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Abstract 

Background:  Renal cell carcinoma (RCC) is a heterogeneous disease comprising histologically defined subtypes. For 
therapy selection, precise subtype identification and individualized prognosis are mandatory, but currently limited. 
Our aim was to refine subtyping and outcome prediction across main subtypes, assuming that a tumor is composed 
of molecular features present in distinct pathological subtypes.

Methods:  Individual RCC samples were modeled as linear combination of the main subtypes (clear cell (ccRCC), 
papillary (pRCC), chromophobe (chRCC)) using computational gene expression deconvolution. The new molecu‑
lar subtyping was compared with histological classification of RCC using the Cancer Genome Atlas (TCGA) cohort 
(n = 864; ccRCC: 512; pRCC: 287; chRCC: 65) as well as 92 independent histopathologically well-characterized RCC. 
Predicted continuous subtypes were correlated to cancer-specific survival (CSS) in the TCGA cohort and validated in 
242 independent RCC. Association with treatment-related progression-free survival (PFS) was studied in the JAVELIN 
Renal 101 (n = 726) and IMmotion151 trials (n = 823). CSS and PFS were analyzed using the Kaplan–Meier and Cox 
regression analysis.

Results:  One hundred seventy-four signature genes enabled reference-free molecular classification of individual RCC. 
We unambiguously assign tumors to either ccRCC, pRCC, or chRCC and uncover molecularly heterogeneous tumors 
(e.g., with ccRCC and pRCC features), which are at risk of worse outcome. Assigned proportions of molecular subtype-
features significantly correlated with CSS (ccRCC (P = 4.1E − 10), pRCC (P = 6.5E − 10), chRCC (P = 8.6E − 06)) in TCGA. 
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Background
Renal cell carcinoma (RCC) is among the ten most diag-
nosed cancers worldwide and especially in Western 
countries its incidence is rising [1–4].

RCC comprises histologically defined subtypes, which 
differ in pathophysiology, clinical course, response to 
treatment, and prognosis. Major subtypes are clear cell 
(ccRCC), papillary (pRCC), and chromophobe (chRCC) 
RCC [2, 5], which originate from either proximal 
(ccRCC, pRCC) or distal (chRCC) parts of the nephron 
[2]. Disease relapse after surgery occurs in 20–40% 
of patients with localized RCC. Therapeutic options, 
mainly approved for ccRCC [3, 4, 6, 7], have recently 
improved. However, response of metastatic patients 
and 5-year survival rates are still poor. In addition, reli-
able biomarkers for individualized patient selection are 
still limited [8–10]. Although clinicopathological scores, 
like the clinical International mRCC Database Consor-
tium model [11], enable stratification of metastatic RCC 
[1–4] patients irrespective of their subtype, significant 
differences are observed in clinical outcome among 
patients within one prognosis group. Molecular scores 
which might improve risk prediction have been estab-
lished primarily for the most common subtype ccRCC 
[12–14], consequently requiring prior accurate subtype 
determination. However, histopathological diagnosis of 
RCC is complicated by the introduction of additional 
histological subtypes with distinct molecular features in 
the WHO classification (e.g., clear cell papillary RCC) 
[15–17], and the frequent occurrence of heterogeneous 
mixed-histological tumors [5], as well as intratumoral 
heterogeneity [18]. Currently, no molecular signature is 
available to objectively and accurately identify not only 
the main subtypes but also their mixtures to improve 
outcome prediction across subtypes.

Using computational deconvolution and molecular fea-
tures of the three main histologically defined subtypes of 
RCC [2, 5] (ccRCC, pRCC, and chRCC), we developed a 

novel molecular method for continuous subtype classi-
fication of RCC. Proposed already two decades ago, the 
2016 WHO classification of renal cancer distinguished 
between pRCC type 1 and type 2 [5]. Notably, based on 
recent molecular studies suggesting that pRCC type 2 
may not constitute a single well-defined entity, pRCC 
subclassification into type 1 and type 2 is no longer 
recommended in the updated 2022 WHO classifica-
tion [17, 19]. Our approach distinguishes pure subtypes 
from molecularly mixed ones with features from differ-
ent subtypes, thus enabling the detection of a new class 
of high-risk tumors with intermediate subtypes. In addi-
tion, our novel classification approach into unambiguous 
and intermediate subtypes opens new avenue for patient 
stratification and treatment selection for innovative 
immunotherapies.

Methods
Patient cohorts
The study included five RCC cohorts each compris-
ing cases of ccRCC, pRCC, and chRCC (Fig. 1) for the 
development and validation of continuous subtype clas-
sification and the novel established risk score. Extended 
information is provided in Additional file  1: Supple-
mentary methods. RCC cohort 1 (C1) included 52 
tumors (18 ccRCC, 18 pRCC, 16 chRCC) (Additional 
file  2: Fig. S1; Additional file  3: Table  S1), collected at 
the Department of Urology, University Hospital Tuebin-
gen, Germany. None of the patients received neoadju-
vant therapy before surgery. Tissues were independently 
evaluated by two teams of pathologists with expertise in 
renal tumor pathology to assign RCC subtypes.

RCC cohort 2 (C2) (Additional file  4: Table  S2) con-
tained a total of 170 RCC samples comprising 158 tumors 
(74 ccRCC, 55 pRCC, 29 chRCC) from seven studies 
[20–26] with publicly available transcriptome data from 
the Genome Expression Omnibus data repository; 11 
pRCC collected at the Department of Urology, University 

Translation into a numerical RCC-R(isk) score enabled prognosis in TCGA (P = 9.5E − 11). Survival modeling based on 
the RCC-R score compared to pathological categories was significantly improved (P = 3.6E − 11). The RCC-R score was 
validated in univariate (P = 3.2E − 05; HR = 3.02, 95% CI: 1.8–5.08) and multivariate analyses including clinicopatho‑
logical factors (P = 0.018; HR = 2.14, 95% CI: 1.14–4.04). Heterogeneous PD-L1-positive RCC determined by molecular 
subtyping showed increased PFS with checkpoint inhibition versus sunitinib in the JAVELIN Renal 101 (P = 3.3E − 04; 
HR = 0.52, 95% CI: 0.36 − 0.75) and IMmotion151 trials (P = 0.047; HR = 0.69, 95% CI: 0.48 − 1). The prediction of PFS 
significantly benefits from classification into heterogeneous and unambiguous subtypes in both cohorts (P = 0.013 
and P = 0.032).

