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Abstract 

Background:  Neuropsychiatric disorders afflict a large portion of the global population and constitute a significant 
source of disability worldwide. Although Genome-wide Association Studies (GWAS) have identified many disorder-
associated variants, the underlying regulatory mechanisms linking them to disorders remain elusive, especially those 
involving distant genomic elements. Expression quantitative trait loci (eQTLs) constitute a powerful means of provid-
ing this missing link. However, most eQTL studies in human brains have focused exclusively on cis-eQTLs, which link 
variants to nearby genes (i.e., those within 1 Mb of a variant). A complete understanding of disease etiology requires 
a clearer understanding of trans-regulatory mechanisms, which, in turn, entails a detailed analysis of the relationships 
between variants and expression changes in distant genes.

Methods:  By leveraging large datasets from the PsychENCODE consortium, we conducted a genome-wide survey of 
trans-eQTLs in the human dorsolateral prefrontal cortex. We also performed colocalization and mediation analyses to 
identify mediators in trans-regulation and use trans-eQTLs to link GWAS loci to schizophrenia risk genes.

Results:  We identified ~80,000 candidate trans-eQTLs (at FDR<0.25) that influence the expression of ~10K target 
genes (i.e., “trans-eGenes”). We found that many variants associated with these candidate trans-eQTLs overlap with 
known cis-eQTLs. Moreover, for >60% of these variants (by colocalization), the cis-eQTL’s target gene acts as a media-
tor for the trans-eQTL SNP’s effect on the trans-eGene, highlighting examples of cis-mediation as essential for trans-
regulation. Furthermore, many of these colocalized variants fall into a discernable pattern wherein cis-eQTL’s target is a 
transcription factor or RNA-binding protein, which, in turn, targets the gene associated with the candidate trans-eQTL. 
Finally, we show that trans-regulatory mechanisms provide valuable insights into psychiatric disorders: beyond what 
had been possible using only cis-eQTLs, we link an additional 23 GWAS loci and 90 risk genes (using colocalization 
between candidate trans-eQTLs and schizophrenia GWAS loci).

Conclusions:  We demonstrate that the transcriptional architecture of the human brain is orchestrated by both cis- 
and trans-regulatory variants and found that trans-eQTLs provide insights into brain-disease biology.
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Background
Psychiatric disorders exact an immense public health 
toll on a global scale. Despite the identification of 
many variants associated with these disorders through 
genome-wide association studies (GWAS), the precise 
mechanisms by which they influence human health 
remain poorly characterized. Expression quantitative 
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trait loci (eQTLs) are often used to analyze the effects 
of variants on gene expression. An eQTL consists of 
a variant (termed an “eSNP”) and a gene (termed an 
“eGene”) wherein the genotype at the eSNP locus is 
significantly associated with changes in the expres-
sion of the eGene. Previous studies have demonstrated 
that variants associated with a range of human pheno-
types frequently function as eQTLs [1], suggesting that 
eGene expression may play the role of a so-called inter-
mediate phenotype. By definition, however, eQTLs are 
identified by statistical associations (i.e., correlations), 
whereas a more complete understanding of disease 
susceptibility and etiology entails better characteriza-
tion of causal relationships. By investigating mediation 
effects in the context of eQTLs, we can more confi-
dently establish such causal relationships.

Although cis-eQTLs are identified for eSNP-eGene 
pairs that lie within one chromosomal Mb of one 
another, it is now well established that cis-eSNPs may 
simultaneously be associated with the expression of 
distant genes [2, 3]. A natural model for such phenom-
ena may be one in which the expression of a trans-
eGene (i.e., the eGene associated with a distant eSNP) 
is mediated by a cis-eGene [3, 4]. Trans-eQTLs that 
are mediated by cis-eGene expression provide more 
direct causal relationships between variants and trans-
eGene expression. A simple but illustrative example of 
this phenomenon may involve an eSNP that lies within 
the promoter of a cis-eGene, wherein the cis-eGene 
is a transcription factor (TF). The distal target of this 
TF may then appear as a trans-eGene, the expression 
of which is strongly influenced by the variant affecting 
the expression of the regulator TF. Thus, the regulatory 
linkage in this example comprises an eSNP that influ-
ences a nearby TF as part of a cis-eQTL, the cis-eGene 
of which (the TF) then functions as a mediator that 
influences the expression of the regulated trans-eGene. 
Elucidating the roles of mediators such as TFs, RNA-
binding proteins, microRNAs, chromosomal remod-
eling proteins, and other regulatory factors provides 
immense value for understanding disease etiology in 
light of genomic variants. This immense value stems 
from the fact that a better characterization of media-
tors goes beyond statistical associations by providing 
a more complete picture of disease mechanisms via 
intermediary phenotypes, especially as they relate to 
trans-eGene expression [5, 6]. Furthermore, uncover-
ing instances of cis-mediation also enables investiga-
tors to elucidate and describe regulatory networks with 
greater confidence, thereby providing a more systems-
level understanding of psychiatric disorders. Within 
this framework, for instance, cis-eGenes that regulate 
the expression of many trans-eGenes would function 

as so-called “cis-hub” genes [7, 8], and these may form 
the basis of trans-eQTL hotspots within regulatory 
networks.

The Genotype-Tissue Expression (GTEx) project has 
identified both cis- and trans-eQTLs in multiple human 
tissues [9]. Nonetheless, the sample sizes available for 
brain subregions were fairly limited in GTEx, thereby 
providing only a limited number of identified trans-
eQTLs in brain tissues. In our previously published work 
using PsychENCODE data [10], we only calculated and 
reported cis-eQTLs.

Here, we combined the large-scale data resources 
generated by the PsychENCODE Consortium, Com-
monMind (CMC), and GTEx to identify candidate trans-
eQTLs with high confidence. We carried out a careful 
set of analyses on the features of these eQTLs and then 
compared them with those of cis-eQTLs. Furthermore, 
our analyses enabled us to identify trans-eQTLs hot-
spots. By both conducting statistical mediation analysis 
and integrating data on inter-chromosomal contacts, 
we evaluated two potential mechanisms by which vari-
ants may influence trans-eGene expression. Upon inte-
grating our results with schizophrenia (SCZ) GWAS 
data, we demonstrate that these candidate trans-eQTLs 
might be pivotal for providing novel insights into disease 
mechanisms.

