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Abstract 

Background:  Cancer recurrence after tumor resection in early-stage non-small cell lung cancer (NSCLC) is common, 
yet difficult to predict. The lung microbiota and systemic immunity may be important modulators of risk for lung 
cancer recurrence, yet biomarkers from the lung microbiome and peripheral immune environment are understudied. 
Such markers may hold promise for prediction as well as improved etiologic understanding of lung cancer recurrence.

Methods:  In tumor and distant normal lung samples from 46 stage II NSCLC patients with curative resection (39 
tumor samples, 41 normal lung samples), we conducted 16S rRNA gene sequencing. We also measured peripheral 
blood immune gene expression with nanoString®. We examined associations of lung microbiota and peripheral gene 
expression with recurrence-free survival (RFS) and disease-free survival (DFS) using 500 × 10-fold cross-validated 
elastic-net penalized Cox regression, and examined predictive accuracy using time-dependent receiver operating 
characteristic (ROC) curves.

Results:  Over a median of 4.8 years of follow-up (range 0.2–12.2 years), 43% of patients experienced a recurrence, 
and 50% died. In normal lung tissue, a higher abundance of classes Bacteroidia and Clostridia, and orders Bacteroi‑
dales and Clostridiales, were associated with worse RFS, while a higher abundance of classes Alphaproteobacteria and 
Betaproteobacteria, and orders Burkholderiales and Neisseriales, were associated with better RFS. In tumor tissue, a 
higher abundance of orders Actinomycetales and Pseudomonadales were associated with worse DFS. Among these 
taxa, normal lung Clostridiales and Bacteroidales were also related to worse survival in a previous small pilot study and 
an additional independent validation cohort. In peripheral blood, higher expression of genes TAP1, TAPBP, CSF2RB, 
and IFITM2 were associated with better DFS. Analysis of ROC curves revealed that lung microbiome and peripheral 
gene expression biomarkers provided significant additional recurrence risk discrimination over standard demographic 
and clinical covariates, with microbiome biomarkers contributing more to short-term (1-year) prediction and gene 
biomarkers contributing to longer-term (2–5-year) prediction.
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Background
Lung cancer remains the leading cause of cancer death 
worldwide [1] and in the USA [2], with non-small cell 
lung cancer (NSCLC) and its two primary sub-types, lung 
adenocarcinoma and squamous cell carcinoma, account-
ing for the majority of lung cancers [3]. In patients with 
early-stage (I to II) NSCLC, surgical resection with or 
without cytotoxic chemotherapy is the primary mode of 
curative treatment [2], but cancer recurrence, a strong 
predictor for lung cancer mortality, is common: 5-year 
survival rates range from 83% for stage IA to 53% for 
stage IIB [4]. Advancements in molecularly targeted ther-
apies and immunotherapies, usually applied to later-stage 
NSCLC, have led to improvements in survival over the 
past two decades; there is a great need for developing bio-
markers predicting for recurrence in early-stage NSCLC 
[3]. The field has predominantly focused on biomarkers 
from the tumor environment, such as mutational burden 
[5], immune cell infiltration [6], and local gene expression 
[7–11], yet novel biomarkers from the human microbiota 
and peripheral immune environment are understudied 
and may hold promise for prediction as well as improved 
etiologic understanding of lung cancer recurrence.

Recently, the lung microbiome has emerged as a poten-
tial modulator of lung cancer development and recur-
rence [12]. While the high biomass gut microbiome has 
received much attention for its role in anti-cancer immu-
nosurveillance and immunotherapy response [13], the 
low biomass community of microorganisms resident in 
the human lung may serve a locally important homeo-
static role, providing immune surveillance and protec-
tion from pathogens [14]. A dysbiotic lung microbiome 
related to lung disease may promote inflammation and 
exacerbate lung disorders, including lung cancer [15]. 
In a mouse model of lung adenocarcinoma, lung micro-
biota drove activation of lung γδ T-cells, which in turn 
promoted neutrophil infiltration and tumor cell pro-
liferation, while germ-free and antibiotic-treated mice 
were protected from lung cancer [16]. In human studies, 
composition of the lower airway microbiome has been 
associated with NSCLC prognosis [17, 18], as well as pul-
monary inflammation and carcinogenic transcriptomic 
pathways [19, 20]. We have previously reported an asso-
ciation of normal lung tissue microbiome composition 
with NSCLC recurrence in a small (n = 17) pilot study 
[21]. As research on the lung microbiome and recurrence 

is in its infancy, the availability of only a few studies with 
heterogeneous methods and populations has precluded 
yet identifying common bacterial signatures associated 
with prognosis.

The peripheral immune system is crucial for building 
antitumor immune responses, including those induced 
by immunotherapy [22]. Many cancers, including 
NSCLC, drive perturbations in systemic immune organi-
zation [22] and peripheral blood immune cell (PBMC) 
phenotypes have been associated with responses to 
chemotherapy and immunotherapy in later-stage NSCLC 
[23, 24]. In principle, peripheral immunity also plays a 
role in the recurrence of early-stage NSCLC, but few 
studies have explored this hypothesis. Higher preopera-
tive lymphocyte/monocyte ratio [25] and reduced neu-
trophil/lymphocyte ratio [26] have been associated with 
improved survival in early-stage NSCLC. Additionally, a 
PBMC gene expression signature was previously shown 
to predict survival in early-stage NSCLC [27, 28].

Here, we examine tumor and normal lung tissue micro-
biota and peripheral blood gene expression as predictors 
of recurrence in stage II NSCLC. We aimed to identify 
novel biomarkers that may provide mechanistic insights 
into recurrence for early-stage NSCLC, and/or be useful 
in recurrence risk prediction.

Methods
Patients and sample collection
Samples were selected from the NYU Thoracic Surgery 
Archives (NTSA). Established in 2006, the NTSA has 
prospectively collected serum, plasma, buffy coat, and 
peripheral blood mononuclear cells, along with lung 
cancer and matching normal lung specimens under the 
IRB-approved 8896 protocol. Patients identified on pre-
operative workup as having a pulmonary nodule suspi-
cious for lung cancer were consented for the collection 
of blood and snap frozen tissues (tumor and remote lung 
from the same lobe/segment) in the operating room at 
the time of their resection. Lung and matching tumor are 
sterilely cut at the operating room table, transferred to 
pre-labeled NuncTM vials and immediately snap frozen in 
liquid nitrogen within 10 min of resection. Samples are 
de-identified for storage at −80°C until use.

