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Abstract 

Background: Type 2 diabetes (T2D) is a worldwide scourge caused by both genetic and environmental risk factors 
that disproportionately afflicts communities of color. Leveraging existing large‑scale genome‑wide association studies 
(GWAS), polygenic risk scores (PRS) have shown promise to complement established clinical risk factors and inter‑
vention paradigms, and improve early diagnosis and prevention of T2D. However, to date, T2D PRS have been most 
widely developed and validated in individuals of European descent. Comprehensive assessment of T2D PRS in non‑
European populations is critical for equitable deployment of PRS to clinical practice that benefits global populations.

Methods: We integrated T2D GWAS in European, African, and East Asian populations to construct a trans‑ancestry 
T2D PRS using a newly developed Bayesian polygenic modeling method, and assessed the prediction accuracy of the 
PRS in the multi‑ethnic Electronic Medical Records and Genomics (eMERGE) study (11,945 cases; 57,694 controls), four 
Black cohorts (5137 cases; 9657 controls), and the Taiwan Biobank (4570 cases; 84,996 controls). We additionally evalu‑
ated a post hoc ancestry adjustment method that can express the polygenic risk on the same scale across ancestrally 
diverse individuals and facilitate the clinical implementation of the PRS in prospective cohorts.

Results: The trans‑ancestry PRS was significantly associated with T2D status across the ancestral groups exam‑
ined. The top 2% of the PRS distribution can identify individuals with an approximately 2.5–4.5‑fold of increase in 
T2D risk, which corresponds to the increased risk of T2D for first‑degree relatives. The post hoc ancestry adjustment 
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Background
Type 2 diabetes (T2D) is a common, chronic disease 
caused by both genetic and environmental risk fac-
tors and their interactions [1], which has significantly 
increased prevalence in the past 20 years [2] and dis-
proportionately afflicts communities of color [3–5]. The 
current screening of T2D focuses on individuals with 
demographic and clinical risk factors, including over-
weight or obesity, age >35 years, and a family history of 
diabetes [6]. However, despite preventative strategies 
and public health efforts to improve nutrition and physi-
cal activity, facilitate access to care, and limit tobacco 
and alcohol use, the morbidity and mortality associated 
with T2D remain unaltered [5], likely because most inter-
ventions are adopted too late in the course of disease 
trajectory.

Recent large-scale genome-wide association studies 
(GWAS) in diverse populations have identified hundreds 
of genetic loci associated with T2D [7–9]. Polygenic risk 
scores (PRS), which aggregate the genetic risk of individ-
ual alleles across the genome, are thus promising to pre-
dict future T2D occurrence and improve early diagnosis, 
intervention, and prevention of T2D [10–15]. However, 
to date, T2D PRS were most widely developed and vali-
dated in individuals of European descent. Given that the 
predictive performance of PRS often attenuates in non-
European populations [16], and communities of color are 
experiencing continuing increased rates of T2D [2–5], it 
is critically important to assess and optimize the transfer-
ability of T2D PRS in diverse populations before they can 
be deployed in clinical settings.

The Electronic Medical Records and Genomics 
(eMERGE) study is a consortium of US medical research 
institutions with a goal to develop and disseminate 
methods and best practices for utilization of electronic 
medical records (EMR) in genomic research. Phase IV 
of the eMERGE study aims to establish protocols and 
methodologies for improved genetic risk assessment, 
and integrate genomic signatures, including monogenic 
and polygenic risk, and clinical risk factors into rou-
tine medical practice to identify individuals at high dis-
ease risk and recommend intervention strategies [17]. 
Towards this end, the consortium has identified 10 dis-
eases, including T2D, where the predictive power of PRS, 

combined with clinical risk factors and intervention/
treatment paradigms, has shown promise to delay, miti-
gate, prevent, or manage the disease. Here, as part of the 
eMERGE IV study, we present the construction and eval-
uation of a trans-ancestry T2D PRS to address the oppor-
tunities and challenges in the clinical translation of T2D 
PRS. Specifically, we integrated T2D GWAS in European, 
African, and East Asian individuals to construct the 
trans-ancestry PRS using state-of-the-art Bayesian poly-
genic modeling methods [18], and evaluated the PRS in 
the multi-ethnic eMERGE I-III samples [19], four Black 
cohorts, and the Taiwan Biobank [20, 21]. We addition-
ally assessed a post hoc ancestry adjustment method that 
can express the polygenic risk on the same scale across 
populations and facilitate the use of a single cutoff to 
identify high-risk individuals with ancestrally diverse 
backgrounds in prospective cohorts. Our efforts repre-
sent the first step towards the implementation of T2D 
PRS into routine clinical care.

Methods
Construction of trans‑ancestry T2D PRS from published 
T2D GWAS
We identified three large-scale T2D GWAS conducted 
in different populations to derive a trans-ancestry T2D 
PRS: (i) a GWAS in individuals of European descent with 
74,124 T2D cases and 824,006 controls [8]; (ii) a meta-
GWAS of T2D in African Americans performed by the 
MEta-analysis of type 2 Diabetes in African Americans 
(MEDIA) Consortium with 8,284 cases and 15,543 con-
trols [22]; and (iii) a GWAS in the Japanese population 
with 45,383 cases and 132,032 controls, performed by 
Biobank Japan (BBJ) [23].

To empirically examine the concordance of genetic 
effects on T2D across different populations, we extracted 
the lead variant of each genome-wide significant locus 
in the fixed-effect meta-analysis of the three GWAS and 
compared their per-allele effect sizes across populations. 
When the lead variant was missing in a population, we 
used the tag variant that was most strongly correlated 
with the lead variant with an R2 no smaller than 0.6. We 
note that the MEDIA T2D GWAS was imputed to Hap-
Map reference panels and included a relatively small 
number of genetic variants (~2.5M) across the genome. 

method eliminated major distributional differences in the PRS across ancestries without compromising its predictive 
performance.

Conclusions: By integrating T2D GWAS from multiple populations, we developed and validated a trans‑ancestry PRS, 
and demonstrated its potential as a meaningful index of risk among diverse patients in clinical settings. Our efforts 
represent the first step towards the implementation of the T2D PRS into routine healthcare.

Keywords: Polygenic risk score, Type 2 diabetes, Diverse populations, Clinical implementation
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As a result, the large majority of the variants represent-
ing the African population were tag variants which may 
lead to under-estimation of the effect size concordance 
between ancestries.

