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Abstract 

Background:  Colorectal cancer (CRC) ranks as the second-leading cause of cancer-related death worldwide with 
metastases being the main cause of cancer-related death. Here, we investigated the genomic and transcriptomic 
alterations in matching adjacent normal tissues, primary tumors, and metastatic tumors of CRC patients.

Methods:  We performed whole genome sequencing (WGS), multi-region whole exome sequencing (WES), simulta-
neous single-cell RNA-Seq, and single-cell targeted cDNA Sanger sequencing on matching adjacent normal tissues, 
primary tumors, and metastatic tumors from 12 metastatic colorectal cancer patients (n=84 for genomes, n=81 for 
exomes, n=9120 for single cells). Patient-derived tumor organoids were used to estimate the anti-tumor effects of a 
PPAR inhibitor, and self-renewal and differentiation ability of stem cell-like tumor cells.

Results:  We found that the PPAR signaling pathway was prevalently and aberrantly activated in CRC tumors. Block-
ing of PPAR pathway both suppressed the growth and promoted the apoptosis of CRC organoids in vitro, indicating 
that aberrant activation of the PPAR signaling pathway plays a critical role in CRC tumorigenesis. Using matched 
samples from the same patient, distinct origins of the metastasized tumors between lymph node and liver were 
revealed, which was further verified by both copy number variation and mitochondrial mutation profiles at single-cell 
resolution. By combining single-cell RNA-Seq and single-cell point mutation identification by targeted cDNA Sanger 
sequencing, we revealed important phenotypic differences between cancer cells with and without critical point 
mutations (KRAS and TP53) in the same patient in vivo at single-cell resolution.

Conclusions:  Our data provides deep insights into how driver mutations interfere with the transcriptomic state of 
cancer cells in vivo at a single-cell resolution. Our findings offer novel knowledge on metastatic mechanisms as well 
as potential markers and therapeutic targets for CRC diagnosis and therapy. The high-precision single-cell RNA-seq 
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Background
Colorectal cancer (CRC) is the second-leading cause of 
cancer-related death worldwide [1, 2]. In CRC patients, 
metastases are the main cause of cancer-related death 
and liver is one of the common metastatic sites (account-
ing for 70% of all CRC patients with metastatic cancer) 
[3, 4]. The 5-year overall survival rate of metastatic CRC 
patients (late-stage (IV)) is only 4~12% [5].

Recent advances in CRC research have greatly 
expanded our understanding of the cellular and molec-
ular bases of CRC carcinogenesis and metastasis and 
thereby considerably improved the survival of CRC 
patients [6–11]. Combined with high-throughput 
sequencing, some studies even challenge prevailing mod-
els by identifying somatic mutations and clonal dynamics 
in normal healthy tissues [12–16]. In addition, it was pre-
viously widely accepted that there was a sequential pro-
gression in tumors, in which primary tumor first seeds 
lymph node metastases, and then lymph node metas-
tases further seed distant metastases. However, recent 
studies showed that subclones of lymph node and dis-
tant lesions within the same patient may have independ-
ent origins through 20–43 hypermutable polyguanine 
repeats of formalin-fixed and paraffin-embedded sam-
ples [7]. However, most of these genomic and transcrip-
tomic profiling studies have characterized bulk tumor 
tissues or just studied single omics features. The intratu-
moral heterogeneities and relationships among different 
omics of CRC have not been systematically investigated 
[17–19]. For example, single-cell genome sequencing 
allowed us to trace the clonal lineages from primary 
tumor to metastasized tumor from the same patient. 
However, single-cell genome sequencing cannot offer 
us clues about the phenotypic changes within the same 
lineage of tumor cells during the metastatic process. In 
other words, even if we can get the point mutation infor-
mation from single-cell genome sequencing analysis, we 
still do not know what are the phenotypic and transcrip-
tomic consequences of the mutations. On the other side, 
single-cell RNA sequencing allows researchers to com-
pare the gene expression differences between primary 
and the metastatic tumors. But these transcriptome dif-
ferences may be just a reflection of the clonal extinction 
or expansion during the metastatic process. Approaches 
at single-cell resolution and multiomics levels can help 
us better understand metastasis process of CRC and 

identify potential therapeutic targets for metastatic CRC. 
A deeper understanding of tumor transcriptomic hetero-
geneities and integration of different genomic profiles, 
such as CNVs, somatic mutations, and gene expression, 
can greatly advance our understanding of the cause, clas-
sification, progression, and phenotype-genotype relation-
ship of CRC. Furthermore, tracing the dynamic changes 
in the genome and transcriptome of cancer cells during 
CRC metastasis is of vital importance for the treatment 
of metastatic CRC. Thus, we performed a single-cell tran-
scriptomic survey, whole genome sequencing (WGS) and 
multi-region whole exome sequencing (WES) of 12 met-
astatic CRC patients to investigate multiomics changes 
during tumorigenesis of CRC. Through single-cell RNA-
seq data, we find that PPAR signaling pathway prob-
ably can serve as a potential target for CRC treatment. 
We recapitulated the process of tumor metastasis and 
changes in clonal compositions by tracing mitochondrial 
mutations. Furthermore, we delved into the relationships 
between point mutations and gene expression patterns by 
integrating single-cell targeted cDNA Sanger sequencing 
and single-cell RNA-Seq data. Our study provides valua-
ble genomic and transcriptomic data and new insights for 
the molecular mechanism studies of colorectal cancer.

Methods
CRC specimen collection
Samples were taken from primary tumor and adja-
cent normal colon (at least 10 cm away from the tumor 
border) tissues immediately after specimen resection. 
For patients #3–#5 and #7–#9, multi-region sampling, 
including margin and center regions, was performed to 
investigate intratumoral heterogeneities. At the same 
time, preoperative imaging-suspected liver, lymph node, 
and omental metastases were sampled and were further 
confirmed by postoperative pathological examination. 
Each sample was cut into 3 parts, one for single-cell 
capture, one for bulk sequencing, and one for paraffin-
embedding. In total, we sequenced samples from 12 
patients. As for tumor tissues, we performed single-cell 
RNA-seq for 9 patients (patients #1–#9) and WES for 
patients #7–#9 as well as another 3 patients (patients 
#10–#12). One patient (patient #1) received two cycles 
of systemic chemotherapy before surgery, and another 
patient (patient #5) was classified as having a microsat-
ellite instability-high (MSI-H) tumor caused by failure 

dataset of matched adjacent normal tissues, primary tumors, and metastases from CRCs may serve as a rich resource 
for further studies.
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of the DNA mismatch repair (MMR) system. In total, we 
generated high-precision single-cell RNA-Seq profiles of 
9120 individual cells from 11 adjacent nontumor colonic 
mucosa (N), 9 primary tumors (PTs), 12 matching lymph 
node metastases (LyMs), 7 liver metastases (LMs), 3 
omentum metastases (OMs), and 1 liver normal tissue 
(LN).

Tissue dissection and single‑cell capture
Fresh samples were processed for single-cell collection 
within 2 h. The submucosa and muscle layers of normal 
colon tissues and the adipose tissue and visible blood ves-
sels of the primary tumor (PT) and metastasis site were 
removed for further experimental steps under the micro-
scope. The processed samples were washed with 1× PBS 
for six times until the supernatant was clear. Then, the 
samples were cut into small pieces with surgical scissors. 
Collagenase/Dispase (Roche, 10269638001) at 2 mg/mL 
was used to digest the washed samples into single-cell 
suspensions at 37 °C for 60–70 min. We then employed 
a 40-μm strainer (BD Falcon, 352340) to filter out cell 
aggregates, after which the cell suspension was centri-
fuged at 800g for 5 min. The cell pellet was subsequently 
washed twice with DMEM containing 10% FBS. Finally, 
single cells in good condition were picked and trans-
ferred to single-cell lysis solution with a mouth pipette. 
To make sure that each time only a single cell was picked 
up, first we made three 20 μl 1% BSA drops in a 6-cm 
dish. Then 5–10 μl cell suspension (the volume depends 
on cell density) was added into drop #1. Under micros-
copy, we could clearly identify single cells from the dou-
blets, triplets, or cell clusters. We then picked up about 
30 bright spherical single cells to drop #2 using a mouth 
pipette under microscopy, and this step was used to wash 
the picked cells. Then we further picked up single bright 
spherical cells from drop #2 to drop #3, which is to fur-
ther wash these single cells, and after the wash steps, we 
got a clear drop that contains about 20 well dispersed sin-
gle cells in drop #3. At this time, we picked only one sin-
gle cell from drop #3 to each 0.2-ml PCR tube. Through 
these processes, we can effectively eliminate the potential 
doublets, triplets, or cell clusters.

Patient‑derived organoid culture
Surgically resected tumor tissues and normal tissues were 
isolated into small pieces and were then digested into 
single-cell suspensions by collagenase (type II and type 
IV; Invitrogen, 17101015 and 17104019). After digestion, 
cancer cells were passed through a 40-μm cell strainer 
(Corning, 352340). Normal mucosa was first stripped 
off from the muscle layer and was cut into small pieces. 
After at least three times of washing, the fragments were 
transferred into PBS containing EDTA and were shaken 

vigorously at 4 °C for 15 min. The crypts that were shaken 
off were collected by centrifuge. The suspensions were 
centrifuged and then resuspended in Matrigel and plated 
in a 24-well cell culture dish. After 20 min of solidifica-
tion in a humidified incubator at 37 °C, culture medium 
was then added. The composition of the culture medium 
was as follows: Advanced DMEM/F12, 2 mM GlutaMAX, 
100 U/mL penicillin/streptomycin, 0.5 μM A83-01 (R&D 
systems, 2939), 1× B27 (Invitrogen, 17504044), 10 nM 
prostaglandin E2 (R&D systems, 2296), 5 μM SB202190 
(Sigma, S7076), 10 mM nicotinamide (Sigma, N0636), 
500 ng /mL R-spondin (R&D systems， 4645-RS), 1 mM 
N-acetylcysteine (Sigma, A9165), 50 ng/mL EGF (Pepro-
tech, AF-100-15), 10 nM gastrin I (Sigma, G9145), 100 
ng/mL Wnt3A (R&D systems, 5036-WN), 100 ng/mL 
Noggin (Peprotech,120-10C). Notably, 10 μM Y-27632 
(Selleck, S1049) was supplemented in the first week. 
Tumor organoid culture medium contained the above 
components without Wnt3A. The media were changed 
every 2 days. Organoids were passaged every 1–2 weeks 
and were maintained for long-term culture.