Methods
QTL analysis
We used the standard pipelines from ENCODE, GTEx, 
and other large consortia to uniformly process raw 
sequencing data from PsychENCODE [11] (1387 samples 
including RNA-seq and genotype data, see Availability 
of data and materials), as well as to identify functional 
genomic elements, such as brain enhancers, expressed 
genes, and eQTLs. We also processed other data types, 
such as Hi-C and single-cell data [10]. We used the 
imputed genotype and filtered expression data from our 
previous paper [10]. We harmonized the genotype and 
RNA-seq data from PsychENCODE. We used the Michi-
gan imputation server [12] to impute the genotype data 
to the Haplotype Reference Consortium Panel [13]. We 
followed the GTEx pipeline for identifying all candidate 
trans-eQTLs to ensure maximal compatibility between 
our results and previous cis-eQTL results published by 
us and others. We found that lowly-expressed genes that 
were not detected in any samples can be falsely associ-
ated with SNPs due to the statistical fluctuation intro-
duced by inverse quantile normalization. Therefore, after 
the gene filtering process in our previous paper, genes 
that were not detected in any of the 1387 samples were 
also removed from the analysis, leaving 12,278 genes. 
We used the QTLtools software package for candidate 
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trans-eQTL identification [14]. Following the normali-
zation scheme used by GTEx [9], the gene expression 
matrix was first normalized using quantile normaliza-
tion, followed by inverse quantile normalization to map 
to a standard normal distribution (and to remove outli-
ers). We used 50 probabilistic estimation of expression 
residuals (PEER) factors, 3 genotype principal compo-
nents, gender, and the respective study as covariates in 
our calculations to identify cis-eQTLs (Given our much 
larger sample size, we used considerably more PEER fac-
tors than GTEx). The 50 PEER factors performed well in 
terms of capturing information on inter-sample differ-
ences in cell type abundances (Additional file 6: Fig. S1-5). 
For candidate trans-eQTLs, we calculated the associa-
tions between gene expression and variants greater than 
the 5 Mb window of each gene’s TSS (both upstream and 
downstream). These calculations were performed using 
genotype and gene expression data from 1387 individuals 
(associations between a total of 12k genes and 5,312,508 
variants were tested for potential QTLs).

We performed multiple testing correction on nominal 
P-values by limiting pooled FDR values to less than 0.25 
(Additional file  1) and 0.05 (Additional file  2) to gener-
ate two different lists of trans-eQTLs [15, 16]. We note 
that the list obtained using a pooled FDR threshold of 
0.05 offers very limited power for downstream analyses. 
Therefore, with the goal of identifying as many trans-
regulatory relationships as possible while simultaneously 
limiting the occurrence of false positives, we used the list 
with an FDR threshold of 0.25 for our analyses through-
out our study. However, given that this FDR threshold 
still allows for more false positives than many studies 
involving QTLs, we have adopted the term “candidate 
trans-eQTLs” to refer to this list, wherever applicable. 
We identified ~77k candidate trans-eQTLs involving 
~10K eGenes (Additional file 1). We generated an eGene 
list using hierarchical gene-level FDR list [17] (Additional 
file 3). We also used this hierarchical multiple test correc-
tion via a permutation-based scheme [9], and provide the 
trans-eQTL list at FDR<0.25 (Additional file 4).

Enrichment of genomic elements
Using SnpEff [18], we annotated SNPs of cis-eQTLs, can-
didate trans-eQTLs, cQTLs, and all SNPs used for QTL 
calculations to identify cases in which SNPs overlap with 
genomic elements. We then tested for the enrichment 
of the QTL SNPs in different genomic elements using 
Fisher’s exact test by using all SNPs used for QTL calcu-
lations as the background. We also calculated the ratio of 
the number of SNPs in each genomic element to the total 
number of input SNPs. We selected promoters, untrans-
lated regions, exons, introns, downstream regions, TF 

binding sites, enhancers, brain enhancers, and ePromoter 
regions for enrichment and ratio calculations.

Mediation analysis
Candidate trans-eQTLs were further pruned for LD 
(r2>0.6), resulting in 74,143 independent candidate 
trans-eQTLs. We overlapped candidate trans- and cis-
eQTLs that are in LD with a given independent candi-
date trans-eQTL and ran a colocalization analysis using 
the default settings of coloc [19]. Candidate trans- and 
cis-eQTL pairs that survived colocalization analysis 
with a posterior probability (H4 PP, the posterior prob-
ability indicating that cis- and candidate trans-eQTLs 
share causal variants) of greater than 0.5 were selected 
for mediation analysis. We used the SNP dosage and gene 
expression for the trans- and cis-eGenes associated with 
the SNP as input for the mediation analysis. We used the 
mediation package in R for the mediation analysis [20].

Characterization of candidate trans‑eQTLs that have 
cis‑mediators
We identified the trans-eGenes that overlap with 
cis-eGenes, trans-eGenes that do not overlap with 
cis-eGenes, and cis-eGenes that are mediators for trans-
eGenes. We then compared the effect sizes of eGenes in 
these three categories using the Kolmogorov–Smirnov 
test.

We hypothesize that cis-eQTLs may exert their effects 
on trans-eGenes via cis-eGenes that act as mediators. 
In this scenario, trans- and cis-eGene pairs that survive 
mediation analysis (mediation pairs) would need to be 
co-regulated. We therefore leveraged individual-level 
normalized expression data from Wang et  al. [10] and 
measured expression correlation between cis- and trans-
eGenes across 1,813 individuals. Because cis-mediators 
may act as both activators and repressors, we calculated 
absolute Pearson correlation coefficients associated with 
cis- and trans-eGene expression. Expression correlation 
coefficients of mediation pairs (mediation FDR<0.05) 
were then compared against expression correlations of 
random gene pairs (termed “random pairs”) and colo-
calized, but not mediated cis- and trans-eGene pairs 
(termed “coloc pairs”). To generate random pairs, pairs 
of genes were randomly selected after matching for the 
expression level with cis- and trans-eGene pairs. Coloc 
pairs were identified as cis- and trans-eGene pairs that 
are colocalized (H4 PP>0.5) but do not show evidence of 
mediation (mediation P>0.1).

