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Abstract 

The rapid advancement of single-cell transcriptomics in neurology has allowed for profiling of post-mortem human 
brain tissue across multiple diseases. Over the past 3 years, several studies have examined tissue from donors with and 
without diagnoses of Alzheimer’s disease, highlighting key changes in cell type composition and molecular signatures 
associated with pathology and, in some cases, cognitive decline. Although all of these studies have generated single-
cell/nucleus RNA-seq or ATAC-seq data from the full array of major cell classes in the brain, they have each focused on 
changes in specific cell types. Here, we synthesize the main findings from these studies and contextualize them in the 
overall space of large-scale omics studies of Alzheimer’s disease. Finally, we touch upon new horizons in the field, in 
particular advancements in high-resolution spatial interrogation of tissue and multi-modal efforts—and how they are 
likely to further advance mechanistic and target-selection studies on Alzheimer’s disease.
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Background
Alzheimer’s disease (AD) is a progressive neurodegenera-
tive disease with associated brain pathologies, ultimately 
leading to cognitive decline and dementia [1–3]. The late-
onset form of AD (LOAD) is the most common cause of 
dementia in elderly individuals, and its prevalence is on 
the rise in many countries with aging populations, result-
ing in burdens on national health systems. Currently, 
there are limited therapeutic options for slowing the pro-
gression of AD, and these mainly involve cholinesterase 
inhibitors aimed at slowing down synapse deterioration 
or the clearance of hallmark pathologies associated with 
the disease [4]. Whereas pathological features associated 
with the disease have been known for decades, recent 

advances in high-throughput, large-scale profiling of 
brain tissue have allowed for a better understanding of 
the molecular changes underlying AD [5–10]. The syn-
thesis of information obtained through these techniques 
is crucial to identifying and prioritizing new candidate 
targets for additional therapeutic approaches.

Currently, a definitive diagnosis of AD includes 
ante-mortem cognitive decline leading to dementia, 
combined with the observation of two major pro-
teinopathies in post-mortem brain tissue [11–15]. 
These two proteinopathies are plaques, formed by 
the aggregation of amyloid beta proteins, and tangles, 
which are composed of hyperphosphorylated tau pro-
tein. The importance of these pathological features 
has been highlighted by studies identifying variants 
in genes associated with these proteins to be risk fac-
tors for dementia [16]. However, the interplay between 
amyloid, tau, and cognitive decline is complex. These 
proteinopathies, particularly tangles, follow ste-
reotyped spread through the brain, as evidenced by 
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cross-sectional analysis of post-mortem tissue [17]. 
This has led to the CERAD, Thal, and Braak staging 
paradigms, encompassing both quantitative as well 
as regional examination of these protein aggregates 
as measures of pathological severity [3, 18–20]. Until 
recently, however, the cell type-specific effects of this 
pathological burden have remained underexplored.

In the past decade, large-scale profiling of bulk 
post-mortem brain tissue has identified a variety of 
signatures associated with clinicopathological char-
acteristics. In particular, efforts such as the National 
Institute of Health’s Accelerating Medicine Partner-
ship-Alzheimer’s Disease (AMP-AD) and the Alz-
heimer’s Disease Sequencing Project (ADSP) have 
generated a wealth of bulk profiling data from thou-
sands of brain tissue samples (Fig. 1); this has allowed 
researchers to identify signals associated with LOAD 
pathology and LOAD-associated cognitive decline 
[5–7, 9, 21–23]. Together with large-scale GWAS stud-
ies [16, 24], these efforts have implicated glial classes 
such as microglia, astrocytes, and oligodendrocytes 
as major players, with dysregulation in their interac-
tion and signatures being strongly associated with the 
advanced neurodegeneration seen in the disease.

Experimental and analytic pipeline for single‑cell 
RNA‑seq data
Recently, the advent of single-cell/nucleus RNA sequenc-
ing (sc/snRNA-seq) has allowed banked and fresh human 
brain tissue to be profiled at high resolution, leading to 
deeper characterization of individual cell types and sub-
types in the context of AD. Because single-cell studies do 
not average signals across multiple cell types in a single 
sample, they allow both the assignment of existing bulk-
derived signals to specific cell types, as well as the discov-
ery of novel signals in rarer cell types.