We used PRS-CSx, a recently developed Bayesian poly-
genic modeling method, to construct the trans-ancestry 
PRS [18]. PRS-CSx jointly models the three GWAS sum-
mary statistics and couples genetic effects across popu-
lations using a shared continuous shrinkage prior, which 
enables more accurate effect size estimation by sharing 
information between summary statistics and leveraging 
linkage disequilibrium (LD) diversity across discovery 
samples. The shared prior allows for correlated but vary-
ing effect size estimates across populations, retaining the 
flexibility of the modeling framework. In addition, PRS-
CSx accounts for population-specific allele frequencies 
and LD patterns and inherits efficient and robust pos-
terior inference algorithms (Gibbs sampler) from PRS-
CS [24]. We used pre-computed 1000 Genomes Project 
(1KG) [25] reference panels that matched the ancestry 
of each discovery GWAS, and a fully Bayesian algorithm 
for model fitting, which automatically learned all model 
parameters from the summary statistics without the 
need for hyper-parameter tuning. Population-specific 
posterior effect size estimates were combined using an 
inverse-variance-weighted meta-analysis within the 
Gibbs sampler (via the “--meta” option provided by the 
software). The final PRS-CSx output included 1,259,754 
HapMap3 variants and their weights, which can be 
applied to any genotyped individual not included in the 
discovery GWAS to calculate a polygenic risk score.

Overview of the evaluation of the trans‑ancestry PRS
We first evaluated the trans-ancestry PRS constructed 
by PRS-CSx among the European, African and Hispanic/
Latino individuals in the eMERGE study [17, 19, 26]. To 
define T2D cases and controls in eMERGE, we validated 
an EMR-based phenotyping algorithm of T2D to apply 
across the eMERGE samples (see below). We bench-
marked the prediction accuracy of the PRS-CSx-derived 
trans-ancestry PRS against three alternative scores: (i) a 
European-specific score derived by applying PRS-CS-
auto [24] to the European T2D GWAS summary statis-
tics (PRS-CS EUR); (ii) a trans-ancestry score derived by 
applying PRS-CS-auto to the meta-analysis of the Euro-
pean [8], MEDIA [22], and BBJ [23] T2D GWAS (PRS-
CS Meta); (iii) a trans-ancestry score derived by applying 
LDpred2-auto [27] to the T2D meta-GWAS (LDpred2 
Meta). Given that individuals of African descent were 
underrepresented in the discovery GWAS, the predic-
tive performance of the PRS was expected to be lower 
in African individuals. We next evaluated the trans-
ancestry PRS in four independent self-reported Black 

cohorts—REGARDS [28], GenHAT [29], HyperGEN 
[30], and WPC [31]—collected by the University of Ala-
bama at Birmingham (UAB). In all four UAB cohorts, 
T2D cases were defined with T2D ICD codes, a single 
measurement of glucose (fasting glucose ≥126 mg/dL [7 
mmol/L] or random glucose ≥ 200 mg/dL [11.1 mmol/L]) 
or use of any glucose-lowering medications. Lastly, since 
the number of Asian participants in eMERGE was low, 
precluding the evaluation of the PRS in the Asian popu-
lation, we sought to assess the trans-ancestry PRS in the 
Taiwan Biobank (TWB), a community-based prospec-
tive cohort study of the Taiwanese population, aged 30 
to 70 years old at recruitment [20, 21]. TWB participants 
were interviewed using a structured questionnaire at one 
of the recruitment centers, which included questions 
on basic demographic information, lifestyle, environ-
mental exposures, reproductive history, medical history, 
and family history. Participants with self-reported T2D 
history were defined as cases in the PRS analysis. After 
removing 1,776 REGARDS samples that overlapped 
with the MEDIA study, there was no remaining overlap 
between the discovery GWAS samples and participants 
in the evaluation cohorts. Figure 1 summarizes the con-
struction and evaluation of the trans-ancestry T2D 
PRS derived by PRS-CSx in this work. Below, we briefly 
describe the phenotyping algorithm in eMERGE and the 
sample characteristics and processing of genetic data in 
each evaluation dataset.

Validation of EMR‑based phenotyping algorithms 
to classify T2D in eMERGE
We adapted two prior phenotyping algorithms, one 
from eMERGE developed in 2011 [32] and one from 
Mass General Brigham (MGB) developed in 2014 [33]. 
The eMERGE algorithm was a rule-based algorithm 
originally developed at Northwestern University. Three 
eMERGE sites conducted chart reviews of cases and con-
trols defined by the algorithm with sample sizes ranging 
from 50 to 100 cases and 44 to 50 controls, demonstrat-
ing 98% positive predictive value (PPV) for cases and 
100% negative predictive value (NPV) for controls. The 
eMERGE algorithm was modified to remove the exclu-
sion of charts with at least one ICD9 code for type 1 dia-
betes to improve sensitivity, to add ICD10 codes, and 
to add new diabetes medications released since 2011 
(referred to as the “modified eMERGE algorithm”). The 
MGB algorithm was a machine learning-based algorithm 
using the PheCAP method [33] that had 90% PPV among 
a chart review dataset that was screen positive for one of 
19 phenotypes (prevalence of definite or possible T2D 
16%). This algorithm was modified to add ICD10 codes 
and to add new diabetes medications released since 2014 
(referred to as the “modified MGB algorithm”).
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We tested the performance of the original eMERGE 
algorithm, modified eMERGE algorithm, and modified 
MGB algorithm against two independent gold standard 
datasets derived from chart reviews, one set from MGB 
EMR, and one set from the UAB EMR. We selected 
charts for review by applying a data floor of at least one 
clinical note and at least three ICD9/10 codes from dis-
tinct dates, and screened for at least one ICD9/10 code 
for T2D. We conducted chart reviews for 208 randomly 
selected screen positive subjects from MGB and 198 
screen positive subjects from UAB. In addition, we con-
ducted chart reviews for 200 screen negative subjects 
from UAB. At MGB, charts were reviewed for diagnostic 
criteria for T2D by two endocrinology fellows, initially 
with 20 charts reviewed by both reviewers, to assess con-
cordance. A chart review guideline was developed and 
used for reviewing the remaining charts, divided into 
two independent sets. At UAB, charts were reviewed by 

a trained study coordinator using the same chart review 
guideline.

eMERGE genetic data
We used genetic data from 8 eMERGE sites in this 
work: Cincinnati Children’s Hospital Medical Center 
(CCHMC), Children’s Hospital of Pennsylvania (CHOP), 
Columbia University, Mass General Brigham (MGB), 
Mayo Clinic, Icahn School of Medicine at Mount Sinai, 
Northwestern University (NU), and Vanderbilt Univer-
sity Medical Center (VUMC). Imputed genome-wide 
data against the Haplotype Reference Consortium (HRC) 
across the 8 sites were obtained from the eMERGE Net-
work [17, 19]. We merged all eMERGE samples with the 
1KG phase 3 data (N=2504), and selected high-quality, 
common variants shared between the two datasets. We 
pruned the merged dataset (PLINK command --indep-
pairwise 500 50 0.05), retaining a set of independent 

