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Abstract 

Background:  The “HER2-low” nomenclature identifies breast carcinomas (BCs) displaying a HER2 score of 1+/2+ in 
immunohistochemistry and lacking ERBB2 amplification. Whether HER2-low BCs (HLBCs) constitute a distinct entity is 
debated.

Methods:  We performed DNA and RNA high-throughput analysis on 99 HLBC samples (n = 34 cases with HER2 
score 1+/HLBC-1, n = 15 cases with HER2 score 2+ and ERBB2 not amplified/HLBC-2N, and n = 50 cases with score 
2+ and ERBB2 copy number in the equivocal range/HLBC-2E). We compared the mutation rates with data from 1317 
samples in the Memorial Sloan-Kettering Cancer Center (MSKCC) BC cohort and gene expression data with those 
from an internal cohort of HER2-negative and HER2-positive BCs.

Results:  The most represented mutations affected PIK3CA (31/99, 31%), GATA3 (18/99, 18%), TP53 (17/99, 17%), and 
ERBB2 (8/99, 8%, private to HLBC-2E). Tumor mutational burden was significantly higher in HLBC-1 compared to HLBC-
2E/N (P = 0.04). Comparison of mutation spectra revealed that HLBCs were different from both HER2-negative and 
HER2-positive BCs, with HLBC-1 resembling more HER2-negative tumors and HLBC-2 mutationally related to HER2-
addicted tumors. Potentially actionable alterations (annotated by using OncoKB/ESCAT classes) affected 52 patients. 
Intra-group gene expression revealed overlapping features between HLBC-1 and control HER2-negative BCs, whereas 
the HLBC-2E tumors showed the highest diversity overall. The RNA-based class discovery analysis unveiled four sub-
sets of tumors with (i) lymphocyte activation, (ii) unique enrichment in HER2-related features, (iii) stromal remodeling 
alterations, and (iv) actionability of PIK3CA mutations (LAURA classification).

Conclusions:  HLBCs harbor distinct genomic features when compared with HER2-positive and HER2-negative BCs; 
however, differences across IHC classes were also unveiled thus dissecting the full picture of heterogeneity across 
HER2-low disease. The HLBC-2E category harbors most distinctive features, whereas HLBC-1 seems superimposable to 
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Background
HER2 overexpression in breast cancer (BC) is strictly 
connected to the underlying presence of ERBB2 ampli-
fication [1] to which they become addicted [2], provid-
ing the basis of successful treatment of these tumors 
with traditional and novel anti-HER2 agents [1]. BCs 
have been historically classified as HER2-positive ver-
sus HER2-negative based on a combination of immu-
nohistochemistry (IHC) and in situ hybridization (ISH) 
techniques [1, 3]. Anti-HER2 agents have been reserved 
to patients with BC expressing high levels of HER2 pro-
tein or with ERBB2 amplification. Recently, increasing 
evidence indicates that a subset of patients affected by 
BCs expressing HER2 on the membrane at low levels 
detectable by standard IHC (score 1+ or 2+) but lack-
ing ERBB2 amplification can respond to novel anti-
body-drug conjugates (ADCs) targeting HER2 [4–6]. 
The presence of HER2 on the plasma membrane offers 
an anchor to ADCs, which enter the cell and exert 
tumor killing [1].

At present, HER2-low BC (HLBC) is mainly an opera-
tional term. Although the current IHC-based classifica-
tion allows identifying a potentially clinically targetable 
disease, whether HLBC constitutes a specific, biologi-
cally meaningful BC class remains to be demonstrated. 
HLBCs account for up to 55% of all BCs and are more 
frequently estrogen receptor (ER)-positive [7]. These 
tumors preferentially belong to the luminal molecular 
subtypes and harbor higher ERBB2 mRNA levels com-
pared to HER2-negative tumors [8, 9]. We [10] and 
others [9] have demonstrated that the HER2-enriched 
subtype can be encountered in HLBCs. Of note, this 
seems to happen at a significantly higher frequency 
compared to HER2-negative BCs.

Here, we aimed at characterizing HLBCs at the molec-
ular level to assess whether they represent a distinct 
entity. Specifically, we (i) charted the mutational and 
transcriptional landscape of a large cohort of well-char-
acterized HLBCs, (ii) revealed a possible heterogeneity 
among HLBCs stemming from genomic features, and (iii) 
compared the genomic landscape of HLBCs with HER2-
positive and HER2-negative BCs.

Methods
Cohorts
We collected 99 early BC patients affected by tumors 
lacking ERBB2 amplification (ERBB2/CEP17 ratio < 2, 
ERBB2 copy numbers < 6 by FISH analysis) and showing 
either a score of 1+ or 2+ in IHC (herein named HLBC-
FPO cohort, Fig. 1A). IHC stainings (4B5 assay by Roche-
Ventana, Tucson, USA) were re-assessed based on the 
ASCO-CAP guidelines [3]. The final cohort was subdi-
vided into three IHC-based categories: 34 samples HER2 
score 1+ (HLBC-1), 15 samples HER2 score 2+ with 
ERBB2 copy number < 4 that is equal to negative HER2 
status (HLBC-2N), and 50 samples HER2 score 2+ with 
ERBB2 copy number in the equivocal range between 4 
and 6 (HLBC-2E) (Fig. 1A).

This is a series of non-consecutive archival formalin-
fixed paraffin-embedded (FFPE) primary carcinomas. 
The cases were selected based on (i) having optimal tis-
sue fixation (to avoid biases in the definition of HER2-low 
category) and (ii) showing adequate cellularity, i.e., more 
than 90% of tumor cell content after mesodissection (to 
allow downstream analyses).