Demographic, clinical, and pathological data are 
recorded in an encrypted Research Electronic Data Cap-
ture (REDCap) database. Patients are seen at 3-month 

Conclusions:  We identified compelling biomarkers in under-explored data types, the lung microbiome, and periph‑
eral blood gene expression, which may improve risk prediction of recurrence in early-stage NSCLC patients. These 
findings will require validation in a larger cohort.
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intervals for 2 years, then at 6-month intervals for 1 year, 
and then annually, with CT scans performed for sur-
veillance in order to document any systemic and loco-
regional recurrences, or the development of a second 
primary tumor. For this study, 48 patients with stage II 
NSCLC and >3 tumor and normal lung sample aliquots 
available in the NTSA were selected for microbiome 
measurement. We excluded patients with <1-month sur-
vival after resection, resulting in inclusion of 46 patients 
(Supplementary Figure  1). For microbiome analysis, we 
excluded samples with low microbial sequence reads 
(explained in further detail below), resulting in 39 tumor 
samples and 41 normal lung samples (34 patients with 
both tumor and normal lung samples) (Supplementary 
Figure  1). For peripheral gene expression analysis, we 
excluded 3 patients missing a buffy coat sample and 1 
additional patient with low gene expression counts, leav-
ing 42 patient samples (Supplementary Figure 1).

Outcome definitions
Endpoints were defined according to the consensus 
agreement in Punt et al. [29]. Disease-free survival (DFS) 
includes recurrences (loco-regional and systemic), new 
primaries (same or other cancer), and death from any 
cause as events. Recurrence-free survival (RFS) includes 
recurrences (loco-regional and systemic) and death from 
any cause as events, ignoring new primaries as events. 
Overall survival (OS) includes death from any cause as 
events. For all endpoints, person-time is defined as time 
from surgery to event or loss to follow-up (censored). For 
two patients missing the date of death, date of recurrence 
was assigned as the date of death; sensitivity analyses 
excluding these patients did not substantially change our 
findings.

Covariates
Data available for these patients were age (years), sex 
(male, female), race (white, non-white), smoking status 
(never, former, current), histology (adenocarcinoma, 
squamous cell carcinoma), stage (IIA, IIB), lympho-
vascular invasion (yes, no), pleural invasion (yes, no), 
tumor size (cm), positive nodes (%), and chemotherapy 
(yes, no). Variables associated with RFS, DFS, or OS in 
unadjusted or multivariable Cox proportional hazards 
models (p<0.10) were included in survival models of 
microbiome-related parameters. These variables were 
age, sex, race, smoking status, histology, and chemo-
therapy (Supplementary Table 1).

16S rRNA gene sequencing
Assay
DNA was extracted with the DNeasy PowerLyzer Pow-
erSoil DNA Isolation Kit (QIAGEN, Valencia, CA), 

following the manufacturer’s instructions. PCR amplifi-
cation was performed on the 16S rRNA gene V4 hyper-
variable region using the 515F and 806R primers, with 
a 12-bp unique Golay barcoding [30]. PCR reactions 
were performed with an initial denaturation of 95 °C for 
5 min, followed by 15 cycles of 95 °C for 1 min, 55 °C for 
1 min, and 68 °C for 1 min, followed by 15 cycles of 95 °C 
for 1  min, 60  °C for 1  min, and 68  °C for 1  min, and a 
final extension for 10 min at 68  °C on a GeneAmp PCR 
System 9700 (Applied Biosystems, Foster City, CA). 
The PCR products were purified using a QIAquick Gel 
Extraction Kit (QIAGEN, Valencia, CA) and quantified 
using a Qubit 2.0 Fluorometric High Sensitivity dsDNA 
Assay (Life Technologies, Carlsbad, CA). PCR products 
were pooled relative to their band intensity. KAPA LTP 
Library Preparation Kit (KAPA Biosystems, Wilming-
ton, MA) was used on the combined purified PCR prod-
ucts according to the manufacturer’s protocol and the 
size integrity of the amplicons with Illumina indices was 
validated with a 2100 Bioanalyzer (Agilent Technologies, 
Santa Clara, CA) at the Genomics Core at Albert Ein-
stein College of Medicine. High-throughput amplicon 
sequencing was conducted on a HiSeq (Illumina, San 
Diego, CA) using 2 × 150 paired-end fragments.

Sequence read processing
Sequence reads were processed using QIIME 2 [31]. 
Briefly, sequence reads were demultiplexed, followed by 
quality filtering as described in Bokulich et al. [32]. Next, 
on the forward reads, the Deblur workflow was applied, 
which uses sequence error profiles to obtain putative 
error-free sequences, referred to as “sub” operational 
taxonomic units or amplicon sequence variants (ASVs) 
[33]. ASVs were assigned taxonomy using a naïve Bayes 
classifier pre-trained on the Greengenes [34] 13_8 99% 
OTUs, where the sequences have been trimmed to only 
include 150 bases from the 16S V4 region, bound by the 
515F/806R primer pair. PICRUSt2 was used to predict 
abundance of functional pathways [35].

Quality control
Samples were processed in two batches, each includ-
ing a negative PCR control and a positive PCR con-
trol (ZymoBIOMICS Microbial Community Standard, 
Zymo Research, Irvine, CA), and all sequenced together 
in a single run. Based on examination of the number of 
sequence reads in the tumor and normal lung samples, 
negative controls, and positive controls, we excluded 
samples with low sequence reads similar to the negative 
controls (<6000 reads/sample) (Supplementary Figure 2). 
After this exclusion, the median sequence read count 
per sample after the Deblur workflow was 54,864 (Q1= 
33,598, Q3= 74,935). To remove potential contaminant 
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sequences, we used two approaches as outlined in Cao 
et  al. [36]: rare taxa filtering implemented using “PER-
Fect” [37] and contaminant removal based on preva-
lence in negative controls and frequency among samples 
implemented using “decontam” [38]. Use of these com-
plementary approaches in conjunction should remove 
contaminant taxa that are rare or abundant, respec-
tively, and result in data with lower dimensionality, mini-
mal information loss, reduced technical variability, and 
increased capacity for reproducibility and comparability 
across studies [36]. We performed contaminant filter-
ing at each taxonomic level (i.e., phylum, class, order, 
etc.) separately, and then additionally removed contami-
nants at lower taxonomic levels that were identified as 
contaminants at higher taxonomic levels (e.g., removing 
taxonomic classes belonging to a contaminant phylum). 
After contaminant removal, the median sequence read 
count per sample was 16,418 (Q1=8,143, Q3=28,334). 
Contaminant-filtered data was used for all downstream 
processes, including running of PICRUSt2, calculation 
of α-diversity and β-diversity, and all statistical analyses 
described below.

The lowest sequencing depth among the samples, 2468 
after contaminant removal, was sufficient to character-
ize the ranking of diversity among the samples, though 
not the ranking of number of observed ASVs (i.e., rich-
ness) (Supplementary Figure 3). Genus-level composition 
of the positive controls indicated appropriate detection 
of expected genera (Supplementary Figure  4). Among 4 
samples run in duplicate, only 1 sample achieved suffi-
cient sequencing depth in both duplicates (>2468 reads 
after contaminant removal); for this sample, composi-
tional reproducibility was excellent, as was reproducibil-
ity for the two positive controls, based on similarity in 
principal coordinate analysis (Supplementary Figure  5). 
Additionally, we did not observe any compositional batch 
effect among the samples (Supplementary Figure 5).

