
could be extended to more individuals if genetic testing 
was routinized in selected clinical scenarios.  We recog-
nize that, in order to achieve this, there need to be stand-
ardized definitions of actionable attribution so that the 

many stakeholders (e.g., clinical experts, clinical labora-
tories, payers, and patients) can reach a consensus. Such 
stakeholders consensus building will be fundamental to 
the evidence-based processes needed to create the list 
of common disease diagnoses and reflexive gene tests 
recommended in item 3 of Table  2. For those clinical 
scenarios achieving broad agreement, it will be crucial 
to address access barriers and disparities in genetic test 
implementation by establishing clear practice standards 
to support genetic testing of as many patients as possible 
[27].

Despite an increasing appreciation for identifiable 
monogenic forms of common diseases, genetic testing 
for these is not commonplace, even when guidelines for 
universal testing exist. The next sections will focus on the 
growing evidence base to support universal genetic test-
ing for certain common diseases.

Evidentiary foundation to genetic testing 
in common diseases
The evaluation of any genetic test in the context of a 
common disease includes an assessment of its analytic 
validity, clinical validity, and clinical utility, as well as 
associated ethical, legal, and societal implications [46]. 
While analytic validity (technical test performance) and 

Table 2 Implementation changes to consider in specific common diseases where actionable attribution can be revealed with a 
specific genetic test

Category Item number Recommended for consideration

Criteria for ordering mono‑
genic tests in the diagnosed 
patient

1 Re‑evaluation of the risks and benefits of employing genetic testing criteria checklists aimed at limit‑
ing who is offered testing to identify monogenic causes of common diseases

2 Expansion of the ovarian cancer model that prompts reflexive genetic testing for all individuals with a 
given specific common disease diagnosis

Reflexive test offerings 3 Creation and maintenance of a list of common disease diagnoses and the specific reflexive gene tests 
they prompt by an authoritative group with credibility and standing across the healthcare community

4 Creation of reflexive genetic testing panels that are designed to offer only those genes supported by 
clear evidence of clinical actionability for the diagnosed patient

Pre‑test interaction 5 The association of reflexive genetic test implementation with approaches that assure equitable access 
in historically underserved populations

6 Development of a standardized clinical consent process for reflexive genetic tests that can easily be 
completed by any competent healthcare professional

7 Development of best clinical practices that offer reflexive genetic testing in a manner that does not 
require the involvement of individuals with advanced genetics training or expertise

8 Offering reflexive genetic tests to patients with certain specific diagnoses without the expectation or 
requirement of a detailed family history ascertainment as part of pre‑test discussion

Cost coverage 9 Re‑evaluation of policies and practices that can (or do) result in a denial of coverage for reflexive 
genetic tests that seek to identify monogenic causes of common disease associated with actionable 
attribution

Test reporting 10 Attention to making the actionable results on laboratory reports clear to any competent provider, 
even a first‑time user

11 Clear communication from the testing laboratory of their plan and commitment to variant re‑analysis 
and results updating so that the non‑expert end‑user does not need to worry about currently uninter‑
pretable information (i.e., variants of unknown significance)

Result disclosure 12 Establishment of a defined standard of care for patients surrounding results on a reflexive genetic test 
in common disease
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clinical validity (sensitivity, specificity, and predictive 
value) have been established for many genetic tests, clini-
cal utility may be less certain [47]. The clinical validity of 
genetic testing refers to its ability to accurately and reli-
ably diagnose monogenic causes of the condition. As 
importantly, the clinical utility of genetic testing refers to 
its ability to inform clinical decision-making and improve 
health outcomes for patients and relatives [48].

For certain types of cancer, it is well established that 
genetic testing can reliably identify the monogenic etiol-
ogy, which in turn provides prognostic information and 
informs systemic therapy selection [49, 50] and surgical 
decision-making [14, 19]. The identified genetic variant 
serves as a biomarker of future disease risk, providing an 
opportunity to implement additional screening and risk-
reducing measures in order to prevent or make an earlier 
diagnosis of a second primary cancer. This is particularly 
important considering that, in a recent study of over 2000 
patients with cancer, 11% had a germline disease-associ-
ated variant identified only after presenting with a sec-
ond primary cancer [51]. The same study found that over 
30% of patients with diverse cancer types harbored dis-
ease-associated variants, most of which were potentially 
actionable based on management guidelines, published 
expert opinion, FDA-approved precision therapy labels, 
or clinical trial eligibility criteria [51].