Conclusion:  Switching from categorical to continuous subtype classification across most frequent RCC subtypes 
enables outcome prediction and fosters personalized treatment strategies.

Keywords:  Renal cell carcinoma, Cancer-specific survival, RCC subtypes, Gene expression deconvolution, 
Immunotherapy
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Hospital Carl Gustav Carus, Dresden, Germany; and one 
pRCC collected at the Department of Urology, University 
Hospital Tuebingen, Germany. C1 and C2 were used to 
develop the signature (Fig. 1).

RCC cohort C3 (Table 1) consisted of samples from the 
three renal cancer cohorts of the Cancer Genome Atlas 
(TCGA) [27–29] including 864 patients (kidney renal 
clear cell carcinoma, KIRC: 512; kidney renal papillary 
cell carcinoma, KIRP: 287; kidney chromophobe carci-
noma, KICH: 65) with survival data [30] available for 847 
patients. Clinical information and gene expression data 

(“FPKM-UQ”) from TCGA were downloaded on Septem-
ber 25, 2019, from https://​gdc.​cancer.​gov/ using R-pack-
age TCGAbiolinks. Disease-specific survival data for the 
TCGA cohorts was obtained from Liu et al. [30]. Somatic 
mutation calls generated by the TCGA MC3 project [31] 
were downloaded from https://​gdc.​cancer.​gov/​about-​
data/​publi​catio​ns/​mc3-​2017 (mc3.v0.2.8.PUBLIC.maf.
gz). A pathological re-evaluation of the TCGA RCC 
cohort was obtained from Ricketts et  al. [32]. Patients 
receiving prior treatment related to their disease were 
excluded. In cohort C3, proportional subtype assignment 

Fig. 1  Overview of the general data analysis workflow and the use of the different cohorts. RNA quantification technologies, cohort compositions, 
and tissue preparation techniques used are given. FF fresh-frozen, FFPE formalin-fixed and paraffin-embedded

https://gdc.cancer.gov/
https://gdc.cancer.gov/about-data/publications/mc3-2017
https://gdc.cancer.gov/about-data/publications/mc3-2017
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(PSA) was evaluated and its association to survival was 
analyzed (Fig. 1).

Cohort 4 (C4) included 92 independent cases (4 
ccRCC, 48 pRCC, 17 chRCC, 23 tumors with mixed 
histology) and was used to evaluate our method with 
expression data generated from FPPE tissues (Fig.  1). 
Seventeen chRCC and 23 tumors with mixed histology 
were obtained from the Institute of Pathology, Univer-
sity Hospital, Friedrich-Alexander-University Erlangen-
Nürnberg (FAU), Erlangen, Germany; 26 pRCC derived 
from the study by Polifka et al. [33] were collected from 
several participating centers in Germany; and 15 pRCC 
were obtained from the Department of Pathology, Medi-
cal University of Vienna, Vienna, Austria. Four ccRCC 
and seven pRCC were collected by the Department of 
Urology, University Hospital Tuebingen, Germany.

Cohort 5 (C5) (Table  1) comprises 242 independent 
RCC samples (134 ccRCC, 86 pRCC, 16 chRCC, 6 tumors 
with mixed histology) that were consecutively collected 
from the Department of Urology, University Hospital 
Tuebingen, Germany (n = 161); from the Department of 
Urology, University Hospital Carl Gustav Carus, Dres-
den, Germany (n = 44); from the Department of Pathol-
ogy, Portuguese Oncology Institute of Porto (IPO Porto), 
Portugal (n = 27); and from the Department of Urology, 
University of Greifswald, Germany (n = 10). C5 was used 
to validate results from the survival analysis (Fig. 1).

Additionally, clinical and RNA-seq data from the 
JAVELIN Renal 101 trial (n = 726) [9, 34] and the IMmo-
tion151 trial (n = 823) [35, 36] were used to study the 
association of the molecular classification with progres-
sion-free survival (PFS). In brief, JAVELIN Renal 101 
(NCT02684006) is a worldwide multicenter, randomized, 
open-label, phase 3 trial comparing checkpoint inhibi-
tion (avelumab) plus the tyrosine-kinase inhibitor axi-
tinib with monotherapy of the tyrosine-kinase inhibitor 
sunitinib. The age of eligible patients was ≥ 18 years and 
patients with untreated advanced RCC with a clear-cell 
component were included. Normalized gene expres-
sion data (TPM) generated by RNA-Seq from FFPE tis-
sue as well as clinical information were available for 726 
patients [9]. The IMmotion151 trial (NCT02420821) is a 
worldwide multicenter, open-label, phase 3, randomized 
controlled trial comparing checkpoint inhibition (atezoli-
zumab) plus VEGF inhibition (bevacizumab) with mono-
therapy of the tyrosine-kinase inhibitor sunitinib. Eligible 
patients were aged ≥ 18  years with unresectable locally 
advanced or metastatic RCC with any component of clear 
cell or sarcomatoid histology. Normalized gene expres-
sion data (TPM) generated by RNA-Seq from FFPE tissue 
and clinical data of 823 participants were obtained from 
the European Genome-phenome Archive (EGA) (acces-
sion number: EGAS00001004353).

Table 1  Characteristics of the discovery and the validation 
cohorts

NA Not available, CSS Cancer-specific survival

C3 (discovery, n = 864) C5 (validation, 
n = 242)

Characteristic n % n %
Sex
  Male 579 67.0 165 68.2

  Female 285 33.0 77 31.8

T
  1 476 55.1 124 51.2

  2 122 14.1 21 8.7

  3 251 29.1 92 38

  4 13 1.5 4 1.7

  NA 2 0.2 1 0.4

N
  0 322 37.3 173 71.5

  1/2 46 5.3 26 10.7

  X 495 57.3 40 16.5

  NA 1 0.1 3 1.2

M
  0 537 62.2 170 70.2

  1 82 9.5 38 15.7

  X 209 24.2 33 13.6

  NA 36 4.2 1 0.4

Histology
  ccRCC​ 512 59.3 134 55.4

  pRCC​ 287 33.2 86 35.5

  chRCC​ 65 7.5 16 6.6

  mixed 0 0.0 6 2.5

Overall survival
  Alive 648 75.0 161 66.5

  Deceased 216 25.0 81 33.5

CSS
  Censored 714 82.6 188 77.7

  Events 135 15.6 54 22.3

  NA 15 1.7 0 0.0

Follow-up, years
  Median 3.0 4.8

  Range 0 to 16.2 0 to 21.2

  NA 2 0.2 0 0.0

Age, years
  Median 60 64

  Range 17 to 90 25 to 90

  NA 3 0.3 0 0.0

Tumor size, cm
  Median 5.1 5.8

  Range 1 to 25 1.3 to 17.7

  NA 105 12.2 2 0.8
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RCC‑derived cell lines
Transcriptomic data as provided by the Broad-Novartis 
Cancer Cell Line Encyclopedia (CCLE) [37, 38] as well 
as the COSMIC Cell Lines Project (CCLP) [39, 40] were 
used from 14 RCC-derived cell lines (i.e., 769-P, 786-
O, A498, A704, ACHN, BFTC-909, CAKI-1, CAL-54, 
KMRC-1, KMRC-20, OS-RC-2, RCC10RGB, UO31, 
VMRC-RCZ). For detailed information, see Additional 
file 5: Table S3.