Single‑cell RNA‑seq library construction
The high-precision single-cell RNA sequencing pro-
tocol we used was a modified STRT-Seq protocol. In 
the reverse transcription (RT) step, we used a prede-
signed RT primer (5′-TCA​GAC​GTG​TGC​TCT​TCC​
GATCTXXXXXXXXNNNNNNNNT25-3′) to tag the 
cDNAs of each single cell with an 8-bp barcode sequence 
(X8) [20]. The 8-bp random unique molecular identifier 
(UMI) (N8) in the RT primer was used to prevent PCR 
bias. The Template Switching Oligonucleotide (TSO) 
primer used in SMART-seq2 was used in our proto-
col [21]. After RT, the cDNA was pre-amplified with 
the IS primer (10 μM, 5′-AAG​CAG​TGG​TAT​CAA​CGC​
AGAGT-3′), which paired with the TSO primer and the 
P2 primer (10 μM, 5′-GTG​ACT​GGA​GTT​CAG​ACG​TGT​
GCT​CTT​CCG​ATC-3′), which paired with the barcode 
primer. Then the pre-amplified cDNAs with different bar-
codes were pooled together for the following steps. After 
purification with AMPure XP beads (Beckman, A63882), 
we further amplified the pooled cDNAs by using the IS 
primer (5′-AAG​CAG​TGG​TAT​CAA​CGC​AGAGT-3′) 
and biotin primer (5′-/Biotin/CAA​GCA​GAA​GAC​GGC​
ATA​CGA​GAT​/Index/GTG​ACT​GGA​GTT​CAG​ACG​
TGT​GCT​CTT​CCG​ATC-3′), after which the biotin-
tagged cDNAs were fragmented into 300-bp fragments. 
Then, we used Dynabeads® MyOne™ Streptavidin C1 
(Invitrogen, 65001) to enrich the biotin-tagged ends. 
KAPA Hyper Prep Kits with the PCR Library Amplifi-
cation/Illumina series (KAPA, KK8054) were used to 
construct the library. The library was sequenced with 
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an Illumina HiSeq 4000 platform for 150-bp paired end 
reads. With the modified STRT-seq, we only obtained 
sequence information from the 3′ ends of the mRNAs.

Sanger sequencing with the single‑cell cDNA product
The mutation sites were detected by Sanger sequenc-
ing. The cDNAs used for mutation detection were the 
remaining product from single-cell RNA sequencing. 
While conducting the pooling process of single-cell RNA 
sequencing, half of the cDNAs were pooled together 
for further library construction, the remaining half of 
the cDNAs were preserved for Sanger sequencing. To 
verify the accuracy of mutation sites detected by Sanger 
sequencing and eliminate the possibility of contamina-
tions, 48 cells (KRAS P9_LM1_Batch3) from one patient 
were sequenced twice (Additional file 1: Table S6).

The sequences of primers used can be found in Additional file 1: 
Table S10.

Laser capture microdissection
Considering the low purity of tumor tissue in lymph node 
metastases (LyMs), tumor areas were extracted from tis-
sue sections by laser capture microdissection (LCM). 
Paraffin-embedded LyMs were sectioned into 5–10 con-
secutive 8-μm-thick slides which were then attached 
onto PEN membrane slides (Leica,1150515). After H&E 
staining, tumor areas were confirmed by two independ-
ent pathologists. Then tumor areas were obtained by 
LCM (Leica LMD7000 Microsystem). Tumor patches 
were pooled together for genomic DNA extraction using 
the GeneRead DNA FFPE Kit (Qiagen, 180134) and then 
the extracted DNA was used for WGS.

Whole genome sequencing
The extracted genomic DNA was fragmented into 300-bp 
fragments via sonication. Libraries were then constructed 
according to the instructions of the manufacturer of the 
KAPA Hyper Prep Kit (KAPA, KK8054).

Whole exome sequencing
The extracted genomic DNA (approximately 200 ng) 
was fragmented into 150–200 bp fragments through 
sonication, followed by end-repairing. Fragmented DNA 
was then ligated with a predesigned barcoded adaptor 
in which 3 bp barcode sequence was added to the NEB 
adaptor sequence. Therefore, the DNA ligated with differ-
ent barcoded adaptors could be pooled together for fur-
ther steps. Barcoded adaptors ligated DNA was further 
amplified with the NEB index primer, universal primer, 
and 2× KAPA HiFi HotStart ReadyMix (KAPA, KK8054) 
for 4 cycles. SureSelectXT Human All Exon v6 was used 
to capture the exome regions of different barcode pooled 

libraries. The library construction and high-throughput 
sequencing of these captured exome sequences were the 
same as WGS.

Bulk RNA sequencing
RNA was first extracted using the RNeasy Mini Kit 
(Qiagen, 74104), and then mRNA was reversed tran-
scribed and amplified. Approximately 50 ng of amplified 
cDNAs were used to perform library construction fol-
lowing the instructions of the TruePrepTM DNA library 
Prep Kit V2 (Vazyme Biotech, TruePrepTM DNA 
library Prep Kit V2).

Hematoxylin‑eosin (H&E), immunohistochemical (IHC) 
staining, and immunofluorescence staining
Fresh tissues were fixed with 10% neutral buffered for-
malin and then embedded in paraffin. Next, the paraffin-
embedded tissue blocks were sectioned into 5-μm-thick 
slices. H&E staining was performed on these 5-μm sec-
tions. For IHC staining, the sections were boiled in 0.01 
M citrate buffer (pH 6.0) for 30 min for antigen retrieval, 
treated with 3% hydrogen peroxide solution to block 
endogenous peroxidase activity, and then blocked with 
10% BSA for 1 h at room temperature. After incubation 
with primary antibody and appropriately diluted second-
ary antibody, the slices were visualized using DAB sub-
strate liquid and photographed with NanoZoomer SQ.

For immunofluorescence staining, slices were stained 
with primary antibodies at 4 °C overnight and then 
incubated with the fluorochrome-conjugated second-
ary antibody for 1–2 h at room temperature in the dark. 
After rinsing for three times with PBS, the slices were 
counterstained with DAPI. Images of all tissues were 
visualized via confocal microscopy. Positive cell ratios 
were calculated with a PerkinElmer Launches Mantra™ 
Quantitative Pathology Imaging System. All images were 
examined and analyzed by two independent pathologists.

Cell apoptosis assay and cell cycle analysis
For apoptosis assay, organoids were first digested into 
single-cell suspensions and then centrifuged at 800 g for 
5 min. Then cells were suspended with 400 μL binding 
buffer containing 5 μL of Annexin V-FITC and 10 μL of 
PI staining solution (BestBio, BB-4101). After staining for 
5 min, flow cytometry was used to distinguish dead and 
apoptotic cell populations. As for the cell cycle analysis, 
approximately 400,000 cells per well were first implanted 
into 6-well plates for 12 h and then drugs were added. 
Next, FxCycle™ PI/RNase Staining Solution (Life Tech-
nologies, F10797) was used to perform cell cycle analysis. 
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At least three replications were performed for each 
experiment.

Organoid drug response assay
Through performing GO enrichment analysis on DEGs 
between normal epithelial cells and tumor cells, we 
showed that tumor-specifically overexpressed genes were 
involved in the PPAR signaling pathway. In addition, 
research about the role of PPAR signaling pathway in 
CRC tumorigenesis remains controversial. Therefore, we 
focus on the PPAR signaling pathway for further analysis. 
FH535 (Selleck, S7484), XAV939 (Selleck, S1180), and 
GW9662 (Selleck, S2915) were purchased from Selleck 
and were dissolved in DMSO in aliquots of 100, 20, and 
100 mM respectively. The tumor organoids were gen-
tly digested and then planted into a 96-well cell culture 
plate by adding 10 μL of Matrigel droplets containing 
about 3000 cells to each well. Then 3 days later, inhibi-
tors were added to the culture medium of organoids and 
for each drug treatment, three replicate wells were set. 
After 5 days of inhibitor treatment, the organoid cell 
viability under different treatment conditions was meas-
ured by the CellTiter-Glo 3D reagent (Promega, G9683) 
and luminescence was measured with GM2000 Glo-
Max® Navigator (Promega, GM2000). For each inhibitor, 
the results were normalized by dividing the cell viability 
of the negative control (0.1% DMSO). Then, the tumor 
inhibition curve of a certain inhibitor was fitted with 
Prism 7 software. As for the drug combination experi-
ment, organoids were resuspended with 30 μl Matrigel 
and plated on a 24-well culture plate. After 2 days cul-
ture, different concentrations of XAV939 and GW9662 
were used to treat tumor organoids simultaneously. Cells 
were collected after 5days of treatment to measure the 
cell viability using CellTiter-Glo 3D reagent (Promega). 
All experiments were processed with at least three tech-
nical replicates. FH535 is an inhibitor of Wnt/β-catenin 
signaling and dual antagonist of PPARγ/δ activity. It 
inhibits β-catenin and GRIP1 recruitment to PPARγ 
and δ. Another Wnt signaling pathway specific inhibi-
tor, XAV939, selectively inhibits Wnt/β-catenin through 
tankyrase 1/2 inhibition. So both of these two inhibitors 
inhibit Wnt signaling through Wnt/β-catenin, but FH535 
directly inhibits Wnt/β-catenin while XAV9393 indi-
rectly inhibit it. For each concentration, three technical 
replicates (at the same time) were set. We repeated the 
whole experiment twice (two batches at different time) 
and both got similar results.

Whole‑mount immunofluorescence
The organoids were first washed twice with PBS and fixed 
in 4% paraformaldehyde for 1 h. Then the following steps 

were performed: (1) permeabilizing the organoids at 
room temperature for 30 min using 0.5% Triton X-100, 
(2) transferred the organoids into blocking buffer and 
incubated overnight at 4 °C, (3) incubating the organoids 
with primary antibodies which were diluted with block-
ing buffer at 4 °C overnight, (4) incubating the organoids 
with secondary antibodies for 2 h at room temperature, 
and (5) staining the organoids with DAPI (1:500 diluted) 
for 10 min. The immunofluorescence was visualized 
using a Nikon A1RSi+ confocal microscope. Antibodies 
used for immunofluorescence are shown in Additional 
file 2: Table S10.

Self‑renewal and differentiation potential of SOX9/
MKI67‑positive cells
In total, three organoid cell lines (patient #1, O#H and 
O#S) were derived to verify the self-renewal and differ-
entiation potential of SOX9/MKI67-positive cells. These 
organoid cell lines were established as the steps men-
tioned above (patient-derived organoid culture section). 
As for Organoids O#H, we first performed whole-mount 
immunofluorescence of SOX9 and MKI67 on short-term 
(~1 week) and long-term (~2 months) cultured orga-
noids to explore whether SOX9/MKI67-positive tumor 
cells have the self-renewal potential. To further explore 
the differentiation potential of SOX9/MKI67-positive 
cells, we thawed passage-11 O#H organoid and further 
cultured it for another 1 month. Then cells were digested 
into single cells for single-cell RNA sequencing. In addi-
tion, we also performed whole-mount immunofluores-
cence of CA2 on 1-month cultured O#H organoids. In 
order to rule out the possibility that the increase ratio of 
SOX9/MKI67-positive cells in  vitro is due to the death 
of differentiated cells in  vitro, we further performed 
single-cell RNA-seq on five single organoid spheres of 
O#S. Specifically, five single tumor organoid spheres 
of O#S were picked into drops of TrypLE (Invitrogen, 
12605028) and digested into single-cell suspensions at 37 
°C respectively.