The general procedure for single-cell profiling starts 
with tissue acquisition (Fig.  1), which then determines 
whether cell bodies or nuclei are to be isolated. For fresh 
human brain tissue, protocols have been developed to 
isolate live microglia and lymphocytes, allowing for 
scRNA-seq profiling of these cell classes; further protocol 
development for additional cell classes is underway. For 
frozen adult human brain tissue, no robust techniques 
exist yet for single-cell isolation that preserves RNA 
integrity; as a result, all studies to date on frozen samples 
have employed snRNA-seq. In contrast to scRNA-seq, 
snRNA-seq does not profile somatic cytoplasmic tran-
scripts, which may lead to poorer detection of certain 

Fig. 1  A Current bulk profiling approaches that have generated large-scale data from post-mortem human brain tissue in the context of AD. 
Single-cell approaches have recently been scaled up to allow for a similar type of profiling, but have not reached the donor numbers interrogated 
using bulk techniques. B General workflow for single-cell approaches applied to human brain tissue. After isolation, individual cells or nuclei are 
encapsulated into wells or droplets, where lysis, reverse transcription, and amplification occurs, usually with some degree of pooling. Barcoded 
cellular/nucleus cDNA is then sequenced, and reads can be demultiplexed by cell/nucleus barcode and aligned to the transcriptome, ultimately 
generating expression profiles for each cell/nucleus. Panel A was created using the BioRender package
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transcripts in cell types such as microglia [25]. How-
ever, side-by-side studies of the two approaches [26, 27] 
have shown that the overall distribution of transcripts in 
the nucleus is sufficient to recapitulate cell type signa-
tures found by scRNA-seq, even with the reduced tran-
script detection in cell classes such as microglia [28]. It 
is important to note that additional tissue- and proto-
col-specific properties might hamper cell recovery and 
fidelity of the captured transcriptional signature. Thus, 
specific dissociation protocols must be used to improve 
yield [29, 30], and artifacts introduced during tissue 
preparation and cell preparation can be circumvented by 
using low-temperature non-enzymatic dissociation pro-
tocols or inhibiting glial activation [31–33].

After tissue processing, individual cells and nuclei are 
encapsulated into wells, tubes, or barcoded droplets 
(Fig. 1), with the latter being used most often for large-
scale studies. Reverse transcription then proceeds within 
each encapsulated volume, followed by amplification of 
cDNA and next-generation sequencing. Finally, sequenc-
ing reads are then aligned to the human genome and 
transcriptome—modified to include introns in single-
nucleus RNA-seq studies to account for a larger fraction 
of immature transcripts—and quantified, together with 
barcode-based deconvolution, to yield per-cell expression 
count values across the transcriptome. The implemen-
tation of this protocol at scale on commercialized plat-
forms has revolutionized the study of healthy and disease 
human brain tissue [34, 35] and is now carried out by 
many groups studying AD.

The scale and complexity of sc/snRNA-seq data have 
required the development of new analytical and com-
putational workflows to identify cell type-specific signa-
tures. After count matrices have been generated, the data 
analysis workflow first aims to identify putative cell types 
by clustering individual cells/nuclei based on the similar-
ity of their expression signatures. Currently, a wealth of 
methods exist for sc/snRNA-seq data clustering, but they 
generally follow the same overall procedure (Fig.  2): (1) 
Cells/nuclei are filtered by quality control measures, such 
as percentage of mitochondrial and/or stress-related 
genes, total transcript/gene counts, and putative mixed 
signatures indicative of doublets or contamination; (2) 
highly variable genes are identified, based on heuris-
tic or distributional measures of gene-specific means 
and variances; (3) the overall dimensionality of the data 
is reduced, using methods including principal compo-
nent analysis, gene clustering, or neural network-based 
models such as autoencoders; (4) the individual cells are 
clustered into groups in reduced dimension space using 
correlation-based clustering methods, network commu-
nity detection algorithms, or other standard clustering 
approaches; (5) clusters of cells are characterized to iden-
tify marker genes, which can then be used to annotate 
them based on existing literature, reference atlases, and 
databases. Often, this entire process is iterated to obtain 
finer subclusters within each major class of cells (Fig. 2) 
[26, 29, 34, 36, 37]; these finer subclusters sometimes 
have new or under-explored markers, leading to the dis-
covery of novel cell signatures. Once this initial clustering 

