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Abstract 

Background:  Genetic testing (GT) for hereditary cancer predisposition is traditionally performed on selected genes 
based on established guidelines for each cancer type. Recently, expanded GT (eGT) using large hereditary cancer 
gene panels uncovered hereditary predisposition in a greater proportion of patients than previously anticipated. We 
sought to define the diagnostic yield of eGT and its clinical relevance in a broad cancer patient population over a 
5-year period.

Methods:  A total of 17,523 cancer patients with a broad range of solid tumors, who received eGT at Memorial Sloan 
Kettering Cancer Center between July 2015 to April 2020, were included in the study. The patients were unselected 
for current GT criteria such as cancer type, age of onset, and/or family history of disease. The diagnostic yield of eGT 
was determined for each cancer type. For 9187 patients with five common cancer types frequently interrogated for 
hereditary predisposition (breast, colorectal, ovarian, pancreatic, and prostate cancer), the rate of pathogenic/likely 
pathogenic (P/LP) variants in genes that have been associated with each cancer type was analyzed. The clinical impli‑
cations of additional findings in genes not known to be associated with a patients’ cancer type were investigated.

Results:  16.7% of patients in a broad cancer cohort had P/LP variants in hereditary cancer predisposition genes iden‑
tified by eGT. The diagnostic yield of eGT in patients with breast, colorectal, ovarian, pancreatic, and prostate cancer 
was 17.5%, 15.3%, 24.2%, 19.4%, and 15.9%, respectively. Additionally, 8% of the patients with five common cancers 
had P/LP variants in genes not known to be associated with the patient’s current cancer type, with 0.8% of them hav‑
ing such a variant that confers a high risk for another cancer type. Analysis of clinical and family histories revealed that 
74% of patients with variants in genes not associated with their current cancer type but which conferred a high risk 
for another cancer did not meet the current GT criteria for the genes harboring these variants. One or more variants of 
uncertain significance were identified in 57% of the patients.
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Background
Germline genetic testing (GT) for hereditary cancer pre-
disposition has become increasingly important in the 
management of cancer patients [1, 2]. Identifying patients 
with hereditary predisposition can inform targeted thera-
pies for certain cancers and allow for timely surveillance 
and preventative interventions for both patients and at-risk 
family members [3–7]. Traditionally, testing for cancer pre-
disposition heavily relied on clinical criteria from national 
guidelines to select the most clinically appropriate genes 
based on the patient’s prior probability of carrying a ger-
mline alteration dictated by their tumor type, age of onset, 
and/or family histories [8–10]. More recently, broader gene 
panels are used by many clinicians for patients with a wide 
range of cancer histories. Expanded GT (eGT) without 
preselection of patients or genes uncovered hereditary can-
cer predisposition in a greater proportion of patients than 
previously anticipated, including those who do not meet 
the current testing criteria [11–21]. We previously demon-
strated that 17% of 1040 advanced cancer patients receiv-
ing eGT harbored pathogenic or likely pathogenic (P/LP) 
germline variants in cancer predisposition genes. Addition-
ally, 56% of these findings would have not been identified 
via guideline-based targeted GT at the time, as the patients 
did not meet the criteria to receive traditional GT for these 
genes. Additional studies have also demonstrated that 
guideline-based GT failed to detect a significant portion 
of patients with germline alterations [11–21]. Reasons for 
restricting GT to selected genes include the uncertain clini-
cal utility of identifying P/LP variants in genes outside the 
recommended ones based on established guidelines and 
the potential burden of variants of uncertain significance 
(VUSs). To explore the diagnostic yield and utility of eGT 
in patients with a broad range of solid tumors, we analyzed 
the eGT results in a cohort of 17,523 cancer patients who 
received paired tumor-normal sequencing over a 5-year 
period at a tertiary cancer hospital. Additionally, for 9187 
of the patients with five common cancers frequently inter-
rogated for hereditary predisposition (breast, colorectal, 
ovarian, pancreatic, and prostate cancer), we assessed the 
clinical implications of genes not typically targeted for their 
cancer type.

Methods
Patient cohort
The patient cohort consisted of 17,523 patients diag-
nosed with a broad range of solid tumors unselected for 