The cases were collected in the frame of a pro-
spective protocol approved by the “Istituto di Can-
diolo FPO-IRCCS” Ethical Committee (“Profiling” 

HER2-negative disease. Further studies are needed to ascertain whether the four genomic-driver classes of the LAURA 
classification hold prognostic and/or predictive implications.
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(See figure on next page.)
Fig. 1  Description of the study cohorts. A Consort diagram of the HER2-low breast cancer (HLBC)-FPO cohort. A total of 99 patients were included, 
characterized by an IHC score 1+ (n = 34) or 2+ and FISH non-amplified (n = 65). HLBC-2 comprised lesions harboring a ERBB2 copy number 
(CN) < 4 and a ratio ERBB2/CEP17 ≤ 2 (FISH-negative, HLBC-2N, n = 15) and tumors with ERBB2 FISH results in the equivocal range (ratio ERBB2/
CEP17 < 2, CN ≥ 4 and < 6, HLBC-2E, n = 50). B Consort diagram of the public Memorial Sloan-Kettering Cancer Center (MSKCC) BC cohort, which 
was exploited for comparison of mutational landscapes. The MSKCC BC cohort contains (i) discrete HER2 IHC scores, (ii) gene mutations identified 
with a DNA-based targeted panel, and (iii) histopathological data (ER status, histological grade). From 1756 samples, we derived two populations: 
(i) the unmatched cohort including 1317 annotated samples and (ii) the matched cohort, which contains 545/1317 samples matched by ER 
status and histological grade of the HLBC-FPO cohort. The detailed inclusion criteria are described in the “Methods” section and Additional file 1: 
Supplementary Methods section; a summary of the criteria is illustrated in the figure. C Consort diagram of the control cohort for RNA-based 
analyses. A control cohort of BC was retrieved from our archives (n = 45), composed of HER2-negative (score 0, n = 30) and HER2-positive (score 
3+, n = 15). These cases were profiled by the NanoString BC360 panel, similarly to the HLBC-FPO cohort. Legend: *public control cohort for DNA 
data comparison; §cases score 2+ ERBB2 not amplified; red colored text for HLBC-MSKCC cases; **internal control cohort for RNA data comparison
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#001-IRCC-00IIS-10, Clini​calTr​ials.​gov Identifier: 
NCT03347318 [11], see Declarations section). Details 
about the survival data (in terms of relapse-free survival) 

and type of adjuvant treatment (endocrine therapy, chem-
otherapy) were collected for all of the patients regularly 
followed up at our institution.

Fig. 1  (See legend on previous page.)

http://clinicaltrials.gov
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The study includes two sets of control cohorts. To 
compare the mutational landscape of HLBC-FPO with 
HER2-negative and HER2-positive BCs, we exploited 
publicly available targeted sequencing data from the 
Memorial Sloan-Kettering Cancer Center (MSKCC 
cohort [12], Fig.  1B). We actually screened all the BC 
open datasets of gene mutations available on cBiopor-
tal (last access date 2021 December 31) [13]. To allow 
a balanced comparison, the control set needed to con-
tain (i) score-based evaluation of HER2 IHC data for 
the HER2-low group and subgrouping definition, (ii) 
mutational data generated from a DNA-based targeted 
panel, and (iii) clinico-pathological data to match the 
features of the HLBC-FPO cohort (at least informa-
tion about ER status and histological grade). By tak-
ing into account the previous parameters, the MSKCC 
cohort resulted the best-suited publicly available con-
trol cohort.

Conversely, since for gene expression analysis we used a 
NanoString approach that is not been widely adopted, we 
profiled a series of HER2-negative (n = 30) and HER2-
positive (n = 15) BCs selected from our archives and 
collected in the frame of the “Profiling” protocol quoted 
above for HLBCs (Fig. 1C and Additional file 1: Supple-
mentary Methods).

DNA‑based targeted sequencing
DNA extracted from the 99 formalin-fixed paraffin-
embedded (FFPE) samples (80 ng) was subjected to 
deep sequencing using the TruSight Oncology (TSO) 
500 panel (Illumina, San Diego, USA; 523 genes, size: 
1.94 Mb), following the manufacturer’s protocol, which 
assesses microsatellite instability (MSI) status (120 loci), 
tumor mutation burden (TMB), and copy number (CN) 
data (59 genes). The choice of a targeted panel was based 
on the robustness of the performance of this technique 
on DNA extracted from FFPE samples.

Libraries were sequenced on a NovaSeq 6000 instrument 
(Illumina) to reach a minimum of 500× read depth. Data 
processing is described in Additional file 1: Supplementary 
Methods. Actionability of the mutations was annotated 
with OncoKB [14] and the ESMO Scale for Clinical Action-
ability of Molecular Targets (ESCAT) [15, 16]. Mutational 
signatures were assessed as previously reported [17]. The 
TMB was assessed by the local app as the ratio between 
the total somatic, non-synonymous variants with a variant 
allele frequency (VAF) > 0.05 and the sequenced genome 
for each sample, as reported here [17]. InterVar pipeline 
[18] and ClinVar significance [19] were used to assess the 
germline pathogenic variants in BC susceptibility genes 
[20]. The level of pathogenicity was annotated by using the 
ANNOVAR tool [21].

Assembly of the control cohort for comparison 
of mutational landscapes
Mutational data were compared to the public MSKCC 
BC cohort [12], which contains (i) discrete HER2 IHC 
scores, (ii) gene mutations identified with a DNA-based 
targeted panel with wet and bioinformatic conditions 
similar to the one employed in our study, and (iii) his-
topathological data (ER status, histological grade) (see 
also Additional file 1: Supplementary Methods).

Molecular and histopathological data were down-
loaded from cBioPortal [13]. From 1756 samples, we 
derived two populations: (i) the unmatched cohort 
including 1317 annotated samples and (ii) the matched 
cohort, which contains 545/1317 samples matched by 
ER status and histological grade of the HLBC-FPO 
cohort. Hence, each group of the control cohort was 
composed of 90% of ER-positive and 10% of ER-neg-
ative samples; in addition, the ER-positive samples 
comprised 55% of high-grade tumors (G3), and the ER-
negative samples were composed of 80% of G3 tumors 
(Fig. 1B).