Gene expression analyses
Total RNA was isolated from fresh-frozen tissue of 
cohorts C1, C2, and C5 as previously described [41, 42]. 
RNA from FFPE tissue of cohort C4 was isolated using 
the AllPrep DNA/RNA FFPE Kit (Qiagen, Germany). 
Genome-wide transcriptome analyses were performed 
using GeneChip™ Human Transcriptome Array 2.0 
(Thermo Fisher Scientific). Processing of microarray 
data was performed as described [42]. The data acces-
sion number at the European Genome-phenome Archive 
(EGA) (www.​ebi.​ac.​uk/​ega/​home), which is hosted by the 
EBI and the CRG, is EGAS00001001176. Processing of 
publicly available transcriptome data of all other cohorts 
is described in supplementary data.

Statistical analysis
Statistical tools
Detailed information of all statistical and bioinformat-
ics methods is given in Additional file 1: Supplementary 
methods.

All statistical analyses were performed with R-3.6.1 
[43] including additional packages beanplot_1.2 [44], 
coin_1.3–1 [45], MASS_7.3–51.4 [46], partykit_1.2–5 
[47, 48], Rfast_2.0.1 [49], rms_5.1–3.1 [50], squash_1.0.8 
[51], survival_2.44–1.1 [52], and twosamples_1.0.0 
[53] from CRAN (http://​cran.r-​proje​ct.​org). GEO-
query_2.46.15 [54], limma_3.40.6 [55], oligo_1.48.0 
[56], org.Hs.eg.db_3.8.2 [57], pda.hta.2.0_3.12.2 [58], 
Rgraphviz_2.30.0 [59], SCAN.UPC_2.26.0 [60], Summa-
rizedExperiment_1.14.1 [61], and TCGAbiolinks_2.12.6 
[62] are part of the Bioconductor software project 
(http://​www.​bioco​nduct​or.​org, version 9). For Affym-
etrix microarrays, customized CDF files provided by 
brainarray [63, 64] (version 23) were used.

For gene expression deconvolution, expression levels 
were required to be in linear space. Hence, log2 expres-
sion levels from microarray analysis were exponentiated. 
Raw counts from RNA-Seq measurement had to be nor-
malized for sequencing depth and gene length to allow 
for intrasample analysis. Preceding deconvolution linear 
expression values were mean-centered and standardized.

For the principal component analysis, FPKM-UQ 
and TPM expression values were log2-transformed 
(log2(x + 1)).

Survival analyses for endpoints cancer-specific survival 
(CSS) and PFS were conducted by Kaplan–Meier curves 
and corresponding log-rank tests as well as uni- and mul-
tivariate Cox models. Comparisons of Cox models were 
performed by analysis of deviance.

All statistical tests were two-sided. Statistical signifi-
cance was defined as P-value < 0.05. Where indicated, 
P-values were corrected for multiple testing applying 
Holm’s [65] method.

The Akaike information criterion (AIC) was used for 
model selection. It is an estimator of the relative amount 
of information lost by a given model, measuring the 
trade-off between model fit and model complexity. The 
preferred model is the one with minimum AIC value.

Generation of the gene signature
Subtype-specific genes were determined using gene 
expression data from C1 as described in Additional file 1: 
Supplementary Methods resulting in 1379 ccRCC-, 844 
pRCC-, and 1463 chRCC-specific genes (total 3686) 
(Additional file 2: Fig. S2). Out of these genes, signature 
genes were selected by evaluating various signature gene 
matrices (Additional file  2: Fig. S3). Starting with two 
genes per subtype that exhibited the highest fold change 
relative to each of the other two subtypes, matrices with 
increasing numbers of subtype-specific genes were itera-
tively created and used to deconvolve the 170 samples of 
cohort C2. Matrices consisted of median linear expres-
sion values per RCC subtype based on C1. Based on the 
assumption that the accuracy of deconvolution increases 
with the number of genes included, the largest matrix 
was chosen that produced a substantial change in sub-
type deconvolution compared to its predecessor matrix. 
The final signature matrix included 174 genes, i.e., 58 
genes per subtype (see Additional file 1: Supplementary 
Methods; Additional file 2: Fig. S3).

Proportional subtype assignment (PSA)
Samples from RCC tissue were considered as com-
posite samples that may combine specific molecular 
features from ccRCC, pRCC, and chRCC. The propor-
tional subtype assignment (PSA) was determined using 
gene expression deconvolution. In brief, the expression 
of the 174 signature genes in an RCC sample of inter-
est was modeled as the weighted sum of expression of 
these genes in ccRCC, pRCC, and chRCC. Based on the 
weights identified by robust linear regression, the pro-
portional composition of the sample was then calculated 
such that c + p + h = 100%, where c, p, and h represent 

http://www.ebi.ac.uk/ega/home
http://cran.r-project.org
http://www.bioconductor.org
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the ccRCC, pRCC, and chRCC proportions, respectively 
(details see Additional file 1: Supplementary methods).