current GT criteria such as cancer type, age of onset, 
and/or family history of disease, who were treated 
at Memorial Sloan Kettering (MSK) Cancer Center 
(MSKCC) and prospectively consented to germline anal-
ysis as part of the MSK Integrated Mutation Profiling of 
Actionable Cancer Targets (MSK-IMPACT; Clini​calTr​
ials.​gov identifier, NCT01775072) paired tumor-blood 
DNA sequencing test between July 2015 and April 2020. 
Patients with cancer consenting to tumor sequencing for 
somatic profiling were offered participation in the MSK-
IMPACT germline study by their treating physicians at 
MSKCC. Pre-test genetic counseling was provided using 
a video consent explaining the risks and benefits of test-
ing for inherited variants. Eligibility was open to all can-
cer patients regardless of cancer type diagnosis or family 
history but was restricted to those who also consented 
to matched tumor sequencing. Peripheral blood samples 
were collected from the participants for GT. The study 
cohort included patients with the following cancer types: 
breast cancer (n = 2243), prostate cancer (n = 2114), 
colorectal cancer (n = 2060), pancreatic cancer (n = 
1648), endometrial cancer (n = 1191), ovarian cancer (n 
= 1122), bladder cancer (n = 838), esophagogastric car-
cinoma (n = 661), renal cell carcinoma (n = 592), glioma 
(n = 499), soft tissue sarcoma (n = 433), biliary cancer 
(n = 410), melanoma (n = 332), non-small cell lung can-
cer (n = 213), embryonal tumor (n = 186), thyroid cancer 
(n = 153), mesothelioma (n = 145), appendiceal cancer 
(n = 133), cervical cancer (n = 122), germ cell tumor (n 
= 119), hepatocellular carcinoma (n = 106), uterine sar-
coma (n = 102), osteosarcoma (n = 96), gastrointestinal 
stromal tumor (n = 85), gastrointestinal neuroendocrine 
tumor (n = 81), non-melanoma skin cancer (n = 77), 
small bowel cancer (n = 73), head and neck carcinoma 
(n = 71), cancer of unknown primary (n = 506), others (n 
= 1112). All patients were tested for 76 or 88 hereditary 
cancer predisposition genes on MSK-IMPACT under an 
institutional review board-approved protocol (please see 
Additional file  1: Table  S1 for the list of genes) [15, 22, 
23]. Genetic testing reports were issued to the medical 
record, and individuals with P/LP variants were invited 
for genetic counseling. The results from eGT of 9187 
patients with five cancer types frequently interrogated 
in traditional guideline-based GT (breast, colorectal, 
ovarian, pancreatic, and prostate cancer) were further 
analyzed to assess the yield in genes that have been asso-
ciated with their cancer type and the clinical implications 

Conclusions:  Compared to targeted testing approaches, eGT can increase the yield of detection of hereditary cancer 
predisposition in patients with a range of tumors, allowing opportunities for enhanced surveillance and intervention. 
The benefits of performing eGT should be weighed against the added number of VUSs identified with this approach.
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of other genes not typically targeted for their disease. All 
patients provided written, informed consent for GT.

Genetic testing and analysis
The MSK-IMPACT germline analysis is a New York 
State Department of Health-approved assay and was 
performed in our CLIA-approved laboratory using next-
generation sequencing on DNA isolated from the blood, 
as described previously [15]. Briefly, DNA was isolated 
from peripheral blood specimens using Chemagic STAR 
DNA Blood-400 kits (PerkinElmer). MSK-IMPACT, a 
hybridization capture-based next-generation sequenc-
ing assay based on custom-designed biotinylated probes 
(NimbleGen) [22, 24], was used for library preparation. 
Captured DNA fragments were sequenced on an Illu-
mina HiSeq 2500 as paired-end 100-bp reads. Variants 
were called using MuTect [25] and Genome Analysis 
Toolkit (GATK) Haplotypecaller [26] and were filtered 
based on 25% variant allele fraction for single nucleotide 
variants (SNVs) and 15% for insertions/deletions (indels) 
and 20× coverage thresholds. All variants with < 1% pop-
ulation frequency in the Genome Aggregation Database 
(gnomAD) [27] were reviewed and interpreted. Copy 
number variants (deletions and duplications of single or 
multiple exons) in the target genes were captured and 
assessed using a validated in-house developed pipeline 
[15, 24]. Variants, including single nucleotide variants, 
small deletions and/or insertions, and copy number vari-
ants, were interpreted and classified by clinical molecular 
geneticists and molecular genetic pathologists based on 
the American College of Medical Genetics and Genomics 
(ACMGG) criteria [28]. Identification of a pathogenic or 
likely pathogenic (P/LP) variant was considered as a posi-
tive result. Variants internally classified as VUS were not 
reported. Clinical impact of P/LP variants was assessed 
based on management guidelines from the National 
Comprehensive Cancer Network (NCCN) [8, 9, 29, 30] 
(summarized in Additional file 2: Table S2).

Genes were grouped based on their penetrance and 
inheritance type (Additional file  3: Table  S3). Five spe-
cific variants or variant types were considered as having 
a different penetrance or inheritance pattern compared 
to the typical pathogenic variants in the respective genes: 
APC p.Ile1307Lys having low penetrance [31], CHEK2 
p.Ile157Thr having uncertain penetrance [32, 33], EGFR 
loss-of-function variants having autosomal recessive 
(AR) inheritance for neonatal ectodermal dysplasia with 
severe skin defects and gastrointestinal dysfunction and 
uncertain risk for lung cancer [34, 35], FH p.Lys477dup 
having AR inheritance for fumarate hydratase deficiency 
with uncertain risk for hereditary leiomyomatosis and 
renal cell cancer (HLRCC) [36], and VHL p.Arg200Trp 
having AR inheritance for Chuvash polycythemia and 

uncertain risk for von Hippel-Lindau syndrome [37, 38]. 
Confidence intervals (95%CI) were calculated based on 
sample sizes using the Wilson/Brown method.