Fig. 2  General analytical workflow for large-scale single-cell/nucleus RNA-seq data from human control and AD samples. A Starting from the 
genes × cells/nuclei counts table, most analysis workflows identify high variance genes, then perform dimensionality reduction, and ultimately 
call clusters in reduced-dimension space. This clustering may be iterative, where larger clusters are then re-analyzed, starting from the first step, 
to identify subgroups (enlarged inset on the right). It is important to note that often a separate reduced-dimension embedding is used for 
visualization, as opposed to the embedding used for clustering. B–D After clusters have been identified, the analysis workflow looks to identify 
differences in gene expression across conditions in each major cell class (B) or subcluster (C) or in the relative proportions of each cell class or 
cluster across conditions (D). These differences form the basis of understanding cell type-specific changes associated with the disease
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approach has created a general taxonomy of putative cell 
types in the dataset, the disease-focused analysis of cell 
types then proceeds (Fig.  2); this downstream analysis 
comprises both differential gene expression within broad 
classes and subclusters as well as differential cell cluster 
proportions associated with disease phenotypes. The 
overall flavor of these analyses can vary among studies, 
but have still led to the repeated cell type-specific find-
ings described below.

Limitations of single‑cell/nucleus transcriptomics 
approaches
Despite their tremendous advantages, it is important also 
to highlight the limitations of and challenges faced by sc/
snRNA-seq studies, so as to avoid over-interpretation of 
results. Regarding completeness, it is important to note 
that sc/snRNA-seq are unlikely to profile transcripts dis-
tal to the soma, especially in cells with highly ramified 
processes such as neurons. In addition,  snRNA-seq, as 
described above, also excludes transcripts in the soma 
that are outside of the nucleus. In theory, these sets of 
missed transcripts are captured in methods that work 
on bulk tissue, leading to lower sensitivity in sc/snRNA-
seq. In addition, the dissociation process may intro-
duce ex  vivo artifacts, particularly in live cells when an 

enzymatic protocol is used, as mentioned above [31, 32]. 
Fortunately, none of the studies described below is sub-
ject to these artifacts, because they do not use enzymatic 
dissociation protocols. In terms of signal-to-noise ratios, 
3′-based profiling methods, such as the one implemented 
in the widely used 10x Genomics Chromium platform, 
have low sensitivity for certain genes [38], including 
potentially lowly expressed but highly relevant ones such 
as TREM2 in microglia or synaptic genes in neurons. 
Finally, 3′-based profiling methods (as opposed to more 
full-length transcript capture methods like SMART-Seq) 
do not detect reads robustly along the entire transcript 
and thus have poor detection of alternative splicing and 
quantification of isoform-specific expression.

On the analytical side, the wealth of tools can be a dou-
ble-edged sword, offering methodological approaches 
that suit the most varied experimental designs (Table 1), 
but may hamper reproducibility and cross-study rigor 
[39]. Although packages like Seurat and Scanpy have 
helped unify analytical workflows across studies, there is 
still room for improvement. For instance, systematic use 
of strategies like cross-validation and robustness analy-
sis can assess the stability of clustering solutions used 
to identify cell types, and using appropriate tests of sig-
nificance can balance false positives and false negatives 

Table 1  Summary of recent sc/snRNA-seq and snATC-seq studies on human brain tissue from individuals with AD, with publicly 
available data