Targeted gene expression profiling
RNA-targeted gene expression profiling (tGEP) was 
carried out on 91 HLBCs, 30 HER2-negative, and 15 
HER2-positive samples using the BreastCancer 360™ 
Panel (NanoString Technologies, Seattle, USA, 776 BC-
related genes), following the manufacturer’s protocol. 
The nSolver Software (NanoString Technologies) with 
the nSolver Advanced Analyses calculated the pathway 
score as the first principal component of the pathway 
genes normalized expression, the cell type score [22], 
and the differential gene expression (DGE) analysis, 
performed with respect to covariates (ER status, IHC 
subtype, and tumor grade, “G”) (Additional file 1: Sup-
plementary Methods).

On the tGEP data, we also applied the consensus-
based non-negative matrix factorization (NMF) algo-
rithm to devise a class discovery experiment by using 
the R tool “NMF” [23]. We selected the most variable 
genes (top 33% genes), and NMF was carried out by 
using a predetermined number of clusters (K), which 
varied from 2 to 6. Since this experiment was run to 
identify a novel classification system based on the dif-
ferent clusters stemming from the NMF analysis, 
we selected the clustering size by (i) ranking the best 
cophenetic coefficients and (ii) discarding clustering 
overlapping the PAM50 intrinsic subtyping [24], to 
identify new RNA-based classes.

After class discovery, nSolver Advanced Analysis was 
re-applied to evaluate the differential gene expression 
analysis between the classes.
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Orthogonal validation
MSI data were confirmed by IHC of the mismatch 
repair (MMR) proteins and by using a PCR-based assay. 
Selected CN alterations (CNA, affecting KRAS, MET, 
FGFR1, CCND1, ERBB2) were investigated by FISH. 
Details are available in the Additional file 1: Supplemen-
tary Methods.

Statistical methods
Statistics were assessed by using the R software v4.03. 
Distribution differences were assessed by using an 
unpaired T-test and contingency by Fisher’s exact test, 
always with FDR adjustment. P-values were considered 
significant when P < 0.05.

Results
HLBC‑FPO cohort
The histopathological features of the HLBC-FPO series 
are summarized in Additional file 2: Table S1. The large 
majority were ER-positive BCs (88/99, 88.9%; range: 
65–99%), and no ER-low [3] carcinomas were observed. 
Half of the series (54.5%) was composed of G3 carcino-
mas, and 68% of cases showed Ki67 values above 20%.

The IHC surrogate molecular subtype included lumi-
nal-B tumors (81/99, 81.8%) followed by luminal-A and 
triple-negative carcinomas (both 9/99, 9.1%). PAM50 
subtyping was available for 89/99 cases, of which 29 were 
luminal-A (29.3%), 50 luminal-B (50.5%), four HER2-
enriched (4.1%), and six basal-like tumors (6.1%).

The genetic make‑up of HLBCs
The mean read-depth for the 99 sequenced samples 
was 523× (Additional file  3: Table  S2). The average 
TMB value was 6.24 mutations per megabase (mut/Mb) 
(range: 0–42.52). HLBC-1 carcinomas showed signifi-
cantly higher TMB values (8.46, 95%CI = 5.47–11.46) 
with a sub-clonal variant allele frequency (VAF = 0.175, 
95%CI = 0.15–0.18) compared to HLBCs-2N (TMB = 
4.70, 95%CI = 2.4–6.99, P = 0.04; VAF = 0.244, 95%CI 
= 0.21–0.28, P < 0.01, unpaired T-test) and HLBCs-2E 
(TMB = 5.18, 95%CI = 4.12–6.24, P = 0.04; VAF = 0.256, 
95%CI = 0.23–0.27, P < 0.01 unpaired T-test) (Fig.  2A, 
B). When evaluating the most superimposable COSMIC 
mutational signatures [25, 26], the HLBC cohort showed 
four main signatures (signatures 1, 5, 13, and 20). HLBC-
2N and HLBC-2E cohorts showed the same mutational 
features (signatures 1, 5, and 13), whereas the HLBCs-1 
showed one additional private signature (signature 30) 
(Additional file 4: Fig. S1).

The most frequently mutated genes were PIK3CA 
(31/89, 33%), GATA3 (18/99, 18%), TP53 (17/99, 17%), 
and ERBB2 (8/99, 8%) (Fig.  2C). We also identified 10 
somatic mutations in hereditary BC-associated genes 

(BARD1, BRCA2, PALB2). From a germline standpoint, 
we detected two pathogenic variants (one affecting BRCA​
1 and one affecting BRCA2, 2/99, 2%), which were clini-
cally confirmed; in addition, 14 variants with uncertain 
significance (VUS) in 10 BC susceptibility genes were 
observed, the most interesting being a TP53 missense 
mutation, reported as likely pathogenic for a breast neo-
plasm-associated syndrome (Additional file 5: Table S3).

When stratifying the results by HLBC subgroups, 
PIK3CA remained the most frequently mutated gene 
across all the groups, whereas TP53 was the second most 
mutated gene only in HLBCs-1 (21% vs 17% overall) 
(Fig. 2D). ERBB2 mutations were restricted to the HLBC-
2E group (Fig. 2E), and the HLBC-2N group was the most 
variable: lower frequency of TP53 and GATA3 mutations 
and CBFB as the second most prevalent mutated gene 
(3/15, 20%) (Fig. 2F).

We then turned to CN changes. We detected 12 genes 
with CN-gain in 25/99 patients (25%) and 5 genes with 
CN-loss in 10/99 patients (10%). The most frequently 
CN-gain affected CCND1 (11%, 11/99), FGF3, FGF19, 
FGF4, and FGFR1 (8/99 samples, 8%, Fig.  3A). One 
sample showed a PTEN homozygous deletion, whereas 
5/99 (5%) patients showed an NRG1 hemizygous dele-
tion. DNA FISH analysis orthogonally validated CCND1, 
FGFR1, MET, and KRAS amplifications (Fig.  3B). For 
each gene, we plotted the CN fold change values in the 
distinct HLBC subgroups. None of the genes with CN 
changes was differentially altered among the groups. Of 
note, the HLBCs-2 harbored a significantly higher ERBB2 
CN compared to the HLBC-1 group, with the highest 
level of ERBB2 CN identified in the HLBCs-2E (Fig. 3C).