Results
Rate of hereditary cancer predisposition identified in eGT 
of patients with solid tumors
The patient cohort consisted of 17,523 patients with 
a broad range of solid tumors who received eGT. In 
comparison with the incidence rates reported by the 
National Cancer Institute Surveillance, Epidemiology, 
and End Results Program [39], our cohort was particu-
larly enriched for pancreatic, ovarian, endometrial/cervi-
cal, CNS cancers, and sarcomas, while having a relatively 
lower proportion of lung, head/neck, thyroid, breast 
cancers, and melanomas (Additional file 4: Fig. S1). P/LP 
variants were identified in 16.7% (2930/17,523) (95%CI 
16.2–17.3%) of patients overall, with 10.6% (1865/17,523) 
(95%CI 10.2–11.1%) having P/LP variants in a high- or 
moderate-penetrance gene with autosomal dominant 
inheritance (Fig. 1). In cancer types with > 1000 patients 
tested, ovarian cancer had the highest rate of patients 
with P/LP variants (24.2%), followed by pancreatic cancer 
(19.4%) and breast cancer (17.5%), with 18.1%, 13.7%, and 
13% having P/LP variants in high/moderate-penetrance 
genes, respectively. In other cancer types represented 
by a smaller number of patients in our eGT cohort, the 
highest rates of germline P/LP variants were identified in 
gastrointestinal stromal tumors (30.6%), non-small cell 
lung cancer (19.6%), small bowel cancer (19.2%), esoph-
agogastric cancer (17.9%), and mesotheliomas (17.2%), 
with 29.4%, 16%, 12.1%, 16.4%, and 11.6% having P/LP 
variants in high/moderate-penetrance genes, respectively 
(Fig. 1).

Positive results include findings in genes that are 
known to be associated with the patient’s cancer type 
and those in genes that have not been associated with the 
patient’s current disease, which likely represent second-
ary findings. P/LP variants in genes that confer increased 
risk for the individual’s tumor type were also identified in 
patients with cancer types that are not frequently inter-
rogated in traditional targeted GT models, such as 8.2% 
(6/73) of small bowel cancer patients having MLH1, 
MSH2, or PMS2 [40], 4.1% (6/145) of mesothelioma 
patients having BAP1 [41], 3.1% (3/96) of osteosarcoma 
patients having RB1 [42], and 2.5% (11/433) of soft tissue 
sarcoma patients having TP53 [43–45] P/LP variants.

A significant proportion of our cohort (1.2%) had one 
of the three BRCA1/BRCA2 Ashkenazi Jewish founder 
variants [46–48], due to the prevalence of individuals 
with Ashkenazi Jewish ancestry in our patient population 
(16% of patients receiving MSK-IMPACT [49]).
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Diagnostic yield of eGT for breast, colorectal, ovarian, 
pancreatic, and prostate cancer
For patients with breast, colorectal, ovarian, pancreatic, 
and prostate cancer, GT is often pursued in a guideline-
dependent manner, either by targeting a group of genes 
that are strongly associated with the particular cancer 
type or testing larger panels of hereditary cancer pre-
disposition genes including those that are not known 
to increase the risk for the patient’s current disease. We 
assessed the rate of positive results (identification of P/
LP variants) in each gene for these five common cancers 
that are most frequently interrogated for hereditary pre-
disposition in the current practice and evaluated the rate 
of additional findings in genes that are not known to be 
associated with the patient’s cancer type (Fig. 2).

In breast cancer patients (n = 2243), the overall yield of 
eGT was 17.5% (392/2243). BRCA1 and BRCA2 P/LP var-
iants were identified in 2.9% (n = 51) and 2.3% (n = 65) of 
the patients, respectively, and accounted for 26.9% of all 
positive results in these patients. Three other commonly 
targeted genes, CHEK2, ATM, and PALB2 [29, 50–52], 
had a diagnostic yield of 2.5% (n = 56), 1.4% (n = 31), and 
0.7% (n = 15), respectively. High-penetrance genes that 
implicate breast cancer risk and are often targeted in the 
presence of additional features in the patient’s personal 
and/or family history [29, 50–52] and had positive results 

in our cohort include NF1 with 0.2% (n = 5), TP53 with 
0.2% (n = 5), and CDH1 with 0.09% (n = 2) yield. While 
these three genes added a minor increase in the diagnos-
tic yield, all five patients with NF1 variants had features 
of neurofibromatosis type 1, both of the two patients with 
CDH1 variants had lobular breast carcinoma, and one of 
the two patients with TP53 variants had a history of sar-
coma and breast cancer at 29 years of age. One patient 
with the TP53 variant had breast cancer at 44 years of age 
and did not meet the current TP53 GT criteria [43, 53]. 
Other genes with moderate, low, or uncertain penetrance 
that have been implicated in breast cancer [29, 50–52, 
54–56], RECQL, RAD51B, ERCC3, MRE11A, RAD51D, 
BARD1, and NBN, had a yield of 0.3% (n = 7), 0.3% (n = 
7), 0.3% (n = 6), 0.3% (n = 6), 0.2% (n = 4), 0.2% (n = 4), 
and 0.1% (n = 3), respectively.