Quantitative PCR (qPCR)
A previously identified and published set of Clostridia 
specific primers (SJ-F/SJ-R) were selected [39]. Though 
cycling conditions were outlined in the initial publication, 
a range of annealing temperatures and cycling conditions 
were assessed to optimize performance. Assessments, 
similar to eventual qPCRs, were carried out on subsets 
of sample DNA, a ZymoBIOMICS Microbial Community 
DNA standard (D6305), an extraneous sample of stool 
DNA, and finally, reference Clostridium difficile gDNA, 
strain 4206, acquired from ATCC (BAA-1872D-5). A 2x 
Applied Biosystems SYBR Green PowerUp master mix 
(25742) was used and qPCR carried out on the Applied 
Biosystems Viia7 machine in the Albert Einstein College 
of Medicine Genomics core. Master mix was prepared 

according to the manufacturer’s instructions, primer con-
centrations in recommended range at 500 nM, with only 
deviation being the addition of MgCl2 to 0.5 uM. All sam-
ples were run in triplicate on a single Applied Biosystems 
384-well plate (4309849). Lung sample DNA concentra-
tions were measured, then subsequently normalized, and 
loaded to plate for a total of 15 ng DNA/well. qPCR was 
set to 40 amplification cycles with an annealing step of 
15s at 53 °C and an extension of 60s at 72 °C. All other 
conditions followed master mix instructions. To gener-
ate a standard curve, seven dilutions of C. difficile gDNA 
were used, ranging from 10ng/well to 10fg/well.

Gene expression
Gene expression was measured in buffy coat collected 
the day of and prior to tumor resection, using the 
nanoString® nCounter® PanCancer Immune Profiling 
Panel at the NYU Thoracic Oncology laboratory. Color-
coded barcodes, attached to single target-specific probes 
corresponding to analytes of interest, hybridize directly 
to target molecules and are individually counted. The 
Panel provides multiplex gene expression analysis for 
770 genes from 24 different immune cell types, common 
checkpoint inhibitors, and genes covering the adaptive 
and innate immune response. Gene expression data was 
normalized using housekeeping genes with the nSolver 
software.

Statistical analysis
α‑Diversity
α-Diversity (within-sample microbiome diversity) was 
assessed using richness (number of ASVs) and the 
Shannon diversity index, calculated using the QIIME 2 
diversity plugin. The final values for each sample were 
calculated by averaging the richness and Shannon index 
from 100 iterations of rarefaction at 2468 sequence reads, 
the lowest sequence read depth among the samples after 
the exclusion of samples with low counts and contami-
nant filtering (described above).

β‑Diversity
β-Diversity (between-sample microbiome diversity) 
was assessed using the Jensen-Shannon Divergence 
(JSD) [40]. Distances were calculated on the ASV level. 
Principal coordinate analysis (PCoA) [41] was used for 
visualization.

Comparison of the tumor and normal lung microbiome
Wilcoxon signed-rank tests were used to examine differ-
ences in α-diversity (number of ASVs, Shannon index) 
between paired tumor and normal lung samples. Permu-
tational multivariate analysis of variance (PERMANOVA) 
[42] was used to examine whether overall bacterial 
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composition (β-diversity) differed between paired tumor 
and normal lung samples, using patient ID as strata. PER-
MANOVA was also used to examine significant predic-
tors of tumor and normal lung microbiome composition. 
To determine whether paired tumor-normal samples 
were more alike than unpaired samples, we used the JSD 
to calculate the average between-pair distance in overall 
bacterial composition for tumor and normal lung tissue 
sample pairs. We then calculated the average distances 
in 5000 permutations of random pairings of tumor and 
normal lung samples. If the mean pair distance was less 
than the 5th percentile of the permuted means, we con-
cluded that the paired samples were more alike than 
random pairings of samples from different patients. For 
testing of differentially abundant taxa between tumor 
and normal lung samples, ASVs were agglomerated into 
phylum, class, order, family, genus, and species levels, in 
order to perform testing at each taxonomic level. Taxo-
nomic abundance was transformed using the centered 
log-ratio (clr) transformation [43, 44] after adding a pseu-
docount, in order to remove compositional constraints 
of sequencing. Wilcoxon signed-rank tests were used to 
examine differences in taxonomic abundance between 
paired tumor and normal lung samples. P-values for taxa 
were adjusted for the false discovery rate (FDR) [45]; FDR 
adjustment was done at each taxonomic level (i.e., phy-
lum, genus) separately.

Lung microbiome and survival
We used Cox proportional hazards models to determine 
whether α-diversity (number of ASVs, Shannon index) 
in the tumor or normal lung was associated with RFS, 
DFS, or OS, adjusting for age, sex, race, smoking sta-
tus, histology, and chemotherapy. The community-level 
test of association between the microbiota and survival 
times (MiRKAT-S) [46] was used to test the association 
of overall bacterial composition (β-diversity), as meas-
ured by the JSD, in tumor or normal lung with RFS, DFS, 
and OS, adjusting for aforementioned covariates. Taxa 
and functional pathways associated with RFS, DFS, or 
OS were assessed independently in the tumor and nor-
mal lung samples, using repeated cross-validated elastic-
net penalized Cox proportional hazards regression, as 
previously described [47]. For taxonomic analysis, ASVs 
were agglomerated into phylum, class, order, family, 
genus, and species levels, in order to perform testing at 
each taxonomic level. Taxonomic and functional pathway 
abundance was transformed using the centered log-ratio 
(clr) transformation [43, 44]. Agglomerated taxa missing 
taxonomic classification at the respective taxonomic level 
were removed (e.g., genera missing genus level classifica-
tion), resulting in the inclusion of 6 phyla, 10 classes, 19 
orders, 27 families, 41 genera, 13 species, and 787 ASVs. 

There were 359 functional pathways. We conducted 
500 × 10-fold cross-validated elastic-net penalized Cox 
regression using the “cv.glmnet” function in the “glmnet” 
R package [48], with an α value of 0.5 to allow groups of 
correlated predictors to be selected together. Non-penal-
ized covariates (age, sex, race, smoking status, histology, 
and chemotherapy) were included in each model. We 
summed the number of times each taxon or functional 
pathway was selected out of the 500 repetitions. For all 
tested taxa and functional pathways, we also fit stand-
ard Cox proportional hazards models for RFS, DFS, and 
OS, adjusting for the covariates listed above. P-values 
for these models were adjusted for the FDR [45]; FDR 
adjustment was done at each taxonomic level (i.e., phy-
lum, genus) separately. We focused further on taxa and 
functional pathways selected ≥25% of the 500 times (125 
times or more) and with FDR-adjusted q < 0.20. We used 
Spearman’s correlation to examine associations between 
the relative abundance of taxa and functional pathways.

Peripheral gene expression and survival
Gene expression data was log2 transformed for analysis. 
As shown above for microbiome, we used 500 × 10-fold 
cross-validated elastic-net penalized Cox regression to 
identify genes for which expression was related to RFS, 
DFS, or OS. We focused further on genes selected ≥25% 
of the 500 times (125 times or more) and with FDR-
adjusted q < 0.20. The “topGO” package in R was used 
to determine gene ontology (GO) enrichments for sur-
vival-related genes. We used Spearman’s correlation to 
examine associations between survival-related genes and 
survival-related taxa and functional pathways.