Mutational landscape: HLBCs versus HER2‑positive 
and HER2‑negative carcinomas
Next, we wondered if HLBCs show a differential pat-
tern of mutated genes compared to HER2-negative and 
HER2-positive tumors. First, we assessed the quantitative 
differences among the cohort. We elaborated a control 
HLBC-MSKCC cohort superimposable with the HLBC-
FPO cohort for ER status, G, and for relative composition 
of score 1+ and score 2+ cases (see the “Methods” sec-
tion). The HLBC-FPO and the HLBC-MSKCC cohorts 
were superimposable in terms of mutated genes. Next, we 
elaborated control cohorts of HER2-negative and HER2-
positive that were either matched or unmatched for 
major histopathological features. Considering the whole 
HLBC-FPO cohort, we detected multiple differentially 
mutated genes compared to both HER2-negative and 
HER2-positive BCs (Fig. 4A). To deconvolute the hetero-
geneity within HLBCs, we performed the same analysis 
by stratifying for IHC subgroups. HLBCs-1 were more 
like HER2-negative BCs than HLBCs-2N and HLBCs-2E 
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Fig. 2  Mutational landscape of HLBC-FPO cohort. A Boxplots of TMB values for each HLBC subgroup. Dots are color-coded according to the 
intrinsic molecular subtype. One case (HLBC-1-17) harbored high TMB (42.52) and MSI (40%). Out of 34 HLBC-1 cases, four showed TMB values 
above 20 and eight between 10 and 20 mut/Mb. Four cases (4%) were wild-type for all the analyzed genes. B VAF distributions across the HER2 
subgroups. Each dot represents a mutation. Blue sections divide the plots into 25-percentile VAF ranges. C OncoPrint of the 99 HLBC-FPO tumors 
subjected to targeted sequencing, reporting the 50 most frequently mutated genes. Gene names and relative frequency of mutations are reported 
in the double y-axis. Top: the bar graph defining the number of variant/patient for the selected genes; bottom: annotation for tumor grade, IHC 
class, IHC subtypes, and PAM50 subtypes. D–F OncoPrint of the HLBCs-1, 2E, and 2N showing variants in the 30 most frequently mutated genes. 
TMB, tumor mutation burden; VAF, variant allele frequency. The legend for all the OncoPrints and annotations is reported in C 
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Fig. 3  Copy number alterations across the HLBC-FPO cohort. A Heatmap of the copy number alteration (CNA) for the 59 genes comprised in the 
panel, reporting the log10 value of the fold change (FC), with a blue-to-red map describing gene loss-to-gain. Raw dendrogram groups patients by 
similar CNA, and column dendrogram groups co-occurrent CNAs. IHC class annotation on the right-hand side. B Validation of CNA results by FISH. 
Clockwise, CCND1, FGFR1, MET, and KRAS gene amplification (green signals: gene; red signals: centromeric probes). White bar: 5-μm in size. C Boxplot 
of the ERBB2 gene FC distribution (sequencing data) for the IHC-based cohorts. HLBCs-2 showed a significantly higher number of ERBB2 copies 
compared to HLBCs-1, with the highest values identified in the HLBC-2E cohort, in line with the FISH equivocal subtyping (HLBC-1 vs HLBC-2N P = 
0.01, HLBC-1 vs HLBC-2E P < 0.01, unpaired T-test)
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(0 vs 3 vs 6 differentially mutated genes compared to the 
HER2-negative matched cohort, Fisher’s exact test FDR 
adjustment). Conversely, compared to HER2-positive 
carcinomas, HLBC-FPO score 2+ cases showed a very 
limited number of differentially mutated genes (2N = 0 
and 2E = 1, Fisher’s exact test FDR adjustment), whereas 
HLBC-1 showed 4 differentially mutated genes (Fig. 4B–
D, Additional file 6: Table S4). By examining the differen-
tially mutated genes, three were of particular interest in 
breast cancer: (i) the ESR-1 gene was significantly more 
frequently mutated in HER2-negative tumors, (ii) TP53 
mutations were significantly more frequent in HER2-pos-
itive tumors, and (iii) the SPEN gene was more frequently 

mutated in HLBCs, in comparison with both HER2-neg-
ative and HER2-positive carcinomas.

As a further analysis, we also compared the vari-
ant distribution among the cohorts in terms of both 
variant type (VT, e.g., the type of mutation at the DNA 
level) and variant classification (VC, e.g., the type of 
mutation at the protein level). Next, we annotated the 
pathogenicity level (grouped in 4 classes: nonsense, 
damaging, potentially damaging, and tolerated) of the 
variants in the genes identified as differentially mutated 
in the comparisons between the HLBC-FPO and the 
matched control cohorts (those genes reported in the 
spider plots of Fig. 4).

Fig. 4  Comparison of the mutational landscape between HLBC-FPO and MSKCC control cohorts. Spider plots depicting multiple comparisons. On 
the y-axis of the spider plot, we report the number of genes with a significantly different number of mutations (multiple Fisher’s exact test with FDR 
adjustment) between the reference group and each control group, for both P-value (red) and adjusted P-value (blue). A Spider plot comparing the 
HLBC-FPO group and the MSKCC BC (unmatched and matched) control cohorts. For instance, when considering the whole HLBC-FPO cohort, we 
detected 19 differentially mutated genes with respect to the HER2-negative unmatched cohort and 16 for the HER2-negative matched cohort. The 
same comparisons run after FDR adjustment resulted in 9 and 8 differentially mutated genes. When the whole HLBC-FPO cohort was compared 
with HER2-positive tumors, we detected 11 differentially mutated genes with respect to the unmatched cohort and 4 for the matched cohort. The 
same comparisons run after FDR adjustment resulted in 4 differentially mutated genes for both. B Spider plot comparing the HLBC-1 group, the 
HLBCs-2E and 2N, and the MSKCC BC (unmatched and matched) control cohorts. C Spider plot comparing the HLBC-2N group, the HLBCs-1 and 2E, 
and the MSKCC BC (unmatched and matched) control cohorts. D Spider plot comparing the HLBC-2E group, the HLBCs-1 and 2N, and the MSKCC 
BC (unmatched and matched) control cohorts
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In terms of the type of variants, Bonferroni correc-
tion of the chi-square test revealed the differences in 
terms of both VC and VT only between HER2-negative 
(both MC and UC) and HLBCs (P-values reported in 
Additional file  7: Table  S5), mainly due to a reduced 
relative contribution of SNVs and missense variants in 
the HER2-negative control cohort (Additional file  4: 
Fig. S2A-B). When annotating for pathogenicity, no 
differences were identified comparing HLBCs and 
HER2-positive carcinomas, whereas HLBCs showed 
significant differences with HER2-negative MCs, with 
more damaging mutations of the differentially mutated 
genes affecting HER2-negative disease (P < 0.01, Bon-
ferroni correction of the chi-square test; Additional 
file 4: Fig. S2C; Additional file 8: Table S6). Of note, the 
latter category was also enriched for ESR-1 mutations 
compared to HLBCs, as reported above.