In colorectal cancer patients (n = 2060), the overall 
yield of eGT was 15.3% (316/2060). The highest rate of 
positive results was in APC, with the low-penetrance 
p.Ile1307Lys variant identified in 1.8% (n = 38) and other 
APC variants in 0.2% (n = 5), followed by monoallelic 
MUTYH variants in 1.7% (n = 36), and Lynch syndrome-
associated variants in MSH2, MLH1, MSH6, and PMS2 
[30] identified in 1.2% (n = 25), 1.1% (n = 23), 0.8% (n 
= 16), and 0.6% (n = 13) of the patients, respectively. 
P/LP variants in other genes that have been associated 

Fig. 1  Distribution of pathogenic/likely pathogenic variants identified in eGT of 17,523 cancer patients across genes and cancer types. The 
distribution of P/LP variants identified in patients with each cancer type, grouped based on gene penetrance and inheritance pattern, is presented. 
The number of patients in each category is in parentheses. Specific variants that show different penetrance or inheritance pattern from typical 
variants in the gene were plotted separately: APC^: APC p.Ile1307Lys; CHEK2^: CHEK2 p.Ile157Thr; FH^: FH p.Lys477dup; and VHL^: VHL p.Arg200Trp. 
Percentage of high/moderate-penetrance (%H/M pen) variants identified in each cancer type and overall percentage of patients with P/LP variants 
(%Overall) are presented with 95% confidence intervals in parentheses
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with colorectal cancer [30, 57], CHEK2, NTHL1 (mono-
allelic variants), MSH3 (monoallelic variants), POLD1, 
BMPR1A, and SMAD4, were identified in 1.6% (n = 34), 
0.3% (n = 7), 0.1% (n = 2), 0.05% (n = 1), 0.05% (n = 1), 
and 0.05% (n = 1) of the patients, respectively. Of note, 
the POLD1 carrier had hyper-mutated colon adeno-
carcinoma, the BMPR1A carrier had a hamartomatous 
polyp, and the SMAD4 carrier had a history of a juvenile 
polyp, consistent with the identified genes, although the 
patients with BMPR1A and SMAD4 variants do not meet 
the current GT criteria for the respective genes [30].

In ovarian cancer patients (n = 1122), the overall yield 
of eGT was 24.2% (272/1122). BRCA1 and BRCA2 P/LP 
variants were identified in 7.2% (n = 81) and 3.9% (n = 
44) of the patients and accounted for 42% of all positive 
results in these patients. Other genes implicated in ovar-
ian cancer [29, 58–60], BRIP1, RAD51D, PALB2, and 
RAD51C, had a yield of 1.1% (n = 12), 0.8% (n = 9), 0.3% 
(n = 3), and 0.09% (n = 1), respectively. MSH2, PMS2, 
and MSH6 variants were identified in 0.3% (n = 3), 0.5% 
(n = 5), and 0.09% (n = 1), with a total of 0.9% of ovar-
ian cancer patients having Lynch syndrome-associated 

variants, and 78% (7/9) of them had endometrioid, clear 
cell, or mixed ovarian carcinoma/carcinosarcoma, 
whereas two had high-grade serous ovarian carcinoma 
[61, 62]. Microsatellite instability (MSI) and/or loss of 
the mutated protein’s expression by immunohistochem-
istry (IHC) in the tumors were detected in five patients, 
who were considered to meet Lynch syndrome GT crite-
ria based on their MSI/mismatch repair-deficient tumor 
profiles [62], whereas four patients with MSH2 or PMS2 
variants had microsatellite stable/indeterminate tumors 
with retained mismatch repair protein expression. Addi-
tionally, SMARCA4 variants were identified in three 
patients with small cell carcinoma of the ovary, hyper-
calcemic type, accounting for 0.3% of our ovarian cancer 
patient cohort.

In pancreatic cancer patients (n = 1648), the overall 
yield of eGT was 19.4% (319/1648). BRCA2, ATM, and 
BRCA1 [29] variants were identified in 4.2% (n = 70), 
2.2% (n = 36), and 1.8% (n = 29) of the patients, respec-
tively. PALB2 and CDKN2A [29] had a yield of 0.7% (n 
= 12) and 0.4% (n = 7), respectively. Variants in PMS2, 
MSH2, MSH6, and MLH1 [29] were identified in 0.2% (n 

Fig. 2  Rate of positive results identified in each gene in patients with five common cancer types. Percentage of patients with breast cancer (n = 
2243), colorectal cancer (n = 2060), ovarian cancer (n = 1122), pancreatic cancer (n = 1648), and prostate cancer (n = 2114) who had P/LP variants 
in genes that have been associated with each cancer type. Error bars represent 95% confidence intervals
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= 4), 0.2% (n = 3), 0.2% (n = 3), and 0.1% (n = 2), respec-
tively, with 0.7% of pancreatic cancer patients having 
Lynch syndrome-associated variants overall.