Fig. 1 Workflow of the construction and evaluation of the trans‑ancestry T2D PRS
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variants, and calculated principal components (PCs) in 
the 1KG samples using the LD-pruned variants. We then 
projected eMERGE samples into the 1KG PC space and 
grouped each eMERGE sample with one of the four 1KG 
super-populations—European [EUR], African [AFR], 
Admixed American [AMR], and East Asian [EAS]—by 
co-clustering the projected eMERGE samples with the 
1KG reference samples. Continental ancestry member-
ships were verified by visual inspection of the PC plots 
(Additional File 1: Fig. S1). We further intersected geneti-
cally inferred ancestry with self-reported race/ethnicity, 
namely White and non-Hispanic/Latino, Black or Afri-
can American, Hispanic or Latino, and Asian, for the four 
ancestral groups, respectively, and randomly removed 
one sample from each pair of related individuals (king-
ship coefficient >0.1), leaving 54,793 European, 12,472 
African, 2,374 Hispanic/Latino and 557 East Asian indi-
viduals with T2D case and control definitions (Table  1; 
Additional File 2: Table S1). We did not use Asian sam-
ples in subsequent PRS analyses due to the small sample 
size. Variants with minor allele frequency (MAF) <1% 
within each population were excluded.

Reasons for Geographic and Racial Differences in Stroke 
Study (REGARDS)
REGARDS [28] is a national, population-based, longi-
tudinal study of incident stroke and associated risk fac-
tors of over 30,000 self-reported Black and White adults 
aged 45 years or older from all 48 contiguous U.S. states 
and the District of Columbia. REGARDS was designed to 
investigate reasons underlying the higher rate of stroke 
mortality among Black compared to White individu-
als, as well as why residents of the Southeastern U.S. had 
worse death rates compared to other US regions. By 
design, participants were oversampled if they were resi-
dents of the stroke belt or if they were Black. Participants 
completed a computer-assisted telephone interview to 

collect demographic information and medication adher-
ence, and an in-home visit for blood pressure meas-
urements and collection of blood and urine samples. 
Participants have been contacted on 6-month intervals 
to obtain information on incident stroke or secondary 
outcomes. Genotyping was performed on 8,916 Black 
participants using Illumina MEGA arrays. Imputation 
was conducted using release 2 (r2) of the National Heart 
Lung and Blood Institute (NHLBI) TOPMed reference 
panel available through the BioData Catalyst framework. 
Participants were excluded if they had sex mismatch or 
genotyping call rate <0.95, or if they were duplicates or 
an outlier in the principal component analysis (PCA; out-
side of 6 standard deviations), resulting in 6,745 individu-
als (Table  1). Imputed variants were inspected for their 
imputation quality scores (R2) and it was noted that more 
than 99% of the variants with MAF >1% had an imputa-
tion quality >0.6. Given the high quality in the imputed 
callset for variants with MAF >1%, genotypes with geno-
typic probability >0.9 were retained.

The Genetics of Hypertension Associated Treatments 
(GenHAT) Study
GenHAT [29] is an ancillary study of the Antihyperten-
sive and Lipid-Lowering Treatment to Prevent Heart 
Attack Trial (ALLHAT). ALLHAT [34] was a rand-
omized, double-blind, multicenter clinical trial with over 
42,000 high-risk individuals who had hypertension, aged 
55 years or older, and had at least one additional risk fac-
tor for cardiovascular disease (CVD). ALLHAT is the 
largest antihypertensive treatment trial to date and was 
ethnically diverse, enrolling over 15,000 self-reported 
Black subjects. Participants were randomized into four 
groups defined by the class of assigned antihypertensive 
medication including chlorthalidone, lisinopril, amlodi-
pine, and doxazosin at a ratio of 1.7:1:1:1. Due to a sig-
nificant increase of major CVD outcomes compared to 

Table 1 Sample characteristics of the evaluation datasets

Age
(Mean ± SD)

Sex
(Female %)

N case N control

eMERGE European 59.4 ± 23.2 51.3% 8389 46,404

African 45.8 ± 22.9 60.0% 2688 9784

Hispanic/Latino 56.3 ± 20.6 60.5% 868 1506

UAB Black Cohorts REGARDS 63.8 ± 9.3 60.5% 1659 5086

GenHAT 66.1 ± 7.5 55.3% 2776 2722

HyperGEN 47.0 ± 12.8 63.5% 402 1494

WPC 57.5 ± 15.2 57.6% 300 355

Taiwan Biobank Batch 1 48.9 ± 11.1 49.3% 1248 23,862

Batch 2 50.5 ± 10.5 68.6% 2806 51,272

Batch 3 49.3 ± 10.9 65.7% 516 9862
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participants on chlorthalidone, doxazosin was discontin-
ued. The original GenHAT study (N=39,114) evaluated 
the effect of the interaction between candidate hyper-
tensive genetic variants and different antihypertensive 
treatments on the risk of fatal and non-fatal CVD out-
comes. Genotyping was performed using Illumina Infin-
ium Multi-Ethnic AMR/AFR BeadChip (MEGA) arrays 
on 7546 Black adults who were hypertensive and rand-
omized to either chlorthalidone or lisinopril. Imputation 
was performed using version r2 of the NHLBI TOPMed 
reference panel. Participants were excluded if they failed 
genotyping, had sex mismatch or genotyping call rate 
<0.95, or if they were an outlier in the PCA (outside of 6 
standard deviations). Since ALLHAT used a fasting glu-
cose ≥ 140 mg/dL for the definition of T2D, we excluded 
controls that had baseline fasting glucose ≥126 mg/dL 
(N=201 excluded) or missing a fasting glucose meas-
ure altogether (N=1209 excluded). This resulted in 5498 
individuals eligible for this study (Table 1). Imputed vari-
ants were inspected for their imputation quality scores 
(R2) and it was noted that more than 99% of the variants 
with MAF >1% had an imputation quality >0.6. High-
quality genotype calls with genotypic probability >0.9 
were retained.

The Hypertension Genetic Epidemiology Network 
(HyperGEN)
HyperGEN [30] is a cross-sectional, population-based 
study and component of the NHLBI Family Blood Pres-
sure Program that was designed to identify genetic risk 
factors for hypertension and target end-organ damage 
due to hypertension. The cohort is composed of self-
reported White and Black sibships in which at least two 
siblings were diagnosed with hypertension (defined as 
either self-reported use of antihypertensive medications 
or SBP ≥140 mmHg and/or DBP ≥90 mmHg at two 
separate evaluations) before age 60, their unmedicated 
adult offspring, and age-matched controls. Later the 
study population was expanded to include other siblings 
of the original sibling pair as well as any offspring for a 
total sample size of N=5000. Genotyping on Black par-
ticipants was performed using whole genome sequenc-
ing (WGS), through the NHLBI WGS program (N=1896; 
Table  1). In order to harmonize our imputation efforts 
with the array-based panels of the REGARDS, GenHAT, 
and Warfarin (see below) studies, we compiled a set of 
non-monomorphic and non-multi-allelic SNPs with 
MAF >1% that were genotyped as part of those studies. 
This yielded a total of 2,204,415 SNPs that were used as 
fence post markers for imputing the HyperGEN cohort 
using version r2 of the NHLBI TOPMed reference panel. 
Imputed variants were inspected for their imputation 
quality scores (R2) and it was noted that more than 99% 

of the variants with MAF >1% had an imputation qual-
ity >0.6. High-quality genotype calls with genotypic prob-
ability >0.9 were retained.