Potential differences across cohorts were also assessed 
for copy number alterations: the HLBC cohorts overlapped 
also in terms of gene CN gains, whereas FGFR1 gains were 
specific to the HER2-negative cohort (15% vs 8% of HLBCs, 
P = 0.04, Fisher’s exact test). As expected, the ERBB2 gene 
was significantly more amplified in the HER2-positive 
cohort (100% vs 0% in HLBCs, P < 0.01, Fisher’s exact test). 
All P-values are reported in Additional file 9: Table S7.

The landscape of actionable alterations in HLBCs
Forty-three single nucleotide variants (SNVs) and seven-
teen CN alterations were classified as druggable [14–16]. 
We identified 76 SNVs with available OncoKB/ESCAT 
level of evidence (LoE) from 10 genes. For 45 variants, 
OncoKB assigned LoE in 40 patients (40%). PIK3CA 
mutations were the most pervasive alteration, with 33 
annotated variants with a mean VAF of 0.33 (Fig.  5A); 
of these, 28/33 had a level of evidence of 2 (Fig.  5B). 

Fig. 5  Actionability of the mutations in HLBCs. A Combined, double y-axis dot/barplot reporting the identified variants with OncoKB/ESCAT level of 
evidence (LoE). The left y-axis (barplot) reports the number of mutations per gene. The right y-axis shows the mean VAF level of these mutations (red 
dots). The bars were colored by the ESCAT LoE. B Lollipop plots for PIK3CA, ERBB2, and ESR1 genes, reporting the amino acid change, the mutation 
type, and the OncoKB LoE. Four variants of both PIK3CA (3 deletions, 1 SNV of the C2-domain) and ERBB2 (2 deletions, 1 SNV, and 1 non-sense 
mutation) showed no LoE. Gray dots define the mutations with unknown actionable significance. C Combined, double y-axis dot/barplot reporting 
the CNA genes with OncoKB oncogenic behavior in this cohort. The left y-axis (barplot) reports the number of patients with CNA per gene. Green 
bars depict the genes with CN gain, and blue bars depict those with CN loss. The right axis shows the mean fold change (FC) of these copy number 
alterations (CAN, red dots). Annotation at the bottom defines the available OncoKB/ESCAT LoE
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The second most annotated gene was ERBB2, with 4/8 
mutations reported to be non-actionable (Fig.  5B). We 
also detected two ESR1 mutations, both with a 3A LoE 
(Fig. 5B) and three somatic variants in familial BC genes, 
reported to respond to PARP inhibitors (two BRCA2 and 
one PALB1 variants) (Additional file 10: Table S8).

When considering OncoKB/ESCAT annotated CN 
alterations, we detected 53 CN gains and 9 CN losses 
in 14 genes across 62 samples. OncoKB reported a LoE 
for five genes, with FGFR1 being the most prevalent (8 
patients) and a MET CN gain with a LoE 2 (Fig.  5C). 
ESCAT annotation reported a LoE IV for MYC amplifica-
tion, absent in the OncoKB annotation.

One case showed a very high TMB and MSI. Retro-
spective evaluation of the clinicopathological features 
of this sample revealed a triple-negative phenotype, an 
intense immune infiltrate (tumor-infiltrating lympho-
cytes, TILs = 90%), and a lack of MLH1-PMS2 expres-
sion (Additional file 4: Fig. S3).

Overall, by considering at least one alteration with 
an OncoKB/ESCAT LoE, 52 patients (52.5%) showed a 
potentially actionable alteration.

Transcriptomic analysis reveals a spectrum of diversity 
within HLBCs
Next, we explored whether transcriptomics can further 
expand the molecular classification of HLBCs, by com-
paring the gene expression profiles (GEPs) of 91 HLBCs 
with control cohorts of 30 HER2-negative and 15 HER2-
positive carcinomas.

We defined different and similar traits between HLBCs 
and controls by calculating both a global significance 
score (GSS) and a direct GSS (dGSS, Additional file  1: 
Supplementary Methods) within the following approach: 
(i) independent differential gene expression (DGE) with 
HER2-negative or HER2-addicted tumors as the refer-
ence group, (ii) GSS heatmap of HLBCs and the non-ref-
erence group, (iii) identification of the most variable gene 
sets shared or private for HLBCs and the non-reference 
group. These analyses allowed to evaluate the similarity 
between HLBCs and HER2-negative BCs by assessing 
how dissimilar they were from HER2-positive BCs  and 
vice versa.

Taking HER2-positive tumors as a reference, HLBCs 
and HER2-negative BCs presented similar differentially 
expressed gene sets (Fig.  6A). HLBCs displayed private 
gene sets compared to HER2-positive carcinomas, but 
with lower GSSs. The dGSS heatmap highlighted the 
upregulation of the ER signaling, which represented the 
main differentiation feature from HER2-positive versus 
both HLBCs and HER2-negative tumors (Fig. 6C).