We also surveyed the function of cis-mediators via 
gene ontology (GO) analysis using gProfiler [21]. We 
used all cis-eGenes as a background gene list. GO terms 
that survived multiple testing correction with a g:SCS 
threshold less than 0.05 were selected.
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Interchromosomal interactions
SNPs may affect genes located in another chromo-
some via interchromosomal interactions. We quantified 
interchromosomal interactions between trans-eSNPs 
and trans-eGenes (candidate trans-eQTL association 
FDR<0.25) using normalized chromatin contact matrices 
of the adult DLPFC [10] at a 100-kb resolution. Contact 
frequencies between trans-eSNPs and trans-eGenes were 
compared against contact frequencies between randomly 
selected 100-kb bins with matching chromosomes. Since 
interchromosomal contact frequencies are often zero, we 
only retained and compared non-zero interaction fre-
quencies between candidate trans-eQTLs and random 
pairs.

Trans‑eQTL hotspots
Trans-eSNPs associated with three or more trans-eGenes 
were classified as trans-eQTL candidate hotspots. 
Among 74,143 independent candidate trans-eQTLs, 382 
variants were identified as trans-eQTL hotspots. With 
the hypothesis that trans-eGenes associated with a given 
hotspot share a common trans-regulator, we evaluated 
whether trans-eGenes associated with hotspots may be 
more co-regulated than expected by chance. To this end, 
we calculated the mean absolute Pearson correlation 
coefficient among trans-eGenes associated with a given 
trans-eQTL hotspot using the individual-level normal-
ized expression data from Wang et al. [10]. Mean abso-
lute expression correlation coefficients were compared 
between trans-eQTL hotspots and randomly selected 
expression-matched gene sets.

SCZ GWAS vs. candidate trans‑eQTL colocalization
Because the number of candidate trans-eQTLs is much 
smaller than cis-eQTLs, we relaxed the thresholds for 
candidate trans-eQTLs in our colocalization analyses 
and retained only candidate trans-eQTLs with p<1e-5. 
We overlapped candidate trans-eQTLs (here, candidate 
trans-eQTLs with p<1e-5 were retained) with SCZ GWS 
loci (defined on the basis of LD [r2>0.6] with the index 
SNP, see Availability of data and materials) using the 
intersect function of bedtools. We then performed colo-
calization analysis between SCZ GWAS and candidate 
trans-eQTLs using the default setting of coloc [19]. Can-
didate trans-eQTLs that colocalized with SCZ GWAS at 
a threshold of H4 PP>0.6 were selected to identify trans-
eGenes associated with SCZ (we refer to these as SCZ 
trans-eGenes).

To draw direct comparisons with SCZ trans-eGenes, 
SCZ cis-eGenes were defined using the same colocaliza-
tion posterior probability as we had used for SCZ trans-
eGenes (H4 PP>0.6). We filtered previously defined SCZ 
risk genes [10] using a threshold of H4 PP>0.6.

Characterization of SCZ trans‑eGenes
Genes with an excess of rare de novo LoF variation in 
SCZ were obtained from the SCHEMA browser [22]. We 
overlapped 32 genes that showed significant association 
with SCZ (at an FDR<0.05) [23] with SCZ trans-eGenes. 
We performed Fisher’s exact test between genes with 
SCZ-associated rare variation and SCZ trans-eGenes. 
Protein-coding genes were used as a background list in 
performing Fisher’s exact test.

To interrogate potential dysregulation of SCZ-trans/
cis-eGenes in SCZ-affected individuals, we inter-
sected these eGenes with genes that were differentially 
expressed in postmortem brain samples with SCZ (SCZ-
DEGs) or co-expression modules associated with SCZ 
(SCZ-modules) [24]. SCZ-DEGs were selected based on 
FDR<0.05, regardless of whether the genes were upreg-
ulated or downregulated in SCZ. We ran Fisher’s exact 
test between SCZ-trans/cis-eGenes and SCZ-DEGs/
SCZ-modules with the background list defined as genes 
that had been expressed in the work by Gandal et  al. 
[24]. Because Gandal et al. [24] defined 34 co-expression 
modules (20 of which are associated with SCZ), P-values 
for over-representation analysis between SCZ-trans/cis-
eGenes and SCZ-modules were corrected for multiple 
testing.

Network connectivity (kME values) was also obtained 
from Gandal et al. [24]. Each gene was assigned to a co-
expression module via weighted gene co-expression net-
work analysis [25, 26]. We quantified the kME value of a 
given gene in a co-expression module to which the gene 
belonged. We then compared the kME values of SCZ 
trans-eGenes with the kME values of SCZ cis-eGenes or 
all genes.

Next, we interrogated cellular expression profiles of 
SCZ-trans/cis-eGenes using single-cell RNA-seq data 
[10], as described previously [27]. We scaled expression 
profiles of each cell and calculated the average expression 
of SCZ-trans/cis-eGenes in a given cell. This cell-level 
expression value of a given gene was then aggregated 
based on cell type (neurons, astrocytes, microglia, 
endothelial cells, oligodendrocytes, and oligodendro-
cyte precursor cells) or neuronal subtype (excitatory and 
inhibitory subtypes).

Trans‑regulatory network linking variants and regulatory 
elements to genes
To analyze how eQTLs affect gene regulatory net-
works, we combined candidate trans-eQTLs with 
gene regulatory networks from four brain cell types: 
neurons (excitatory and inhibitory) and glial cells 
(microglia and oligodendrocytes). We mapped both 
cis-eQTLs and candidate trans-eQTLs onto the gene 
regulatory network, which may provide information 
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about how eQTLs break certain TF binding sites and 
thereby result in changes to gene regulatory networks.

For the cis-network, we used all genes in eQTL pairs 
(SNPs and genes) as target genes (TGs). We filtered 
network edges by overlapping SNPs with binding sites 
on enhancers or promoters. Using motifbreakR [28], 
we then evaluated whether these SNPs break the cor-
responding TFs, which works with position prob-
ability matrices to interrogate SNPs for their potential 
effects on TF binding. We filtered the edges, thereby 
leaving only those edges that have SNPs with their tar-
get genes. The final results provided us with a dataset 
that contains each edge representing SNPs to TFs to 
enhancer/promoter to TGs linkages. We can visualize 
the results by plotting a genomic region surrounding 
certain SNPs, as well as potentially disrupted motifs.