Warfarin Pharmacogenomics Cohort (WPC)
The UAB WPC [31] is a prospective cohort of first-time 
warfarin users aged 19 years or older starting warfarin 
for anticoagulation. Warfarin therapy requiring a tar-
get international normalized ratio (INR) range of 2-3 
was initiated in patients with venous thromboembo-
lism, stroke/transient ischemic attacks, atrial fibrillation, 
myocardial infarction, and/or peripheral arterial disease. 
Patients requiring a higher intensity (INR 2.5 to 3.5) or 
lower intensity (INR 1.5 to 2.5) of anticoagulation were 
excluded. Baseline demographics, as well as medica-
tion history and compliance, were obtained. Changes in 
INR, medications, and laboratory parameters were docu-
mented at each clinical visit as reported previously. Gen-
otyping was performed on the Illumina MEGA array and 
an Illumina 1M duo array for 599 and 297 self-reported 
Black participants, respectively. Participants aged 40 
years or younger were excluded, leaving 655 individuals 
(Table 1). Imputation was performed using version r2 of 
the NHLBI TOPMed reference panel. Imputed variants 
were inspected for their imputation quality scores (R2) 
and it was noted that more than 99% of the variants with 
MAF >1% had an imputation quality >0.6. High-quality 
genotype calls with genotypic probability >0.9 were 
retained.

The Taiwan Biobank (TWB)
A total of 110,926 TWB participants were genotyped 
using two different customized arrays (TWBv1: 27,719 
samples; TWBv2: 83,207 samples). Due to data release 
timelines, samples genotyped on the TWBv2 array 
were divided into two subsets, with 68,975 samples and 
14,232 samples, respectively. Quality control (QC) and 
imputation were performed on the three batches of data 
separately. Detailed information on the sample character-
istics, collection of phenotypes, and QC procedures can 
be found elsewhere [20, 21].

For each batch, we filtered out variants with genotyp-
ing call rate <0.98 and samples with call rate <0.98, and 
removed variants that were duplicated, monogenic, or 
not correctly mapped to a genomic position. We then 
merged TWB samples with 1KG phase 3 data (N=2504), 
and selected high-quality, common variants shared 
between the two datasets. Next, we performed LD-prun-
ing (PLINK --indep-pairwise 200 100 0.1) and computed 
PCs of the merged genotype data with LD-pruned vari-
ants. Using the population labels of 1KG samples as the 
reference, we trained a random forest model with top 6 
PCs to classify TWB samples into 1KG super-population 
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groups. We retained TWB samples that can be assigned 
to a homogeneous East Asian group with a predicted 
probability >0.8 (Additional File 1: Fig. S2). After popu-
lation assignment, we filtered out outliers in heterozy-
gosity rate and population-specific PCs, and samples 
with sex mismatch. Imputation was performed using 
Eagle v2.4 (for pre-phasing) [35] and Minimac4 [36] with 
1KG phase 3 data as the reference panel. We randomly 
removed one sample from each related pair of individu-
als within or across batches, leaving 25,110, 54,078, and 
10,378 individuals for the three batches, respectively 
(Table  1). Post-imputation QC excluded variants with 
imputation quality scores <0.6 and MAF <0.5%.

Evaluation of PRS
We benchmarked the prediction accuracy of the trans-
ancestry PRS constructed by PRS-CSx against PRS-CS 
EUR, PRS-CS Meta, and LDpred2 Meta in the European, 
African, and Hispanic/Latino samples of the eMERGE 
I-III genotyped dataset. We additionally assessed the 
PRS-CSx-derived trans-ancestry PRS in four UAB Black 
cohorts (i.e., REGARDS, GenHAT, HyperGEN, and 
WPC) and TWB. For each of these evaluation datasets, 
we calculated the PRS for each individual by multiply-
ing the number of risk alleles by the algorithm-inferred 
weights for each variant and summing across the genome 
using the --score function in PLINK 1.9 [37].

We calculated a range of metrics to assess the predic-
tive performance of the PRS. To measure the overall 
prediction accuracy, we calculated (i) the proportion of 
variation in the T2D case-control status explained by 
the PRS on the liability scale [38], after accounting for a 
basic set of covariates including age, sex, top 10 PCs of 
the genetic data, and study site (in the eMERGE analysis 
only); (ii) the area under the receiver operating character-
istic (ROC) curve (AUC) for the covariates-only model 
(age, sex, top 10 PCs and study site), the PRS-only model, 
the PRS adjusting for the covariates, and the PRS com-
bined with covariates; (iii) the odds ratio (OR) per stand-
ard deviation (OR/SD) change in the PRS, adjusting for 
the basic covariates. To quantify the discrimination capa-
bility at the extreme tail of the PRS, we identified indi-
viduals at the top 2%, 5%, or 10% of the PRS distribution, 
and calculated OR of these high-risk individuals versus 
the rest of the samples, adjusting for the covariates. We 
further calculated the sensitivity, specificity, positive pre-
dictive value (PPV; the proportion of identified high-risk 
individuals who are true T2D cases), and negative predic-
tive value (NPV; the proportion of individuals who are 
not identified as high-risk and are true T2D controls) to 
examine the clinical utility of these classifiers. Since PPV 
and NPV depend on the prevalence of the disease, we 
report prevalence-adjusted PPV and NPV calculated as:

where prev denotes population-specific prevalence of 
diagnosed T2D, which was extracted from the recent lit-
erature (European 10.0%; African 12.5%; Hispanic 13.1%; 
Asian 13.7%) [2].

We obtained an overall OR for the African population 
at various cutoffs by meta-analyzing estimates from the 
eMERGE African dataset with estimates from the four 
UAB Black cohorts using an inverse-variance-weighted 
approach; we obtained an overall OR for the East Asian 
population at various cutoffs by meta-analyzing the three 
TWB batches.