The clinical utility of routine genetic testing in non-
cancer conditions is also emerging. In a recent study, 
almost 10% of adults with chronic kidney disease were 
found to have a disease-associated variant, the major-
ity of which had implications for clinical management, 
such as disease reclassification and a search for extra-
renal syndromic disease (e.g., hearing impairment in 
association with pathogenic variants in COL4A5) [52]. 
In patients with hyperlipidemia or ACS, identification of 
those with familial hypercholesterolemia enables early 
and aggressive cholesterol lowering to prevent or delay 
cardiovascular events [53, 54]. The identification of forms 
of cardiomyopathy due to infiltrative or metabolic dis-
eases as opposed to primary muscle disease (also known 
as HCM mimics or HCM phenocopies) through genetic 
testing enables their targeted management (Table 1) [31]. 
One of these, cardiac amyloidosis, is now recognized as 
a frequently missed diagnosis in African Americans with 
heart failure [55, 56]. With the availability of new FDA-
approved targeted therapies that delay amyloidosis pro-
gression [57], genetic testing for TTR  V142I, a founder 
variant present in 3–4% of African Americans, could 
improve outcomes for this disease [58–60]. Importantly, 
although the optimization of clinical care is only enabled 
by the accurate identification of such monogenic forms of 
common disease, the vast majority of these go unrecog-
nized in routine clinical care today.

Many other common diseases have monogenic subsets, 
for which genetic testing is not routinely applied. Exam-
ples include monogenic forms of diabetes, atrial fibril-
lation, and dementia. Decisions about which common 
diseases are ready for strategy change to universal genetic 
testing will require processes to define evidence-based 
criteria for actionability related to monogenic forms of 
those diseases and to re-evaluate these over time. We 
believe it will take a multi-stakeholder group with cred-
ibility and standing to create such lists (see Table 2).

Implementation barriers to genetic testing 
in common diseases
Clinical genetic testing has been widely available for 
many years and can be readily used to identify com-
mon disease cases with monogenic etiology. However, 
only a small proportion of cases obtain testing. Even 
with BRCA1/2-associated breast cancer, which is likely 
the best-known instance of a monogenic cause of com-
mon disease, the majority of cases are missed due to a 
lack of genetic testing [61]. Furthermore, racial and eth-
nic disparities in BRCA1/2 testing among breast cancer 
survivors are well documented [62–64] and contribute to 
health inequities in genomic medicine [65].

Barriers to genetic testing are multifaceted. Arguably, 
the most significant obstacle to obtaining genetic testing 
for patients with common disease diagnoses is the real 
or perceived requirement for a healthcare professional 
with specific genetics expertise to be involved. Require-
ments for consultation with a certified genetic coun-
selor or medical geneticist prior to genetic testing have 
been implemented by some health insurers [66], with the 
intent to guide appropriate genetic testing in the context 
of growing demand. Professional societies have argued 
that such requirements impose barriers to timely diag-
nosis and unnecessarily restrict the scope of practice of 
non-geneticist physicians [67]. Straightforward testing 
guidelines for common diseases in which genetic test-
ing is indicated, as well as establishing pre- and post-test 
standards of care could both remove implementation 
barriers and address any concerns about adequate sup-
port of patients and providers. Given the relative scarcity 
of medical geneticists and genetic counselors [68], the 
traditional referral model for genetic testing can impede 
access to care, result in poor patient compliance, and fur-
ther exacerbate health disparities [66, 69–71].

On the other hand, practical implementation of genetic 
testing in routine care may be hindered by the complex-
ity of genetic test offerings and guidelines. Current guide-
lines for genetic testing include criteria considering the 
number of affected relatives and their ages at diagnosis. 
While a detailed family history can inform pre-test prob-
ability, for a patient presenting with an existing diagnosis, 



Page 6 of 10Murray et al. Genome Medicine           (2022) 14:60 

it cannot determine whether genetic testing will benefit 
the patient’s disease management [61]. The risks and ben-
efits of extensive pre-test counseling and family history 
ascertainment should be re-evaluated in this context.