In prostate cancer patients (n = 2114), the overall yield 
of eGT was 15.9% (337/2114). BRCA2, CHEK2, ATM, 
BRCA1, PALB2, and HOXB13 [63] variants were identi-
fied in 3.5% (n = 75), 2.5% (n = 54), 1.4% (n = 30), 0.6% 
(n = 12), 0.5% (n = 11), and 0.3% (n = 7) of the patients, 
respectively. Additionally, MSH2, MSH6, and PMS2 [63] 
variants were identified in 0.4% (n = 8), 0.2% (n = 5), and 
0.2% (n = 4), with 0.8% of prostate cancer patients having 
Lynch syndrome-associated variants overall.

Additional findings discovered in eGT
For individuals with breast, colorectal, ovarian, pancre-
atic, and prostate cancer, we next sought to characterize 
the additional P/LP variants in genes other than those 
that are associated with the patient’s current cancer type, 
as described above. Overall, 765 additional P/LP variants 
in genes not known to be associated with the patient’s 
current cancer type were identified in 8% (736/9187) of 
the patients with five common cancer types, with 0.3% 
(29/9187) having multiple such variants (Fig.  3). Addi-
tional findings were identified in 7% (156/2243) of breast, 
6.8% (140/2060) of colorectal, 11.2% (125/1122) of ovar-
ian, 10% (164/1648) of pancreatic, and 7.2% (151/2114) 
of prostate cancer patients. Additionally, 1.7% of breast, 
1.5% of colorectal, 2.2% of ovarian, 1.4% of pancreatic, 
and 1.1% of prostate cancer patients had multiple P/LP 
variants identified in eGT, including those in genes that 
are associated with their cancer type.

Overall, 3.3% (299/9187) of patients had an additional 
finding that indicated early or additional surveillance, and 
0.2% (17/9187) had a finding that indicated prophylactic 
surgery recommendations to reduce future cancer risks 
for the patient and their carrier family members (Fig. 3, 
Additional file  2: Table  S2). Monoallelic variants in AR 
genes conferring carrier status, which are not expected 
to increase disease risk but may have reproductive plan-
ning implications, were identified in 3% (278/9187) of the 
patients.

A total of 69 patients (0.8%) had a P/LP variant in a 
high-penetrance gene that is not associated with their 
cancer type (Table  1). We retrospectively reviewed the 
detailed clinical and family histories of these patients to 
assess whether they had any clinical features or history 
that was consistent with these findings and if they met 
the traditional GT criteria for the identified genes per 
current NCCN guidelines. Of the 69 patients, 18 (26%) 
met the current criteria to receive GT for the additional 
gene identified in eGT based on their personal and/
or family histories. These include four colorectal can-
cer patients with BRCA1/BRCA2 and a history of breast 

cancer, one breast cancer patient with MLH1 and a his-
tory of endometrial cancer, one colorectal cancer patient 
with RB1 and a history of retinoblastoma, one colorectal 
cancer patient with NF1 and features of neurofibroma-
tosis type 1, one prostate cancer patient with FLCN and 
fibrofolliculomas and lung cysts, and one pancreatic 
cancer patient with TSC1 and angiomyolipoma, brain 
lesions, and bilateral renal cysts, which were discovered 
upon receiving eGT results (Table 1). Nine patients met 
the GT criteria based on their family histories.

Fifty-one patients (74% of patients with high pene-
trance additional findings) did not meet the current cri-
teria to receive GT for the additional gene identified in 
eGT. These include patients with P/LP variants identified 
in BRCA1/BRCA2 (n = 9), MSH6/PMS2 (n = 7), FLCN (n 
= 4), SDHB/SDHC/SDHAF2 (n = 3), TP53 (n = 3), BAP1 
(n = 3), CDKN2A (n = 3), DICER1 (n = 3), PALB2 (n = 
3), RET (n = 3), CDH1 (n = 1), ETV6 (n = 1), PTCH1 
(n = 1), VHL (n = 1), and NF1 (n = 1 (mosaic)). Addi-
tionally, six patients had FH P/LP variants (p.Gln376Pro 
(n = 3), p.His402Tyr (n = 2), p.Gly397Arg (n = 1)) that 
have been reported in homozygous and compound het-
erozygous patients with fumarate hydratase deficiency, 
but have not, to our knowledge, been reported in patients 
with HLRCC. Five of the six patients with these variants 
had no known features of HLRCC and one of them had 
uterine fibroids. Therefore, although these variants were 
classified as P/LP for AR fumarate hydratase deficiency, 
whether they confer increased risk for HLRCC is cur-
rently uncertain.

Variants of uncertain significance (VUSs) identified in eGT
One of the main concerns restricting the use of eGT is 
the potential burden of assessing VUSs by laborato-
ries performing the test. To understand the impact of 
VUSs in variant interpretation and reporting processes 
of eGT, we analyzed the number of variants classified 
as VUS in patients with one of the five common cancer 
types. Overall, 57% (5238/9187) of the patients had at 
least one VUS identified, with 56.8% (1275/2243), 59.4% 
(1223/2060), 52.5% (589/1122), 54.5% (898/1648), and 
59.3% (1253/2114) of breast, colorectal, ovarian, pan-
creatic, and prostate cancer patients having at least one 
VUS, respectively. The number of VUSs identified ranged 
from zero to nine, with a median of one VUS per patient.