Post hoc ancestry adjustment
To express the trans-ancestry PRS on the same scale 
across ancestries and facilitate the selection of a single 
cutoff for clinical implementation of the PRS in prospec-
tive cohorts, we evaluated a regression-based ancestry 
adjustment method that builds on prior work [39, 40] and 
uses 1KG phase 3 data as the reference panel. Specifically, 
we calculated the PRS in the full 1KG dataset (N=2504), 
and assumed that both the mean and variance of the PRS 
depend on the top 5 PCs of the 1KG samples via two lin-
ear regressions:

where δ is the residual variance of the first regression. Fit-
ting the two regressions gives how individual-level PRS 
vary with ancestry captured by PCs. For any individual i 
projected into the same PC space with the raw score PRSi, 
raw and PC coordinates PCi, k, k = 1, 2, ⋯, 5, an ancestry 
adjusted PRS can then be calculated as:

We visually examined the PRS distribution in each 
ancestral group of the eMERGE dataset before and 
after the adjustment, and evaluated the overall calibra-
tion of the adjusted PRS in the prediction model across 
eMERGE samples by comparing the predicted risk (i.e., 
the average predicted probability of being a case) and the 
observed risk (i.e., the proportion of cases) in each PRS 
decile. Lastly, to assess the impact of the adjustment on 
the tail discrimination of the trans-ancestry PRS, we 
compared the OR of individuals in the top percentiles of 

PPV =
(

sensitivity × prev
)

∕
[

sensitivity × prev +
(

1 − specificity
)

× (1 − prev)
]

,

NPV = specificity × (1 − prev)∕
[

specificity × (1 − prev) +
(

1 − sensitivity
)

× prev
]

,

PRS ∼ �0 +
∑5

k=1
�k × PCk , � ∼ �0 +

∑5

k=1
�k × PCk ,

PRSi,adj =

PRSi,raw − α̂0 +
5
k=1α̂k × PCi,k

β̂0 +
5
k=1β̂k × PCi,k

.
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the adjusted PRS across ancestries by applying a single 
cutoff with the OR of individuals in the top percentiles 
of the raw PRS within each ancestry in the multi-ethnic 
eMERGE dataset.

Results
T2D phenotyping in eMERGE
Additional File 2: Table  S2 shows the validation results 
for the three algorithms (eMERGE, modified eMERGE 
and modified MGB) in the two independent chart review 
datasets from MGB (138 cases, 70 non-cases; case prev-
alence 66.3%) and UAB (184 cases, 14 non-cases; case 
prevalence 92.9%). PPVs ranged from 0.79 to 0.94 with 
the highest PPV observed for the modified MGB algo-
rithm. Sensitivities ranged from 0.61 to 0.92, with the 
highest sensitivity observed for the modified eMERGE 
algorithm. NPVs in the UAB validation dataset were 
zero for both eMERGE algorithms because all 14 non-
cases were classified as cases. Based on these results, we 
selected the modified MGB algorithm for implementa-
tion in eMERGE to define T2D cases and controls for the 
PRS analysis.

Evaluation of the PRS in eMERGE
The effect sizes of lead variants in genome-wide signifi-
cant loci of the T2D meta-GWAS were largely concord-
ant between the European and East Asian populations 
(correlation of the absolute values of effect sizes across 
271 variants: r = 0.67), while the effect sizes between the 
European and African populations were less concordant 
but still moderately correlated (correlation of the abso-
lute values of effect sizes across 217 variants; r = 0.34), 
suggesting that the cross-ancestry genetic architecture 
of T2D is consistent with the modeling assumptions in 
PRS-CSx (Additional File 1: Fig. S3).

Table 1 and Additional File 2: Table S1 show the num-
ber of T2D cases and controls in the European, African, 
and Hispanic/Latino populations, for which we had suf-
ficient sample sizes to evaluate the performance of the 

PRS, across the 8 eMERGE sites. When the target popu-
lation was European, the trans-ancestry PRS constructed 
by PRS-CSx explained 9.2% of the variation in the T2D 
status on the liability scale, with an AUC of 0.66 and OR/
SD of 1.96 (95% confidence interval [CI] 1.91–2.02), after 
adjusting for age, sex, top 10 genetic PCs and eMERGE 
study sites (Table 2; Additional File 2: Table S3). The PRS 
provided predictive power above and beyond the covari-
ates, increasing the AUC from 0.74 (the covariates-only 
model) to 0.79 when combining covariates and the PRS 
as predictors (Additional File 2: Table S3). To assess the 
clinical utility of the trans-ancestry PRS, we compared 
the risk of T2D among individuals in progressively more 
extreme cutoffs of the PRS distribution relative to the rest 
of the samples. Individuals of European ancestry in the 
top decile of the trans-ancestry PRS had an OR of 3.19 
(95% CI: 2.97–3.42; P value = 1.33E−232) compared 
with individuals in the bottom 90% of the PRS distribu-
tion. Risk continued to increase when contrasting the 
top 5% of the PRS (OR = 3.55, 95% CI: 3.24–3.90; P value 
= 1.88E−158) and the top 2% of the PRS (OR = 4.21, 
95% CI: 3.66–4.84; P value = 1.82E−89) to the lower 
tails of the PRS distribution (Table  2; Additional File 2: 
Table  S3). This shows that the trans-ancestry PRS can 
identify individuals of European ancestry with a signifi-
cantly increased risk of T2D. Using the top 2% of the PRS 
as the classifier, the prevalence-adjusted PPV and NPV 
were 0.26 and 0.90, respectively (Table 2; Additional File 
2: Table S3).

When using the trans-ancestry PRS as a predictor of 
T2D status for eMERGE individuals of African ances-
try, the variance explained on the liability scale was 
2.8%, the covariates-adjusted AUC was 0.58, and the 
OR/SD was 1.54 (95% CI: 1.46–1.64; Table 2; Additional 
File 2: Table S3). As expected, the prediction accuracy 
of the PRS in the African population was substantially 
lower compared with the prediction in the European 
population, reflecting the current Eurocentric bias in 
genomic studies and the fact that our trans-ancestry 

Table 2 Prediction accuracy of the trans‑ancestry T2D PRS in eMERGE across three populations

*Adjusted PPV and NPV are calculated using the following population-specific prevalence: European 10%; African 12.5%; Hispanic 13.1%

Population Liability
R2

Covariates‑
adjusted AUC 

OR per SD
(95% CI)

Top 2% PRS

OR
(95% CI)

P value Sensitivity Specificity Adjusted PPV* Adjusted NPV*

European 9.2% 0.66 1.96
(1.91, 2.02)

4.21
(3.66, 4.84)

1.82E−89 0.05 0.99 0.26 0.90

African 2.8% 0.58 1.54
(1.46, 1.64)

1.98
(1.43, 2.74)

4.34E−05 0.03 0.98 0.21 0.88

Hispanic 8.0% 0.63 2.08
(1.84, 2.35)

6.87
(3.11, 15.15)

1.81E−06 0.04 0.99 0.43 0.87
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PRS was constructed from GWAS of predominantly 
European and East Asian individuals. Nevertheless, the 
T2D risk increased with higher PRS values, and the OR 
comparing individuals in the top 2% of the PRS distri-
bution with the rest of the individuals was 1.98 (95% 
CI: 1.43–2.74; P value = 4.34E−05), indicating that the 
trans-ancestry PRS can be useful in identifying individ-
uals with elevated T2D risk in the African population 
(Table 2; Additional File 2: Table S3).