Brain regions: DLPFC dorsolateral prefrontal cortex, EC entorhinal cortex, PFC prefrontal cortex, TC temporal cortex, SFG superior frontal gyrus, OC occipital cortex, OTC 
occipitotemporal cortex, PC parietal cortex, SFC superior frontal cortex, H hippocampus. Cohorts: ROS Religious Orders Study at Rush University, MAP Memory and 
Aging Project at Rush University, VBB Victorian Brain Bank at the Florey Institute of Neuroscience and Mental Health, BRI Brain Research Institute at Niigata University, 
SWDBB South West Dementia Brain Bank, NDBB Neurodegenerative Disease Brain Bank at University of California San Francisco, BBAS Brazilian BioBank for Aging 
Studies at the University of Sao Paulo, NBB-IBB NeuroBiobank of the Institute Born-Bunge, UCI MIND University of California Irvine Institute for Memory Impairments 
and Neurological Disorders, Knight-ADRC Knight Alzheimer Disease Research Center at Washington University, DIAN Dominantly Inherited Alzheimer Network, 
Stanford/VA/NIA ACRC​ Stanford/VA/NIA Aging Clinical Research Center, NYU-ADRC NYU Grossman School of Medicine’s Alzheimer’s Disease Research Center, UCSD-
ADRC University of California San Diego Shiley-Marcos ADRC, BTRC​ Rhode Island Hospital’s Brain Tissue Resource Center

Study Donors (n) Region Cohort(s) Nuclei (n) Modalities Cell types highlighted

Mathys, Davila-Valderrain, 
et al. (2019) [40]

48 DLPFC ROS, MAP 60,462 snRNA-seq Neu, Oligo, Astro, Mic

Grubman, Chew, Ouyang, 
et al. (2019) [41]

12 EC VBB 13,214 snRNA-seq Oligo, Astr, Mic, OPC

Zhou et al. (2020) [42] 32 PFC ROS, MAP, Knight-ADRC, BRI 112,809 snRNA-seq Neu, Oligo, Astro, Mic, Endo

Otero-Garcia et al. (2022) [43] 8 DLPFC Multiple cohorts 116,684 scRNA-seq Neu

Cain, Taga, et al. (2020) [28] 24 DLPFC ROS, MAP 168,713 snRNA-seq Neu, Oligo, Astro, Mic, Endo

Lau et al. (2020) [44] 20 PFC SWDBB 167,776 snRNA-seq Neu, Oligo, Astro, Mic, Endo

Olah, Menon, et al. (2020) 
[29]

17 DLPFC, TC ROS, MAP 16,242 scRNA-seq Mic

Leng, Li, et al. (2021) [45] 10 SFG, EC NDBB, BBAS 106,136 snRNA-seq Neu, Oligo, Astro, Mic

Gerrits et al. (2021) [46] 18 OC, OTC NBB-IBB 482,472 snRNA-seq Mic, Astro, Endo, Peri

Morabito, Miyoshi, Michael, 
et al. (2021) [47]

18 PFC UCI MIND 61,472 snRNA-seq, snATC-seq Neu, Oligo, Astro, Mic

Brase et al. (2021) [48] 67 PC Knight-ADRC, DIAN 294,114 snRNA-seq Neu, Oligo, Astro, Mic

Yang et al. (2022) [30] 26 SFC, H Stanford/VA/NIA ACRC​ 143,793 snRNA-seq Endo, Peri, Fibro

Sadick et al. (2022) [49] 16 PFC NYU-ADRC, UCSD-ADRC, 
BTRC​

65,180 snRNA-seq Oligo, Astro
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[39]. With the rapid increase in the range of studies and 
the number of individual cells/nuclei profiled, the need 
for standardization is pressing. Finally, it is important to 
mention the absence of a widely used reference nomen-
clature for subclusters of cells within all the major classes 
(excitatory/inhibitory neurons, astrocytes, oligodendro-
cytes, microglia, vascular cells, etc.). This makes map-
ping cluster-specific findings across studies challenging 
and often requires an integrated re-analysis of multiple 
data sets to identify which observations are reproducible. 
Indeed, in the synthesis of findings described below, we 
are restricted to discussing qualitative mapping between 
cell subclusters in different studies, focusing on specific 
marker or differential genes highlighted in the text of the 
studies.