The landscape of genetic testing is rapidly evolving, 
with multiple test modalities and test options com-
mercially available. Multigene panel testing has largely 
replaced single gene testing in cancer and other disease 
areas [72]. While this approach can increase the sensi-
tivity to detect pathogenic variants, it also creates chal-
lenges to routine testing. Large multigene panels often 
include lower-penetrance genes or genes with less-estab-
lished disease associations and undefined actionability, 
and increase the number of variants of uncertain sig-
nificance (VUS) detected, particularly in non-European 
descent individuals [72]. The creation of standardized 
genetic testing panels designed to offer only genes sup-
ported by clear evidence of clinical actionability should 
be considered. The practice of routinely including VUS in 
test reports should also be re-evaluated, since it appears 
to add complexity and cost without a beneficial influence 
on the care provided by non-expert clinicians [73]. The 
misinterpretation of VUS by non-genetics providers can 
result in inappropriate management [73, 74]. While cli-
nicians with genetics expertise may desire VUS report-
ing to enable further investigation over time for evidence 
of pathogenicity, these experts do not represent the 
majority of caregivers who will be receiving genetic test 
reports.

In order to enable routine genetic testing for certain 
common diseases, measures will need to be taken to sim-
plify the testing process and result interpretation, mak-
ing it akin to other types of clinical tests. The approach 
to testing needs to be streamlined so that non-genetics 
providers can routinely offer testing. Reflexive testing 
should include only genes recommended based on spe-
cific clinical utility [75, 76]. In addition, approaches to 
ensure equitable access to genetic testing in historically 
underserved populations are needed. Considerations for 
how to address some of the significant operational bar-
riers to universal genetic testing in the USA are summa-
rized in Table 2. Commonalities and differences in these 
barriers across countries will need to be further explored 
and addressed.

Implications for diagnostic misattribution 
in clinical practice
If a genetic test result does not drive specific manage-
ment considerations, then it could be argued that the fail-
ure to identify a genetic basis for disease through genetic 
testing is a benign lack of diagnostic specificity. For 
example, this lack of specificity could be invoked at the 
present time relative to polygenic risk scores for breast 

cancer or coronary artery disease, which are associated 
with statistically increased disease risk but are not yet 
linked to evidence-based management recommendations 
[77]. However, the lack of genetic testing when a posi-
tive result would prompt clear actionable clinical care is 
another matter. Failure to test in this instance appears 
to be at the threshold for a “diagnostic error,” which was 
defined in the recent framework from the National Acad-
emies as “the failure to establish an accurate and timely 
explanation of the patient’s health problem” [78]. We 
would caution that diagnostic misattribution that occurs 
when monogenic disease is managed as polygenic or 
non-genetic disease, resulting in missed opportunities for 
care, could before long come to be interpreted as a diag-
nostic error.

The need for improved implementation of genetic test-
ing is clear with the case of BRCA1, where testing was 
first offered for clinical use in 1996 and yet monogenic 
case identification failures in the untested remain com-
monplace. Results of a recent study demonstrated that 
if existing testing criteria were applied to a universally 
tested cohort of women with breast cancer, then 9.8% of 
the individuals with BRCA1 and 16.1% of the individuals 
with BRCA2 disease-associated variants would not have 
had testing recommended [79]. At this point, 25 years 
after the introduction of the genetic test, the rationale to 
support the continued use of insufficiently sensitive crite-
ria-based strategies to determine who among diagnosed 
individuals is offered a genetic test in this circumstance 
is unclear.