Whole exome sequencing data analysis
Duplicate marked mapping reads were attained for WGS 
analysis, and then GATK (Genome Analysis Toolkit, Ver-
sion 3.8) and Mutect2 were used to call the somatic muta-
tions [22, 23]. The whole pipeline could be separated into 
four steps: (1) local realignment around indels by Realign-
erTargetCreator and IndelRealigner, (2) base quality score 
recalibration with BaseRecalibrator and PrintReads, (3) 
somatic variant calling by Mutect2 with blood as a control, 
and (4) variant annotation with SnpEFF [24]. Codes can 
be found at the GitHub (https://​github.​com/​WRui/​Metas​
tatic-​Color​ectal-​Cancer) [25].

https://github.com/WRui/Metastatic-Colorectal-Cancer
https://github.com/WRui/Metastatic-Colorectal-Cancer
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Single‑cell RNA‑Seq data pre‑processing and read 
mapping
Paired end sequencing reads were split according to the 
cell-specific barcodes in reads 2, and the UMI sequences in 
reads 2 were attached to reads 1. Then, quality control pipe-
lines were applied to remove low-quality and adapter-con-
taminated reads. The parameters and corresponding codes 
can be found at the GitHub website (https://​github.​com/​
WRui/​Post_​Impla​ntati​on/​tree/​master/​scRNA_​UMI) [26]. 
Next, TopHat (version 2.0.14) was used to map the cleaned 
reads to the human genome (hg19), and only uniquely 
mapped reads were retained [27]. HTSeq was employed to 
estimate the abundance of the transcripts by counting the 
uniquely mapped reads for each gene, and reads with dupli-
cated UMIs for each gene were excluded [28]. Finally, the 
abundance of a gene was normalized to TPM.

Removal of low‑quality cells and low‑abundance genes
Stringent quality filter criteria were used to filter out 
low-quality cells. Only cells that expressed at least 1000 
genes and showed second maximum pairwise Pearson 
correlations greater than 0.6 were retained for further 
analysis. Only genes that showed a log2(TPM+1) expres-
sion value over 1 in four cells were retained for subse-
quent analysis. After the application of an automated 
quality control pipeline, 88.7% of the cells (8085 cells) 
were retained for subsequent analyses with an aver-
age of 3685 genes being detected in each individual cell 
(Fig. 1B and Additional file 1: Table S1). Since we traced 
the tumor clonal structure based on the mitochondrial 
mutations, we did not filter cells based on the ratio of 
reads mapped to mitochondria. The median ratio of 
reads that mapped to mitochondria is just 12.5% which 
reflected the reasonable quality of our single-cell RNA-
seq dataset.

Nonlinear dimensional reduction on the transcriptome 
expression matrix
Nonlinear dimensional reduction (tSNE) was analyzed 
on our filtered expression data using the scater package 
by executing the “plotTSNE” function [29].

Verification of DEGs of BRAFV600E and BRAF600WT 
in TCGA‑COAD dataset
The somatic mutation data of TCGA-COAD cohort were 
firstly downloaded from xena website. Then we grouped 
samples according BRAF 600 AA and separated into two 
groups: BRAFV600E and BRAF600WT. According to single-
cell RNA-seq result, we found that L3MBTL2 is highly 
expressed in BRAFV600E cells, regardless of whether the 
cells were from primary or metastatic tumors. In order 
to verify that the phenomenon of high expression of 
L3MBTL2 in BRAFV600E cells is widespread, we analyzed 
the TCGA-COAD bulk RNA-seq data and found that the 
expression of L3MBTL2 indeed increased significantly in 
BRAFV600E samples.

Identification of DEGs and biomarker clustering
The “FindAllMarkers” function with the parameter 
"thresh.test=1.5" in the Seurat R package (v3.0.2) was 
used to identify DEGs associated with specific features 
(more than three, features here represent different cell 
clusters) [30]. As two features, the “FindMarkers” func-
tion was employed to obtain the DEGs.

Single‑cell transcription factor regulatory network 
construction and clustering
The SCENIC package was employed to establish a 
gene regulatory network and to simultaneously group 
our single cells using the inferred networks [31]. Fol-
lowing the SCENIC manual, we obtained a filtered 
version of a binary activity matrix of regulons. Then, 

Fig. 1  Single-cell transcriptome analysis of colorectal cancer. A The workflow illustrates the strategy for cell collection from matching adjacent 
normal tissues and primary and metastatic colorectal tumors for single-cell RNA-Seq, single-cell cDNA Sanger sequencing, and bulk level whole 
genome sequencing and whole exome sequencing. B Bar plot showing the number of cells collected from each patient. Patients are ordered 
according to the total number of cells. Color represents cell origin. Low-quality cells are removed with strict criteria. Only cells that expressed at 
least 1000 genes and showed second maximum pairwise Pearson correlations greater than 0.6 were retained for further analysis. Finally, 8085 
cells (88.7%) were retained for subsequent analyses. The details can be found in the “Methods” section. PT: primary tumors. LN: adjacent normal 
tissue collected from liver. N: adjacent normal tissues. MT: metastatic tumors, including lymph node metastasis, liver metastasis, and omentum 
metastasis. Removed: cells that have not passed the quality control and not used for subsequent analysis. C UMAP plot of cell clusters. Cell types 
were identified base on the regulon activity matrix and then visualized by UMAP. Cells were colored according to annotated cell types. According 
to their expression of known marker genes shown in Supplementary Figure 1B, we annotated these clusters as epithelial cells, endothelial cells, 
fibroblasts, T-cells, B-cells, pre-B-cells, macrophages, and mast cells. Associated with Supplementary Figure 1A and Supplementary Figure 1C-D. 
Most of the immune cells, fibroblast, and endothelial cells come from the tumor area. D Immunofluorescence staining of the shared endothelial 
and fibroblast marker SPARC and T-cell marker CD3D in adjacent normal tissues, primary tumor, and liver metastasis. The boxplot shows the 
SPARC- or CD3D-positive cell ratio in different regions (N: adjacent normal tissue; PT: primary tumor; LM: liver metastasis). Scale bar, 100μm. E The 
dot plot shows the ratio of cells that highly expressed enterocyte marker (CA2) and intestinal stem cell marker (SOX9) in normal and tumor regions 
for each patient. F The expression levels of enterocyte marker (CA2) and intestinal stem cell marker (SOX9) were projected on epithelial cells tSNE 
maps. Colors from yellow to red represent expression levels from low to high

(See figure on next page.)

https://github.com/WRui/Post_Implantation/tree/master/scRNA_UMI
https://github.com/WRui/Post_Implantation/tree/master/scRNA_UMI
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Fig. 1  (See legend on previous page.)
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unsupervised hierarchical clustering was employed to 
cluster the cells based on the binary activity matrix. 
Cells were grouped into eight main clusters and DEGs 
were identified for each cell cluster. According to DEG 
lists and well-known cell-type marker genes, these 8 
clusters were annotated as epithelial cells (EPCAM, 
CDH1, CDX2 and MUC2), fibroblasts (VIM, THY1, 
COL1A1, and COL1A2), endothelial cells (VIM, CDH5, 
and PECAM1), pre-B (PTPRC, CD79A, and CD79B) 
cells, B-cells (PTPRC, CD79A, CD79B, and MS4A1), 
T-cells (PTPRC, CD3D, CD3E, CD3G, and CD8A), mast 
cells (PTPRC and KIT), and macrophage cells (PTPRC, 
CD163, CD68, and FCG2R). Due to the limitation of 
the figure numbers, we only showed expression pattern 
of one cell-type-specific gene for each cell type in Addi-
tional file  2: Fig. S1D. After identifying cell clusters, 
cells were visualized with UMAP in the Seurat package 
(v3.0.2) by running RunUMAP function with setting 
dims=1:10.

CNVs inferred based on single‑cell RNA‑Seq data
Single-cell RNA-Seq data were used to infer CNVs 
according to a previously published method [32]. We 
used the published software inferCNV to infer CNVs 
(https://​github.​com/​broad​insti​tute/​infer​cnv) [32]. It 
showed that except patient #5 that is classified as MSI-
high tumor, almost all epithelial cells collected from 
tumor tissues contained CNVs and epithelial cells col-
lected from adjacent normal tissues exhibited normal 
diploid state. In addition, according to the clustering 
results shown with UMAP, epithelial cells collected from 
adjacent normal tissues and tumor tissues clustered 
separately. Therefore, in our study, we defined epithelial 
cells collected from tumor tissues as tumor cells, while 
epithelial cells collected from normal tissues as normal 
epithelial cells.

CNVs confirmed via bulk whole genome sequencing
To confirm the CNV results at the DNA level, we 
sequenced the whole genome of bulk samples from the 
corresponding single-cell RNA-Seq dataset. First, low-
quality reads and adapter-contaminated reads were 
removed. Then, BWA was employed to map the cleaned 
reads to the human genome (hg19). The whole genome 
was divided into 10-M windows, and the total reads 
located in each window were calculated and normalized 
by the total reads of each sample. Next, for each win-
dow, the reads were scaled by the average read depth of 
all samples. Finally, dot plots were used to visualize the 
CNV patterns.

Mitochondrial mutation calling with single‑cell RNA‑Seq 
data
The output bam files of TopHat were used for subsequent 
mitochondrial SNP calling by GATK according to online 
suggestions for RNA-Seq data [23]. The SNP calling pipe-
line can be found at GitHub (https://​github.​com/​WRui/​
Metas​tatic-​Color​ectal-​Cancer) [25].

Tumor phylogenetic reconstruction
To explore the relationships between different tumor 
sites, only mutations that shared by at least two sam-
ples were used for phylogenetic tree construction. The 
R package “ape” was used to construct the phyloge-
netic tree [33]. The distances between different tumor 
regions were first calculated with the “dist.gene” func-
tion and then the phylogenetic tree was constructed 
with function the “nj”. Finally, the unrooted trees were 
displayed by performing the “plot.phylo” function.

Results
Landscape of transcriptomic heterogeneities in CRC​
To investigate the transcriptomic heterogeneities and 
cellular diversities of CRC, we generated high-precision 
RNA-Seq profiles of 9120 single cells from 11 adjacent 
nontumor colonic mucosa (N), 9 primary tumors (PTs), 
12 matching lymph node metastases (LyMs), 7 liver 
metastases (LMs), 3 omentum metastases (OMs), and 
1 liver normal tissue (LN) (Fig. 1A, B, Additional file 1: 
Table  S1). After stringent filtration, 8085 cells (88.7%) 
were retained for further analyses (Fig.  1B, Additional 
file 2: Fig. S1A-B).

To accurately explore the diversity of cell types in 
CRC, we clustered these single cells based on their 
transcription factor regulatory networks and eight 
main cell clusters were identified (Fig.  1C and Addi-
tional file  2: Fig. S1C-D). Furthermore, we found that 
compared with other cell types, tumor epithelial cells 
showed highest differences with normal epithelial cells 
from matched adjacent normal tissues as expected. 
Normal epithelial cells from different patients were 
similar to each other, while tumor epithelial cells from 
different patients were separated from each other on 
UMAP (Additional file 2: Fig. S1E-F).

Next, we further explored the cell-type composition 
changes between different sites (Fig. 1D and Additional 
file 2: Fig. S1G-H). A diverse and complex microenvi-
ronment was revealed in PTs as well as LyMs, LMs, 
and OMs, with higher proportions of T-cells, B-cells, 
and macrophages and decreased proportions of epi-
thelial cells in tumors than in adjacent normal tis-
sues. In addition to the number of immune cells, the 
number of fibroblasts also increased in tumor tissues 

https://github.com/broadinstitute/infercnv
https://github.com/WRui/Metastatic-Colorectal-Cancer
https://github.com/WRui/Metastatic-Colorectal-Cancer
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(Additional file 2: Fig. S1H). The enrichment of T-cells 
and fibroblasts/endothelial cells in tumor tissues was 
verified through immunofluorescent staining of CD3D 
and SPARC, respectively (Fig. 1D and Additional file 1: 
Table S10).

Enrichment of intestinal progenitor cell and Paneth cell 
markers in tumor epithelial cells
As shown in Fig. 1C and Additional file 2: Fig. S1C, we 
found that there were dramatic transcriptome-level 
differences between tumor and normal epithelial cells. 
We further explored these differences by comparing 
their epithelial cell-type composition and transcrip-
tomic features.