Generating the trans-network entailed a similar 
procedure. However, for candidate trans-eQTL pairs, 
the SNPs may not be on the same chromosome as 
their target genes. When overlapping SNPs on bind-
ing sites, this introduces many challenges. Therefore, 
we used mediator-eQTL data instead of candidate 
trans-eQTL data when filtering out edges. After we 
carried out the same analysis as that detailed above 
(i.e., for the cis-network), we mapped mediators 
back to candidate trans-eQTLs (along with their tar-
get genes) to generate the results associated with the 
trans-network.

As a result, we built a mediator-candidate trans-
cis-QTL gene regulatory network using mediators 
(TFs) and trans-network (TGs) cis-network results. 
This regulatory network links SNPs to mediators to 
the trans-genes that are regulated by them. Next, we 
utilized two types of predicted cell-type gene regu-
latory networks from scGRNom [29] for the major 
brain cell types: excitatory neurons (Ex1, Ex2, Ex3e, 
Ex4, Ex5, Ex6a, Ex6b, Ex8, and Ex9), inhibitory neu-
rons (In1a, In1b, In1c, In3, In4a, In4b, In6a, In6b, 
In7, and In8), microglia, and oligodendrocytes. The 
first predicted gene regulatory network type cor-
responds to cell-type open chromatin regions from 
single-cell ATAC-seq data. The second predicted 
gene regulatory network type corresponds to a fil-
tered network with the top 10% TFs that have abso-
lute coefficients for a given target gene regardless of 
whether the region is characterized by cell-type-spe-
cific open chromatin. We then overlaid these TF-TG 
edges in both versions of cell-type gene regula-
tory networks with those in our mediator-candidate 
trans-cis-eQTL network to determine cell-type-spe-
cific TF-TG relationships detected by our mediator-
candidate trans-cis-eQTL network.

Results
Identification of candidate trans‑eQTLs in the human brain
Trans-eQTLs are especially difficult to identify in cohorts 
of limited sample sizes. To overcome this challenge, we 
worked with a large number of samples (N=1387, which 
includes the PsychENCODE brain resource, CMC, and 
GTEx brain samples), thereby more readily enabling us 
to identify candidate trans-eQTLs. We investigated the 
extent to which the resulting candidate trans-eQTLs 
might reveal potential mechanisms of distal regulatory 
linkages across chromosomes. We tested associations 
between 12,245 highly expressed genes and autoso-
mal variants on a genome-wide scale (see Methods for 
processing and filtering criteria). We used the same 
covariates as those used for identifying cis-eQTLs in 
our previously published work [10]. We removed genes 
with poor mappability and variants located in repeti-
tive regions. Furthermore, to minimize false positives, 
we filtered out candidate trans-eQTLs between pairs of 
genomic loci with evidence of RNA-sequencing (RNA-
seq) read cross-mapping [30]. We calculated false dis-
covery rate (FDR) values from the linkage-disequilibrium 
(LD)-pruned list of candidate trans-eQTLs to determine 
significance. We employed the following three ways of 
performing multiple test correction to call trans-eQTLs, 
and we provide the lists called with each of these meth-
ods as Additional files.

1)	 Pooled genome-level FDR correction method per 
GTEx 2017 [17]. At an FDR threshold of 0.25, we 
detected 77,156 candidate trans-eSNPs from ~5.3M 
total SNPs tested in locations ≥5 Mb from the gene 
transcription start site (TSS), comprising 17,899 inde-
pendent SNPs after LD pruning (Fig.  1A). We term 
this list (at FDR<0.25) “candidate trans-eQTLs” and 
provide it in Additional file 1. Separately, we compiled 
alternate lists at different confidence thresholds. In 
particular, we identified 7642 candidate trans-eQTLs 
involving 580 eGenes at an FDR threshold of 0.05; this 
list is available in Additional file 2.

2)	 Hierarchical gene-level FDR correction per GTEx 
2017 [17]. This method generates an eGene list. We 
provide this list (at a gene-level FDR<0.25) in Addi-
tional file 3.

3)	 Permutation-based hierarchical gene-level FDR per 
GTEx 2020 [9]. We used this hierarchical multiple 
test correction via a permutation-based scheme and 
provide the list (at FDR<0.25) in Additional file 4.

We performed an internal replication validation for 
the candidate trans-eQTLs by splitting the samples ran-
domly to two folds with no overlapping samples. Two 
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sets of candidate trans-eQTLs were then called after 
this splitting: one set was called using only the samples 
in fold 1, and the other set was called using only the 
samples in fold 2 (i.e., the trans-eQTLs were calculated 
within each fold separately). We then quantified the sim-
ilarities between these 2 sets of candidate trans-eQTLs 
by measuring the overlap of trans-eQTLs from each of 
the two folds. We found that the overlap of the trans-
eQTLs generated by these two folds is around 80% at an 
FDR threshold of 0.05.

Relative to previously published studies, we identified 
substantially more candidate trans-eQTLs and associated 
eGenes in the human brain by leveraging integrated data 
resources. We used the candidate trans-eQTL list with 
FDR<0.25 for the analyses discussed in this study (i.e., 
those provided in Additional file 1).

We next characterized the genomic features of candi-
date trans-eQTLs and compared them with other types 
of QTLs in order to investigate associations between 
genomic elements and QTLs (Fig. 1B–D). In agreement 