Conversely, when HER2-negative BCs were used as a 
reference, HLBCs showed several gene sets with an inter-
mediate GSSs, only partially overlapping with HER2-pos-
itive BCs (Fig. 6B). This suggests that HLBCs are different 
from HER2-negative tumors for similar gene sets yet 
more heterogeneous compared to the gene sets charac-
terizing HER2-positive BCs. In the latter, ERBB2- and 
ERBB2-coamplified genes [27, 28] were the main driver 
of differential gene expression. HLBCs showed increased 
expression of ERBB2 but not of ERBB2-related genes 
(Fig. 6D).

By applying the same type of analysis to the distinct 
HLBC subgroups, we observed that HLBCs-1 showed 
overlapping differentially expressed gene sets with 
HER2-negative tumors, whereas HLBC-2E was the most 
independent group and HLBC-2N represented an inter-
mediate category with intermediate GSSs. These features 
were observed in both comparisons with HER2-negative 
and HER2-positive BCs (Fig. 6E, F).

Lastly, we performed the same analysis using HLBC-1 
as a reference. HLBC-2E cases showed an increased 
ERBB2 expression, which was only partially retained in 
HLBC-2N tumors (Fig.  6G, H). HLBC-2E also showed 
upregulation of CDK4, PTEN, and RB1 genes. Con-
versely, HLBC-1 showed increased signatures associated 
with immune infiltrate, such as expression of PD1, PD-
L1, IDO-1, and APM, but only when compared with the 
HLBC-2E (Fig.  6G, H). These results confirm a strong 
independence of HLBC-2E tumors from all the other 
groups, with more heterogeneity for the HLBC-1 and 
HLBC-2N groups.

Four transcriptionally distinct HLBC subgroups: the LAURA 
classification
Unsupervised, hierarchical clustering of pathway scores 
demonstrated a lack of IHC-driven clusters (Additional 
file 4: Fig. S4A), whereas we observed enrichment of spe-
cific signatures in samples regardless of the HLBC class 
(Additional file 4: Fig. S4B-C-D).

We investigated whether the gene expression could 
unveil alternative and significant subgroups for HLBCs. 
To this end, we applied the NMF algorithm to cluster 85 
out of 91 samples for which all the clinico-pathological 
and molecular data were available, to find gene expres-
sion (GE)-based groups independent from the molecular 
subtypes. We identified four GE-based clusters (Fig.  7, 
Additional file 4: Fig. S5C) selecting the best NFM model 
(cophenetic coefficient rank in Additional file  4: Fig. 
S5A), based on the 33% of the most variable genes (Addi-
tional file  4: Fig. S5B). Only basal-like tumors clustered 
into a single group (group A) (Additional file 4: Fig. S6A), 
composed also of non-basal tumors (2 luminal-A, 3 lumi-
nal-B, 1 HER2-enriched). Luminal-A carcinomas were 
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Fig. 6  Differential gene expression (DGE) analysis of HLBC subsets. A, B Inter-group DGE analysis with the HER2-positive (A) and with 
HER2-negative (B) carcinomas as a reference. The heatmap reports the GSS as a variable: blue pathways with no differential expression and orange 
those with high differential expression. C Heatmap of the dGSS, reporting the polarization (up or down) of differential expression (HER2-positive 
as the reference group). D Volcano plots reporting the DE genes between HER2-negative and HLBCs versus HER2-positive tumors. On the y-axis, 
we reported the -log10 of the P-value (ANOVA model, FDR-adjusted), and on the x-axis, the log2 fold change. Red squares represent the ERBB2 
and GRB7 gene expression. E, F Inter-group DGE analysis after stratification for HER2 subgroups (HER2-positive carcinomas as a reference in E 
and HER2-negative as a reference in F). The heatmap reports the GSS as a variable: blue pathways with no differential expression and orange 
those with high differential expression. G, H Inter-HLBC DGE analysis, with HLBC-1 class as reference and HLBC-2N (G) or HLBC-2E (F) as a target. 
The y-axis reports the gene sets (NanoString private algorithm), and x-axis reports the differential expression means (95%CI) between response 
variables (unadjusted scale). The dashed vertical axis is shown at fold change equal to zero, indicating equivalent expression between the groups. A 
signature is considered significant if the 95%CI (the horizontal line) does not cross the vertical axis representing the baseline group and therefore no 
difference to that baseline group. Dark green triangles marked the differentially expressed gene sets
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scattered across all groups (A = 3%, B = 21%, C = 35%, D 
= 41%), whereas luminal-B were mostly distributed into 
groups B (48%) and D (37%). The four HER2-enriched 
carcinomas were identified in all groups except group A.

To ontologically define these groups, we exploited 
genetic-, transcriptomic- and IHC/FISH-associated 
features. Group A (n = 12) was composed of basal- 
(50%, exclusive for this group) and non-basal-like 
(50%) tumors with a prevalence of G3 cases (11/12, 
92%) and the highest Ki-67 values (mean: 64%, range: 
31–96%) (Additional file  4: Fig. S6B-C). These tumors 
were HLBC-2N (n = 5) and HLBC-1 (n = 5), with only 
two HLBC-2E. Group A showed significantly higher 
TMB levels (Additional file  4: Fig. S6D) and exhibited 

an enrichment of immune infiltration phenotype com-
pared to the other groups. The latter feature was paral-
leled by high TIL levels observed on H&E slides (mean 
value = 60.5%, range = 15–100%). All of the cases 
showed PD-L1 expression (> 1% by IC and > 10 by 
CPS).

Half of the tumors harbored TP53 mutations (6/12, 
50%), whereas a single PIK3CA mutation was detected 
(8%, Additional file 4: Fig. S6E). We refer to this group 
as “Lymphocyte Activated” (LA).