Survival risk prediction
We considered whether the identified lung microbi-
ome and/or peripheral gene expression biomarkers may 
improve risk prediction for RFS, DFS, or OS over stand-
ard covariates (age, sex, race, smoking status, histology, 
and chemotherapy) alone. Annual time-dependent area 
under the receiver operating characteristic (ROC) curve 
(AUC), starting at 1 year after surgical resection, were 
estimated using the R package “timeROC”, and 95% con-
fidence intervals were constructed from the distribution 
of AUCs from 1000 bootstraps of the data. Permutation 
tests were used to test whether the biomarkers provide 
significant additional survival risk discrimination over 
standard covariates. Briefly, we generated null distribu-
tions of difference in time-dependent AUCs, by generat-
ing 5000 permutations of the microbiome and/or gene 
data while not disrupting the link of the survival time/
censoring with the standard covariates. If the test sta-
tistic (difference in AUCs between microbiome and/or 
gene model and standard covariate model) was greater 
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than the 95th percentile of the null distribution at a given 
time, we deemed that the biomarkers added significant (p 
< 0.05) risk discrimination over the standard covariates at 
that time.

Validation cohorts
To validate observed findings of the current study, we 
included 16S microbiome sequencing data from two 
former studies: our previous pilot study of tumor and 
normal lung of NSCLC patients, referred to here as 
Peters et  al. [21], and a previously described study of 
lower airway brushings of NSCLC patients, referred 
to here as Tsay et  al. [17]. Sequencing data from Peters 
et al. [21] and Tsay et al. [17] was processed in QIIME2 
as described above (see the “Sequence read processing” 
section). Contaminant filtering was performed at each 
taxonomic level using “PERFect” [37]. For Peters et  al. 
[21], 16 tumor and 17 normal lung tissue samples were 
available, and covariates included in analysis were limited 
to age (years) and sex (male, female) due to low sample 
size. For Tsay et  al. (2021), a total of 183 samples from 
73 patients were available. Samples were categorized as 
“involved” (i.e., same side as tumor) or “non-involved”, 
and patients were categorized as having “local” (I-IIIA) or 
“advanced” (IIIB-IV) stage disease. Covariates included 
in the analysis were age (years), sex (male, female), race 
(white, non-white), smoking status (never, former, cur-
rent), histology (adenocarcinoma, squamous cell carci-
noma), chemotherapy (yes, no), and surgery (yes, no). To 
validate associations of selected taxa with survival, we fit 
Cox proportional hazards models for OS with clr-trans-
formed taxa as predictors, adjusting for covariates (and 
accounting for within-patient clustering of samples in the 
case of Tsay et al.).

Results
Participant characteristics
Demographic and clinical characteristics of the 46 
patients are presented in Table 1. The average patient age 
was 70 years old, and 50% were male, 87% were white, 
and 85% were former or current smokers. Half of the 
patients had lung adenocarcinomas (50%), and the other 
half had lung squamous cell carcinoma. Over a median of 
4.8 years of follow-up (range 0.2–12.2 years), 43% and 9% 
experienced a recurrence or new primary cancer, respec-
tively, and 50% died (Table 1). These characteristics were 
similar for patients with tumor samples (n = 39) and nor-
mal lung samples (n = 41) (Table 1).

Characterization of microbiota in normal lung and tumor 
tissue
Sufficient sequencing depth for further analysis was 
obtained in 39 tumor and 41 normal lung samples. 

Paired tumor and normal lung samples from the same 
patient (n = 34 patients) did not differ significantly 
in the number of amplicon sequence variants (ASVs, 
i.e. richness, Wilcoxon signed-rank p = 0.65) or in 
the Shannon diversity index (p = 0.59) (Supplemen-
tary Figure  6). Paired tumor and normal lung samples 
also did not differ in overall microbiome composi-
tion, as measured by the Jensen-Shannon Divergence 
(JSD) (PERMANOVA p = 0.41). In fact, paired tumor 
and normal samples from the same patient were sig-
nificantly more alike than permuted pairings of tumor 
and normal lung samples from different patients (p 
< 0.0001), and tumor and normal lung samples from 
the same patient tended to cluster together in princi-
pal coordinate analysis (Fig. 1a–c). Some patient clini-
cal characteristics were related to overall microbiome 
composition: cancer stage and lymphovascular inva-
sion were related to tumor microbiome composition, 
while cancer histology and smoking status were related 
to normal lung microbiome composition (all p < 0.10; 
Fig.  1d). The most common bacterial classes in the 
samples were Gammaproteobacteria, Betaproteobacte-
ria, Alphaproteobacteria, Bacilli, Clostridia, and Act-
inobacteria, all present in 100% of samples, while the 
most abundant classes were Actinobacteria (mean [SD] 
relative abundance = 28.8% [18.1]), Gammaproteobac-
teria (mean [SD] = 23.9% [22.1]), and Bacilli (mean 
[SD] = 20.3% [17.8]) (Supplementary Figure  7). The 
most common genera in the samples were Lactobacil-
lus, Acinetobacter, Streptococcus, Corynebacterium, and 
Marmoricola, all present in 100% of samples, while the 
most abundant genera were Corynebacterium (mean 
[SD] relative abundance = 16.9% [13.1]), Marmoricola 
(mean [SD] = 16.9% [22.0]), Pseudomonas (mean [SD] 
= 12.3% [17.6]), and Acinetobacter (mean [SD] = 10.1% 
[12.7]) (Supplementary Figure  8). We did not observe 
any differentially abundant taxa between paired tumor 
and normal lung samples (all q ≥ 0.17).

Microbiome α‑ and β‑diversity in relation to survival
Overall microbiome composition in the tumor sam-
ples, as measured by the JSD, was significantly related 
to DFS (p = 0.03), but not to RFS (p = 0.17) or OS (p 
= 0.45), while composition in normal lung samples was 
not related to RFS (p = 0.12), DFS (p = 0.45), or OS (p 
= 0.88), in MiRKAT-S tests adjusting for age, sex, race, 
histology, smoking status, and chemotherapy. Addition-
ally, higher tumor microbiome Shannon diversity was 
associated with better DFS in a covariate-adjusted model 
(HR [95% CI] = 0.52 [0.28, 0.96], p = 0.04), but diversity 
of the normal lung microbiome was not associated with 
RFS, DFS, or OS (Supplementary Table 2).
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Microbial taxa related to survival
In 500 × 10-fold cross-validated elastic-net Cox regres-
sion models for RFS, DFS, and OS adjusting for covari-
ates, we observed several taxa selected >25% of the time 
with q < 0.20 in the tumor and normal lung data (Fig. 2a; 
Supplementary Table 3); associations for the RFS, DFS, 
and OS outcomes tended to be similar in direction. In 
tumor tissue, higher abundance of orders Pseudomo-
nadales and Actinomycetales, and species Marmori-
cola aurantiacus, was associated with worse survival, 
especially DFS (Fig.  2a). In normal lung tissue, higher 
abundance of classes Bacteroidia and Clostridia, and 
orders Bacteroidales and Clostridiales, was associated 
with worse survival, while higher abundance of classes 
Alphaproteobacteria and Betaproteobacteria, orders 
Burkholderiales and Neisseriales (from class Betapro-
teobacteria), and an ASV from Mycobacterium vaccae, 
was associated with better survival (Fig. 2a). Abundance 

of Bacteroidia/Bacteroidales and Clostridia/Clostridi-
ales in normal lung appeared somewhat enriched in 
patients with short survival (Fig. 2b), and this was par-
ticularly the case for patients with < 1 year vs. > 1 year 
RFS (Fig. 2c), though this pattern was similar for 3-year 
and 5-year RFS (Supplementary Figure  9). In contrast, 
abundance of Marmoricola aurantiacus in tumor tissue 
was enriched only in patients with <1 year vs. >1 year 
RFS (Supplementary Figure 10).