Development of the RCC‑R score
Our approach estimates three percentage values per sam-
ple, representing the predicted proportions of ccRCC, 
pRCC, and chRCC. Subtype proportions termed also as 
scores were modeled with flexible restricted cubic spline 
(RCS) functions as well as with cubic polynomials in Cox 
proportional hazard regression. Linear predictors from 
Cox proportional hazard models were used as prognos-
tic index (PI). The predictive accuracy of single subtype 
scores as well as their combination was compared by 
repeated tenfold cross-validation in cohort C3. For com-
parison, the pathological classification was evaluated as 
categorical predictor of survival. The ccRCC-score mod-
eled via cubic polynomials, hereafter termed RCC-R 
score, showed the best trade-off between model com-
plexity and predictive accuracy and consequently was 
selected as a biomarker for risk prediction (details see 
Additional file  1: Supplementary Methods). With PSA 
specified on 0–1 scale, the prognostic index (PI) for a 
RCC sample with a ccRCC proportion (RCC-R score) of c 
was determined as follows:

Survival or therapy outcome analyses
CSS was used as an endpoint of survival analyses in 
cohorts C3 and C5. CSS was defined as time from surgery 
to death or last date of follow-up if alive. Data for patients 
who died from other causes than RCC were censored at 
the time of death. PFS, as defined in the JAVELIN Renal 
101 and IMmotion151 trials [9, 35], was used as endpoint 
of survival analyses in the treatment trials.

Results
Development of a 174‑gene signature matrix 
for deconvolution and molecular subtype classification
Based on candidate genes selected for subtype classifica-
tion (Fig. 1), a final gene signature of 174 genes (the top 
58 subtype-specific genes per ccRCC, pRCC, and chRCC) 
(Additional file  2: Fig. S3B; Additional file  6: Table  S4) 
was developed using cohorts C1 and C2 as outlined in 
supplementary methods (Additional file  1: Supplemen-
tary methods; Additional file 2: Fig. S2/S3).

Using these signature genes, a principal component 
analysis (PCA) of the TCGA RCC cohort (C3) (Table 1) 
including RNA-seq data of 864 tumors was carried out 
(Fig.  2A). Principal component 1 discriminated tumors 
originating from distal cell types (KICH) from those 
arising from the proximal tubule (KIRC and KIRP). The 

(1)
PI = c × 14.71− c

2
× 25.46+ c

3
× 12.21− 1.46

incorrect classifications, particularly of some chRCC 
samples (Fig. 2A), have been reported [12, 32] and were 
also observed in this analysis. Interestingly, KIRC and 
KIRP cohorts were not fully separated from each other. 
Additionally, PCA was performed using the 174 signature 
genes, but including both 864 tumors and 128 samples of 
adjacent non-tumor tissue from the TCGA RCC cohort 
(Additional file  2: Fig. S4A). Here, non-tumor samples 
formed a cluster, which was separated from tumors by 
principal component 1.

Molecular tumor characterization by proportional subtype 
assignment
Next, rather than categorizing a tumor, we intended to 
model its molecular characteristics through proportional 
subtype assignment (PSA). Therefore, transcriptomes of 
864 RCC from RCC cohort C3 were deconvolved and 
PSA for each sample were computed (Additional file  7. 
Table  S5). Following significance filtering ( Ppsa < 0.05 ), 
results of PSA were analyzed for 845 samples (97.8%). 
Using an arbitrary threshold of 95% for PSA to distin-
guish between tumors with a unique subtype assign-
ment and cases with overlapping features according 
to PSA revealed 246 (29%) potential heterogeneous 
tumors (Fig.  2B) mainly with clear cell and papillary 
characteristics.

Non-tumor samples consistently exhibited hetero-
geneous PSA (Additional file  2: Fig. S4B/C). However, 
they were assigned combinations of subtype propor-
tions that were exceptional in tumors. Only seven of 864 
tumor samples of which six had a non-significant PSA 
( Ppsa > 0.05 ), lie within the range of PSA of non-tumor 
samples (Additional file 2: Fig. S4C/D).

In addition to bulk tumors from TCGA, application of 
PSA to RCC cell lines from the Cancer Cell Line Ency-
clopedia (CCLE) and the COSMIC Cell Lines Project 
(CCLP) confirmed unambiguously ACHN and CAL54 
as cell lines with pRCC characteristics, whereas all other 
cell lines are classified as predominantly ccRCC (Fig. 2C, 
Additional file 5: Table S3 and Additional file 2: Fig. S5), 
which is in line with accepted classifications of these cell 
lines [66].

Next, PSA and standard pathological categorization 
were compared using a recently published pathological 
re-evaluation of the TCGA RCC cohort [32] (Fig. 3A–C). 
The tumors categorized as heterogeneous based on RNA 
profiles consisted almost exclusively of ccRCC and pRCC 
histological subtypes and tended to be assigned to patho-
logical T3 and T4 (P = 0.0024, Fisher test). Among pRCC, 
tumors with mixed features were mostly of subtype 2, 
according to the previous WHO 2016 classification of 
renal cancer [5]. Notably, tumors characterized by a CpG 
island methylator phenotype (CIMP), a molecular pRCC 
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subtype with a specific methylation profile [28], were 
among the pRCC with high ccRCC content. Additionally, 
chRCC tumors with molecular features of ccRCC include 
recently identified metabolically divergent chRCC with 
sarcomatoid features [32].

In three cases, PSA and pathological classification dif-
fered significantly (Fig.  3A–C). The genomic subtype 

classification of RCC introduced by Chen et  al. [67] 
confirmed our classification by PSA for these cases 
(TCGA-A3-3363, TCGA-B0-5707, and TCGA-BQ-7055) 
(Additional file 7: Table S5).

Next, the amount of explained transcriptional variance 
in simulated populations of RCC based on cohort C3 was 
used as a measure to compare the information content 

Fig. 2  Proportional subtype assignment (PSA) of RCC and RCC cell lines. A, B Principal component analysis of the TCGA RCC cohort (C3) using 
expression data of the 174 signature genes. A TCGA cohorts of ccRCC (KIRC, n = 512), pRCC (KIRP, n = 287), and chRCC (KICH, n = 65) are displayed. 
B PSA were determined for tumors of C3 by computational deconvolution. A total of 246 RCC samples with maximum PSA values below 95% were 
considered as potential heterogeneous tumors (enlarged symbols). Their molecular subtype composition based on PSA is visualized by pie charts. 
Nineteen samples with Ppsa > 0.05 as determined by a permutation P-value approach are displayed by shaded pie charts with gray borders. C PSA 
for 14 RCC-derived cell lines were calculated using transcriptomic data as provided by the Broad-Novartis Cancer Cell Line Encyclopedia (CCLE) [37, 
38] as well as the COSMIC Cell Lines Project (CCLP) [39, 40]. Asterisk indicates Ppsa < 0.05
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in PSA and pathological classification (Fig.  3D). During 
re-evaluation of the TCGA RCC cohort [32], 13 KIRC 
cases were classified as chRCC, which increased infor-
mation content of pathological classification (Path.cat). 
Determining the proportions of the three main subtypes 
in individual tumors through PSA generated significantly 
more information than categorical assignment to one of 
these subtypes. The highest information content could be 
generated by combining pathology and PSA.