The overall prediction accuracy of the trans-ances-
try PRS in the Hispanic/Latino group was between 
that observed in the European and African individu-
als: variance explained = 8.0%; covariates-adjusted 
AUC = 0.63; OR/SD = 2.08 (Table  2; Additional File 
2: Table S3), reflecting that the Hispanic/Latino popu-
lation is a recent admixture among Europeans, Afri-
cans, and Native Americans. Hispanic individuals with 
high PRS had a substantially increased risk of T2D, 
with an OR of 6.87 (95% CI: 3.11–15.15; P value = 
1.81E−06) when contrasting the top 2% of the PRS with 
the remaining 98% of the distribution (Table  2; Addi-
tional File 2: Table  S3). However, we note that due to 
the relatively small sample size of the Hispanic/Latino 
sample in the eMERGE study, the OR estimates for the 
tails of the PRS distribution were associated with large 
uncertainties.

Comparison with alternative PRS in eMERGE
We compared the trans-ancestry PRS constructed by 
PRS-CSx with a European-specific score derived by 
applying PRS-CS-auto to the European T2D GWAS 

summary statistics (PRS-CS EUR), and two alternative 
trans-ancestry scores derived by applying PRS-CS-auto 
and LDpred2-auto to the T2D meta-GWAS, denoted as 
PRS-CS Meta and LDpred2 Meta, respectively. PRS-CSx 
showed better overall prediction accuracy and tail dis-
crimination (Additional File 2: Table  S3) and identified 
more cases in the top percentiles of the PRS distribution 
than alternative methods in the African and Hispanic/
Latino samples of the eMERGE dataset (Fig.  2). The 
improvement of PRS-CSx relative to PRS-CS EUR high-
lights the importance of integrating GWAS from diverse 
ancestries to increase the portability of PRS to non-Euro-
pean populations, while the improvement of PRS-CSx 
relative to PRS-CS Meta and LDpred2 Meta demon-
strates the benefits of explicitly modeling population-
specific allele frequencies and LD patterns.

Evaluation of the PRS in UAB Black cohorts
Given that the prediction accuracy of the trans-ancestry 
PRS in the eMERGE African samples was relatively low 
compared with other populations, we performed further 
evaluation of the PRS-CSx-derived PRS in four UAB 
Black cohorts, namely REGARDS (1659 T2D cases, 
5086 T2D controls), GenHAT (2776 cases, 2722 con-
trols), HyperGEN (402 cases, 1494 controls) and WPC 
(300 cases, 355 controls) (Table  1). REGARDS, Gen-
HAT and HyperGEN had largely consistent estimates of 
performance metrics, and the prediction accuracy was 
higher relative to the prediction in the eMERGE Afri-
can samples. Specifically, the AUC of the PRS, adjusting 
for age, sex, and top 10 genetic PCs, was approximately 

Fig. 2 Comparison of the predictive performance of PRS‑CSx with three alternative PRS construction methods in the African and Hispanic/Latino 
samples of the eMERGE dataset. Alternative PRS methods include (i) a European‑specific score derived by applying PRS‑CS‑auto to the European 
T2D GWAS summary statistics (PRS‑CS EUR); (ii) a trans‑ancestry score derived by applying PRS‑CS‑auto to the meta‑analysis of the European, MEDIA 
and BBJ T2D GWAS (PRS‑CS Meta); and (iii) a trans‑ancestry score derived by applying LDpred2‑auto to the T2D meta‑GWAS (LDpred2 Meta)
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0.61, and the OR/SD estimates ranged from 1.70 to 1.85 
across the three cohorts (Table  3; Additional File 2: 
Table  S4). OR estimates contrasting individuals in the 
tail of the PRS distribution with the rest of the samples 
increased when more extreme cutoffs were applied; at 
the top 2% of the PRS distribution, an approximately 
three-fold increase in T2D risk was observed relative 
to the remaining 98% of the individuals (REGARDS: 
OR = 3.04, P value = 3.87E−10; GenHAT: OR = 2.70, 
P value = 8.44E−06; HyperGen: OR = 3.37, P value = 
5.37E−04). The prevalence-adjusted PPVs ranged from 
0.26 to 0.34 and all prevalence-adjusted NPVs were 
around 0.88. WPC had the lowest sample size among 
the four cohorts and had limited power to assess the 
tail discrimination of the trans-ancestry PRS, but the 
OR estimate at the top 2% of the PRS was comparable to 
the other three cohorts, though not statistically signifi-
cant (OR = 2.7, 95% CI: 0.80–9.09, P value = 1.09E−01; 
Table 3; Additional File 2: Table S4).

Evaluation of the PRS in TWB
Since the low sample size of Asian individuals in the 
eMERGE study precluded PRS analysis, we sought 
to evaluate our PRS-CSx-derived trans-ancestry PRS 
in the Taiwan Biobank (TWB), in which participants 

were predominantly Han Chinese. Analysis in the three 
batches of TWB data (batch 1: 1248 cases, 23,862 con-
trols; batch 2: 2806 cases, 51,272 controls; batch 3: 516 
cases, 9862 controls; Table  1) produced highly consist-
ent results. The trans-ancestry PRS was strongly associ-
ated with self-reported T2D status, with the variance 
explained on the liability scale ranged from 12.9 to 15.3%, 
the covariates-adjusted AUC ranged from 0.68 to 0.70, 
and the OR/SD ranged from 2.01 to 2.19 (Table 4; Addi-
tional File 2: Table  S5). The tail of the PRS was highly 
discriminative; individuals in the top decile of the PRS 
had a more than three-fold increase in T2D risk relative 
to those outside the top decile, and the OR increased to 
approximately 4.50 when using top 2% of the PRS to iden-
tify high-risk individuals (batch 1: OR = 4.62, P value = 
7.47E−31; batch 2: OR = 4.60, P value = 1.80E−69; batch 
3: OR = 4.35, P value = 1.43E−12). The corresponding 
prevalence-adjusted PPVs ranged from 0.36 to 0.38, and 
the prevalence-adjusted NPVs were 0.87 across the three 
batches (Table 4; Additional File 2: Table S5). Overall, the 
trans-ancestry PRS was slightly more predictive in this 
East Asian sample compared with the eMERGE Euro-
pean samples, likely reflecting the contributions from the 
large BBJ T2D GWAS in the training dataset, the more 
homogeneous community-based TWB samples relative 

Table 3 Prediction accuracy of the trans‑ancestry T2D PRS in four Black cohorts

*Adjusted PPV and NPV are calculated using 12.5% for the African population

Cohort Liability
R2

Covariates‑
adjusted AUC 

OR per SD
(95% CI)