To evaluate reproducibility, we examined whether 
any of the observed survival-related taxa were associ-
ated with overall survival in two validation cohorts: our 
previous pilot study of tumor and normal lung samples 
from NSCLC patients (Peters et  al. [21]) and a study 
of lower airway brushings from NSCLC patients (Tsay 
et al. 2021) [17]. In Peters et al. [21], which included 17 
stage I–IV NSCLC patients, we validated that Bacteroi-
dales, Clostridia, and Clostridiales in normal lung (but 

Table 1  Characteristics of patients with stage II non-small cell lung cancer

All Patients with tumor sample Patients with normal lung sample

N 46 39 41

Age, years, mean ± SD 70 ± 9 70.8 ± 8.7 70 ± 9.1

Male, n (%) 23 (50.0) 20 (51.3) 21 (51.2)

Race, n (%)

  White 40 (87) 35 (89.7) 37 (90.2)

  Hispanic 4 (8.7) 2 (5.1) 4 (9.8)

  Other 2 (4.3) 2 (5.1) 0 (0)

Smoking history, n (%)

  Never 7 (15.2) 6 (15.4) 4 (9.8)

  Former 29 (63.0) 25 (64.1) 28 (68.3)

  Current 10 (21.7) 8 (20.5) 9 (22.0)

Histology, n (%)

  Adenocarcinoma 23 (50.0) 20 (51.3) 18 (43.9)

  Squamous cell carcinoma 23 (50.0) 19 (48.7) 23 (56.1)

Stage, n (%)

  IIA 30 (65.2) 26 (66.7) 26 (63.4)

  IIB 16 (34.8) 13 (33.3) 15 (36.6)

Lymphovascular invasion, n (%) 24 (52.2) 21 (53.8) 21 (51.2)

Pleural invasion, n (%) 36 (78.3) 30 (76.9) 32 (78)

Tumor size, cm, mean ± SD 4.3 ± 2.1 4.3 ± 2.2 4.4 ± 2.1

Percent positive nodes, %, mean ± SD 13.0 ± 16.0 13.1 ± 17.0 13.4 ± 16.3

Chemotherapy, n (%) 15 (32.6) 13 (33.3) 12 (29.3)

Recurrence type, n (%)

  None 22 (47.8) 20 (51.3) 20 (48.8)

  Nodal 6 (13.0) 5 (12.8) 6 (14.6)

  Systemic 12 (26.1) 9 (23.1) 10 (24.4)

  New primary 4 (8.7) 3 (7.7) 4 (9.8)

  Multiple types 2 (4.3) 2 (5.1) 1 (2.4)

Alive at last follow-up, n (%) 23 (50.0) 19 (48.7) 21 (51.2)
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not tumor) tissue were associated with worse survival 
(Fig. 2d). In 34 stage I–IIIA NSCLC patients from Tsay 
et  al. [17], we validated that Bacteroidia and Bacteroi-
dales in non-involved airway brushings, and Clostridia 
and Clostridiales in involved airway brushings, were 
associated with worse survival, though associations 
were similar for involved and non-involved samples 
(Fig. 2d). These associations were not observed in more 
advanced (stage IIIB–IV) NSCLC patients in Tsay et al. 
[17] (Supplementary Figure 11).

Since Clostridia abundance in normal lung tissue was 
associated with worse survival and validated in two vali-
dation cohorts, we performed qPCR to confirm the pres-
ence of Clostridia in the lung samples. The quantity of 
Clostridia in qPCR had a significant mild correlation with 
the clr-transformed abundance in the 16S data (Spear-
man r = 0.24, p = 0.03) (Supplementary Figure  12). 
Moreover, the qPCR-derived quantity of Clostridia in the 
normal lung tissue (log-transformed) was significantly 
associated with worse RFS, DFS, and OS in Cox regres-
sion models adjusting for covariates (HR [95% CI] = 2.5 

[1.1, 5.5]; 2.4 [1.1, 5.2]; 3.2 [1.2, 8.3], respectively, and p = 
0.02 for all), supporting our findings in the 16S data.

Microbial functional pathways related to survival
We observed five microbial functional pathways in the 
normal lung that were associated with better RFS, most 
related to ubiquinol biosynthesis, and 7 pathways in the 
normal lung associated with worse OS (Fig. 3a; Supple-
mentary Table  4). No microbial functional pathways in 
the tumor data met our selection criteria for association 
with survival. The protective pathways in the normal 
lung were strongly positively correlated with each other, 
positively correlated with Betaproteobacteria and Neisse-
riales, and inversely correlated with Clostridia/Clostridi-
ales and Bacteroidia/Bacteroidales in the normal lung 
(Fig.  3b). The 7 risk-associated pathways in the normal 
lung were strongly positively correlated with each other, 
but not correlated with any of the survival-related taxa in 
the normal lung (Fig. 3b). These risk-associated pathways 
belonged to various sugar biosynthesis and degrada-
tion classifications (Supplementary Table 5). We further 

Fig. 1  Determinants of tumor and normal lung sample composition in stage II NSCLC patients. a, b Principal coordinate analysis of the 
Jensen-Shannon Divergence, colored by a number of sequence reads or b tumor (n = 39) or normal lung (n = 41) sample type. Gray lines connect 
samples from the same patient. c Histogram of mean Jensen-Shannon Divergence for 5000 permutations of tumor vs. normal lung pairs; green line 
represents the observed mean distance for true tumor vs. normal lung pairs (n = 34) and black line represents the 5th percentile of the permuted 
distribution. d Association of patient characteristics with the Jensen-Shannon Divergence in tumor and normal lung, from PERMANOVA analysis
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examined which taxa may contribute to these functional 
pathways by conducting correlation analysis for all avail-
able taxa (phylum through ASV level), and found that 
taxa in the Neisseriales lineage were strongly related to 
the 5 protective pathways, while 3 ASVs from Methylo-
bacteriaceae were strongly related to the 7 risk-associated 
pathways (Supplementary Figure 13). The Methylobacte-
riaceae ASVs were associated with worse OS (p < 0.05), 
but did not meet our selection criteria for significant 
association (Supplementary Table 3).