All major brain cell types show molecular 
and compositional changes in AD
Here, we survey 13 recent studies that have used sc/
snRNA-seq to characterize cell state and composition 
changes in AD (Table 1). As mentioned above, this task is 
hampered by the lack of a harmonized nomenclature for 
cell subclusters, preventing a fully rigorous assessment 

reproducibility of cell identities. Thus, we summarize 
concordant compositional (proportion) changes and dif-
ferential gene expression within cell states across studies, 
expand on the novel and future technologies that pro-
pel them, and offer our perspective on the relevance of 
single-cell profiling to aid therapeutic development for 
AD. Notably, this collection of studies implicates changes 
within all major cell types, emphasizing widespread 
structural and functional disruption in AD (Fig.  3). 
Although most studies have focused on the prefrontal 
cortex, which is affected in the middle-to-late stage of 
disease progression, we also include studies with  find-
ings in early affected limbic and cortical regions when 
pertinent.

AD tissue contains higher proportions of microglia 
with a variety of activated states
Genome-wide association studies and new bulk tran-
scriptomics analyses have identified key AD-specific 
differences in genes expressed in microglia [16, 24]. 
Single-cell studies have offered additional insight into 
microglial heterogeneity in AD, thanks to more sensi-
tive profiling of rare cell types such as microglia, which 

Fig. 3  Schematic summary of selected findings from multiple sc/snRNA-seq studies, organized by cell type and publication date (italics indicate 
the Biorxiv versions of manuscripts). Studies have identified differences in all major cell types in brain tissue from healthy donors versus donors with 
AD diagnoses. Some of these differences are highlighted only in a subset of studies, suggesting the need for further exploration of reproducibility 
and consistency of findings. This figure was created using the BioRender package
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compose between 5 and 15% of cells in most cortical 
regions [50]. The first two published snRNA-seq studies 
on AD both identified a downregulation of homeostatic 
and cell-cell signaling genes (such as CX3CR1, P2RY12, 
and P2RY13) in microglia [40, 41]. In parallel, Zhou 
et  al. examined microglia from individuals carrying the 
TREM2-R47H variant and identified additional upregu-
lated genes in microglia such as SORL1 and CHI3L1, 
a genetic risk factor and putative biomarker for AD, 
respectively [42]. Similarly, Morabito et al. reported lower 
proportions of homeostatic microglia at one end of their 
microglial pseudotime trajectory, coupled with a con-
comitant increase of TREM2-independent disease-asso-
ciated microglia [51]. Finally, Lau et  al. showed a lower 
proportion of microglia with a synaptic pruning signa-
ture [44], a prime function of homeostatic microglia.

Concomitant with the decrease in homeostatic signa-
tures, snRNA-seq studies have identified a host of path-
ways upregulated or dysregulated in human microglia 
in AD donor tissue. This mirrors recent findings that 
disease-associated signatures in humans are substan-
tially more heterogeneous than in mouse models on a 
single genetic background [25, 28, 29, 40, 42, 52]. Zhou 
et  al. found higher proportions of a subtype expressing 
microglial activation genes such as HLA-DRA, TREM2, 
and AIF1 in LOAD patient tissue, as well as potential dis-
ruption of the metal ion homeostasis pathway [42]. Brase 
et  al. identified that carriers of the MS4A rs1582763 
variant, which is associated with reduced AD risk and 
delayed age of disease onset [53], have higher proportions 
of a microglial subcluster upregulating pro-inflammatory 
genes including IL1B, FCGR3A, C3, NPC1, PAG1, and 
CD40. Interestingly, tissue from these individuals also 
showed depletion of a different microglial subcluster 
expressing pro-inflammatory genes (C5, BMPR2, and 
TPRG1) that overlap with activated-microglial signatures 
reported previously in neurodegenerative diseases [54] 
and aging [55]. This highlights the complexity of micro-
glial signatures, as they show differences in the expres-
sion of subsets of genes belonging to the same pathway.