Fig. 1  Characterization of candidate trans-eQTLs. A Genetic map for candidate trans-eQTLs. B Comparisons of the effect sizes between cis-eQTLs 
and candidate trans-eQTLs. C Frequencies with which SNPs are shared among various combinations of the 3 QTL types (cis-eQTLs, candidate 
trans-eQTLs, and cQTLs). D Enrichment statistics and variant proportions for the frequencies with which cis-eQTLs, candidate trans-eQTLs, and 
cQTLs lie within various types of genomic elements
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with previous findings, we found that the magnitude 
of the effect sizes associated with cis-eQTLs are larger 
than that those of candidate trans-eQTLs (Fig.  1B). 
Candidate trans-eQTLs overlapped more frequently 
with cis-eQTLs than with chromatin QTLs (cQTLs) 
[10], which is also largely expected. The low overlap 
of cQTLs and candidate trans-eQTLs may be a conse-
quence of the overall low number of cQTLs. We found 
20,175 eSNPs that are shared between cis- and candi-
date trans-eQTLs, whereas only 61 SNPs were shared 
between candidate trans-eQTLs and cQTLs. As shown 
in Fig.  1C, we found 25 SNPs that are shared among 
all three QTL types (i.e., cis-eQTLs, candidate trans-
eQTLs, and cQTLs). With respect to genomic ele-
ments, we found that candidate trans-eQTLs tend to 
exhibit lower enrichment in most elements relative to 
cis-eQTLs and cQTLs; however, candidate trans-eQTLs 
are most enriched within exons (Fig.  1D). The pattern 
of variant proportion on different genomic regions for 
candidate trans-eQTLs is similar to that for cis-eQTLs 
but not cQTLs. We also calculated the enrichment of 
the QTLs in previously published brain enhancer lists 
[31] and found the enrichment patterns to be similar 
across these enhancers (Additional file 6: Fig. S6A).

Potential mechanisms of candidate trans‑eQTLs
In one potential mechanism, specific variants exert trans-
regulatory effects by influencing a nearby regulatory fac-
tor (such as a TF), which in turn regulates distal genes 
in a trans fashion [3]. In this scenario, trans-eQTLs may 
also act as cis-eQTLs for nearby genes that have regula-
tory impacts on trans-eGenes (Fig. 2A). Indeed, we found 
that 19.33% of LD-pruned candidate trans-eQTLs dis-
play cis-eQTL signals (Fig. 2D). Because simple genomic 
coordinate-level overlaps between cis- and candidate 
trans-eQTLs may detect spurious associations due to 
LD, we performed a colocalization assay to identify 
cis- and candidate trans-eQTL pairs that harbor shared 
causal variants. In total, we detected 1688 candidate 
trans-eQTLs (48.79% of the candidate trans-eQTLs that 
overlap with cis-eQTLs) that have shared causal variants 
with cis-eQTLs. We further interrogated the potential 
causal effects of cis-eQTLs on trans-eQTL associations 
via mediation analysis (Fig.  2B, Additional file  5). As 
part of this analysis, we found that 62.13% of the candi-
date trans-eQTLs that colocalize with cis-eQTLs can be 
explained by cis-mediators (p<0.05). Among the candi-
date trans-eQTLs that can be explained by cis-mediators, 
there is roughly an even split of cis-mediators with posi-
tive and negative mediation effects, suggesting that trans-
regulators can either be activators or repressors with 
roughly equal probability (Fig. 2B). As generally expected, 
we also observed that larger mediation coefficients tend 

to have greater statistical significance. We found that 
85% of trans-eGenes are also cis-eGenes, indicating that 
gene expression is regulated by both cis- and trans-acting 
variants. Roughly 20% of trans-eGenes had cis-eGenes as 
mediators (Fig. 2D).

By definition, because cis-mediation implies that vari-
ants influence trans-eGene expression via cis-eGenes, we 
hypothesized that cis- and trans-eGene pairs with evi-
dence of cis-mediation are co-regulated. We evaluated 
this hypothesis by first grouping cis- and trans-eGene 
pairs into those that exhibit evidence of cis-mediation 
(which we term “mediation pairs”) and those with evi-
dence of colocalization but not mediation (which we term 
“colocalization pairs”). When comparing these groups, 
we found that mediation pairs showed greater expression 
correlation than colocalization pairs or expression-level 
matched random pairs (Fig.  2C; see the “Methods” sec-
tion), thereby providing additional evidence for cis-medi-
ation. We also observed that trans-eSNPs are enriched on 
exons (Fig. 1D). Therefore, one possible mediating mech-
anism may indeed be non-synonymous coding variation 
in the mediating genes (Additional file 6: Fig. S6B).

We next investigated the properties of cis-eGenes that 
were found to mediate trans-regulatory effects. In addi-
tion to being enriched for transcriptional regulators 
(e.g., members of TF complexes), cis-eGenes were also 
enriched for other biological processes (e.g., metabolic 
processes, Fig.  2E). These results indicate that variant 
effects on distal gene regulation are not solely dependent 
on TF activity. Instead, variants that are associated with 
metabolism may exert broad systems-level effects on cel-
lular function, which can then lead to changes in distal 
gene expression.

Another potential explanation for trans-eQTLs may 
lie in inter-chromosomal interactions. Previous stud-
ies have shown that inter-chromosomal interactions can 
bring multiple genes from different chromosomes into 
close physical proximity, thereby more easily enabling 
these genes to be co-regulated [32]. We therefore inves-
tigated the extent by which trans-eSNPs may regulate 
trans-eGenes located in different chromosomes via inter-
chromosomal interactions. We observed that candidate 
trans-eSNP-eGene pairs display increased chromatin 
contact frequency compared with random inter-chromo-
somal contacts (Fig. 2F). Hence, in addition to cis-medi-
ation, trans-eQTL associations can be partly driven by 
features of chromosomal conformation.

Trans‑eQTL hotspots
Trans-regulators exert broad impacts on regulatory land-
scapes by affecting many downstream targets. Given 
the trans-regulatory properties of trans-eQTLs, some 
trans-eSNPs may affect multiple genes, thereby forming 
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Fig. 2  Cis-mediation and inter-chromosomal interactions explain candidate trans-eQTL associations. A A candidate trans-eQTL may overlap 
with a cis-eQTL that regulates a proximal gene (cis-eGene), which may in turn regulate a distal gene (trans-eGene). B Roughly 62% of candidate 
trans-eQTLs colocalized with cis-eQTLs exhibit mediation effects. The number of candidate trans-eQTLs with positive mediation effect sizes is 
almost the same as those that are negative. C Cis- and trans-eGene pairs with evidence of cis-mediation display significant co-expression compared 
to both random pairs and those pairs that exhibit colocalization but not mediation. D Relative abundances of candidate trans-eQTLs that overlap 
with cis-eQTLs (left), colocalize with cis-eQTLs (middle), and exhibit mediation effects (right). Roughly 85% of trans-eGenes are also cis-eGenes, 
and ~17% of trans-eGenes have cis-mediators. E. Biological pathways associated with cis-eGenes that mediate candidate trans-eQTL associations 
are enriched for metabolic processes and transcriptional regulation. F Candidate trans-eQTL and eGene pairs tend to exhibit inter-chromosomal 
interactions more frequently than do random pairs. ACME, average causal mediation effects



Page 9 of 15Liu et al. Genome Medicine          (2022) 14:133 	

“trans-eQTL hotspots.” We defined such trans-eQTL 
hotspots as candidate trans-eSNPs that affect three or 
more genes (Fig.  3A). In total, we detected 382 trans-
eQTL hotspots. Because trans-eGenes for a given trans-
eQTL hotspot are regulated by the same SNP, we expect 
that they might generally be co-regulated. Indeed, we 
found that trans-eGenes grouped by hotspots are signifi-
cantly more co-regulated compared to expression-level-
matched random controls (Fig. 3B).