Discussion
Our analyses on 17,523 patients with solid tumors 
revealed that eGT would be beneficial for individuals 
with many cancer types, including those who do not fre-
quently receive GT in the current practice. In the present 
study, 16.7% of patients had at least one P/LP variant in 
cancer susceptibility genes, which is higher than 13.3% 
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reported recently by Samadder et  al. in 2984 cancer 
patients [64]. Differences observed in positivity rates 
may be due to varying proportions of cancer types in 
two cohorts, patient populations at different cancer care 
institutions, possible biases in the referral of patients, and 
differences in sequencing assays and analysis pipelines. 

While our current study was performed in the context 
of concurrent tumor-normal sequencing, the overall rate 
of germline P/LP variants detected here is lower than the 
30.6% ratio previously reported in patients who under-
went germline testing following tumor sequencing [65], 
consistent with observations that follow-up germline 

Fig. 3  Pathogenic/likely pathogenic variants identified in genes not associated with the patient’s cancer type. Genes were grouped based on 
inheritance pattern, and autosomal dominant genes were further grouped based on penetrance as high, moderate, low, and uncertain. In three 
genes, only specific variants were targeted: HOXB13 p.Gly84Glu, MITF p.Glu318Lys, and YAP1 p.Arg331Trp. Certain variants were considered as 
having different penetrance or inheritance pattern from typical variants in the gene: APC p.Ile1307Lys and CHEK2 p.Ile157Thr as having uncertain 
penetrance; FH p.Lys477dup, VHL p.Arg200Trp, and EGFR loss-of-function variants as being AR. The percentage of carriers within each cancer type is 
presented in the upper panels. The number of P/LP variants identified in each gene and cancer type are presented in the lower panels
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Table 1  Additional high-penetrance P/LP variants identified via eGT in genes not associated with the patient’s cancer type

Pt # Gender Cancer Dx at 
the time of 
testing

Age 
range 
at Dx

Additional 
high-
penetrance 
gene 
identified

Meets the GT 
criteria for 
the additional 
gene?

Other genes 
identified in 
eGT

Other Hx of 
cancer

OncoKB 
classification

Future 
cancer risk 
management 
implications

1 F Colorectal 60s BRCA2 Y Breast 3B Surveillance and 
prophylactic 
surgery

2 F Colorectal 70s BRCA2 Y Breast, lung, 
sarcoma, skin

3B Surveillance and 
prophylactic 
surgery

3 M Prostate 50s FLCN Y CHEK2 NA Surveillance

4 F Colorectal 80s ETV6 N Breast, kidney, 
chronic 
lymphocytic 
leukemia

3B Surveillance

5 F Breast 60s MSH6 N Breast NA Surveillance

6 F Colorectal 60s BRCA1 Y Breast 3B Surveillance and 
prophylactic 
surgery

7 M Colorectal 50s BRCA2 Y FANCC 3B Surveillance

8 F Breast 60s FH N NA Surveillance

9 F Breast 40s CDKN2A N Melanoma NA Surveillance

10 F Breast 30s CDKN2A N NA Surveillance

11 F Breast 50s MSH6 N NA Surveillance

12 M Prostate 50s VHL N NA Surveillance

13 F Breast 40s FH N CHEK2 NA Surveillance

14 M Prostate 60s SDHB N NA Surveillance

15 F Colorectal 50s BRCA2 Y Vulva 3B Surveillance and 
prophylactic 
surgery

16 F Breast 30s MLH1 Y Uterus 1* Surveillance

17 F Breast 40s PMS2 N NA Surveillance

18 F Colorectal 50s CDH1 N NA Surveillance and 
prophylactic 
surgery

19 F Pancreas 60s FLCN N NA Surveillance

20 M Colorectal 70s FLCN N CHEK2 Prostate NA Surveillance

21 M Prostate 50s TP53 N Stomach NA Surveillance

22 M Colorectal 40s BRCA2 N APC 
p.Ile1307Lys

3B Surveillance

23 F Colorectal 50s BRCA2 N 3B Surveillance and 
prophylactic 
surgery

24 F Breast 30s MSH6 N NA Surveillance

25 M Pancreas 60s STK11 Y NA Surveillance

26 F Breast 60s FLCN N NA Surveillance

27 M Prostate 50s FH N NA Surveillance

28 F Pancreas 50s TSC1 Y 3B Surveillance

29 M Colorectal 50s BRCA2 Y Bladder 3B Surveillance

30 F Ovarian 40s TP53 N Breast NA Surveillance and 
prophylactic 
surgery

31 F Colorectal 40s BRCA2 N MUTYH, FH 
p.Lys477dup

3B Surveillance and 
prophylactic 
surgery

32 F Breast 40s PMS2 N NA Surveillance
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Table 1  (continued)

Pt # Gender Cancer Dx at 
the time of 
testing

Age 
range 
at Dx

Additional 
high-
penetrance 
gene 
identified

Meets the GT 
criteria for 
the additional 
gene?