Group B (n = 28) was exclusively composed of lumi-
nal carcinomas (22 luminal-B, 6 luminal-A) homoge-
neously expressing ER at high levels (Additional file 4: 
Fig. S6F). These tumors were mainly G3 (62%), showing 

Fig. 7  NMF cluster discovery for the LAURA classification. The non-negative matrix factorization (NMF) approach identifies four metagenes 
(signatures) summarized in the expression profile matrix. Each column corresponds to a sample, scaled to the sum of one of the signatures 
identified by the NMF, and ordered by clusters. The 4 clusters are annotated with respect to IHC class, IHC, and PAM50 subtypes and by the color 
map of their associated metagenes. For each cluster, specific features are reported, in the form of boxplots, OncoPrint, lollipop plot, H&Es, and 
FISH images. The ontological derived terms describing the main features of each group are reported on the right-hand side leading to the LAURA 
acronym for the classification: LA, lymphocyte activated; U, unique HER2-gain; R tumor-stroma remodeling; A, actionable PIK3CA 
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the highest value of genomic risk scores [24, 29] (mean: 
57.61, range: 14–85) (Additional file 4: Fig. S6B, Fig. 6). 
Group B also displayed an enrichment of HLBC-2E 
tumors (78% of the total) and significantly higher val-
ues of ERBB2 CN fold change compared to the other 
groups (Fig.  7). Notably, three out of the eight cases 
(38%) harboring a ERBB2 mutation were included in 
this group. The most mutated gene in these tumors was 
GATA3, whereas a single TP53 mutation was observed 
(Additional file  4: Fig. S6E). We refer to this group as 
“Unique HER2-gain” (U).

Group C (n = 15) was enriched of luminal-A tumors 
(11/15, 73%), characterized by the lowest Ki67 lev-
els (mean: 21%, range: 6–64%), a high prevalence of G2 
carcinomas (10/15, 67%), and the lowest Genomic Risk 
scores (mean: 23, range: 0–66) (Additional file  4: Fig. 
S6A-B, Fig.  6). Tumors of group C showed upregula-
tion of pathways related to angiogenesis and epithelial 
to mesenchymal transition (Fig.  7). Moreover, gene sets 
of stromal markers and adhesion and migration were 
significantly upregulated (Additional file  4: Fig. S7A-B). 
Interestingly, a review of H&E slides highlighted (i) an 
enrichment of lobular cancers of classic type (6/12, 50%) 
and showed CDH1 mutations (3/15, 20%) (Additional 
file 4: Fig. S6E) and (ii) a marked fibro-elastotic intratu-
moral stroma in the remaining cases (Fig.  7, Additional 
file 4: Fig. S7C). We refer to this group as “tumor-stroma 
Remodeling” (R).

Group D (n = 30) was heterogenous. This group exhib-
ited the highest value of progesterone receptor (PgR) 
expression (Additional file  4: Fig. S6F); a balanced dis-
tribution of G2/G3 carcinomas (15/15), PAM50 sub-
types (12 luminal-A, 17 luminal-B, 1 HER2-enriched); 
and HER2 groups (HLBC- = 12, HLBC-2N = 7, and 
HLBC-2E = 11) (Additional file  4: Fig. S6A-B, Fig.  6). 
These tumors showed intermediate Ki-67 expression val-
ues (mean: 30%; range: 2–78%) and genomic risk scores 
(mean: 49, range: 22–80), with no specific GE-based 
activated pathways (Additional file 4: Fig. S6C, Fig. 6). A 
higher prevalence of PIK3CA mutations was observed 
(15/30, 50%) compared to the overall prevalence of the 
85 samples in the class discovery experiment (26/85, 31%, 
P < 0.01, Fisher’s exact test, Fig. 7, Additional file 4: Fig. 
S6E). Notably, 14/15 variants were potentially actionable. 
We refer to this group as “Actionable PIK3CA” (A).

We also retrieved data about rates of relapse-free sur-
vival related to 73/85 patients whose tumor was ana-
lyzed to devise the LAURA classification (remaining 
patients lost at follow-up). The “unique HER2-gain” 
category showed a higher rate of relapse-free survival; 
however, the difference with the other groups was not 
statistically significant (24% for U compared to 15% for 
A, 10% for LA, 8% for R). Regrettably, this retrospective 

non-consecutive cohort of HLBC patients does not 
allow to perform robust correlations with clinical data to 
appreciate whether a prognostic stratification of patients 
can be obtained. Indeed, there is an intrinsic heteroge-
neity of adjuvant treatments administered to patients 
(endocrine therapy only versus endocrine+chemo) 
across the groups, and the cases were collected over a 
wide period of time thus leading to different lengths of 
follow-up intervals.

Discussion
Here, we show that HER2-low breast carcinomas harbor 
a constellation of somatic mutations that shows signifi-
cant differences compared to HER2-positive and HER2-
negative BCs. Nevertheless, significant differences were 
observed across distinct HER2-low subgroups (score 
1+ versus score 2+) with ERBB2 mutations uniquely 
observed in score 2+ carcinomas. Transcriptional pro-
filing demonstrated a clear separation between score 1+ 
and score 2+ groups, with score 1+ carcinomas show-
ing overlapping gene expression features with score 0 
carcinomas and score 2+ with equivocal HER2 gene 
copy numbers harboring the most distinct transcrip-
tional profile. The latter group also harbored the highest 
ERBB2 mRNA levels. Finally, a class discovery transcrip-
tional classification highlighted the existence of four 
groups with distinct and unique features, also in terms of 
actionability.

The HLBCs included in the present study were com-
posed of both ER-positive and ER-negative tumors, 
which were carefully characterized at the ERBB2 gene 
level by FISH to provide a precise categorization of the 
heterogeneity of HLBCs that is already seen in clini-
cal practice but never considered in translational stud-
ies (score 2+ carcinomas with normal HER2 gene CN 
– HLBC-2N – or with HER2 gene CN in the equivocal 
range – HLBC-2E). This fine refinement of the clinical 
categories enabled a precise contextualization of differ-
ences observed at the genomic level across the spectrum 
of HER2-low breast cancer.