One of the identified trans-eQTL hotspots consists 
of three trans-eGenes (MAGEE2, CYBRD1, ZNF252), 
which are distributed across the genome and are regu-
lated by a trans-eSNP (chr16:11394372; Fig.  3C). Nota-
bly, this trans-eSNP was a cis-eQTL for RMI2, a gene 
associated with genome instability and Bloom syn-
drome [33]. In another example, the cis-eSNP for RBM6 
(chr3:50257020), an RNA-binding protein, was asso-
ciated with three trans-eGenes (MAGEE2, MDH1B, 
AMACR​, Fig. 3C). Collectively, these results suggest that 
multiple biological processes (such as genome instability 
and RNA processing) may exert broad impacts on gene 
regulation via trans-regulatory mechanisms.

Cell‑type gene regulatory effects of candidate trans‑eQTLs 
and mediators
Because candidate trans-eQTLs were defined from the 
brain homogenate and lack cell-type specificity, we eval-
uated cell-type-specific trans-regulatory effects from 
our mediators to trans-genes. For instance, our media-
tion analysis indicated that retinoic acid-related orphan 
receptor alpha (RORA, a nuclear receptor TF) is a media-
tor of the trans-eGene RNASEL, which encodes mamma-
lian endoribonuclease. Based on single-cell multi-omics 
data, we found that RORA regulates the gene RNA-
SEL specifically in neuronal cell types [29]. As shown in 
Fig.  3D, cellular expression levels of RORA and RNA-
SEL show high Pearson correlation coefficients in sev-
eral neuronal cell types, especially in inhibitory types, 
such as In6b (r = 0.831), In8 (r = 0.790), Ex9 (r = 0.746), 
and In6a (r = 0.742), compared to glial cell types such as 
microglia (r = 0.6436) and oligodendrocytes (r = 0.492).

Both of these genes have been implicated in dis-
orders of the brain. For example, the overactivation 
of RNASEL may contribute to neurodevelopmental 
and inflammatory genetic disorders such as Aicardi–
Goutières syndrome [34]. The expression of RNASEL 
may increase as a result of NMDA receptor activation 
in cortical neurons by glutamate, thus resulting in deg-
radation of RNA molecules. Furthermore, degradation 
of mitochondrial RNA by RNASEL may contribute to 
neuronal death overall [35].

Reduced levels of the nuclear receptor TF RORA have 
been observed in the prefrontal cortex and cerebellar 

neurons of individuals with autism spectrum disorder 
(ASD) [36], and retinoic acid signaling pathways have 
been reported to be disrupted in ASD-afflicted individ-
uals [37]. The decreased expression of RORA impacts 
the regulation of its target genes in ASD-afflicted indi-
viduals (several of which are ASD-relevant genes) and is 
associated with the pathobiology of ASD, such as with 
decreases in neuronal differentiation and survival, poorer 
synaptic transmission and neuroplasticity, diminished 
cognition and spatial learning, memory impairment, and 
disrupted development of the cortex and cerebellum [36]. 
Furthermore, studies have found that RORA is involved 
in the differentiation of Purkinje cells, development of 
the cerebellum region, protection of neurons against oxi-
dative stress, circadian clock regulation, and suppression 
of inflammatory processes [36].

Candidate trans‑eQTLs identify novel disease mechanisms
It has been proposed that trans-eQTLs explain 60–90% 
of gene expression heritability [38, 39]. However, func-
tional annotation of GWAS variants largely relies on the 
use of cis-eQTLs, which may miss key biological under-
pinnings of human traits and diseases. Trans-eQTLs may 
provide novel insights into the biological mechanisms 
underlying psychiatric illnesses. Therefore, we performed 
colocalization analysis [19] between SCZ GWAS [40] and 
candidate trans-eQTLs to unveil previously uncharacter-
ized SCZ-associated biological pathways driven by trans-
regulatory mechanisms (“Methods”). We then compared 
these results with the colocalization results between SCZ 
GWAS and cis-eQTLs. We found that some loci only 
colocalized with cis- or candidate trans-eQTLs, although 
several colocalized with both.

In total, we found that candidate trans-eQTLs could 
explain 55 out of 142 SCZ-associated genome-wide sig-
nificant (GWS) loci (Fig.  4A). In contrast, cis-eQTLs 
annotated 78 GWS loci (Fig. 4A). 32 GWS loci colocal-
ized with both cis- and candidate trans-eQTLs, suggest-
ing that a subset of SCZ loci may exert their effects via 
multiple regulatory mechanisms. Furthermore, 23 GWS 
loci colocalized only with candidate trans-eQTLs but not 
with cis-eQTLs, suggesting that trans-eQTLs may pro-
vide regulatory mechanisms for previously unexplained 
loci.

A colocalization analysis resulted in 90 and 282 SCZ-
associated trans- and cis-eGenes, respectively; we 
refer to these as SCZ-(trans/cis)-eGenes (Fig.  4A). As 
expected, none of the SCZ-cis- and SCZ-trans-eGenes 
overlapped, demonstrating that candidate trans-eQTLs 
can pinpoint distinct SCZ-associated genes and biologi-
cal pathways. In particular, SCZ trans-eGenes were found 
to be enriched for JUN kinase activity (FDR=0.0056), a 
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Fig. 3  Trans-eQTL hotspots. A Trans-eQTL hotspots represent trans-eSNPs that exhibit associations with at least three trans-eGenes. B Trans-eGenes 
associated with a shared trans-eSNP tend to be co-regulated. C Examples of trans-eQTL hotspots. The cis-eGenes are shown in orange boxes, and 
their respective trans-eGenes are shown in blue boxes. The red triangles are used to schematically designate the proximal relationship between the 
cis-eSNP and cis-eGene. D Cell-type-specific TF-target gene relationships detected by our mediator-candidate-trans-cis-QTL network
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signaling pathway involved in neuronal apoptosis, neurite 
outgrowth, and dendrite arborization [41].