Other genes 
identified in 
eGT

Other Hx of 
cancer

OncoKB 
classification

Future 
cancer risk 
management 
implications

33 M Colorectal 30s BRCA2 N 3B Surveillance

34 F Colorectal 40s BRCA2 Y MUTYH 3B Surveillance and 
prophylactic 
surgery

35 F Breast 30s SDHAF2 N NA Surveillance

36 F Colorectal 70s BRCA2 Y 3B Surveillance and 
prophylactic 
surgery

37 F Pancreas 50s FH N BRCA2 NA Surveillance

38 M Colorectal 70s BRCA1 N Eye 3B Surveillance

39 F Colorectal 50s TP53 N NA Surveillance and 
prophylactic 
surgery

40 F Breast 50s BAP1 N NA Surveillance

41 F Colorectal 20s FH N NA Surveillance

42 F Breast 40s DICER1 N NA Surveillance

43 F Colorectal 50s BRCA1 Y 3B Surveillance and 
prophylactic 
surgery

44 M Colorectal 40s PALB2 N 3B

45 F Breast 30s PMS2 N NA Surveillance

46 M Colorectal 40s BRCA1 N 3B Surveillance

47 F Colorectal 50s BRCA1 N 3B Surveillance and 
prophylactic 
surgery

48 M Prostate 60s SDHC N NA Surveillance

49 M Colorectal 30s FLCN N NA Surveillance

50 M Colorectal 50s BRCA2 N 3B Surveillance

51 F Breast 40s RET N BRCA1 Skin 3B Surveillance

52 M Colorectal 20s BRCA1 N CHEK2, ERCC3 3B Surveillance

53 F Breast 50s MSH6 N Uterus NA Surveillance

54 F Colorectal 30s BRCA2 Y MITF Breast 3B Surveillance and 
prophylactic 
surgery

55 M Colorectal 60s BRCA2 Y 3B Surveillance

56 M Colorectal 30s BRCA1 Y MLH1 3B Surveillance

57 M Colorectal 60s BAP1 N PMS2 NA Surveillance

58 F Breast 40s DICER1 N NA Surveillance

59 M Colorectal 40s PALB2 N 3B

60 M Breast 50s CDKN2A N NA Surveillance

61 F Ovarian 50s BAP1 N NA Surveillance

62 M Prostate 50s DICER1 N NA Surveillance

63 F Colorectal 60s FH N NA Surveillance

64 M Colorectal 40s NF1 Y 3B Surveillance

65 F Colorectal 40s PTCH1 N NA

66 M Colorectal 60s RET N 3B Surveillance

67 M Colorectal 50s RET N 3B Surveillance

68 F Colorectal 30s RB1 Y APC 
p.Ile1307Lys

Retinoblastoma NA Surveillance
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testing after tumor sequencing may be preferentially per-
formed for patients with the highest level of suspicion 
for having hereditary cancer predisposition and may be 
underused for others, as proposed by the authors [65].

Our results are consistent with prior observations that 
a significant proportion of patients with hereditary can-
cer predisposition were not detected by guideline-based 
GT models employed at that time [15, 64, 66] and also 
suggest that eGT, compared to current multigene panels, 
can identify some patients at high risk to develop other 
cancers in the future. These findings would allow oppor-
tunities for early surveillance and, in a small subset of 
cases, prophylactic interventions for patients and their 
family members, which would not have been detected 
using currently employed phenotype targeted gene pan-
els. Currently, gene panels targeted for each condition 
vary widely among different institutions and laboratories. 
While some groups test a broad range of genes that have 
been implicated in a cancer type, others may choose to 
only target genes with high diagnostic yield or restrict 
testing to patients with specific phenotypes only (i.e., 
CDH1 in patients with lobular breast cancer and per-
sonal/or family history of gastric cancer, TP53 in patients 
who meet Li-Fraumeni syndrome GT criteria, NF1 in 
patients with known features of neurofibromatosis type 
1, juvenile polyposis syndrome genes such as BMPR1A 
and SMAD4 in patients with multiple juvenile polyps, or 
POLD1 in colorectal cancer patients with demonstrated 
high mutation burden). However, it has been increasingly 
recognized that the phenotypic spectrum of cancer genes 
may be wider than previously recognized and patients 
may present with mild features that may be missed with-
out thorough clinical evaluation. One group of genes that 
is typically targeted in a selected manner is Lynch syn-
drome genes. In the current study, Lynch syndrome was 
identified in 0.9% of ovarian and 0.8% of prostate can-
cer patients receiving eGT. Lynch syndrome genes are 
recently included in GT guidelines for prostate cancer 
patients. Ovarian cancer patients, however, are typically 
tested for Lynch syndrome genes only if they have prior 
personal or family history that meets Lynch syndrome 
GT criteria, their tumors have endometrioid/clear cell 

histology, or are demonstrated to harbor MSI and/or mis-
match repair (MMR) protein deficiency, although MSI 
and MMR profiling are not routinely performed for ovar-
ian cancer patients at all institutions. Additionally, four 
of nine ovarian cancer patients with Lynch syndrome in 
our study did not have MSI or MMR protein deficiency 
by IHC. Similarly, in our breast cancer patients, genes 
that are often only targeted in the presence of additional 
personal and/or family history, such as NF1, TP53, and 
CDH1, added a minor increase in the diagnostic yield, 
but they established a molecular diagnosis for the under-
lying condition for these patients, providing clinical ben-
efit. In fact, both of the two patients with CDH1 variants 
and one of the two patients with TP53 would have been 
missed based on the current GT criteria.