Globally, we found that normal epithelial cells con-
sisted of mainly enterocytes and goblet cells (Fig.  1E,  F 
and Additional file  2: Fig. S2A-C). In contrast, tumor 
cells were more likely to express Paneth cell markers 
and stem/progenitor cell markers and exhibited more 
mesenchymal-like features (Fig. 1F and Additional file 2: 
Fig. S2D-E). Few cancer cells expressed marker genes of 
differentiated cell types such as CA2 (enterocyte marker) 
and MUC2 (goblet marker) (Fig.  1E,  F and Additional 
file 2: Fig. S2B-C).

Hence, we further explored the cell-type compositions 
for each patient by calculating the ratio of cells expressing 
typical intestinal cell markers. We found that all patients 
showed a decreased proportion of CA2-positive (entero-
cyte marker) cells in tumor tissues, which was verified 
by immunohistochemical (IHC) staining (Additional 
file  2: Fig. S2B). In addition, the MUC2-positive (goblet 
marker) cells were also depleted in tumor tissues com-
pared to adjacent normal tissue, which was also verified 
by IHC staining (Additional file 2: Fig. S2C). On the other 
hand, the expression of marker genes for other cell types, 
such as LYZ (Paneth cell marker) and SOX9 (intestine 
progenitor cells), were enriched in tumor epithelial cells 
and LYZ expression was further verified by IHC stain-
ing (Additional file  2: Fig. S2D). These results revealed 
that intestinal stem cell-like cells were enriched in tumor 
epithelial cells. Through immunofluorescent staining of 
SOX9 (intestinal stem/pluripotency marker) and MKI67 
(marker of proliferation), we found that stem cell-like and 
actively dividing cells were located only in crypt regions 
of adjacent normal tissue whereas nearly all tumor epi-
thelial cells expressed SOX9 or MKI67 in vivo (Fig. 2A).

We further established a patient-derived organoid cul-
ture system to explore whether these stem cell-like cells 
had the potential for self-renewal and differentiation into 
more mature cell types. We first compared the ratio of 
SOX9/MKI67-positive cells in normal and tumor tissues 
in  vivo and primary tumor-derived organoid in  vitro. 
The ratio of SOX9/MKI67-positive cells in organoids 

were much higher than their in  vivo counterparts 
(Fig. 2B,C). It indicated that SOX9/MKI67-positive cells 
may have growth advantage in vitro and have the poten-
tial of self-renewal. Next, we performed immunostain-
ing on short- and long-term cultured tumor organoids 
(O#H) (Fig.  2A). For tumor-derived organoids cultured 
for 2 weeks, majority of the cells expressed SOX9/
MKI67 (SOX9+ 41.6%, MKI67+ 77.5%, SOX9+MKI67+ 
37.7%), but after long-term culture (2 months), less cells 
expressed SOX9 or MKI67. Next, we performed single-
cell RNA-seq on these organoid cells and the organoid 
cells being cultured for another 1 month from the same 
patient (O#H) (Fig. 2D,E). It showed that after long-term 
culture, the proportion of cells highly expressing the dif-
ferentiation marker gene CA2 increased significantly and 
immunofluorescence staining also confirmed that major-
ity of the organoid cells expressed CA2 after long-term 
culture (Fig.  2D). To further verify the differentiation 
potential of SOX9/MKI67-positive cells, we performed 
single-cell RNA-seq on five individual spheres of orga-
noids from one patient (O#S5) (Fig.  2F and Additional 
file 2: Fig. S3). Generally, the cells in an individual orga-
noid sphere were derived from a few original cells, or 
even a single cell (Additional file 2: Fig. S3A). Therefore, 
by analyzing mitochondrial mutations, we can trace the 
lineage of cells in an individual organoid (Fig.  2F and 
Additional file 2: Fig. S3B-C). We found that within the 
same organoid sphere, there were cells of different cell 
states with the same mitochondrial mutations, both stem 
cell-like cells and differentiated cells, which indicates that 
SOX9/MKI67-positive cells have the potential to differ-
entiate into other mature cell types during culture pro-
cess in vitro. Taken together, these results indicated that 
SOX9/MKI67-double positive cells had the potential for 
self-renewal and could differentiate into multiple more 
mature cell types in culture, which are characteristics of 
stem cell-like cells.

Transcriptomic differences between tumor 
and adjacent normal epithelial cells
To eliminate the interference of nonepithelial cells, differ-
entially expressed genes (DEGs) were identified between 
the normal and tumor epithelial cells (Fig.  3A). As 
expected, the tumor cells tended to show lower expres-
sion of differentiation genes such as enterocyte mark-
ers (CA1, CA2, and CLCA1) and endocrine cell markers 
(PYY and GCG​) (Fig. 3A and Additional file 1: Table S2). 
Moreover, tumor cells showed lower expression of the 
metallothionein family genes, including MT1H and 
MT1G (Fig.  3A and Additional file  1: Table  S2). On the 
other hand, tumor cells tended to show higher expres-
sion of LY6E, FXYD5, and TGFBI (Fig. 3A). Furthermore, 
higher expression levels of the tumor marker CEACAM6 
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Fig. 2  SOX9/MKI67-positive cells may have potential of self-renewal and differentiation. A Immunofluorescence staining of cell proliferation marker 
(MKI67) and intestinal stem/progenitor cell marker (SOX9) for adjacent normal tissue and tumor tissue in vivo as well as patient-derived cancer 
organoids that were cultured for 2 weeks and 2 months. CO: cancer organoid. 2W: 2 weeks. 2M: 2 months. Scale bar, 100 μm. B Dot plot showing 
the expression level of MKI67 and SOX9 of patient #1. Colors represent cells that collected from different regions. N, normal region. PT, primary 
tumor. LM, liver metastasis. PT organoid, in vitro cultured organoid that are derived from the primary tumor. The proportion of double positive cells 
is written in the upper-right corner of each dot plot. C Bar plot shows the ratio of SOX9/MKI67 double positive cells of patient #1 from different 
regions. N, normal tissue; PT, primary tumor; LM, liver metastasis; PT organoid, primary tumor-derived organoid. D The bar plot shows the ratio 
of cells that expressed different level of enterocyte marker CA2. D0 represents thawed tumor organoid, and 1mon represents tumor organoid 
that is cultured for 1 month. P-value was calculated through t-test. The color of the bar represents the expression levels (log2(TPM+1)) of CA2. E 
Immunofluorescence staining of enterocyte marker CA2 on long-term cultured tumor organoid (O#H). Scale bar, 50μm. F Heatmap shows cell-type 
specific genes expression in one of five tumor organoids of one patient (O#S5). Colors from blue to red represents expression level (log2(TPM+1)) 
from low to high. The black boxes highlight cells that do not express or low express stem/pluripotency markers (SOX9, OLFM4, LGR5, ALCAM, LRIG1, 
and MKI67) but highly express differentiated marker CA2 
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were verified via IHC staining in five patients in this 
cohort and three additional patients (Fig.  3B and Addi-
tional file 2: Fig. S4A-B). CEACAM6 also showed higher 
expression levels in other CRC patients reported on the 
Human Protein Atlas website (https://​www.​prote​inatl​
as.​org/​ENSG0​00000​86548-​CEACA​M6). The expression 
pattern of LY6E was also verified in additional patients 
(Fig. 3B).

PPAR inhibitor can inhibit the growth of CRC organoids
Of the DEGs between normal and cancer tissues, we 
found that PPAR signaling pathway-associated genes 
were strongly upregulated in tumor epithelial cells com-
pared to normal epithelial cells (Fig. 3A and Additional 
file 1: Table S3). However, we found that the PPAR sign-
aling pathway-related genes that were highly expressed 
in tumor epithelial cells in single-cell data were not all 
highly expressed in tumor tissues in TCGA-COAD data 
(Additional file  2: Fig. S4C). Some genes even showed 
the opposite trend and were highly expressed in nor-
mal tissues, such as SCD and ACSL4. PPARs are meta-
bolic regulators that participate in the regulation of 
glucose and lipid homeostasis and there are three sub-
types of PPARs that encoded by distinct genes [34, 35]. 
Although extensive studies have explored the role of 
PPAR in colorectal cancer through PPAR agonists or 
gene knockdown experiments, there are still many con-
troversies about them. In addition, these studies were 
mainly performed in cancer cell lines that cultured in 
a 2D environment, which usually have been cultured 
in  vitro for very long time, thus may not fully reflect 
the original heterogeneities of tumors in  vivo [36]. To 
further explore the function of PPAR signaling pathway 
in tumorigenesis, we treated tumor-derived organoids 
with the drug FH535, which is a Wnt/β-catenin sign-
aling pathway inhibitor and a dual PPARγ and PPARδ 
antagonist (Fig. 3C–E and Additional file 2: Fig. S5A-C). 
Compared with those of the untreated organoids, both 

the size and proliferation rate of FH535-treated orga-
noids drastically decreased (Fig.  3C,  D and Additional 
file 2: Fig.S5A-C). We also explored the cell apoptosis by 
double staining with PI and Annexin V and found that 
FH535-treated organoids had a drastically increased 
proportion of apoptotic cells (20.5% compared with 
6.4%) (Fig.  3E). Since FH535 inhibits the recruitment 
of the coactivators GRIP1 and β-catenin to PPARγ 
and PPARδ, to exclude the effect of the WNT signal-
ing pathway, we also treated organoids with the WNT 
signaling inhibitor XAV939 and found that neither the 
proliferation rate nor the morphology of the organoids 
showed significant changes (Additional file 2: Fig. S5A-
B). Then, we treated three tumor organoid cell lines with 
six different concentrations of WNT inhibitor XAV939 
and dual-inhibitor FH535 respectively. It showed that 
WNT inhibitor had quite mild anti-tumor effect, and 
even at high concentration (200μM), its suppressive 
effect is less than 50% (Additional file  2: Fig. S5D and 
Fig. 3H). To further verify the function of PPAR signal-
ing pathway, we treated tumor-derived organoids with 
GW9662, an inhibitor specifically inhibits PPAR signal-
ing pathway and compared its tumor inhibition effect 
with the clinically widely used drug 5-FU (Fig.  3F,G 
and Additional file  2: Fig. S5E). Inhibiting PPAR sign-
aling pathway alone can effectively promote tumor cell 
apoptosis and inhibit tumor cell growth, and its effect 
was equivalent to 5-FU when the drug concentration is 
about 30 μM (Additional file 1: Fig. S5E). Notably, when 
PPAR and WNT signaling pathway were simultaneously 
inhibited by dual pathway inhibitor FH535, tumor pro-
liferation was further reduced compared with organoids 
in which that only PPAR signaling pathway was inhib-
ited (Fig.  3F,G and Additional file  2: Fig. S5D). Thus, 
we further explored the combination therapy effect of 
PPAR and WNT inhibitors at different concentrations 
(Fig. 3H). The result showed that when inhibiting PPAR 
signaling pathway with low concentration of GW9662, 