Notably, two of the 90 SCZ trans-eGenes (AKAP11, 
SETD1A) also harbor SCZ-associated rare variants (de 
novo loss-of-function [LoF] variation) [23] (Fisher’s exact 
test, P=9.6×10−3, odds ratio [OR]=14.62, 95% confi-
dence interval [CI]=1.67–59.06; see Additional file  6: 
Fig. S7 for colocalization between SETD1A candidate 
trans-eQTLs and SCZ GWAS). This contrasts with the 
282 SCZ cis-eGenes, none of which overlapped with the 
genes that harbor SCZ-associated rare de novo LoF vari-
ants. This result lends support to the omnigenic hypoth-
esis [38], which posits that genes can be divided into core 

genes that directly affect the disease-related biological 
processes and peripheral genes that regulate these core 
genes. Core genes are likely to be affected by rare vari-
ants with large effect sizes, suggesting that these two 
SCZ trans-eGenes are likely core genes. In addition, the 
hypothesis suggests that core genes are likely to be tar-
geted by trans-regulatory mechanisms, which is consist-
ent with these two genes being trans-eGenes of SCZ rare 
variants that are mediated by peripheral genes.

To provide additional support for the omnigenic 
hypothesis, we explored the network properties of SCZ 
trans-eGenes. Core genes are thought to be enriched 
for network hubs [42]. Therefore, we measured module 

Fig. 4  Candidate trans-eQTLs identify novel SCZ risk genes and biological pathways. A The numbers of SCZ GWS loci annotated by cis- and 
candidate trans-eQTLs. SCZ cis-eGenes do not overlap with SCZ trans-eGenes. B Trans-eGenes that colocalize with SCZ risk genes exhibit greater 
network centrality. C Cellular expression profiles of SCZ-associated cis- and trans-eGenes. D A SCZ GWS locus colocalizes with candidate trans-eQTLs 
for CENPX (left). This GWS locus is a cis-eQTL for RPS17, a cis-mediator of CENPX (right)
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membership (kME; a measure of network centrality) 
of SCZ-eGenes in brain co-expression networks con-
structed from the same samples [24]. SCZ trans-eGenes 
showed significantly higher kME values than did cis-
eGenes or brain-expressed genes in general (Fig.  4B, 
two-sample Wilcoxon test: cis vs. trans, P=9.64×10−7; 
all vs. trans, P=2.87×10−9; all vs. cis, P=9.9×10−2). 
These results demonstrate that SCZ trans-eGenes are 
characterized by greater network connectivity.

We found that a significant portion of SCZ-associ-
ated trans- and cis-eGenes were differentially regu-
lated in brain tissue of SCZ-affected individuals [42] 
(Fisher’s exact test: trans, P=9.4×10−3, OR=1.87, 
95% CI=1.14–2.98; cis, P=3.5×10−2, OR=1.38, 95% 
CI=1.01–1.85). However, they were enriched in dif-
ferent SCZ-associated co-expression networks. SCZ 
trans-eGenes showed selective enrichment in the 
SCZ-associated gene module 7 (geneM7, beta=0.0033, 
FDR=0.011), a neuronal module involved in synap-
tic vesicle formation that exhibits elevated expression 
signatures in SCZ (Fisher’s exact test: P=8.02×10−5, 
FDR=0.0014, OR=5.52, 95% CI=2.42–11.10). In con-
trast, SCZ cis-eGenes were only nominally enriched in 
gene module 8 (geneM8, beta=-0.0030, FDR=0.017), a 
neuronal module downregulated in SCZ (Fisher’s exact 
test: P=1.8×10−2, FDR=0.53, OR=2.31, 95% CI=1.13–
4.24). Therefore, SCZ-associated trans- and cis-eGenes 
may account for different expression signatures of SCZ.

Cell-type expression profiles of SCZ-eGenes illus-
trated potential cell types that contribute to distinct 
expression features (Fig.  4C). Both SCZ-associated 
trans- and cis-eGenes were highly expressed in neu-
rons, which is consistent with previous findings that 
neurons are the primary cell type underlying SCZ eti-
ology [27, 43–46]. However, SCZ cis-eGenes exhibited 
relatively higher expression in lower-layer neurons 
(Ex7-8), while SCZ trans-eGenes showed upper-to-
lower-layer gradient expression. Furthermore, while 
SCZ cis-eGenes were relatively depleted in inhibitory 
neurons, SCZ trans-eGenes were highly expressed 
in parvalbumin-expressing GABAergic interneurons 
(In6). One example of a SCZ-trans-eGene is CENPX, 
which is associated with kinetochore assembly and 
DNA damage repair [47]. SCZ GWAS colocalized with 
candidate trans-eQTLs for CENPX, which was medi-
ated by cis-eQTLs for RPS17, a gene that encodes a 
ribosomal protein (Fig.  4D). Ribosomal proteins can 
affect translation efficiency and mRNA stability. This 
result suggests that an SCZ GWAS SNP may affect the 
nearby gene RPS17, which potentially alters the mRNA 
stability and in turn regulates CENPX, a gene located 
in a different chromosome. Together, these results 
demonstrate how the integration of GWAS variants, 

cis-eQTLs, and candidate trans-eQTLs can enhance 
our mechanistic understanding of disease etiology.

Discussion
Coupled with increased multiple testing burdens, the 
smaller effect sizes of trans-eQTLs make their identifi-
cation considerably more challenging than those of cis-
eQTLs. Indeed, we found that candidate trans-eQTLs 
exhibit smaller effect sizes compared with cis-eQTLs. 
Furthermore, candidate trans-eQTLs were less enriched 
in regulatory elements compared with cis-eQTLs, sug-
gesting that trans-regulatory architectures may differ 
from those associated with cis-regulation.