Peripheral blood gene expression related to survival
We observed 4 genes for which expression was associated 
with better survival: IFITM2, TAP1, TAPBP, and CSF2RB 
(Fig. 4a; Supplementary Table 6). This set of genes were 
enriched (p < 0.001) for functions of transmembrane 
transporter activity and antigen processing and presenta-
tion of peptides via MHC Class I (Fig. 4b); these enrich-
ments were solely related to the TAP1 and TAPBP genes. 

The survival-related genes were not significantly associ-
ated with any survival-related taxa or functional path-
ways in the normal lung (Fig.  4c) or tumor (Fig.  4d), in 
partial correlations adjusted for age, sex, race, histology, 
smoking status, and chemotherapy.

Survival risk prediction models
We examined whether lung microbiome and peripheral 
gene expression biomarkers could improve survival risk 
prediction over standard risk factors alone, in a sub-
set of 37 participants with both normal lung microbi-
ome and gene expression data available. Clostridiales 
and Bacteroidales in the normal lung were included as 
microbiome biomarkers, given their reproducibility in 
the two validation cohorts, and IFITM2, TAP1, TAPBP, 
and CSF2RB were included as peripheral gene expres-
sion biomarkers. We evaluated the performance of four 
models for risk prediction of RFS and DFS: (1) a model 
with standard covariates (age, sex, race, histology, 

Fig. 2  Microbial taxa related to survival in tumor and normal lung from stage II NSCLC patients. a For taxa selected >125 times in 500 × 10-fold 
cross-validated elastic-net penalized Cox regression and with FDR-adjusted q < 0.20 in either the tumor (n = 39) or normal lung (n = 41) data, we 
show number of times selected out of 500 times, and the hazard ratio (95% CI) from Cox proportional hazards regression of RFS, DFS, or OS on 
clr-transformed taxon abundance, adjusted for age, sex, race, histology, smoking status, and chemotherapy. b Heatmap of clr-transformed taxon 
abundance in normal lung tissue, sorted by months of RFS. c Boxplots of clr-transformed taxon abundance in normal lung tissue according to 
1-year RFS status. P-values from Wilcoxon rank-sum test. d Comparison of study results with those from Peters et al. [21] and Tsay et al. [17]. Plots 
show the hazard ratio (95% CI) from Cox proportional hazards regression of OS on clr-transformed taxon abundance. Peters et al. (2019) included 
16 tumor and 17 normal lung tissue samples, and models were adjusted for age and sex. Tsay et al. [17] included lower airway brushings from local 
stage (I-IIIA) NSCLC patients (n = 34 patients, n = 93 samples [36 involved, 57 non-involved]), and models were adjusted for age, sex, race, histology, 
smoking status, chemotherapy, and surgery; models also accounted for clustering of samples within patients
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smoking status, and chemotherapy); (2) a model with 
standard covariates plus clr-transformed Clostridi-
ales and Bacteroidales abundance in the normal lung 
(microbiome model); (3) a model with standard covari-
ates plus log2-transformed IFITM2, TAP1, TAPBP, and 
CSF2RB expression in peripheral blood (gene model); 
and (4) a model with standard covariates plus the 
microbiome and gene biomarkers (microbiome and 
gene model). The microbiome model had a higher AUC 
than the standard covariate model at 1 year of follow-
up for RFS and DFS, after which it performed margin-
ally better than the standard covariate model at years 
2–4 of follow-up for DFS, but not RFS (Fig.  4e; Sup-
plementary Figures  14 and 15). In contrast, the gene 
model performed significantly better than the standard 
covariate model at years 2–5 (but not year 1) of follow-
up for RFS and DFS (Fig. 4e; Supplementary Figures 14 
and 15). Consequently, the microbiome and gene bio-
markers together performed significantly better than 
the standard covariate model at years 1–5 of follow-up 
for RFS and DFS (Fig.  4e; Supplementary Figures  14 
and 15). Similarly, microbiome biomarkers added sig-
nificant risk discrimination over standard covariates 
and gene biomarkers at year 1 of follow-up for RFS and 
years 1–4 for DFS, while gene biomarkers added signifi-
cant risk discrimination over standard covariates and 

microbiome biomarkers at years 2–5 of follow-up for 
RFS and DFS (Supplementary Figures 14 and 15).

Discussion
In this study of stage II NSCLC patients, we observed 
that taxa in the tumor and normal lung microbiome, 
and the expression of 4 genes in peripheral blood, were 
predictive of lung cancer recurrence risk. Notably, the 
associations of Clostridia/Clostridiales and Bacteroidia/
Bacteroidales in the normal lung with worse survival 
were validated in two independent studies. Together, 
lung microbiome and peripheral gene expression bio-
markers provided significant additional risk discrimina-
tion for recurrence risk over standard demographic and 
clinical information during the first several years after 
tumor resection, with microbiome biomarkers perform-
ing better for short-term (~1 year) prediction and gene 
expression biomarkers performing better for longer-term 
(2–5 years) prediction. Our results suggest that biomark-
ers in normal lung tissue and peripheral blood could 
improve recurrence risk prediction in NSCLC.

A few previous studies have examined the relationship 
of the lung microbiome with the risk of lung cancer recur-
rence. In 48 early-stage NSCLC patients, Patnaik et  al. 
observed a microbiome signature in pre-surgery bron-
choalveolar lavage samples, based on 19 genera, that was 
strongly associated with recurrence risk and tumor gene 

Fig. 3  Microbial functional pathways related to survival in tumor and normal lung from stage II NSCLC patients. a For functional pathways selected 
>125 times in 500 × 10-fold cross-validated elastic-net penalized Cox regression and with FDR-adjusted q < 0.20 in either the tumor (n = 39) 
or normal lung (n = 41) data, we show number of times selected out of 500 times, and the hazard ratio (95% CI) from Cox proportional hazards 
regression of RFS, DFS, or OS on clr-transformed pathway abundance, adjusted for age, sex, race, histology, smoking status, and chemotherapy. b 
Spearman’s correlations between relative abundance of survival-related taxa and survival-related functional pathways in normal lung tissue data. 
*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001
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expression [18]. They also found three genera in tumor 
tissue (Staphylococcus, Bacillus, and Anaerobacillus) that 
were related to recurrence risk, but no associations were 
found for the adjacent non-tumor lung tissue microbi-
ome [18], in contrast with our results. In 83 lung cancer 
patients (38 with early-stage NSCLC), Tsay et al. reported 
that a lower airway microbiome similar to that of the oral 
cavity (i.e., enriched in taxa such as Streptococcus, Prevo-
tella, and Veillonella) was associated with poorer sur-
vival in stage I–IIIA NSCLC, and that this oral-enriched 
signature was associated with upregulation of p53, PI3K/
PTEN, ERK, and IL6/IL8 pathway transcription in the 
lower airway [17]. We re-analyzed data from this study to 
find that higher abundance of Clostridia and Bacteroidia 
in lower airway brushings was associated with worse sur-
vival for stage I-IIIA NSCLC patients. This independent 
validation supports that the relationship of these taxa 
with patient outcome is less likely to be a chance finding, 

and may even reflect involvement of these lung bacteria in 
the mechanism of NSCLC recurrence.