Fig. 3  Transcriptomic differences between adjacent normal tissues and tumor tissues. A Heatmap showing the differentially expressed genes 
(DEGs) between adjacent normal and tumor tissues in each patient. Colors from blue to orange represent the expression level from low to high. The 
enriched gene ontology (GO) terms and p-value were showed in the right side of the heatmap. The full list of DEGs is summarized in supplementary 
table 2. B Immunofluorescence staining of CEACAM6 and LY6E in adjacent normal tissue and primary tumor tissue for another two patients. Both 
CEACAM6 and LY6E are highly expressed by tumor epithelial cells. Scale bar, 100 μm. C Bright-field images of patient-derived normal and tumor 
organoids (left panel). Representative bright-field images of PPAR inhibitor (FH535)-treated and untreated organoids (right panel). D Cell viability 
assay of PPAR signaling pathway inhibitor (FH535)-treated and untreated organoids. ** represents p-value < 0.05. E Cell apoptosis assay of PPAR 
inhibitor (FH535)-treated and control organoids. The results of fluorescence-activated cell sorting (FACS) are shown. Q2 represents late apoptotic 
cells, Q3 represents early apoptotic cells, and Q4 represents living cells. F Bar plot shows the ratio of apoptotic cells, light gray represents early 
apoptotic cells, and dark gray represents late apoptotic cells. P-values are calculated by t-test. ** represents p-value < 0.01. G Dot plot showing the 
proliferation ratio of cells. Different colors represent different drug treatment. 5-FU: 30 μM; GW9662: 30 μM; FH535: 15 μM. P-values are calculated by 
t-test. ** represents p-value < 0.01. NS represents not significant. There are 3 replications for each treatment. H The line plot showing the cell viability 
of tumor organoid (O#L) under different concentrations of drugs. The x-axis represents the concentration of PPAR inhibitor GW9662, and the y-axis 
represents the cell viability of tumor organoid with 5 days drug treatment. Colors from blue to red represent the concentration of WNT inhibitor 
XAV939 from low to high

(See figure on next page.)

https://www.proteinatlas.org/ENSG00000086548-CEACAM6
https://www.proteinatlas.org/ENSG00000086548-CEACAM6
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additional WNT inhibitors can slightly increase the 
tumor killing ability further. But additional WNT inhib-
itor has no effect when organoids were treated with high 
concentration of PPAR inhibitor (Fig.  3H). Together, 
these results indicate that PPAR signaling pathway 

promotes proliferation and inhibits apoptosis of colon 
cancer cells.

For further analysis of the downstream molecu-
lar mechanisms, we also performed RNA-Seq in both 
FH535-treated organoids and control organoids. We 

Fig. 3  (See legend on previous page.)
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found that 299 genes were upregulated and 516 genes 
were downregulated after FH535-treatment (Fig. S5E and 
Additional file  1: Table  S3). Downregulated genes were 
enriched for GO terms related to the cell cycle, p53 and 
PPAR signaling pathways, and this sequencing result is 
consistent with our phenotypic observations (Fig.  3D,E 
and Additional file  2: Fig. S5F). GW9662 is a selective 
PPAR antagonist for PPARγ, while FH535 is a PPARγ and 
PPARδ antagonist. According to RNA-seq data, PPARγ 
downstream genes were clearly downregulated, indicat-
ing that the tumor-suppressing effect of FH535 is mainly 
mediated by PPARγ [37]. These data suggest that PPAR 
inhibitors may have potential therapeutic values in the 
treatment of CRC.

Lineage tracing by mitochondrial mutations and CNVs 
in individual cells
We used single-cell RNA-Seq data to infer the CNVs of 
epithelial cells at single-cell resolution, and the CNV pat-
terns were verified by WGS of the corresponding tumor 
tissues (Additional file  2: Fig. S6A). Except for patient 
#5 whose tumor was classified as an MSI tumor, tumor 
cells from all other patients showed distinct CNV pat-
terns (Figs. 4, 5, and 6 and Additional file 2: Fig. S6-S8). 
In each patient, multiple CNV patterns were revealed. So 
we explored the evolutionary relationships between PTs, 
LyMs, and distant metastases based on their CNV pat-
terns. Recently, it was reported that mitochondrial muta-
tions enable study of clonal architecture using single-cell 

RNA-Seq data [38]. Therefore, we also used mitochon-
drial mutations to infer tumor cell lineages at single-cell 
resolutions.

In all the patients we analyzed (including patient #5 
that classified as having an MSI-H tumor), we identified 
tumor-specific mitochondrial mutations and these mito-
chondrial mutations can serve as characteristic markers 
of the tumor cells for lineage tracing and identification 
of tumor cells without obvious CNVs. For example, since 
patient #5 has an MSI tumor, tumor cells and normal 
epithelial cells cannot be distinguished by CNV patterns 
(Additional file 2: Fig. S6A). However, all tumor cells of 
patient #5 had mutations in MT-CO1 (chrM:7352), while 
normal epithelial cells from the same patient did not have 
this mutation (Additional file  2: Fig. S9A-B). In patient 
#3, a small number of cells without clear CNVs (D-type) 
from tumor tissues clustered with adjacent normal cells 
based on transcriptome data, and these cells did not have 
mutations in MT-RNR2 (chrM:3004), which was shared 
by tumor cells with clear CNVs (Additional file  2: Fig. 
S6B-D).

Notably, lineage inference by CNVs and mitochon-
drial mutations showed high consistency with each other. 
Combining mitochondrial mutations and CNVs in the 
same individual cells can not only make the tumor clonal 
relations reconstructed more accurately and robustly but 
also be used to unambiguously distinguish the normal 
epithelial cells from tumor cells without obvious CNVs in 
tumor regions (Additional file 2: Fig. S6C).

(See figure on next page.)
Fig. 4  Tumor clonal architectures and tumor lineage inferences. A CNV pattern and sampling strategy of patient #9. Different subclones with 
distinct CNV patterns are found in lymph node and liver metastases. N: adjacent normal tissues. PT: primary tumors and R1-R3 represent different 
regions of primary tumor. LyM: lymph node metastasis. LM: liver metastasis and LM1 and LM2 represent two separated liver metastatic tumors. The 
pie charts reflect the proportion of different subclones in each region. Copy number gain and copy number loss are indicated with red and blue 
respectively. Different tissues are divided by bold black solid lines, and different clones within the same tissue block are divided by black dashed 
lines. The squares above the heatmap represent different chromosomes, black squares represent odd-numbered chromosomes and chromosome 
X, and light gray squares represent even-numbered chromosomes and chromosome Y. The squares on the left of the heatmap represent different 
subclones, and the same color represents the same clone. The most obvious copy number differences between different clones are highlighted 
by different colored boxes. Red squares in chromosome 2 show the additional CNVs of metastatic tumor (A2 and B2 subclones) compared to the 
primary tumor (A1 and B1 subclones). Pink square in chromosome 8 shows D subclone-specific CNV. Black squares in chromosome 18 show the 
A (A1 and A2) and C (C1 and C2) clones specific CNVs. Green squares in chromosomes 20 and 21 show C (C1 and C2) clone-specific CNVs. The 
numbers next to the heatmap show the number of cells of each subclone in different tissue blocks. B The diagram showing the tumor metastasis 
path of patient #9. The color of box represents different areas; blue, orange, and red boxes represent the primary tumor, lymphatic and liver 
metastasis tumor respectively. The circle and triangle represent the mutation state at the position 2897- and 1350-point site of mitochondria. Their 
colors represent the mutation status: blue, orange, and red represent wild-type, heterozygous, and homozygous mutations respectively. PT: primary 
tumors and R1-R3 represent different regions of primary tumor. C Heatmap showing selected mitochondrial mutations of patient #9. Orange 
represent heterozygous mutations and red represents homozygous mutations. Blue represent wild-type and gray represents read depth lower than 
9. Cells from PTR1 and liver metastasis have a chrM:2897 heterozygous mutation. PTR2 has region-specific mutations on chrM:11380 and chrM:8534. 
The bars above the heatmap shows the CNV subclones and tissue origin of the cells. The full list of mitochondrial mutations can be found in 
supplementary table 5. PT: primary tumors and R1-R3 represent different regions of primary tumor. LyM: lymph node metastasis. LM: liver metastasis 
and LM1 and LM2 represent two separated liver metastatic tumors. D Heatmap showing the reginal distribution of somatic mutations in all samples 
from patient #9. In total, 136 somatic mutations that were shared by at least two samples were identified. Red represent mutant state and gray 
represent wild-type state (left panel). Phylogenetic tree of lesions of patient #9 based on somatic mutations calling by WES data and the pie charts 
reflect the proportion of different subclones in each region based on CNVs that inferred by scRNA-Seq data
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Fig. 4  (See legend on previous page.)
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Mitochondrial mutations and CNVs at single‑cell levels 
both reflect distinct origins of lymph node and different 
distal metastases in the same patients
Distant metastases are prevailingly believed to originate 
from lymph node metastases, but this model was chal-
lenged recently by constructing evolutionary relationship 
just based on 20–43 indels in polyguanine repeats [7]. 
Both CNV and mitochondrial mutation tracing revealed 
that the tumor epithelial cells from the lymph node and 
liver metastatic tumors of patient #9 had distinct ori-
gins (Fig. 4A–C). In patient #9, more than one metasta-
sis sites existed, but tumor cells from different metastatic 
sites exhibited different CNV patterns and different 
mitochondrial mutations. Tumor cells from lymph node 
(LyM) showed similar patterns with the tumor cells in the 
center part of the primary tumor (PTR3), while tumor 
cells from liver metastasis showed patterns similar to the 
tumor cells located at the outer part of the primary tumor 
(PTR1 and PTR2) (Fig. 4A–C). Tumor cells from primary 
tumor region 3 (PTR3) and lymph node metastasis (LyM) 
had amplification on chr21 but did not have mutation on 
MT-RNR2 (chrM:2897). So we deduced that after PTR3 
tumor cells migrated to lymph nodes, these cells further 
produced new mutations at chrM:11380 and chrM:8534. 
On the other hand, tumor cells of primary tumor region 1 
(PTR1) and liver metastasis (LM1 and LM2) had similar 
CNV patterns and all of them had “heterozygous” muta-
tions at MT-RNR2(chrM:2897). In addition, constructing 

tumor phylogenetic tree based on WES of bulk samples 
in the patient also exhibited similar lineage patterns, fur-
ther verifying the conclusion (Fig. 4D).

This phenomenon was consistent with the result of 
tumor evolution tracing based on 20–43 indels in poly-
guanine repeats reported by Naxerova et al. [7]. However, 
here, we traced these tumor clones at single-cell reso-
lution instead of at the bulk level. Notably, the result of 
both CNVs and point mutations support independent 
origins of cancer cells in lymph node and liver metastases 
in the same patient. Compared with hypermutable loci, 
we can see much more detailed and accurate changes in 
tumor evolution with mitochondrial mutations which 
has faster mutation rate (over 10- to 100-fold faster), 
higher copy number changes (100–1000s in a cell), single 
point mutation resolution, and more tracking sites avail-
able (16.6 kb). By using single-cell transcriptome data, we 
can not only trace the tumor’s clonal structure, but also 
combine mutation identification or clonal structure iden-
tification with phenotypic assay at transcriptome levels.