The relationship between PSA and the occurrence 
of somatic mutations in candidate genes known to 
be affected only in certain subtypes [67] (Additional 
file 2: Fig. S6) confirmed reliability of subtype predic-
tion by PSA.

To further investigate the histopathological character-
istics of heterogeneous tumors, we analyzed distances 
within and between tumors based on histopathologi-
cal features recently extracted from TCGA whole-slide 
images using computer vision [68]. First, the mean of 
the pairwise distances between tiles of the same slide 
was tested as a measure of histopathological complexity 
of the scanned tissue. Comparison between slides of the 
same tumor as well as of different tumors showed that 
this measure was independent of the slide and could dis-
criminate between tumors (Additional file 2: Fig. S7). A 
correlation between histopathological complexity and the 
transition from pRCC to ccRCC was observed (Fig. 3E). 
In particular, ccRCC with papillary portions showed a 
higher complexity than unambiguously assigned ccRCC 
cases (P = 3.8E − 11, t-test) (Fig. 3F).

PSA using formalin‑fixed paraffin‑embedded tissue 
and comparison against histopathology
Cohorts C1, C2, and C3 included only fresh-frozen tis-
sue. Therefore, we assessed the applicability of PSA for 

gene expression data derived from FFPE tissue. As shown 
in Fig. 4A for 9 independent tumors, comparable results 
were found for PSA in matched FFPE and fresh-frozen 
samples. Additionally, we investigated 92 FPPE tissues 
(cohort C4), which have been independently evaluated by 
experts for renal tumor pathology comprising 4 ccRCC, 
48 pRCC, 17 chRCC, and 23 tumors with a mixed-type 
histology dominated either by clear cell morphology 
(n = 11) or by papillary features (n = 12) to demonstrate 
the reliability of PSA particularly for histologically chal-
lenging cases (Fig. 4B–D). PSA was in very good agree-
ment with original histopathological diagnosis for ccRCC 
and chRCC. Histologically defined pRCC cases showed 
variable, but predominant proportions of pRCC in PSA, 
with a median pRCC proportion of 93.5%. A higher 
variability of pRCC proportion in PSA for previously 
defined type 2 cases was observed, but the difference in 
the median pRCC proportion between type 1 (n = 18) 
and type 2 (n = 14) was not significant. In addition, PSA 
confirmed the original histopathological diagnosis of 23 
mixed-type RCC with assigned proportions of molecular 
features of ccRCC and pRCC, confirming the prevalence 
of either clear cell or papillary features.

Identification of intermediate subtypes with poor 
prognosis
As RCC subtypes are known to vary in prognosis [32], 
we investigated the association of calculated molecular 
subtype proportions, synonymously referred to as sub-
type scores, to patient survival. Log relative hazards dif-
ferentiating the individual risk of patients depending on 
subtype scores were used as prognostic index (PI). Mod-
eling subtype scores with flexible restricted cubic spline 
(RCS) functions revealed a significant association to CSS, 

(See figure on next page.)
Fig. 3  Distribution of PSA in histologically defined RCC subtypes. A–C Distributions of assigned proportions of ccRCC (A), pRCC (B), and chRCC 
(C) to tumors of C3 are shown for distinct, pathologically defined subgroups including 469 ccRCC, 270 pRCC including 159 pRCC T1 and 78 pRCC 
T2, and 80 chRCC, respectively. Tumors with a maximum PSA value ≥ 95% are colored. Furthermore, ten tumors with the CpG island methylator 
phenotype (CIMP), a molecular pRCC subtype with a specific methylation profile, are indicated, as well as six metabolically divergent (MD) chRCC. 
Samples with Ppsa > 0.05 are marked in gray. Boxes refer to median and interquartile ranges with whiskers extending to a maximum of 1.5 times 
the interquartile range. D The information content of different subtype classifications was quantified by determining the amount of variance 
they explained in gene expression data. Expression of 25,208 genes in 623 tumors consisting of 466 ccRCC, 116 pRCC, and 41 chRCC that were 
repeatedly resampled (with replacement) from 805 cases of C3 was analyzed. Points and error bars indicate the mean together with the 95% value 
range of the resampling distribution. “Cohort” refers to the TCGA cohorts KIRC (n = 479), KIRP (n = 266), and KICH (n = 60). “Path.cat” comprises 
ccRCC (n = 466), pRCC (n = 266), and chRCC (n = 73) subgroups. Additionally, the combination of Path.cat and PSA was evaluated. Samples with 
Ppsa > 0.05 were not considered here. E, F Relationship between PSA and computational histopathology. The mean pairwise Manhattan distance 
between 50 randomly selected tiles per tumor tissue slide was used as a measure of histopathological complexity. A circle represents one tissue 
slide, and multiple slides may be present per tumor. The values in parentheses indicate the number of the slides and associated tumors. Samples 
with Ppsa > 0.05 were not considered here. E Histological complexity is displayed in dependence on the ccRCC proportion. Slides from samples 
classified as either chRCC or with chRCC proportion above 5% were excluded. Colors indicate the pathological classification, and the dashed lines 
display the mean distance of the respective set of slides. The Pearson correlation coefficient (PCC) was calculated. F Per pathologically defined RCC 
subgroup (Path.cat), histopathological complexity was compared between tumors with maximum PSA value ≥ 95% (filled circles) and potential 
heterogeneous tumors with maximum PSA value < 95% (open circles) using the t-test. Boxes refer to median and interquartile ranges with whiskers 
extending to a maximum of 1.5 times the interquartile range
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Fig. 3  (See legend on previous page.)
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Fig. 4  Subtype prediction through PSA in formalin-fixed and paraffin-embedded (FFPE) tissue. A PSA based on fresh-frozen (FF) samples from 9 
RCC were compared to PSA based on matching FFPE samples. Whole-transcriptome profiles generated by RNA-Seq for two ccRCC were obtained 
from Li et al. (marked by asterisks) [82]. The remaining 7 tumors (pRCC) from the present study have been analyzed using microarray technology. For 
all 18 samples, Ppsa was below 0.05. B–D PSA were determined for 92 FPPE tissues of cohort C4. Gene expression was quantified using microarray 
technology. The assigned proportions of molecular features of ccRCC (B), pRCC (C), and chRCC (D) were compared with the original pathological 
classification. According to pathology, 23 tumors had a mixed histology dominated either by clear cell morphology (n = 11) or by papillary features 
(n = 12). Additionally, 4 ccRCC, 48 pRCC including 18 pRCC T1 and 14 pRCC T2, and 17 chRCC were analyzed. Tumors with PSA values ≥ 95% are 
colored. Samples with Ppsa > 0.05 are marked in gray. Boxes refer to median and interquartile ranges with whiskers extending to a maximum of 1.5 
times the interquartile range
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particularly, in case of the ccRCC- (P = 4.1E − 10, log-
rank test) and the pRCC-score (P = 6.5E − 10, log-rank 
test) (Additional file 2: Fig. S8B).