Top 2% PRS

OR
(95% CI)

P value Sensitivity Specificity Adjusted PPV* Adjusted NPV*

REGARDS 4.6% 0.61 1.70
(1.58, 1.84)

3.04
(2.15, 4.31)

3.87E−10 0.04 0.99 0.30 0.88

GenHAT 3.6% 0.61 1.85
(1.70, 2.01)

2.70
(1.74, 4.18)

8.44E−06 0.03 0.99 0.26 0.88

HyperGen 6.2% 0.62 1.75
(1.52, 2.02)

3.37
(1.69, 6.69)

5.37E−04 0.05 0.99 0.34 0.88

Warfarin 1.5% 0.57 1.37
(1.13, 1.65)

2.70
(0.80, 9.09)

1.09E−01 0.01 0.98 0.07 0.87

Table 4 Prediction accuracy of the trans‑ancestry T2D PRS in the Taiwan Biobank (TWB)

*Adjusted PPV and NPV are calculated using 13.7% for the Asian population

Batch Liability R2 Covariates‑
adjusted AUC 

OR per SD
(95% CI)

Top 2% PRS

OR
(95% CI)

P value Sensitivity Specificity Adjusted PPV* Adjusted NPV*

Batch 1 15.1% 0.70 2.19
(2.05, 2.33)

4.62
(3.56, 5.99)

7.47E−31 0.07 0.98 0.37 0.87

Batch 2 12.9% 0.68 2.01
(1.93, 2.10)

4.60
(3.88, 5.45)

1.80E−69 0.07 0.98 0.38 0.87

Batch 3 15.3% 0.70 2.16
(1.96, 2.38)

4.35
(2.89, 6.53)

1.43E−12 0.06 0.98 0.36 0.87
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to the eMERGE study in which sample characteristics 
may vary across different health care systems, and dif-
ferences in T2D case-control definitions (self-report vs. 
EMR-based phenotyping).

Meta‑analysis
To summarize the performance of the trans-ancestry PRS 
across cohorts, we derived overall OR, and prevalence-
adjusted PPV and NPV estimates at various percentage 
cutoffs for the African population by meta-analyzing 
the eMERGE African dataset with the four UAB Black 
cohorts, and overall performance metrics for the East 
Asian population by meta-analyzing the three TWB 
batches (Additional File 2: Table  S6). Along with the 
eMERGE European dataset, at least 4500 T2D cases were 
available for the three populations, enabling an accurate 
assessment of the tail discrimination of the trans-ances-
try PRS. We note that while there was a substantial dif-
ference in case prevalence across eMERGE African and 
UAB Black cohorts, the performance metrics of the 
trans-ancestry PRS (e.g., AUC, PPV, and NPV) appeared 
to be robust to this variation. Figure 3 shows that the PRS 
was highly significantly associated with T2D status across 
different percentage cutoffs and ancestral groups, with 
comparable predictive performance in the European and 
East Asian populations and lower prediction accuracy in 
the African population. Individuals in the top 2% of the 
PRS distribution had significantly increased T2D risk, 
with the OR estimates ranging from 2.55 in the African 
samples to 4.58 in the East Asian samples, which cor-
responds to the increased risk of T2D for first-degree 
relatives [41] and suggests a clinical value of the trans-
ancestry PRS in diverse populations.

Ancestry adjustment
While the trans-ancestry PRS was significantly associated 
with T2D status across the ancestral groups we examined 
and showed potential for clinical translation, the raw PRS 
had major distributional shifts by ancestry (Additional 
File 1: Fig. S4; left panel), impeding its implementation in 
clinical care where a single cutoff of the PRS distribution 
across diverse populations is needed to identify high-risk 
individuals. By modeling the mean and variance of the 
trans-ancestry PRS as functions of population structure 
captured by genetic PCs, the post hoc ancestry adjust-
ment method eliminated major distributional differences 
in the PRS across ancestries in the eMERGE dataset 
(Additional File 1: Fig. S4; right panel). The adjusted PRS 
showed good overall calibration across eMERGE sam-
ples, as demonstrated by largely concordant predicted 
and observed risk (i.e., the proportion of cases) in each 
PRS decile (Additional File 1: Fig. S5). To examine the 
impact of this post hoc adjustment on the tail discrimi-
nation of the PRS, we compared the OR of individuals in 
the top percentiles of the adjusted PRS across ancestries 
with the OR of individuals in the top percentiles of the 
raw PRS within each ancestry (i.e., OR estimates reported 
in Table 2 and Additional File 2: Table S3). Additional File 
2: Table S7 shows that other than the OR estimate at top 
2% of the PRS in the Hispanic/Latino samples, which was 
affected by a relatively low sample size and large estima-
tion uncertainties, high-risk individuals identified by the 
adjusted PRS using a single cutoff showed comparable or 
slightly higher OR estimates than those identified by the 
raw PRS separately in each ancestral group, suggesting 
that the ancestry adjustment method did not compromise 
the predictive performance of the trans-ancestry PRS.

Fig. 3 Tail discrimination of the PRS‑CSx‑derived trans‑ancestry T2D PRS at various percentage cutoffs in the European, African (by meta‑analyzing 
the eMERGE African dataset with the four UAB Black cohorts) and East Asian (by meta‑analyzing the three TWB batches) populations. POP, 
population; EUR, European; AFR, African; EAS, East Asian; PPV, prevalence‑adjusted positive predictive value; NPV, prevalence‑adjusted negative 
predictive value
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Discussion
We have shown that the top 2% of a trans-ancestry PRS 
distribution can identify individuals of European, Afri-
can, Hispanic/Latino, and East Asian ancestry with a 
roughly 2.5–4.5-fold of increase in T2D risk, which cor-
responds to numerous studies that showed a similar 
increased risk of T2D for first degree relatives (see e.g., 
[41]). By integrating GWAS summary statistics from 
multiple populations using PRS-CSx, the trans-ancestry 
PRS was significantly associated with T2D status in all 
populations examined, providing a robust and potentially 
clinically meaningful index of risk among diverse patients 
in clinical settings.

Recent studies have demonstrated in European individ-
uals that T2D PRS can provide predictive power for inci-
dent T2D above and beyond established risk factors such 
as age, body mass index (BMI), smoking, physical activ-
ity levels, and history of high glucose and hypertension 
and can identify high-risk individuals and stratify life-
time risk trajectories of T2D patients [42, 43], suggesting 
potential for clinical translation. However, most existing 
T2D scores were developed and validated in individuals 
of European descent. As the interest in the clinical imple-
mentation of PRS for common diseases like T2D contin-
ues to grow, a major challenge is the uncertainty about 
how best to combine multi-ethnic GWAS and estimate 
polygenic risk in diverse populations.