More importantly, patient #7 has two different distal 
metastases, liver metastases, and omentum metasta-
ses, but these two metastasis sites showed distinct ori-
gins (Additional file 2: Fig. S7). Notable, liver metastases 
may originate from lymph node metastases but omen-
tum metastases may directly originate from the primary 
tumor. According to the CNV patterns, both lymph 
node and liver metastases have a gain copy number at 

Fig. 5  Possible presence of tumor precursor cells. A CNV pattern and sampling strategy of patient #8. N: adjacent normal tissues. PT: primary 
tumors and R1-R4 represent different regions of primary tumor. LyM: lymph node metastasis LyM1 and LyM2 represent two separated lymph node 
metastatic tumors. LM: liver metastasis. R1-R2 represents different regions of the liver metastatic tumors. The pie charts reflect the proportion 
of different subclones in each region. Copy number gain and copy number loss were indicated with red and blue respectively. Different tissues 
are divided by bold black solid lines, and different clones within the same tissue block are divided by black dashed lines. The squares above the 
heatmap represent different chromosomes, black squares represent odd-numbered chromosomes and chromosome X, and light gray squares 
represent even-numbered chromosomes and chromosome Y. The squares on the left of the heatmap represent different subclones, and the same 
color represents the same clone. The most obvious copy number differences between different clones were highlighted by different colored boxes. 
B The diagram showing the tumor metastasis path of patient #8. CNVs, somatic mutations and mitochondrial mutations are also shown in the 
diagram. The color of box represents different areas; blue, orange, and red box represent the primary tumor, lymphatic, and liver metastasis tumor 
respectively. Most of primary tumor cells have homozygous mutation at MT-ND5:13,536G>A mutation; thus, we speculated that there may be a 
group of tumor progenitor cells that we did not capture, which have MT-ND5(13,536G>A) mutation. With the development of the tumor, this group 
of tumor progenitor cells have additional mutations at MT-ND6(14,504 T>TA) and MT-ND3(10,396T>C) respectively, thus forming two clones (PTR1 A 
clones and PTR2-PTR4 B&C clones). Then the clones with MT-ND3(10,396T>C) mutation were further metastasized to the liver. C Heatmap showing 
selected mitochondrial mutations of patient #8. Almost all tumor cells have a chrM:13,526 homozygous mutation. Cells from the PTR1 (primary 
tumor region 1) have a chrM:14,504 mutation, and cells from PTR2-PTR4 and lymph node metastasis have a chrM:10,396 mutation. Blue represents 
wild-type and gray represents read depth lower than 9. Orange represent heterozygous mutation and red represent homozygous mutation. The 
bars above the heatmap shows the CNV subclones and tissue origin of the cells. D CNV pattern and sampling strategy of patient #1. PT: primary 
tumors. LM: liver metastasis. Copy number gain and copy number loss were indicated with red and blue respectively. Different tissues were divided 
by bold black solid lines, and different clones within the same tissue block were divided by black dashed lines. The squares above the heatmap 
represent different chromosomes, black squares represent odd-numbered chromosomes and chromosome X, and light gray squares represent 
even-numbered chromosomes and chromosome Y. The squares on the left of the heatmap represent different subclones, and the same color 
represents the same clone. The most obvious copy number differences between different clones are highlighted by different colored boxes. The 
black square in chromosome 1 shows A1–A3 subclone-specific CNV. The black squares in chromosome 2 and chromosome 6 show additional CNVs 
of LM (E1–E3 clone-specific clones) compared with PT. E The diagram showing the tumor metastasis path of patient #1. CNVs, somatic mutations 
and mitochondrial mutations are also shown in the diagram. F Heatmap showing selected mitochondrial mutations of patient #1. All tumor cells 
have homozygous mutation at 13,368 point site. N: adjacent normal tissue. PT: primary tumor. LM: liver metastasis

(See figure on next page.)
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chromosome 2, while omentum metastases showed 
opposite CNV patterns at chromosome 2 (Additional 
file 2: Fig. S7A).

The potential existence of tumor precursor cells
Tumor precursors should exist and later develop into dif-
ferent subclones. For patient #8, two distinct subclones 
existed in the primary tumor and only C-type tumor 
cells located in primary tumor region 2 and 3 (PTR2 and 
PTR3) migrated to the lymph node and liver, and further 
developed into D-type tumor cells in the liver metastatic 
region (Fig. 5A–C). Tumor cells in primary tumor region 
1 (PTR1) had additional CNVs on chromosomes 2, 9, 11, 
12, 13, and 20. In addition, tumor cells of PTR1 and other 
regions had different mutations at MT-ND6(chrM:14504 
- PTR1) and MT-ND3(chrM:10396 - PTR2-PTR3, LyM, 
LM), respectively. However, all the tumor cells had muta-
tions at MT-ND5(chrM:13526), which indicates that 
tumor precursor cells may exist. The proposed tumor 
precursor cells first (chrM:13526) migrate to PTR1 
(A-types) and PTR2-PTR4 (B-types and C-types) and 
then become two different subclones at early stage, and 
these two subclones generated new subclone-specific 
mutations later.

Besides patient #8, mitochondrial mutation of patient 
#1 also supported the presence of tumor precursor cells 
(Fig. 5D–F). Although there were several subclones with 
different CNV patterns in the primary tumor of patient 
#1, all tumor cells have mitochondrial mutations at posi-
tion 13368. This suggests that there was a group of tumor 
precursor cells with chrM:13368 mutation, and during 

tumorigenesis, it accumulated different genetic muta-
tions and resulted in distinct subclones. Notably, the 
chrM: 13,368 of essentially all tumor cells were homo-
plasmic (Fig. 5F). Since there were hundreds of copies of 
mitochondrial DNAs in an individual cell [39], it needs 
to take multiple cell divisions and selection to replace all 
wild-type mitochondria with mutant ones, which may 
take relatively long time. The homoplasmic mitochon-
drial mutation of 13,368 further support the existence of 
tumor precursor cells in this patient, and it also indicated 
that cells with mitochondrial mutation at 13,368 may 
have a growth advantage compared with those with wild-
type mitochondrial DNAs.

Subclones exist in normal epithelial cells of the MSI CRC 
patient
In all nine patients, we investigated mitochondrial muta-
tion spectrums, only patient #5 who was classified as 
MSI-positive tumor has normal epithelial cell-specific 
mitochondrial mutations. Moreover, three subclones were 
identified in normal epithelial cells in patient #5, which 
were mainly distinguished by wild-type, heteroplasmic, 
and homoplasmic positions like chrM:9576 (Additional 
file  2: Fig. S9A and S9B). This is consistent with several 
studies that have identified somatic mutations in normal 
epithelial cell at bulk levels [13–16, 38], and here we fur-
ther verified it at single-cell levels using mitochondrial 
mutations. However, since we did not sequence other 
tissues of this individual, it is possible that the different 
mitochondrial mutations in normal and tumor tissue may 
be due to different developmental origins.

(See figure on next page.)
Fig. 6  Integrated analyses of the associations between mitochondrial mutations and mitochondrial gene expression profiles. A CNV pattern and 
sampling strategy of patient #6. Adenomas have no obvious CNVs and different subclones with distinct CNV patterns are found in primary tumors. 
Lymph node metastasis has different CNV patterns with primary tumors. A: adenoma. PT: primary tumors. LyM: lymph node metastasis; LyM1, 
LyM2, and LyM3 represent three separated lymph node metastatic tumors. The pie charts reflect the proportion of different subclones in each 
region. Copy number gain and copy number loss were indicated with red and blue respectively. Different tissues were divided by bold black solid 
lines, and different clones within the same tissue block were divided by black dashed lines. The squares above the heatmap represent different 
chromosomes, black squares represent odd-numbered chromosomes and chromosome X, and light gray squares represent even-numbered 
chromosomes and chromosome Y. The squares on the left of the heatmap represent different subclones, and the same color represents the same 
clone. The most obvious copy number differences between different clones were highlighted by different colored boxes. B Heatmap showing 
selected mitochondrial mutations of patient #6. Blue, orange, red, and gray represent wild-type, heterozygous, and homozygous mutations and 
undefined (read depth < 9X) respectively. The triangle, circle and star represent the mutation state at the position 1,670-, 927-, and 8277-point 
site of mitochondria. C The diagram showing the tumor metastasis path of patient #6. The triangle, circle, and star represent the mutation state 
at the position 1,670-, 927-, and 8277-point site of mitochondria. Their colors represent the mutation status: blue, orange, red, and gray represent 
wild-type, heterozygous, and homozygous mutations respectively. D The boxplot showing the relative expression levels of MT-TV for patient #6 and 
patient #1. Other patients without MT-TV mutations have a similar pattern as patient #1 (data not shown). N: adjacent normal tissue. A: adenoma. 
PT: primary tumor. LyM: lymph node metastasis and LyM1-LyM3 represent three separated lymph node metastatic tumors. E The mutation state 
of mitochondrial gene MT-TV (site: 1,670) that is defined by whole exome sequencing data. Gray rectangle represents the wild-type, and the red 
rectangle represents the mutant type. The bar plot shows the allele frequency of mutations at this site. N: adjacent normal tissue. A: adenoma. PT: 
primary tumor. LyM: lymph node metastasis. LM: liver metastasis. For patients #10–#12, cells in the adjacent normal tissues were enriched by MACs 
or FACs; N represents EPCAM-positive cells and N_Neg represents EPCAM-negative cells. 1 cm, 3 cm, 10 cm, and 20 cm represent the distance to 
the edges of the tumor
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Mutant mitochondrial DNA may have a higher expansion 
capacity
Interestingly, in patient #2, majority of the tumor epithe-
lial cells in the primary tumor had a heteroplasmic muta-
tion in MT-ND3(chrM:10192), but at liver metastasis 
(LM) region, almost all cells had homoplasmic mutations 
at MT-ND3(chrM:10192) (Additional file 2: Fig. S8A-B). 
This may suggest that tumor cells with homoplasmic 
mutant of mitochondria are more likely to metastasize 
or that mutated mitochondrial DNAs may expand dur-
ing tumor progression and eventually completely replace 
wild-type mitochondrial DNAs. However, we observed 
this phenomenon in just one patient, and more patients 
need to be analyzed to further verify this interesting 
phenomenon in the future. In addition, mitochondrial 
mutations common to different subclonal tumor cells 
in different tumor regions are basically homoplasmic 
mutations (MT-ND5: 13368 G>T in patient #1, MT-CO1: 
7352 T>C in patient #5, MT-ND1: 4049 G>A in patient 
#7, MT-ND5: 13526 C>A in patient #8), while most of 
the mutations shared by some subclonal cells are hetero-
plasmic mutations (Fig. 5C, F and Additional file 2: Fig. 
S7, S9A). This indicates that these homoplasmic mito-
chondrial mutations were generated much earlier and 
may go through selection before it became homoplasmic 
and completely replaced wild-type mitochondrial DNAs 
in cancer cells in these patients. However, in addition to 
selection, genetic drift and stochastic bottleneck effects 
may also contribute to the homoplasmic phenomena. 
For example, the high rate of cell turnover and asymmet-
ric segregation of mtDNAs during cell divisions could 
also lead to homoplasmic mtDNA variants in cells. The 
main difference between selection and genetic drift is 
whether changes in allele frequencies are random. Unlike 
selection, genetic drift does not depend on an allele’s 
beneficial or harmful effects. Instead, it changes allele 
frequencies purely by chance. Since most of our samples 
were from patients before treatment, cells basically do 
not experience large-scale cell death, so the possibility of 
homoplasmic due to selection is higher, but the possibil-
ity of genetic drift cannot be fully ruled out. More sam-
ples and experiments are needed in the future to further 
judge this conclusion.