Given that bacterial classes and orders, such as those 
associated with survival in our study (Clostridia/Clostrid-
iales, Bacteroidia/Bacteroidales, Alphaproteobacteria, 
and Betaproteobacteria/Burkholderiales/Neisseriales in 
the normal lung; Actinomycetales and Pseudomonadales 
in tumor), are broad groups featuring many constituent 
species, it is difficult to surmise underlying mechanisms 
for their association with recurrence. Alphaproteobacte-
ria, Betaproteobacteria, and Pseudomonadales, belonging 
to phylum Proteobacteria, and Bacteroidia, from phylum 
Bacteroidetes, are all gram-negative bacteria, meaning 
they possess an outer lipopolysaccharide (LPS) mem-
brane, while Clostridia, from phylum Firmicutes, and 
Actinomycetales, from phylum Actinobacteria, are gen-
erally gram-positive bacteria which lack this outer mem-
brane. LPS is known for its potent activation of the innate 

Fig. 4  Peripheral blood gene expression related to survival in stage II NSCLC patients. a For genes selected >125 times in 500 × 10-fold 
cross-validated elastic-net penalized Cox regression and with FDR-adjusted q < 0.20, we show number of times selected out of 500 times, and the 
hazard ratio (95% CI) from Cox proportional hazards regression of RFS, DFS, or OS on log2-transformed gene expression, adjusted for age, sex, race, 
histology, smoking status, and chemotherapy. b Gene ontology (GO) enrichment for survival-related genes. GO terms from the biological process or 
molecular function ontologies with p < 0.001 from Fisher’s exact test are shown. c, d Partial Spearman’s correlations between relative abundance of 
survival-related taxa and functional pathways in c normal lung or d tumor and survival-related gene expression. Correlations were adjusted for age, 
sex, race, histology, smoking status, and chemotherapy. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. e Area under the time-dependent ROC curve 
(AUC) for the four models at different follow-up times. Model 1 included standard covariates only (age, sex, race, histology, smoking status, and 
chemotherapy); model 2 (microbiome model) included standard covariates and clr-transformed Clostridiales and Bacteroidales abundance in the 
normal lung; model 3 (gene model) included standard covariates and log2-transformed peripheral expression of IFITM2, TAP1, TAPBP, and CSF2RB; 
and model 4 (microbiome and gene model) included standard covariates plus the microbiome and gene variables. Solid lines (circles) represent the 
time-dependent AUCs from “timeROC” R package; shaded area represents the 95% confidence intervals determined from 1000 bootstraps



Page 12 of 17Peters et al. Genome Medicine          (2022) 14:121 

immune system through its binding to toll-like receptor 
4 (TLR4) [49], important for pathogen clearance [50]. 
However, there are many nuances in LPS structure across 
species, such that LPS from Proteobacteria is considered 
immunostimulatory, while LPS from Bacteroidetes is 
considered non-stimulatory and possibly antagonistic to 
TLR4 [50]. Proteobacteria (mostly Gammaproteobacte-
ria) are enriched in the lungs in a variety of inflammatory 
lung diseases, including asthma and chronic obstructive 
pulmonary disease [15]. Additionally, gram-negative bac-
teria have been shown to increase metastasis via TLR4 
activation in animal models of NSCLC [51], and NSCLC 
patients with gram-negative bacterial pulmonary infec-
tion [52] or tumor TLR4 overexpression [53] have shorter 
time to recurrence. Thus, the association of Pseudomon-
adales (from class Gammaproteobacteria) in tumor tissue 
with worse survival was in line with prior evidence, but 
it was surprising that Alphaproteobacteria and Betapro-
teobacteria in the normal lung were related to improved 
survival in our study. It is possible that non-pathogenic 
lung Proteobacteria could also play a role in anti-cancer 
immune surveillance. In support of this, a study investi-
gating aerosol antibiotic therapy for lung metastases in 
mice found that treatment with aerosol antibiotics shifted 
the lung microbiome composition in favor of increased 
Proteobacteria and decreased Firmicutes, which was 
associated with an enhanced immune response against 
cancer cells and reduced number of lung metastases [54]. 
However, our findings for Alphaproteobacteria, Betapro-
teobacteria, and Pseudomonadales were not replicated in 
our two validation cohorts; thus, validity of these associa-
tions is unclear. On the other hand, the associations of 
Clostridia/Clostridiales and Bacteroidia/Bacteroidales in 
the normal lung with worse survival were replicated in 
the two validation cohorts. These taxa have been identi-
fied as common residents of the lung microbiome in other 
studies [55–57], though their putative function in the lung 
microbiome community is unknown.

At lower taxonomic levels, we observed that species 
Marmoricola aurantiacus in tumor tissue was associated 
with worse DFS only, and an ASV from Mycobacterium 
vaccae in normal lung tissue was related to better sur-
vival. Mycobacterium [55, 56] and Marmoricola [56, 58] 
have been previously observed in the respiratory micro-
biome in other studies, but not consistently across all 
studies, making it unclear if these are common residents 
of the lung microbiome or possible contaminants. As 
Marmoricola was an abundant genus in our samples, its 
relation with worse DFS may explain the significant asso-
ciation of overall tumor microbiome composition with 
DFS in MiRKAT-S analysis. Heat-killed Mycobacterium 
vaccae injection has been shown to improve survival in 
later-stage NSCLC when used as an adjuvant therapy 

[59], which is related to its immune regulation role [60] 
and in line with the observed protective association.

Analysis of inferred functional capacity in the lung 
microbiome revealed ubiquinol biosynthesis pathways 
in the normal lung as protective for lung cancer recur-
rence, while sugar synthesis and metabolism pathways in 
the normal lung were related to worse survival. The very 
high correlations within the groups of protective and risk-
associated pathways, respectively, suggest that their asso-
ciations with survival are driven by specific taxa which 
possess these functions. Indeed, the protective and risk-
associated pathways appeared to stem from Neisseriales 
and Methylobacteriaceae ASVs, respectively. Thus, it is 
not clear whether these pathways may have causal involve-
ment in lung cancer recurrence or are simply reflective of 
survival-related taxa. However, ubiquinol (also known as 
coenzyme Q10) is a naturally occurring antioxidant and its 
levels in plasma have been associated with reduced lung 
cancer risk in a prospective study [61], consistent with a 
protective role of microbial ubiquinol biosynthesis.