Next, ccRCC- and pRCC-score were used in combi-
nation (which implied the chRCC-score). In Fig.  5A–C, 
samples were colored according to their hazard ratio 
(HR). The highest risk for cancer-specific death in cohort 
C3 was found for molecularly heterogeneous tumors 
displaying overlapping ccRCC and pRCC characteristics 
(Fig.  5A). These tumors are located between the main 
clusters of ccRCC and pRCC (Fig.  5B). The lowest risk 
was assigned to few scattered chRCC and a large subset 
of pRCC (Fig.  5B). In particular, the variability in risk 
within pRCC type 2 could be captured by risk prediction 
based on PSA (Fig. 5C).

Using both PSA and pathological categories in Cox 
modeling revealed that information on histopathologi-
cally defined subtypes did not contribute significantly 
beyond PSA (P = 0.85, chi-square test) (Additional file 2: 
Fig. S9A).

Development of a risk prediction model for RCC based 
on PSA
The observed strong link to CSS enabled the devel-
opment of a PSA-based risk score using the ccRCC, 
pRCC, and chRCC proportions. Because the com-
bination of ccRCC- and pRCC-score covers the PSA 
information completely, the chRCC score has not 
been further considered (Additional file  2: Fig. S8). 
Subsequently, the predictive ability of the individual 
ccRCC- and pRCC-score as well as their combination 
was evaluated. Tumors with proportions of both ccRCC 
and pRCC had the highest risk, indicating a non-lin-
ear relationship between these subtype scores and the 

log relative hazard (Additional file  2: Fig. S10). The 
ccRCC-score modeled via cubic polynomials, hereaf-
ter termed the RCC-R score, showed the best trade-off 
between prediction accuracy and model complexity in 
a repeated tenfold cross-validation analysis testing dif-
ferent modeling approaches (supplementary methods, 
Additional file 2: Fig. S11A). Survival prediction by Cox 
modeling based on the novel established RCC-R score 
compared to the pathological categories (Path.cat) was 
significantly improved (P = 3.6E − 11, chi-square test, 
Additional file 2: Fig. S9B). Histopathology did not pro-
vide significant independent prognosis-relevant infor-
mation (P = 0.059, chi-square test, Additional file 2: Fig. 
S9B). C-indices for the Path.cat and the RCC-R score, 
when used individually as predictors, were 0.56 and 
0.67, respectively.

Computation of the prognostic index (PI) based 
on the RCC-R score is detailed in the “Methods” sec-
tion. Predicted 1-, 2-, and 5-year CSS probabilities in 
dependence on the RCC-R score are shown in Addi-
tional file  2: Fig. S11B. Furthermore, conditional 
inference trees applied to the PI identified three risk 
groups, including 290 patients with good, 480 patients 
with intermediate (HR = 3.7, 95% CI: 2.1–6.3) and 58 
patients with poor clinical outcome (HR = 10, 95% CI: 
5.2–19.3), respectively (Fig.  5D, E; Additional file  2: 
Fig. S11C). Both the good and the poor groups com-
bined histologically different tumors, with the good 
group encompassing 97% of chRCC, 97% of pRCC 
type 1, 49% of pRCC type 2, and 75% of unclassified 
pRCC. The poor group mainly consisted of pRCC type 
2 (56%), with molecular overlapping ccRCC features, 
and ccRCC (32%), whereas the intermediate group was 

(See figure on next page.)
Fig. 5  Risk prediction for RCC based on PSA and the RCC-R score. A–C PSA were used as predictors of survival in C3 (n = 864). A prognostic index 
(PI), which differentiated the individual risk of patients based on ccRCC- and pRCC-score, was calculated as detailed in the “Methods” section. For 
samples without available survival data, the PI was predicted. Samples with Ppsa > 0.05 are marked in gray. Hazard ratios (HR) were obtained by 
exponentiating the PI. A Combinations of ccRCC- and pRCC-score values are colored according to their HR. Points in the corners represent 201 
(bottom right), 165 (top left), and 48 (bottom left) cases, respectively. B Principal component analysis plot is shown with samples colored according 
to their HR. C Distributions of HR in distinct, pathologically defined subtypes (n = 805) are displayed. Samples with Ppsa > 0.05 are not shown 
here. Per histological subtype, a Cox regression of cancer-specific survival (CSS) on the respective subset of PI was conducted. Log-rank P-values 
are indicated by the level of significance: “***” P < 0.001, “**” P < 0.01, “*” P < 0.05, “.” P < “0.1”. D–F Relationship of cancer-specific survival (CSS) and 
the ccRCC-score, termed as RCC-R score, is shown. D The curve displays the estimated relationship as specified in Eq. 1 in the “Methods” section 
between the RCC-R score, modeled via cubic polynomials, and the PI in C3 (n = 828). Using conditional inference trees with endpoint CSS, the PI 
was categorized into three risk groups (good (n = 290), intermediate (n = 480), and poor (n = 58)). Corresponding P-values from recursive binary 
splitting are indicated. E Kaplan–Meier curves of CSS for risk groups based on the RCC-R score are shown for the discovery cohort (C3). Additionally, 
HR with the good group as reference are specified for the intermediate and the poor group. F Kaplan–Meier curves of CSS for risk groups based 
on the RCC-R score in the validation cohort (C5, n = 241) are shown by colored curves. Corresponding Kaplan–Meier curves for C3 are added for 
comparison. Indicated HR and log-rank test P-value result from Cox regression analysis in C5. G–I Relationship of RCC-R score with established 
molecular signatures. Risk groups derived from the RCC-R score in cohort C3 were compared with different molecular-based classifications or 
signatures available for the combined TCGA RCC or the KIRC cohort. G Bar chart showing distribution (%) of nine major genomic subtypes of RCC 
(as established by multi-omics analysis [67]) per risk group (good (n = 290), intermediate (n = 480), and poor (n = 58)). H Boxplots showing immune 
infiltration as predicted by the ESTIMATE method [70] per risk group (good (n = 290), intermediate (n = 480), and poor (n = 58)). I Bar chart showing 
distribution (%) of four immune subtypes of ccRCC [71] per risk group (good (n = 17), intermediate (n = 421), and poor (n = 15))
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nearly exclusively populated by ccRCC (95%) (Addi-
tional file 2: Fig. S11D).