MT‑TV upregulation in tumor cells may be attributed 
to mutation of the gene
Although many studies have revealed the genomic and 
transcriptomic features of cancer cells, how genotypic 
and phenotypic features are interconnected is still poorly 
understood. To this end, we systematically explored the 
association between gene expression profiles and point 
mutations at a single-cell resolution in mitochondrial and 
nuclear DNAs, respectively.

Unexpectedly, our data revealed that mitochondrial 
mutations may regulate mitochondrial gene expres-
sion. In patient #6, tumor cells had mutations at MT-TV 
(chrM:1670) and MT-RNR1(chrM:927) sites (Fig.  6A–
D). However, MT-TV (mitochondrially encoded tRNA 
valine) genes were hardly detected in the normal epithe-
lial cells from adjacent normal tissues, and even if they 
were expressed in some of these cells, the expressed 
alleles were wild-type ones (Fig.  6B). Then, we inves-
tigated the expression level of MT-TV genes in tumor 
cells, and only tumor epithelial cells with MT-TV muta-
tion (chrM:1670) showed increased expression of MT-TV 
(Fig.  6D). In addition, we also explored the expression 
levels of MT-TV in other patients who did not have MT-
TV mutations and found that the tumor epithelial cells 
from all other patients analyzed express MT-TV at very 
low levels (Fig. 6D). We also explored the MT-TV expres-
sion by using the data of Genotype-Tissue Expression 
(GTEx) Project database which collected RNA expres-
sion of normal tissues. Only cells from the brain showed 
very low levels of MT-TV expression, and essentially 
all other normal cells from other tissues do not express 
MT-TV (https://​genome.​ucsc.​edu/​cgi-​bin/​hgGene?​db=​
hg38&​hgg_​gene=​MT-​TV) [40]. Since we called mito-
chondrial mutations using single-cell RNA-Seq data, if 
the gene is not expressed, we cannot judge whether the 
corresponding mitochondrial DNA region has a muta-
tion or not. To circumvent the limitation of SNP call-
ing with RNA-seq data, we performed whole exome 
sequencing on the same sample at bulk level to determine 
whether the sample has specific mitochondrial mutations 
at the DNA level (Fig. 6E). According to the WES data, 
MT-TV mutation was detected in all lymphatic metasta-
ses of patient #6, and the mutation frequency was over 
62.5%, which means that almost all tumor cells have this 
mutation considering that bulk tumor samples contain 
significant proportion of nonepithelial cells such as fibro-
blasts and immune cells. We also detected this mutation 
in one primary tumor (PT2) of patient #5, but the muta-
tion frequency is relatively low, only 25%. Through single-
cell RNA-seq data, we found that all cells we picked in 
PT2 of patient #5 have wild-type mitochondrial DNAs 
(Additional file  1: Table  S4). These data indicated that 
some specific mitochondrial mutations may also contrib-
ute to tumorigenesis of CRC and affect gene expression 
patterns of cancer cells.

Metastasis of TP53mut tumor cells benefits from EKC/KEOPS 
complex overexpression
The tumor suppressor gene TP53 is one of the most fre-
quently mutated genes in human tumor epithelial cells. 
In our cohort, five patients had TP53 mutations (patients 
#2, #4, #6, #9, and #10), and two of these patients 

https://genome.ucsc.edu/cgi-bin/hgGene?db=hg38&hgg_gene=MT-TV
https://genome.ucsc.edu/cgi-bin/hgGene?db=hg38&hgg_gene=MT-TV
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(patients #4 and #9) had WES and scRNA-seq data for 
both primary tumor and metastatic tumors (Additional 
file  1: Table  S9). Integrated analysis of TP53 mutation, 
lineage inferences, and single-cell expression profiles 
revealed that for the same subclone of tumor cells that 
metastasized to the liver, some cancer cells in the pri-
mary tumor and essentially all of the cancer cells in the 
metastasized tumor highly expressed EKC/KEOPS com-
plex. This indicates that the cancer cells within this sub-
clone that specifically upregulated EKC/KEOPS is more 
likely to metastasize to the liver successfully compared 
with those cancer cells that did not express EKC/KEOPS 
(Fig. 7 and Additional file 1: Table S5-S6).

In patient #4, cancer cells from primary tumors (PT1 
and PT2) and lymph node metastasis (LyM1 and LyM2) 
all had a TP53 frame-shift insertion (chr17:7578502 
A>ACA​GGG​). Based on mitochondrial mutations and 
CNVs, C-type tumor cells successfully metastasized to 
the lymph nodes (Additional file  2: Fig. S8C-D). How-
ever, according to the t-distributed stochastic neighbor 
embedding (tSNE) clustering based on the gene expres-
sion matrix, the C-type tumor cells separated into two 
subgroups (PT-a and PT-b) (Fig.  7A and Additional 
file  2: Fig. S10A). After applying the DEG analysis of 
these two groups of PT cells, the expression patterns of 
the DEGs in all epithelial cells of patient #4 were shown 
(Fig.  7A,B). LyM tumor cells (LGR5+ cells) also highly 
expressed signature genes of the PT-b cluster (Fig. 7A,B 
and Additional file  2: Fig. S10B). In details, both lymph 
node metastatic tumor cells and the primary tumor 
OLFM4+SOX9+ C-type cells highly expressed intesti-
nal stem cell markers (SOX9 and LGR5), TP53RK (TP53 
regulating kinase), and TPRKB (TP53RK binding protein) 
(Fig. 7C and Additional file 2: Fig. S10C). Both TP53RK 
and TPRKB are components of the evolutionarily 

conserved EKC/KEOPS complex (Endopeptidase-like 
Kinase Chromatin-associated protein complex/Kinase 
putative Endopeptidase and Other Proteins of Small 
size protein complex) that are required for the essential 
N6-theonylcarbamoyladenosine (t6A) modification of all 
ANN-codon recognizing tRNAs [41]. Based on the result 
of CNVs and mitochondrial mutations, we showed that 
lymph node metastasis originate from C-type tumor cells 
in the primary tumor (Additional file 2: Fig. S8C-D). And 
now based on gene expression patterns, it further indi-
cated that lymph node metastatic tumor cells are more 
likely originated from OLFM4+SOX9+ C-type cells (PT-
b), but not from OLFM4+SOX9- C-type cells (PT-a) in 
the primary tumor (Fig.  7A–C and Additional file  2: 
Fig. S10A-C). So even though both groups of C-type 
cells have similar genomic mutation patterns, only cells 
that highly expressed TP53RK and TPRKB successfully 
metastasized to lymph node, which indicated that EKC/
KEOPS complex may be beneficial for tumor metastasis 
(Fig. 7A, C).

In patient #9 who had missense mutations at TP53, we 
also observed that TP53RK/ TPRKB-positive cells were 
more likely to metastasize to distal organs (Fig.  7D–G). 
Unlike those in patient #4, the tumor cells in patient #9 
clustered into two groups, TP53High group and TP53Low 
group. For tumor cells in which we detected TP53 mis-
sense mutations with single-cell targeted cDNA Sanger 
sequencing, most of them were homozygous mutations 
and belonged to the TP53High group (Figs. 7D and 6E and 
Additional file  1: Table  S6). Moreover, a previous study 
verified that TP53-deficient cells were dependent on 
TPRKB through knockdown of TPRKB in TP53-defffi-
cient and TP53 wild-type cell lines. They found that after 
knockdown of TPRKB, the growth of TP53-deficient cells 
was significantly inhibited but knockdown of TPRKB in 

Fig. 7  Integrated analyses of the associations between TP53 mutation and global gene expression profiles. A The tSNE map of patient #4, which 
has a TP53 frame-shift mutation. Cells were colored according to tissue origin, mitochondrial mutation, merge CNV types, and average expression 
levels (log2(TPM+1)) of 306 primary tumor OLFM4+SOX9+ group specific genes, which are shown in B. N: adjacent normal tissue. PT: primary 
tumor. LyM: lymph node metastasis. LM: liver metastasis. Cells from primary tumor were clustered into two groups, PT-a and PT-b. Associated with 
Fig. S10A. B Heatmap shows the expression pattern of DEGs between OLFM4+ SOX9+, and OLFM4+ in all four cell groups of patient #4 C. The 
expression levels of IDH1, TPRKB (TP53RK-binding protein), and TP53RK (TP53 regulation kinase) were projected on tSNE maps. Colors from yellow to 
red represent expression levels from low to high. D PCA clustering of patient #9 epithelial cells. Cells were colored by TP53 Sanger results, CNV type, 
cell origin, and mitochondrial mutation (chrM:2897). N: adjacent normal tissue. PT: primary tumor. LyM: lymph node metastasis. LM: liver metastasis. 
E The expression levels of TP53, TPRKB, TP53PK, and IDH1 were projected to the PCA maps of patient #9 epithelial cells. TP53High group means tumor 
epithelial cells that expressed TP53 gene according to the single-cell RNA sequencing data, while TP53Low group represent tumor epithelial cells 
that did not expressed TP53. F The ratio of tumor epithelial cells that expressed TPRKB genes for each region. Metastatic tumor regions had more 
cells expressing TPRKB. ** represents p-value < 0.05. N: adjacent normal tissue. PT: primary tumor. LyM: lymph node metastasis. LM: liver metastasis. 
Neg represent TPRKB negative cells and Pos represent TPRKB positive cells. G The three dimensions plot shows the relationship between IDH1, 
TPRKB, TP53RK expression with TP53 mutations. The XY plane shows the PCA result of Patient #9. The three layers of IDH1, TPRKB, and TP53RK show 
the expression levels of these three genes on PCA map. The summary layer shows cells with TP53 mutations (according to Sanger sequencing). 
Red represents cells with TP53 mutation and expressed all three genes (IDH1, TPRKB and TP53RK) simultaneously, while yellow represent cells with 
TP53 mutation and expressed two of these genes. The TP53 Mutant layer shows the tissue origin of cells with TP53 mutations. Red represents cells 
collected from metastatic tumor and blue represents cells collected from primary tumor

(See figure on next page.)



Page 21 of 26Wang et al. Genome Medicine           (2022) 14:93 	

Fig. 7  (See legend on previous page.)
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TP53 wild-type cells had minimal influences [42]. Here, 
through integrated analysis of CNVs, mitochondrial 
mutations, and gene expression patterns, we showed 
that EKC/KEOPS complex might play important role for 
metastasis of TP53-deficient tumor cells in CRC patients 
in vivo (Fig. 4A–C).

BRAFV600E mutation has little effect on global gene 
expression patterns
Approximately 8–15% of CRC tumors harbor BRAF 
mutations. Despite several BRAF inhibitors have 
emerged, unfortunately unlike other cancers, BRAF 
mutant CRC patients showed inefficient responses to 
these BRAF inhibitors [43]. Thus, we explored the rela-
tionship between the BRAFV600E mutation and transcrip-
tomic patterns (Additional file 2: Fig. S10D-G).

According to the clinical information and WES data, 
patient #1 harbored the BRAFV600E mutation. Com-
bined with single-cell targeted cDNA Sanger sequenc-
ing (Additional file 1: Table S6), we separated the tumor 
epithelial cells of patient #1 into two groups, BRAFWT 
and BRAFV600E. Through PCA analysis, all epithelial cells 
of patient #1 clustered into three groups based on their 
cell origins. The first PCA component separated tumor 
cells from normal epithelial cells, while the second PCA 
component separated primary tumor cells from liver 
metastatic tumor cells (Additional file  2: Fig. S10D). 
However, regardless of BRAF mutation, cells clustered 
together by tumor regions, which may imply that the sin-
gle BRAFV600E mutation may not cause dramatic changes 
in global gene expression patterns of cancer cells (Addi-
tional file 2: Fig. S10D).