Two studies that focused on human microglial through 
enrichment strategies have further refined subsets of 
microglia associated with disease trajectory. Gerrits et al. 
[46], by examining combinations of amyloid and tau pro-
teinopathies, identified pathology-specific states that 
increase in late stages of the disease. A microglial subset 
with high expression of MYO1E is specifically associated 
with amyloid load in the occipital cortex while a different 
subset with marked expression of CX3CR1 is associated 
with tau in the occipitotemporal cortex. Finally, Olah 
et al. used scRNA-seq on microglia isolated fresh autopsy 
and surgically resected tissue to identify a particular 
microglial subsignature, marked by high expression of 

CD74, that was lower in AD donor tissue [29]. An immu-
nohistochemical investigation of post-mortem control 
and AD tissue confirmed the lower prevalence of this 
microglial signature in AD. Although this signature is 
reported in some snRNA-seq studies [28], it remains to 
be seen whether the association is consistently found in 
snRNA-seq versus scRNA-seq. Overall, these two stud-
ies highlight the importance of both approaches (nuclear 
and cellular isolation), as well as examining the heteroge-
neity of pathology distribution in AD, in order to char-
acterize the full complement of microglial signatures 
associated with disease onset and progression.

In summary, all sn/scRNA-seq studies on AD so far 
have reported a general reduction of homeostatic signa-
tures in microglia, in combination with dysregulation of 
a host of pathways. These include “classical” microglial 
activation signatures, cell-cell signaling, pro- and anti-
inflammation, and metal ion homeostasis. These tran-
scriptomic studies, therefore, bolster the GWAS-derived 
hypothesis of microglial dysregulation playing a major 
role in AD, while also illustrating the heterogeneity of 
microglial responses. Although some of these responses 
could be artifacts related to dissociation, they are not 
due to enzymatic dissociation protocols, which were not 
used in any of these studies. Thus, one important next 
step in synthesizing the diversity of microglial dysregula-
tion in AD is to characterize putative transitions between 
these microglial states using a combination of continuous 
modeling approaches and experimental validation using 
model systems. This next stage of research into micro-
glia in AD will shed further light onto the relationship 
between AD pathology, progression, and disease-associ-
ated microglia signatures.

Oligodendrocyte signatures in AD are indicative 
of myelination disruption
As with microglia, GWAS studies have identified AD 
risk genes implicating dysregulation in oligodendrocytes. 
Late-onset AD risk genes such as BIN1, PLP1, and CLU 
are expressed in oligodendrocytes, although the extent 
to which these specific genes are differentially regulated 
remained an open question before the advent of snRNA-
seq studies. These studies have shown that expression of 
BIN1 [41, 42], PLP1 [40, 42], and CLU [40–42, 44] are 
altered in oligodendrocytes in AD, and also highlight a 
general reduction in myelinating oligodendrocytes in 
brain tissue from individuals with LOAD. Specifically, 
myelinating oligodendrocyte signatures are higher in 
low-pathology individuals and lower in individuals with 
high pathological burden, when compared to healthy 
donors [41, 42, 47]. This change in myelination signa-
ture with disease progression is also borne out through 
pseudotime trajectory reconstruction based on gene 
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expression and single-cell ATAC-seq data [47]. Accom-
panying this ultimate decline in myelinating oligoden-
drocytes, multiple studies also identified upregulation 
of stress-response signatures [28, 44, 47]. Importantly, 
oligodendrocyte dysregulation appears to be a shared 
feature in both familial and LOAD, as Brase et al. found 
a higher proportion of an oligodendrocyte subcluster 
enriched for spliceosome genes highly correlated with 
the LOAD GWAS hits CLU, MAP1B, and PICALM 
in carriers of autosomal-dominant AD risk genes APP 
and PSEN1 [48]. These observations point to a putative 
shared pathway of dysregulation in specific oligodendro-
cyte subsets underlying both familial and late-onset AD.