In line with the luminal-B subtype prevalence, pre-
viously observed [9, 10] and here confirmed, the most 
frequently mutated genes were PIK3CA (33%), GATA3 
(18%), and TP53 (17%), followed by ERBB2 (8%). Inter-
estingly, TP53 mutations were found at a higher fre-
quency in score 1+ carcinomas compared to the other 
groups, and ERBB2 mutations were uniquely detected 
in the HLBC-2E subgroup. Score 1+ carcinomas also 
showed significantly higher TMB levels. This observa-
tion leads to the acknowledgment of potentially targeta-
ble alterations identified by applying a comprehensive 
genomic profiling allowing the investigation of TMB and 
MSI status. Indeed, our study provides an overview of the 
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landscape of potentially targetable genetic alterations for 
HER2-low carcinomas by using a targeted approach that 
met 100% feasibility in FFPE tissue samples. By consider-
ing at least one alteration with an OncoKB [14]/ESCAT 
[15, 16] LoE, about half of the patients showed a poten-
tially actionable alteration, including mainly PIK3CA and 
ERBB2 mutations.

We next compared this genetic landscape with that of 
HER2-negative and HER2-positive diseases by using a 
publicly available MSKCC dataset that includes detailed 
information about HER2 scores and histopathological fea-
tures. We performed multiple comparisons with cohorts 
that were both matched and not matched for histopatho-
logical and phenotypical features. The unmatched cohorts 
are informative to identify unique features of HLBCs per 
se. The matched cohorts are useful to create a compari-
son with BCs with analogous ER status and histological 
grade, which constitute two major determinants of their 
biology. Since we know that HLBCs are largely luminal 
carcinomas, the differences we identified may be at least 
partly driven by these features. HLBC-1 proved to be more 
similar to HER2-negative tumors, whereas HLBC score 2+ 
tumors had a mutational landscape that was superimposa-
ble to HER2-positive disease. Taken together, the genomic 
data stemming from the mutational analysis suggest that a 
separation within the family of HLBC exists between score 
1+ (HLBC-1) and score 2+ (HLBC-2) carcinomas.

This separation was mirrored at the transcriptomic 
level. Even if HLBCs showed differences with both 
HER2-negative and HER2-positive carcinomas, intra-
group analyses revealed overlapping features between 
score 0 and HLBC-1 cases, whereas score HLBC-2 
showed an increasing differential gene expression that 
reached the highest levels of diversity for HLBC-2E carci-
nomas. This latter group showed an increased expression 
of the ERBB2 signature, which was only partially retained 
in HLBC-2N tumors. HLBC-2E also showed an increase 
in CDK4, PTEN, and RB1 signatures. Bao et al. [30] have 
recently investigated the association between low lev-
els of ERBB2 expression and clinical outcomes among 
patients with ER-positive/HER2-negative metastatic 
breast cancer patients treated with CDK4/6 inhibitors 
and described ERBB2-low expression as an independent 
predictor of inferior progression-free survival.

This observation is particularly interesting with 
respect to the novel perspective of the LAURA classi-
fication. The latter enables to appreciate the full picture 
of heterogeneity across HLBC, thus identifying distinc-
tive features and allowing cross-correlation/integra-
tion with genetic alterations identified at DNA-based 
sequencing. The classification recognizes lymphocyte-
activated tumors (both ER− and ER+), carcinomas 

with a unique enrichment in HER2-related features 
(higher ERBB2 copy number, relative higher frequency 
of ERBB2 mutations), carcinomas with remodeling of 
the tumor-stromal interface, and a class with the most 
pronounced actionability of PIK3CA mutations. We 
may hypothesize that the distinct features detected 
by our classification could be linked to the degree and 
quality of response to different therapeutic agents 
that are currently administered to HLBC patients. For 
instance, in the advanced setting, response rates to 
ADCs targeting HER2 are observed in about  30-50% 
of patients [4–6]. Furthermore, CDK4/6 inhibitors and 
PIK3CA inhibitors are standard of care for advanced 
luminal carcinomas, and as mentioned above, ERBB2-
low expression has been recently reported as an inde-
pendent predictor of inferior progression-free survival 
[30]. Data on PIK3CA mutational status were not avail-
able for further stratification in this study. Of note, the 
population eligible for PIK3CA inhibition [31] com-
prises a large portion of breast cancer patients with 
HER2-low disease. Whether the HER2-low status may 
affect response to PIK3CA inhibitors remains to be 
determined.

Our study has some limitations, the main being the 
lack of direct clinical relevance of the novel LAURA 
classification. This would need the application of the 
classification to homogeneously treated patient cohorts 
with the careful distinction of IHC scores. To the best 
of our knowledge, no cohorts as such are publicly 
available, and further studies will be needed in both 
early and advanced settings. In the present cohort, we 
retrieved data on rates of relapse-free survival, observ-
ing a higher, yet not significant, relapse rate in the U 
category. Regrettably, the retrospective nature of the 
non-consecutive cohort did not allow to perform robust 
correlations with the outcome, since patient treatments 
were heterogeneously distributed across categories, 
and there was a high variability of follow-up  intervals. 
Further studies are warranted to investigate the poten-
tial prognostic and/or predictive refinement that this 
classification may provide in homogeneously treated 
patients.

Finally, one may question that a deeper molecular 
profiling beyond a targeted approach may unveil a more 
complete molecular underpinning of these tumors. 
Although this certainly holds true, our study provides 
a set of data that balances informativeness with the fea-
sibility of comprehensive genomic profiling in archi-
val FFPE samples, mirroring the approach adopted in 
diagnostic practice and clinical research when aiming 
to investigate carcinomas for possible rare molecular 
alterations and access to investigational drugs.



Page 15 of 16Berrino et al. Genome Medicine           (2022) 14:98 	

Conclusions
Our integrative large-scale genomic and transcriptomic 
analysis disentangled the ontology of HLBCs providing 
evidence for the first time that (i) score 1+ and score 2+ 
carcinomas represent distinct entities and that (ii) four 
genomically distinct groups of tumors can be recognized, 
with possible implications in terms of stratification of 
response to selected anti-tumor agents. We could not 
provide direct evidence of the potential clinical impact 
of the novel LAURA classification; nevertheless, the data 
we report enable a better understanding of HER2-low 
disease and provide an overview of the potential treat-
ment arsenal for HLBC patients that can guide treatment 
decision-making in clinical practice and a more accu-
rate design of investigational clinical studies addressing 
HLBC.
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