According to clonal inference by mitochondrial muta-
tions and CNVs, liver metastases of patient #1 may derive 
from another subclone in the primary tumor region that 
we may not capture (Fig.  5D–F). To avoid the impact 
of subclones, we performed the DEG analysis between 
BRAFV600E and BRAFWT epithelial cells from the PT and 
LM regions respectively (Additional file 2: Fig. S10E, S10F 
and Additional file 1: Table S7). The DEGs that were iden-
tified in the LM region were much more abundant than 
those in the PT region. BRAFWT tumor cells of the PT 
region highly expressed BMP7, whose elevated expres-
sion was known to be correlated with tumor invasion, 
metastasis, recurrence, and cancer-related death (Addi-
tional file 1: Fig. S10F) [44]. Tumor cells with BRAFV600E 
mutation from PT and LM all highly expressed VPS13B, 
a gene that may function in vesicle-mediated transport, 
and L3MBTL2, a gene that may inhibit cell divisions. In 
our cohort, there was only one patient having BRAFV600E 
mutation. Therefore, we combined TCGA-COAD data to 
check if the specifically upregulated genes in BRAFV600E 
cells were widely applicable. We divided TCGA-COAD 

into two groups: BRAFV600E and BRAF600WT, and we 
found that the expression of L3MBTL2 in BRAF mutant 
tumors was significantly higher than that in BRAF wild-
type tumors (Additional file  2: Fig. S10G). As for the 
other gene VPS13B, there were no significant differ-
ences between the wild-type and BRAF mutant tumors of 
TCGA, which may be masked by the influences of other 
microenvironmental cells in the bulk tumor samples.

KRAS mutation mainly affects actively dividing tumor cells
Approximately 40–50% of CRCs have a mutated KRAS 
oncogene, and the most common mutations of KRAS are 
in codons 12 and 13 [45]. According to the WES results, 
patient #9 had a KRASG12V mutation (Additional file  1: 
Table  S8). Combined with single-cell targeted cDNA 
Sanger sequencing, we separated tumor epithelial cells 
of patient #9 into three groups, KRASWT, heterozygous 
KRASG12V, and homozygous KRASG12V (Additional file 2: 
Fig. S10H and Additional file  1: Table  S6). Based on 
gene expression patterns, cells were clustered into two 
groups, actively dividing cells (MKI67+) and quiescent 
cells (MKI67−) (Additional file 2: Fig. S10I). To avoid the 
influence of different tumor regions or cell cycle phases, 
we performed DEG analysis between KRASWT and 
KRASG12V cells separately for each tumor site (Additional 
file  2: Fig. S10J-K and Additional file  1: Table  S8). The 
actively dividing tumor cells have more DEGs between 
KRASWT and KRASG12V, no matter when these cells are 
from the primary tumor or metastatic tumor (Additional 
file  1: Table  S8). This indicates that mutations in KRAS 
may have a greater impact on actively dividing tumor 
cells than on quiescent tumor cells.

In summary, through precise comparisons of different 
subclones of cancer cells in vivo from the same patients 
based on point mutations, CNVs, and transcriptomic 
characteristics all at single-cell resolutions, our data 
clearly offers mechanistic insights for the potential func-
tional involvement of driver mutations (such as TP53, 
BRAF, and KRAS) in CRC patients in vivo.

Discussion
Here, we report a comprehensive transcriptomic analy-
sis of eleven advanced CRCs at single-cell levels. Multi-
region sampling was performed for the tumor samples 
that we collected from most of the patients we analyzed. 
Through single-cell RNA-Seq analysis, we were able to 
investigate the dynamic changes in cell-type composi-
tions during tumor progression. The identified DEGs 
and tumor-specifically activated signaling pathways 
could serve as clinical biomarkers and potential therapy 
targets, which may be used to achieve better CRC diag-
noses in the future. Through the identification of global 
CNV patterns and mitochondrial mutations from the 
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single-cell RNA-seq data among CRCs, different sub-
clones were identified in a single tumor region and the 
interconnection of genotypic and phenotypic features 
was unveiled in CRC at a single-cell resolution. Taken 
together, our findings provide a rich resource for under-
standing the heterogeneities of the metastatic CRCs at 
different omics layers.

One of our key findings was a drastic increase in the pro-
portion of intestinal stem/progenitor-like cells and Paneth 
cells in tumor epithelial cells, accompanied by a sharp 
decrease in highly differentiated mature intestinal epithelial 
cells, such as enterocytes and goblet cells. Through establish-
ing patient-derived cancer organoids, we found that stem 
cell-like cells (SOX9+ and MKI67+) may be the main compo-
nent of tumor epithelial cells in vivo and that these cells can 
be self-renewal and further differentiate into other mature 
cell types. However, since it is hard to enrich SOX9/MKI67-
positive living cells through FACS because of the nuclear 
localization of these marker genes, we did not perform 
experiments such as extreme limiting dilution assay to fur-
ther verify the self-renewal and differentiation ability of these 
stem cell-like cells. Therefore, we cannot fully exclude the 
possibility that these phenomena may be due to the plastic-
ity of the cancer cells. Moreover, the PPAR signaling pathway 
was prevalently and aberrantly activated in tumor cells and 
inhibition of this signaling pathway through PPARγ inhibitor 
could both dramatically suppress the growth and accelerate 
the apoptosis of the tumor epithelial cells. Although these 
have been verified using in vitro cultured organoids, in the 
future in vivo experiments are still needed for further veri-
fication of the function of PPAR signaling pathway. In addi-
tion, we have observed that when a specific concentration 
of inhibitors is used to inhibit both WNT and PPAR signal-
ing pathways, the tumor killing effect is much greater than 
that of only inhibiting a single pathway alone. Although we 
have described the changes in the transcriptome after dual-
inhibitor FH535 treatment through RNA-Seq, the study 
of underlying molecular mechanisms still requires further 
explorations, such as knock-out mouse model experiments.

Our data also provide insights into the mechanisms of 
CRC metastasis through clonal lineage tracking with both 
CNV patterns and mitochondrial mutations at single-cell 
resolution. In general, more than one subclones coex-
isted in a single primary tumor tissue, and some of these 
subclones have higher capacity to metastasize to lymph 
nodes or distant organs (such as B clones in patient #8 
and C clones in patient #4). For some patients, it showed 
that metastatic tumors acquired additional properties 
compared to primary tumors (such as patients #2, #4, 
and #6). The current data cannot explain whether this 
phenomenon is caused by the acquisition of characteris-
tics before metastasis or the selection at metastatic sites. 
Furthermore, our data provide evidences that different 

metastatic sites were invaded by different subclones and 
different metastasis occurred independently, which may 
not agree with traditional ideas that distant organ metas-
tasis was seeded through lymph nodes (such as patient 
#7 and patient #9). These findings can shed light on the 
understanding of CRC tumor progression.

Notably, our data allowed us to explore the relation-
ships between gene expression and genome variations, 
such as CNVs and point mutations in either mitochon-
dria DNAs or nuclei DNAs at single-cell resolution. 
Although there are only a small number of genes in 
mitochondrial genome compared with nuclear genome, 
these mitochondrial mutations can still cause a vari-
ety of human genetic diseases and exhibits maternal 
inheritance characteristics as expected. In patient #6, 
we found that mutations in the MT-TV genes of tumor 
cells may result in increased expression of MT-TV 
itself. However, since we just observed this phenom-
enon in just one patient, if it is prevalent still needs to 
be tested in a larger number of cases. In addition, the 
function of the MT-TV mutation has not been directly 
explored here, thus more functional experiments are 
needed to verify it in the future. To study the function 
of mitochondrial genes and the pathogenic mechanisms 
of mitochondrial genetic diseases, mitochondrial tar-
geted high-efficiency gene editing tools are necessary. 
Recently, scientists had finally made precise gene editing 
to mitochondrial DNAs for the first time which makes 
it possible to precisely edit mitochondrial genome [46]. 
In addition, in vitro cultured organoid system can also 
be used to explore the mitochondrial mutations which 
may be achieved by importing mutated mitochon-
dria from tumor organoids into normal organoids. In 
total, we performed single-cell targeted cDNA Sanger 
sequencing of two critical oncogenes (KRAS and BRAF) 
and two important tumor suppressor genes (TP53 and 
APC) in patient #1 (BRAF) and patient #9 (KRAS, TP53, 
and APC). Integrated analysis of point mutations and 
RNA expression indicated that TPRKB and TP53RK 
expressed TP53-mutated tumor cells were more likely 
to metastasize compared with tumor cells that did not 
express TPRKB and TP53RK, which was consistent with 
previous report [42]. However, further experiments 
were still needed to explore the underlying molecu-
lar mechanisms between EKC/KEOPS and metastasis. 
But here, we firstly verified it in  vivo, which can com-
pletely eliminate confounding differences in individual 
genetic background or deviations caused by in  vitro 
culture. Intriguingly, more DEGs between KRASG12V 
and KRASWT were identified for actively dividing tumor 
cells, which suggested that KRAS mutations may mainly 
affected tumor cells that were actively dividing. Simi-
larly, this conclusion still needs more data support and 
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further functional experiment verification, such as tar-
geted knock-in of specific mutation sites. In addition, 
we found that a single point mutation of BRAFV600E may 
not result in dramatic changes in tumor cells’ global 
gene expression patterns. More importantly, we found 
that BRAFV600E tumor cells highly expressed L3MBTL2 
whereas BRAFWT tumor cells did not, which is further 
verified in TCGA-COAD database. To our best knowl-
edge, this is the first time that targeted gene mutation 
and RNA expression were simultaneously analyzed in 
the same individual tumor cell in  vivo from the colo-
rectal cancer patients. Due to the small sample size, 
our conclusions may be not widely applicable and need 
further verifications in larger cohort, but our data still 
provide novel insights into how driver mutations inter-
fere with the transcriptomic state of a tumor cell. Larger 
dataset and further genetic experiments in the future 
can provide additional information. Limitations of our 
study include relatively small number of patients ana-
lyzed and the lack of in vivo functional validations. But 
our analyses dissect the genomic and transcriptomic 
heterogeneities in CRCs in an integrated manner. We 
also provide essential information about metastatic 
mechanisms, potential novel markers, and potential 
therapeutic targets for CRC diagnosis and therapy. Our 
high-precision single-cell RNA-Seq dataset of matched 
adjacent normal tissues, primary tumors, and metasta-
ses from CRCs provides a rich resource for further stud-
ies of CRCs.

Conclusions
Our data also provide insights into the mechanisms of 
CRC metastasis. In general, more than one subclone 
coexisted in a single primary tumor tissue. And sub-
clones harboring more severe CNVs and being located 
in the central region of PTs seemed to be more likely 
to metastasize to distal organs. This may be because 
the central region of the tumor is usually more hypoxic 
where immune cells have difficulty to infiltrate and 
survive [47]. Furthermore, our data provide higher 
resolution and more robust evidence of lineage trac-
ing with mitochondrial point mutations and genomic 
CNVs to support that different metastatic sites of the 
same patient were invaded by different tumor sub-
clones independently, which had previously been 
raised by construction of phylogenetic trees with sev-
eral hypermutable loci [7, 48]. These findings can shed 
light on the molecular understanding of tumorigenesis 
process of CRCs.
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