Validation of the RCC‑R score
The RCC-R score-based prediction of CSS was validated 
in an independent cohort (C5) including 134 ccRCC, 86 
pRCC, 16 chRCC, and 6 cases with known mixed sub-
types (Table  1, Additional file  2: Fig. S12A). In contrast 
to C3 (RNA-Seq), gene expression in C5 was quanti-
fied using microarray technology. Transcriptomes were 
deconvolved and the PI for C5 (PIC5) was calculated. 

By means of the cutoffs learned in C3, 241 cases with 
Ppsa < 0.05 of C5 were divided into 60 cases with good, 
155 with intermediate (HR = 3.66, 95% CI: 1.3–10.33), 
and 26 with poor clinical outcome (HR = 10.42, 95% CI: 
3.42–31.71) (Fig.  5F, Additional file  2: S12B). Notably, 
the Kaplan–Meier curves for these groups were consist-
ent with their equivalents from the derivation cohort C3 
(Fig. 5F) as well as with the predicted survival probabili-
ties for the three risk groups based on baseline survival 
function and PIC5 (Additional file 2: Fig. S12C). Univari-
ate Cox regression analysis revealed that the continuous 

Fig. 5  (See legend on previous page.)



Page 13 of 19Büttner et al. Genome Medicine          (2022) 14:105 	

PIC5 was significantly associated to CSS (P = 3.2E − 05; 
HR = 3.02, 95% CI: 1.8–5.08). Hence, calibration and 
discrimination of the RCC-R score model were similar 
in C5, indicating successful independent validation [69]. 
Finally, even when used in a multivariate model together 
with clinicopathological parameters stage (T), nodal sta-
tus (N), and metastasis (M), as well as histology (Table 2), 
the contribution of PIC5 remained significant.

In an approach for better molecular understanding of 
the identified risk groups, they were compared to recent 
classifications and cluster analyses, which identified mul-
tilevel genomic and immune RCC subtypes [67, 70, 71], 
using TCGA cohorts (Fig.  5G–I). Although the CIMP 
cluster is enriched in the poor group, there is no complete 
overlap with the nine major genomic subtype categories 
defined by Chen et  al. [67]. Additionally, the immune 
score [70] is not significantly different between outcome 
groups. Further investigation of immune subtypes defined 
by Clark et  al. [71] showed a trend towards higher fre-
quency of CD8 inflamed tumors in the poor outcome 
group, but CD8 inflamed tumors are also present in the 
intermediate and even good prognostic group.

Association of PSA with progression‑free survival 
in the JAVELIN Renal 101 and the IMmotion151 trials
First, we investigated the tumors of patients in the JAVE-
LIN Renal 101 (n = 726) and the IMmotion151 trials 
(n = 823) through PSA using public available RNA-seq 
data. Molecularly heterogeneous tumors with ccRCC and 
pRCC features were uncovered in both cohorts (Fig. 6A, 
B). Next, in both cohorts, the subsets of PD-L1-positive 
tumors (Additional file  2: Fig. S13) were stratified into 
molecularly heterogeneous and unambiguous cases 
depending on the assigned ccRCC proportion, using 
95% as a cutoff. Interestingly, molecularly heterogene-
ous PD-L1-positive tumors showed higher response 
rates to checkpoint inhibition in combination with a 
tyrosine-kinase inhibitor (axitinib) or antibody (beva-
cizumab) compared to sunitinib monotherapy, both in 
the JAVELIN Renal 101 (P = 3.3E − 04; HR = 0.52, 95% 
CI: 0.36 − 0.75) and in the IMmotion151 trial (P = 0.047; 
HR = 0.69, 95% CI: 0.48–1) (Fig. 6C–F). In addition, dis-
tinguishing between heterogeneous and unambiguous 
subtypes based on PSA significantly improved prediction 
of PFS in PD-L1-positive tumors in the JAVELIN Renal 
101 (P = 0.013) and the IMmotion151 trials (P = 0.032).

Discussion
RCC is a heterogeneous disease thereby complicating 
reliable subtype identification based on histopathology 
alone. Subtype identification is crucial for treatment-
related outcome prediction. Selection of therapeutic 

Table 2  Multivariate Cox analyses of cancer-specific survival in 
237 patients of the validation cohort (C5) with Ppsa < 0.05 and all 
clinicopathological parameters available

Variable Level Hazard ratio (95% CI) P-value

Sex
Female 1

Male 0.88 (0.46–1.70) 0.71

Age, years
Linear 0.99 (0.97–1.02) 0.59

T
1 1

2 1.83 (0.4–8.43) 0.44

3 5.12 (2.1–12.51) 3.4E − 04

4 11.49 (2.54–51.88) 1.5E − 03

N
0 1

1/2 1.62 (0.73–3.62) 0.24

X 0.53 (0.14–1.96) 0.34

M
0 1

1 6.06 (2.74–13.41) 8.7E − 06

X 1.45 (0.32–6.51) 0.63

Tumor size, cm
Linear 0.92 (0.83–1.02) 9.7E − 02

Histology
ccRCC​ 1

pRCC​ 2 (0.96–4.16) 6.2E − 02

chRCC​ 8.8 (0.86–89.78) 6.7E − 02

Mixed 1.88 (0.28–12.67) 0.52

PI5 (RCC-R score)
Linear 2.14 (1.14–4.04) 1.8E − 02

Fig. 6  Prediction of therapeutic outcome by PSA in the IMmotion151 and JAVELIN Renal 101 trials. A, B Principal component analysis (PCA) using 
expression of 174 signature genes identified 341 of 823 samples and 407 of 726 samples as heterogeneous tumors in the IMmotion151 and of 
the JAVELIN Renal 101 trials, respectively. Here, tumors with maximum PSA value below 95% were considered as potential heterogeneous. Their 
molecular subtype is visualized by pie charts (enlarged symbols). Samples with non-significant PSA ( Ppsa > 0.05 ) are displayed by shaded pie 
charts with gray borders (IMmotion151 n = 23; JAVELIN Renal 101 n = 12). C–F Kaplan–Meier curves of progression-free survival (PFS) are shown for 
PD-L1-positive tumors in both cohorts with a ccRCC proportion of at least (C, D) or less (E, F) than 95% based on PSA. Cox regression analysis was 
used to determine P-values (log-rank test) and HR of checkpoint inhibition with tyrosine-kinase inhibition versus sunitinib, respectively

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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strategies including immunotherapy might be improved 
by incorporating molecular data as previously dem-
onstrated for other cancer entities [72, 73]. Of note, a 
21-gene recurrence score based on gene expression sig-
nificantly enhanced prediction of distant recurrence and 
chemotherapy benefit in breast cancer [72, 74, 75].