There are various reasons for restricting GT to selected 
genes, including resources needed for laboratories to 
assess a larger number of genes/variants and pre-/post-
test genetic counseling regarding additional findings. 
For laboratories, the highest impact is expected to be on 
the increase in the number of variants interpreted post-
sequencing. Due to the content overlap in many targeted 
cancer gene panels and to allow customization, in current 
practice, clinical laboratories often sequence multiple 
gene panels using a single probe set and limit the analysis 
to targeted genes in downstream analyses. Therefore, the 
benchwork and sequencing costs for a small gene panel 
are often comparable to those of sequencing larger gene 
panels, while more variants that require expert review 
and classification are expected to be uncovered as the 
number of targeted genes increases. Our results suggest 
that eGT would identify additional VUSs in a significant 
portion of patients receiving eGT. VUSs pose various 
challenges for laboratories, clinicians, and patients. Labo-
ratories may need to perform additional analyses, such 
as segregation or RNA studies, to help clarify the clini-
cal significance of VUSs and dedicate resources to peri-
odically capture recently published data for reassessing 
VUSs, which may lead to reclassification [67–70]. VUSs 
may cause difficulties for clinicians in the risk assessment 
and counseling of the patients and their family members 
[71–73] and may also potentially be misinterpreted or 

Table 1  (continued)

Pt # Gender Cancer Dx at 
the time of 
testing

Age 
range 
at Dx

Additional 
high-
penetrance 
gene 
identified

Meets the GT 
criteria for 
the additional 
gene?

Other genes 
identified in 
eGT

Other Hx of 
cancer

OncoKB 
classification

Future 
cancer risk 
management 
implications

69 M Colorectal 30s NF1 (mosaic) N 3B Surveillance

PALB2 N 3B

Pt patient, Dx diagnosis, Hx history, F female, M male, Y yes, N no
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lead to increased anxiety for the patients [74–76]. There-
fore, the benefits of performing eGT should be weighed 
against the added number of VUSs identified with this 
approach.

This study has several limitations. First, as men-
tioned above, our cohort consisted of patients 
treated at a large cancer care center, and patients 
were enrolled in eGT by their referring physicians. 
Although previously known hereditary predisposition 
was not an exclusion criterion, there may be physi-
cian biases in the enrollment of such patients in the 
study cohort. Second, although our cohort was unse-
lected for cancer type, age of onset, race/ethnicity, or 
family history, it consisted of patients who received 
paired tumor sequencing. Therefore, it was enriched 
for those undergoing systemic therapy and thus with 
advanced disease. In the recent study by Samadder 
et  al. [64], the rate of germline findings did not vary 
based on the patient’s stage of disease and was simi-
lar in patients with stage 0–2 and those with stage 3–4 
cancer, suggesting that the impact of disease stage on 
the rate of germline findings may not be substantial, 
although other factors, such as tumor site, cannot be 
excluded. Third, our assay has limitations in detect-
ing certain variants such as structural rearrangements, 
transposon element insertions, and low-level mosai-
cism, and therefore, the occurrence of such variants 
cannot be excluded. Finally, gene-disease associations 
and genetic testing guidelines are not static, and there-
fore, the relevance of a gene for a given cancer type 
and whether an individual meets the GT criteria for a 
specific gene may change over time.

The widespread use of multigene panels and the 
expansion in preventative and treatment implications 
of germline findings have raised a question on whether 
universal genetic testing should be offered to all cancer 
patients [16, 49, 64, 77]. The results of our study sup-
port that expanding patient and gene selection crite-
ria for hereditary cancer predisposition testing would 
identify actionable findings and provide clinical benefit 
for larger groups of cancer patients and their families. 
Our findings demonstrate that in both more common 
and in rare cancer types, a substantial proportion of 
individuals in our cohort carried germline variants con-
ferring cancer susceptibility. Since this study was per-
formed at a large cancer referral hospital, studies on the 
yield of eGT in patients treated at community hospi-
tals and clinics and larger cohorts of patients with rare 
cancer types will help better understand whether these 
results would be more broadly representative. Cer-
tainly, clinical outcomes in carriers identified via eGT, 
risks associated with discovery of uncertain findings, 
availability of appropriate care following testing, and 

cost-benefit analyses will also need to be considered 
to fully understand the feasibility and utility of an eGT 
approach. It should also be noted that as the number of 
germline alterations associated with therapeutic impli-
cations increases, the importance of identifying carri-
ers of these germline pathogenic variants will become 
even more critical for proper clinical management.

Conclusions
eGT can identify hereditary cancer predisposition in 
patients with a broad range of solid tumors, which would 
not have been detected by current guideline-based GT 
models, including findings that indicate a high risk to 
develop other cancers in the future. Therefore, eGT can 
allow increased opportunities for cancer surveillance and 
intervention for patients and their at-risk family mem-
bers, as compared to traditional targeted gene panel test-
ing approaches.
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