In research settings, trans-ancestry PRS are often 
derived from multi-ethnic meta-GWAS [7, 44] or trained 
in each target population separately [45, 46]. However, 
the former approach does not model population-spe-
cific allele frequency and LD patterns, which limits the 
performance of PRS, while the latter approach requires 
assigning individuals to discrete ancestral groups to 
optimize PRS estimation, which is challenging in clini-
cal applications because self-reported race/ethnicity may 
be inconsistent with genetic ancestry. The patient group 
for returning PRS results may also contain admixed indi-
viduals who cannot fit into ancestry categories easily. 
Communication of PRS results in clinical settings would 
thus be facilitated by development of a trans-ancestry 
PRS without stratifying patients into individual ancestral 
groups.

In this work, we used a fully Bayesian polygenic mod-
eling method, PRS-CSx, to derive SNP weights for a 
trans-ancestry PRS without the need of a priori popula-
tion assignment or hyper-parameter tuning. PRS-CSx 
jointly models GWAS summary statistics across popu-
lations and explicitly accounts for population-specific 
allele frequencies and LD patterns. While non-European 
GWAS are often less powerful than European studies, 
they inform the genetic architecture in non-European 
populations and may capture population-specific genetic 

risk factors. Integrating available GWAS across ancestral 
groups may thus improve the portability of PRS -- espe-
cially to non-European populations -- and deliver per-
sonalized risk prediction that can more equally benefit all 
populations. Compared with early T2D PRS developed 
using a small number of SNPs selected based on statisti-
cal and/or biological significance (see [47] for a review), 
more recent T2D PRS derived from large-scale European 
GWAS [8, 9, 48] or multi-ethnic meta-GWAS [7, 44], and 
PRS evaluated in this work using more sophisticated PRS 
construction methods such as PRS-CS and LDpred2, 
our trans-ancestry PRS constructed by PRS-CSx dem-
onstrated improved prediction accuracy and transfer-
ability across ancestral groups, reflecting the combined 
effect of methodological advances and increased sam-
ple sizes in the training GWAS. We note that the T2D 
GWAS of African ancestry from the MEDIA Consortium 
was substantially underpowered relative to the GWAS 
in European and East Asian populations, which limited 
the performance of PRS-CSx. As the diversity and scale 
of discovery GWAS continue to expand, principled 
computational models that can appropriately integrate 
multi-ancestry genome-wide data are expected to further 
improve the prediction in non-European populations and 
demonstrate bigger advantages over single-population 
methods. In addition, while HapMap3 variants repre-
sent a good balance between computational cost and 
prediction accuracy for PRS construction in European 
populations, they may tag a lower proportion of genetic 
variation in non-European populations, limiting the 
transferability of PRS. Future work is needed to develop 
computationally efficient algorithms that can incorporate 
genome-wide genetic variants into PRS calculation.

While the trans-ancestry PRS derived by PRS-CSx 
showed promise for clinical translation when evaluated 
separately in each population, implementation of the 
PRS in a prospective cohort with individuals from diverse 
ancestry backgrounds requires calibrated PRS distribu-
tions across populations. In this work, we evaluated a 
post hoc ancestry adjustment method that can express 
the polygenic risk on the same scale across ancestries 
without compromising the discrimination capability at 
the extreme tails of the PRS. With this adjustment, a sin-
gle cutoff of the PRS distribution for the high-risk group 
can be identified and applied to any target individual. We 
expect that using large and diverse reference panels that 
better match the population structure of the prospective 
cohort will facilitate more accurate ancestry adjustment 
and risk estimation.

Our study has several limitations: (i) the gap in the 
prediction accuracy between European/Asian and Afri-
can populations remains considerable, likely due to the 
underrepresentation of African samples in the training 
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GWAS; (ii) evaluation samples other than Europeans, 
Africans and East Asians were limited; (iii) the selection 
of high-risk individuals at extreme tails of the PRS distri-
bution may be associated with uncertainties [49], which 
has not been fully characterized in this work; (iv) the 
sample characteristics of the evaluation cohorts may not 
fully represent the patient group to which PRS results will 
be returned, and the effects of PRS may depend on ascer-
tainment and vary across different target samples; (v) 
predictive performance of the PRS was only assessed for 
prevalent T2D cases; and (vi) the associations between 
the trans-ancestry PRS and standard clinical risk factors 
(e.g., BMI, low physical activity, and hypertension), and 
the value of the PRS over and above these factors remain 
unclear. Evaluating the capability of the trans-ancestry 
PRS in identifying incident cases (i.e., individuals at risk 
to develop the disease in a future time window) in pro-
spective cohorts and combining common-variant PRS 
with other genetic and non-genetic risk factors and fam-
ily history into an integrated risk estimate would better 
define the clinical impact of the PRS.

Previous studies on returning PRS to patients have pro-
duced mixed results. For example, the Genetic Counseling/
Lifestyle Change (GC/LC) study, which delivered a genetic 
score constructed from 36 T2D-associated SNPs to over-
weight patients at risk for T2D, reported limited changes 
in lifestyles and prevention program adherence compared 
with controlled participants who did not receive genetic 
counseling [50–52]. The MedSeq Project, which returned 
polygenic risk estimates for cardiometabolic traits along 
with monogenic disease risk, pharmacogenomic associa-
tions, and family history to patients and their healthcare 
providers (HCPs), found that genetic testing may prompt 
additional clinical actions of unclear value [53]. In con-
trast, the MI-GENES study provided evidence that dis-
closure of the genetic risk of coronary heart disease led to 
greater statin use and lower low-density lipoprotein cho-
lesterol levels after 6 months than returning conventional 
risk factors alone [54]. The different conclusions drawn 
from these clinical trials may be partly explained by the 
many factors that influence the effectiveness of returning 
PRS to patients, including the understanding of the impli-
cations of polygenic risk by patients and HCPs, the change 
of healthcare services based on personalized risk estimates 
(e.g., surveillance of patients, ordering screening tests, 
prescribing preventive medications, or providing lifestyle 
advice), communication of risk to patients, the availability 
of risk management protocols, and uptake of and adher-
ence to risk-reduction recommendations. Expanded 
research on the best practice of returning genetic testing 
results in clinical settings will clarify the benefits of adding 
polygenic risk estimates to clinical risk factors and family 
history to create an integrated risk assessment.

Conclusions
In summary, we have constructed and evaluated a trans-
ancestry T2D PRS in multiple populations. Future work 
is needed to expand the scale of non-European genomic 
resources and conduct larger GWAS in underrepre-
sented populations to further increase the transferabil-
ity of PRS, assess the predictive performance of the PRS 
in more diverse samples and real-world settings, refine 
risk communications, and monitor the impact of return-
ing risk estimates on related clinical outcomes, in order 
to ensure equitable and effective deployment of PRS to 
clinical care.
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