We did not observe a significant difference in over-
all microbiome composition between paired tumor and 
normal lung samples in our study, with composition 
being more similar within than between patients. Simi-
lar overall composition for paired tumor and normal 
lung is consistent with our previous pilot study [21] and 
other studies that have compared tumor and normal 
lung samples [18, 55, 56, 62–65]. Some of these studies 
have observed differences in specific taxa between paired 
tumor and normal lung samples, including a meta-analy-
sis of 5 studies which found decreased abundance of Act-
inobacteria, Corynebacterium, Lachnoanaerobaculum, 
and Halomonas in tumor compared to adjacent normal 
lung [66]. While we may expect that changes in the lung 
due to the tumor would lead to microbiome dysbiosis in 
tumor compared to adjacent normal lung, a few factors 
may contribute to the lack of findings in this regard. First, 
smaller sample size, such as in this study, may reduce the 
power to detect differences in composition and specific 
taxa. Second, tumor and normal lung samples may dif-
fer within a patient, but not in a systematic way across 
all patients (i.e. each tumor-normal pair may be unique in 
its differences). Third, earlier stage NSCLC may have less 
impact on the tumor microbiome than more advanced 
disease. Lastly, it is possible that normal lung samples 
are still too proximal to tumors for differentiation, and 
more distant normal samples are necessary to observe 
the influence of the tumor on the microbiome. Despite 
observed similarities in tumor and normal lung within 
patients, different associations of the microbiome with 
survival were observed for tumor and normal lung. This 
could be due to truly unique associations for each sample 
type with survival, or it could be due to the different sets 
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of patients with tumor and normal lung data in this study 
(only 34 patients had both sample types). This is plausible 
since we observed some consistent associations for both 
tumor and normal lung (e.g., Betaproteobacteria with 
better survival) which were more robust in the normal 
lung data, and therefore only selected as significant in 
the penalized regressions for normal lung. Interestingly, 
cancer stage (IIA or IIB) was significantly associated 
with overall composition of the tumor (but not normal 
lung) microbiome, suggesting that the progressing tumor 
microenvironment does influence the tumor microbiota.

We also evaluated the relationship of peripheral blood 
immune gene expression with recurrence, and observed 
4 genes (TAP1, TAPBP, CSF2RB, and IFITM2) that 
were associated with better survival. These genes were 
not among those prognostic for survival in a previous 
study of PBMC gene expression based on microarray in 
108 stage I–IIIA NSCLC patients. In that study, a gene 
prognostic score of 26 genes was identified in a train-
ing set of 54 patients using penalized Cox proportional 
hazards regression and validated in the other set of 54 
patients [28]. They found a total of 1704 genes associ-
ated with survival at p < 0.05, but the list of genes was 
not provided; genes associated with better survival were 
enriched for functions related to ribosomal structure 
and function, while genes associated with worse sur-
vival were enriched for cell cycle or metaphase functions 
[28]. In regard to our findings, Transporter Associated 
With Antigen Processing (TAP1) and TAP Binding Pro-
tein (TAPBP) are members of the peptide loading com-
plex which facilitates antigen presentation on MHC class 
I molecules [67]. MHC class I presentation of antigens 
on cancer cells triggers recognition by cytotoxic T-cells 
and destruction of the cancer cell, making TAP1 and 
TAPBP critical for anti-cancer immunosurveillance [68]. 
While loss of MHC class I expression in NSCLC tumors 
is a mechanism of immune escape and a significant pre-
dictor of poor prognosis [68], this has not been studied 
for peripheral blood. However, MHC class I expression 
in peripheral blood may reflect tumor expression, since 
PBMC expression in cancer patients is significantly lower 
than healthy controls for several cancer types [69–71]. 
This may explain the association of TAP1 and TAPBP 
expression in peripheral blood with better survival in 
our study. Colony-stimulating factor 2 receptor subu-
nit beta (CSF2RB) is a subunit of the receptor for inter-
leukin-3, interleukin-5, and granulocyte-macrophage 
colony-stimulating factor (GM-CSF). GM-CSF has been 
controversially related to both pro-cancer and anti-can-
cer functions, but its utilization as an immune adjuvant 
in cancer immunotherapy clinical trials [72] suggests 
that it can enhance antitumor efficacy. Higher CSF2RB 
expression in lung adenocarcinoma tumors is associated 

with better survival [73], in line with our observations in 
peripheral blood. Lastly, Interferon-Induced Transmem-
brane Protein 2 (IFITM2) is a member of a protein fam-
ily which inhibits viral entry into host cells [74]. Though 
IFITM2 has not been previously studied in lung cancer 
prognosis, the related IFITM1 was associated with poor 
survival in lung adenocarcinoma, contrary to the protec-
tive effect of IFITM2 observed in our study.

Survival-related lung microbiota and survival-related 
peripheral gene expression were uncorrelated with each 
other, suggesting there are independent mechanisms for 
their respective relationships with survival (i.e., the lung 
microbiota may act more locally). Analysis of annual 
time-dependent AUCs revealed that lung microbiome 
biomarkers were only useful in short-term (1-year) pre-
diction of recurrence, significantly improving the AUC 
from the standard covariate model. In contrast, periph-
eral blood gene expression biomarkers significantly 
improved the AUC for longer-term (2–5-year) prediction 
of recurrence. This may indicate that each data type pro-
vides unique information regarding time to recurrence. 
Together, the lung microbiome and peripheral blood 
gene expression biomarkers significantly improved recur-
rence risk prediction during years 1–5 after resection, 
to a greater extent than either set of biomarkers alone. 
While the joint utility of these biomarkers will need to 
be validated in a larger study, these preliminary findings 
suggest that novel biomarkers from the lung microbiome 
and peripheral blood may hold promise for predicting 
prognosis in early-stage NSCLC.

Conclusions
In summary, we show that Clostridia and Bacteroidia 
in normal lung tissue may be reproducible biomarkers 
of recurrence risk after tumor resection in early-stage 
NSCLC patients. Additionally, expression of TAP1, 
TAPBP, CSF2RB, and IFITM2 in peripheral blood were 
associated with better survival, and the combination of 
lung microbiome and peripheral gene expression bio-
markers significantly improved prediction of recurrence 
in years 1–5 after resection, over standard covariates 
alone. These findings will require validation in other 
larger study populations. This study faced several limi-
tations that future studies can address, including the 
small sample size, limited sample types (e.g., only stage 
II, no healthy controls), lack of shotgun metagenomic 
sequencing to determine actual rather than inferred 
functional potential of the lung microbiome, and lack 
of host gene expression data in lung tissue which would 
be more proximal to the lung microbiota. However, we 
identified compelling biomarkers in under-explored 
data types—the lung microbiome and peripheral blood 
gene expression—which may improve risk prediction of 
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recurrence in NSCLC patients and thus improve survival 
if implemented in a clinical setting. In the future, these 
biomarkers can also be tested for their predictive ability 
in the response to chemotherapy or immunotherapy (we 
did not have a sufficient sample size of patients receiv-
ing chemotherapy to evaluate response to therapy in 
this study). The biomarkers may also suggest targets for 
experimental evaluation in animal models of the role of 
the lung microbiota or peripheral immunity in lung can-
cer recurrence. Better understanding of the mechanistic 
role of the lung microbiota and peripheral immunity may 
lead to the development of new adjuvant therapies for 
NSCLC, which may improve lung microbiome and sys-
temic immune profiles to prevent cancer recurrence.
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