In the present work, we developed a reference-free 
subtype classification system for individual RCC sam-
ples using gene expression data of 174 defined subtype-
specific genes (Additional file  6: Table  S4). The herein 
described classification method is applicable to sin-
gle tumor samples, and notably, normalization of gene 
expression data across cohorts and consideration of 
batch effects are not required. Its application has been 
extensively tested in different cohorts, with different tis-
sue preparations and different technologies for expres-
sion quantification. Our approach is able to separate 
tumors across various subtypes that can be unambigu-
ously assigned to one of the main histological subtypes 
[5] from molecularly heterogeneous tumors with over-
lapping molecular features. It allows the identification 
of tumors with clear cell and papillary features, which 
account for 29% of cases in the TCGA cohort, as well 
as recently described rare RCC subtypes (e.g., CIMP, 
Fig. 3A, B). We were able to show, using the TCGA RCC 
cohort, that even though PSA was originally based on 
pathological categories ccRCC, pRCC, and chRCC, it 
generates more information than pathological classifica-
tion into these subtypes (Fig. 3D). The new information 
provided by PSA becomes specifically apparent when 
PSA and pathological classification are combined. In line 
with the novel 2022 WHO classification, subcategoriza-
tion into pRCC type 1 and type 2 was no longer consid-
ered, which was additionally corroborated by a recent 
publication particularly addressing the co-occurrence of 
T1 and T2 features in pRCC [76]. Moreover, PSA applied 
to an independent histologically informed cohort (C4, 
n = 92) including 48 pRCC cases, enabled valid classifi-
cation of main and heterogeneous RCC subtypes. Here, 
no significant differences in pRCC proportions between 
type 1 and type 2 cases were found supporting the novel 
WHO classification. Finally, to consider misclassification 
due to the presence of non-tumor renal tissue, PSA was 
assessed using TCGA data from non-tumor tissues. PSA 
identified unambiguously non-tumor tissue that differed 
constantly in composition from the assignments found in 
tumor samples.

Application of the PSA approach for characterization 
of RCC cell lines from the Cancer Cell Line Encyclope-
dia (CCLE) and the COSMIC Cell Lines Project (CCLP) 
confirms that the underlying signature genes derived 
from bulk tumor tissues indeed enable classification of 
pure tumor cells, and PSA is not impaired by e.g. stroma 

or immune infiltration. Notably, results from the new 
PSA based on only 174 genes is in line with findings from 
complex genomic characterization of cell lines by Sinha 
and colleagues [66].

Our computational approach of proportional assign-
ment of molecular subtype features to individual RCC 
samples allows not only independent molecular classifi-
cation, but the PSA-based RCC-R(isk) score enables also 
reliable prognosis and prediction of therapeutic outcome. 
Considering heterogeneity of RCC, of course, multire-
gion sequencing data for subtype prediction indicated 
some intratumor variability (Additional file 2: Fig. S14A), 
but the same risk was assigned for all samples derived 
from one tumor by the RCC-R score except for one case 
(Additional file 2: Fig. S14B). In general, the novel molec-
ular classification based on PSA can be used to identify 
high-risk patients irrespective of the pathological clas-
sification even for personalized treatment strategies and 
innovative immunotherapeutic interventions. We could 
show that within heterogeneous tumors progression-free 
survival deviates significantly more between treatment 
arms in the JAVELIN Renal 101 and the IMmotion151 
trials compared to the subgroup of unambiguous cases. 
These results indicate that molecular subtype compo-
sition represents valuable additional information for 
treatment strategies for RCC compared to histopatholog-
ical-based characterization of RCC only. Thus, the PSA 
allows upfront selection of molecularly heterogeneous 
tumors which is clinically important for the selection of 
patients that may benefit from novel therapies and future 
drug trials. Further stratification of molecularly hetero-
geneous tumors would allow the identification of indi-
vidual patients having a higher probability for good vs 
worse drug response, but future prospective studies are 
mandatory.

Moreover, because analyses of pathological images in 
the TCGA cohort indicated a higher complexity of mor-
phology in heterogeneous tumors, in particular in the 
case of non-unique ccRCCs (Fig.  3F), further studies 
integrating additional Omics-data (e.g., metabolomics) 
are warranted to characterize underlying molecular 
mechanisms associated with the predicted RCC mixed 
type. In a first analysis for better molecular understand-
ing, risk groups based on PSA were compared to recent 
classifications and cluster analyses [67, 70, 71] (Fig. 5G–
I). Our results clearly indicate that subtype and risk pre-
diction through our novel approach provided additional 
information not covered by recently published RCC clas-
sifications. In contrast to currently available gene expres-
sion risk scores such as ClearCode34 and S3-score [12, 
14, 77], which are tailored to certain subtypes only (e.g., 
ccRCC), our RCC-R score evaluates the composition 
of molecular features from different histopathological 
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subtypes for outcome prediction. Thus, our method only 
requires classification of a sample as RCC in general, 
whereas well-established risk scores require assignment 
to one of the RCC subtypes categories hindering a direct 
comparison [12, 14, 68, 78–80]. Further studies are war-
ranted to prospectively evaluate the clinical utility of our 
new classification and risk prediction model as well as to 
consider complementary approaches integrating already 
available subtype-specific scores.

Conclusions
In summary, we developed a computational deconvolu-
tion method for continuous molecular subtyping of indi-
vidual RCC tissue samples across subtypes based on gene 
expression. Thereby, RCC cases with overlapping molec-
ular features from different histological subtypes were 
uncovered. This novel concept enables subtyping and 
risk prediction of RCC for personalized treatment strate-
gies irrespective of the pathological classification. Similar 
approaches might be considered for other tumor entities.
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