Given the ethical, legal, and social issues associated 
with genetic testing, the debate about whether and how 
genetic testing should be managed as compared to other 
laboratory tests remains an important one [80]. Nonethe-
less, it is time to re-evaluate some of the current practices 
that foster diagnostic misattribution, including elements 
designed to offer testing only to individuals with a dis-
cernible high pre-test probability. This strategy has 
proven difficult to routinely incorporate and insufficiently 
sensitive, both of which limit appropriate monogenic 
attribution. Routine genetic testing will require changes 
to the current workflows for healthcare providers seek-
ing to order a genetic test. In order to equitably extend 
the benefits associated with genetic testing, it cannot be 
contingent on the capacity of a small specialized provider 
workforce. An improved workflow for genetic testing will 
require behavioral adjustments for healthcare providers, 
genetic testing laboratories, and payers to become more 
like other laboratory testing workflows. The proposed 
implementation strategies to address current obstacles 
to routine genetic testing (Table 2) may not be sufficient 
to support a major shift in medical practice to offer uni-
versal genetic testing. To maintain the trust of patients 
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and providers, there will need to be adequate atten-
tion to data privacy, data security, and legal gaps related 
to the Genetic Information Non-discrimination Act 
(GINA) [81]. Ancillary changes that are needed include 
increased genetics and genomics education of providers 
and patients, improved integration of genetic test results 
into electronic health records, clinical decision support 
linking evidence-based recommendations with positive 
test results, improved information systems and analytics, 
support for cascade testing of at-risk relatives, and clear 
patient care navigation, including the designation of fol-
low-up responsibility among providers for new aspects of 
routine care.

An evidence-based list of conditions recommended for 
reflexive genetic testing will need to be proposed, evalu-
ated, and maintained, similarly to the list of conditions 
recommended for newborn screening panels [82]. A rea-
sonable starting point for re-evaluation could be condi-
tions from Table  1, for which genetic testing informs 
management and has established clinical utility; condi-
tions beyond these will require evidence-based data col-
lection. Additional studies will be needed to evaluate and 
refine alternative genetic test implementation strategies. 
Large-scale patient cohorts with adequate representation 
from diverse populations could accelerate our knowledge 
in this area. Such studies could be based on biobanks 
embedded in health systems, which offer opportuni-
ties to evaluate and implement reflexive genetic testing 
for proposed conditions with longitudinal follow-up of 
health-related outcomes [83].

The strategic vision of the National Human Genome 
Research Institute includes the bold prediction that by 
2030 “the regular use of genomic information will have 
transitioned from boutique to mainstream in all clinical 
settings, making genomic testing as routine as complete 
blood counts” [84]. We note that ordering a complete 
blood count does not require a competent clinician to 
engage a hematologist, and suggest here that ordering a 
genetic test should not require a competent clinician to 
engage a genetics clinician. If we are to usher in genomic 
medicine in a manner that offers maximum benefit to 
patients, then we are obligated to define best practices 
that empower providers and equitably improve care. 
We anticipate that a continued failure to develop widely 
accepted approaches for addressing the current prob-
lem of diagnostic misattribution may bring us to a tip-
ping point where forces acting on behalf of patients from 
outside of healthcare delivery, such as legislative bod-
ies, malpractice liability claims, or increased reliance on 
direct-to-consumer testing, will prompt their own ver-
sions of change to address the current practice gap.

Conclusions
Diagnostic misattribution is a potential category of 
diagnostic error and like other categories (e.g., delayed 
diagnosis, misdiagnosis, and over-diagnosis) is not lim-
ited to genomic medicine. As opposed to a misdiagno-
sis, diagnostic misattribution is a correct diagnosis that 
lacks specificity when it matters. In any area of medicine, 
misattributions that demand attention are those that 
limit the optimal care management of affected patients 
despite the ready availability of the technology to correct 
the misattribution.

Patients in every health system are currently missing 
opportunities for optimal genomic medicine-associated 
care due to diagnostic misattribution. Universal genetic 
testing following the diagnosis of selected common dis-
eases will address the care gap that has been created 
when access to these readily available laboratory tests is 
either intentionally or unintentionally limited. Changes 
aimed at facilitating the reflexive use of genetic testing 
are needed, and this massive change to medical practice 
is unlikely to occur all at once or uniformly across health-
care. As has been demonstrated in the case of progress 
toward criteria-free genetic testing in ovarian cancer 
[42–44], improvements in diagnostic attribution will 
likely need to be modeled first at the individual health-
care system level prior to broad adoption.

Our opinion is that a top genomic medicine priority is 
to actively consider universal genetic testing for mono-
genic forms of common disease when identification of a 
monogenic etiology will drive evidence-based changes in 
care management and improved outcomes. This impor-
tant addition of genetic testing to routine care delivery 
will need further evaluation and will need to be made 
as uncomplicated to order, interpret, and implement as 
other portions of the common disease work-up that fol-
low initial disease diagnosis.
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