Despite these differences, we found that a significant 
portion of candidate trans-eQTLs overlapped with cis-
eQTLs, suggesting that trans-acting variants may often 
exert their effects via cis-mediators. We found that 
trans-eGenes with evidence of cis-mediators displayed 
larger effect sizes and co-expression signatures with cis-
mediators. Intriguingly, cis-mediators were involved in 
fatty acid metabolism, which contributes to ~20% of the 
brain’s energy reserves [48]. This result indicates that 
trans-regulatory mechanisms may involve various bio-
logical processes that influence fundamental cellular 
function and psychiatric disorder progression.

We also found that, in addition to cis-mediation, can-
didate trans-eQTLs may result from inter-chromosomal 
interactions. Elucidating the mechanisms that underlie 
trans-eQTL associations will provide important insights 
into trans-regulatory networks.

We further deconvolved trans-regulatory networks 
into specific cell-type-specific trans-regulatory networks 
and investigated the potential effects of the identified 
mediators on trans-eGenes. These analyses uncovered a 
strong link between the regulation of RORA and RNA-
SEL, both of which are associated with the immune sys-
tem response and naive T cell states (they also harbor 
polymorphisms associated with elevated cancer risk 
and mortality). Beyond psychiatric disorders, additional 
disorders have been linked to RORA and RNASEL. For 
example, both genes have been shown to be associated 
with prostate cancer. In affected men, RORA is typi-
cally inactivated [49], and RNASEL is a candidate for 
the hereditary prostate cancer gene (HPC1) [50]. In fact, 
some mutations in the tumor-suppressor gene RNASEL 
have been found to lead to ribonuclease L dysfunction, 
inflammation, infection, and increased risk of prostate 
cancer, suggesting links between innate immunity and 
tumor suppression [51]. These findings can help provide 
greater insights into age-related changes, the roles of 
common fragile sites and genomic instability, the roles 
of the adaptive immune response (especially of T cells), 
and the potential roles of the central nervous system in 
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the onset and progression of one of the world’s leading 
cancer types [52].

Given the differences between cis- and trans-eQTLs, 
we hypothesized that trans-eQTLs might provide novel 
insights into the biology of psychiatric disorders. Moti-
vated by this notion, we related candidate trans-eQTLs to 
SCZ GWAS variants to decipher trans-regulatory mech-
anisms that may contribute to SCZ etiology. The candi-
date trans-eQTLs led to the identification of novel SCZ 
risk genes, a subset of which could explain previously 
uncharacterized SCZ GWS loci. In total, candidate trans-
eQTLs assigned 55 out of 142 SCZ GWS loci.

SCZ candidate trans-eGenes differed from SCZ cis-
eGenes in multiple respects. For example, SCZ trans-
eGenes included SETD1A and AKAP11, both of which 
are high-confidence SCZ risk genes that harbor rare de 
novo LoF variations [23]. In contrast, SCZ cis-eGenes did 
not overlap with any of the rare variation-targeted SCZ 
risk genes. SETD1A encodes a histone methyltransferase. 
Mice that carry a LoF mutation in SETD1A showed 
cognitive deficits, abnormal neuronal morphology, and 
transcriptional alterations, further implicating its role 
in SCZ etiology [53]. Moreover, we observed enhanced 
network centrality of SCZ trans-eGenes compared with 
SCZ cis-eGenes. This is consistent with our recent find-
ing that hub genes are not enriched for SCZ heritability 
when cis-regulatory mechanisms are used to map genetic 
risk factors to genes [54]. These characteristics of SCZ 
trans-eGenes (e.g., overlap with rare variation and net-
work centrality) correspond to the definition of the core 
genes from the omnigenic hypothesis [38] that are likely 
to be trans-regulated by rare variants, suggesting that 
trans-eQTLs may play crucial roles in understanding 
core biological principles of SCZ. While this observation 
warrants further investigation when a larger set of rare 
variant-harboring SCZ risk genes and/or a more com-
prehensive list of trans-eQTLs becomes available, the 
observed distinction between SCZ cis- and trans-eGenes 
highlights the importance of characterizing trans-regula-
tory mechanisms in SCZ pathogenesis.

Cellular expression profiles further substantiated dis-
tinct biological processes represented by SCZ-associ-
ated trans- and cis-eGenes. While SCZ cis-eGenes were 
enriched in lower-layer neurons, SCZ trans-eGenes were 
enriched in upper-layer neurons, suggesting that cis- 
and trans-regulatory mechanisms may influence distinct 
cortical circuitry. Moreover, SCZ trans-eGenes were 
enriched in parvalbumin-expressing interneurons, which 
have reported genetic and transcriptional associations 
with SCZ [55, 56].

To further demonstrate regulatory mechanisms of 
trans-eQTLs and their implications in psychiatric dis-
order etiology, we note that the trans-eQTLs identified 

in this study warrant experimental validation. Experi-
mental biologists may apply genome editing to brain 
cell models, e.g., induced Pluripotent Stem Cells (iPSC) 
derived neurons, to directly evaluate trans-eQTLs and 
to measure the expression of trans-eGenes. However, it 
is of note that the adult brain tissue from which we have 
obtained candidate trans-eQTLs displays high levels of 
cellular heterogeneity, which makes it difficult to model 
using iPSC-derived cell lines. Building a cell-type spe-
cific eQTL resource from the brain tissue [57] will be 
critical to address cellular heterogeneity, while obtaining 
large sample sizes to discern trans-eQTLs will remain a 
challenge.

Conclusions
In this work, we report one of the first systematic 
searches and detailed studies of genome-wide candi-
date trans-eQTLs in the dorsolateral prefrontal cortex 
(DLPFC). By leveraging the extensive resource built by 
the PsychENCODE consortium [10], we detected 77,304 
candidate trans-eQTLs (at an FDR threshold of 0.25) and 
382 trans-eQTL hotspots. We reasoned that trans-eQTLs 
may provide new avenues for investigating trans-regu-
latory mechanisms, thereby providing critical insights 
into the regulatory landscape in psychiatric disorders 
and human health. In conclusion, the transcriptional 
architecture of the human brain is orchestrated by both 
cis- and trans-regulatory variants, and trans-eQTLs can 
provide novel insights into human brain disease biology.
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