More recently, studies linking oligodendrocyte signa-
tures to genetic variants have implicated potential dys-
regulation linked to oligodendrocyte-microglial crosstalk 
in AD. Brase et  al. showed carriers of three TREM2 
variants associated with reduced microglial activation 
(R47H, R62H, and H157Y) showed higher proportions of 
oligodendrocytes marked by upregulation of the myelin 
biosynthesis repressor TFEB [56]. This TFEB-enriched 
oligodendrocyte subcluster also showed higher propor-
tions in TREM2-R47H carriers from Zhou et  al. [42], 
supporting the possibility of microglial-oligodendrocyte 
crosstalk via a TREM2-TFEB pathway. A study focusing 
on genetics-driven selection of individuals also found an 
oligodendrocyte subset expressing immune genes (e.g., 
HLA-A and B2M) in APOE Ɛ2/3 carriers [49]. Although 
the directionality of this cross-cell type signaling is not 
established in these studies, the findings point to an oli-
godendrocyte-microglial axis that is consistently found to 
be disrupted in AD.

Overall, the two most consistently found oligodendro-
cyte changes in AD are the reduction in myelin-forming 
oligodendrocytes and the link between oligodendrocyte 
signatures and microglial genes. However, it is impor-
tant to note that quantification and comparison of this 
cell type across snRNA-seq data sets can be challeng-
ing because of variability in the amount of white mat-
ter included in the dissection protocol for each study. 
Whereas dissections are often consistent across samples 
within the same study, they may vary across studies, thus 
yielding systematically higher proportions of oligoden-
drocytes in one study versus another.

From a biological perspective, fully recapitulating oli-
godendrocyte changes along the disease trajectory would 
benefit from deeper profiling of brain regions affected 
earlier in the disease progression (like the entorhinal cor-
tex and hippocampus). This approach would also shed 
light on the potential region specificity of oligodendro-
cyte subcluster composition, as has been shown for other 
glial classes such as astrocytes [49, 57]. Given that oli-
godendrocyte signature changes are found repeatedly in 

single-cell studies, further examination of this cell class 
and its interactions with other cell types (Fig. 4) contin-
ues to be an active area of research.

AD astrocyte signatures are altered along multiple 
spatial, temporal, and functional axes
Astrocytes are central players in coordinating brain 
homeostasis, from maintaining the blood-brain barrier 
to preserving neuronal health and excitability. Thus, it is 
not surprising that multiple studies have identified spe-
cific signatures of astrocytes altered in AD. These include 
higher proportions of astrocyte subclusters with heat-
shock protein genes involved in stress response (such 
CRYAB, HSP1A1, HSBP1, and HSP90AA1) [41, 42, 44, 
45, 47, 49], astrogliosis genes (GFAP and VCAN) [28, 
40, 44], and regulatory genes implicated in neurode-
generation (NEAT1) [44]. These studies also found con-
comitantly lower proportions, in individuals with AD, 
of astrocyte signatures associated with synaptogenesis 
(NRXN1 and NRXN3) and neurotransmitter balance. 
These same studies also identified an increase in the pro-
portion of CD44+ astrocytes in AD. CD44+ astrocytes 
have fibrous-like morphology and are prominent in the 
white matter [58], but three studies have independently 
observed an increase in this astrocyte subgroup pro-
portion associated with cognitive decline [28] and AD 
pathology [28, 45, 49] in the frontal cortex.

The refinement of novel astrocyte signatures has also 
been facilitated by integrating data from multiple studies. 
By combining their snRNA-seq with previous studies, 
Sadick et  al. [49] report a putative duality in the astro-
cytic function that can also be observed in other datasets, 
where both loss and gain of function signatures coincide 
in the same cluster. For example, one cluster has higher 
expression of genes involved in scarring (RGCC) as well 
as in antioxidant pathways (SOD and MT1G). This func-
tional duality is also seen at the cluster/subcluster level, 
where many of the astrocytic pathways previously impli-
cated in AD (i.e., metal ion regulation, protein homeo-
stasis, angiogenesis, synaptic maintenance, lipid storage, 
and fatty acid oxidation) can be ascribed to either sub-
cluster-specific or multi-cluster signatures. Importantly, 
this integrated analysis using data from multiple studies 
found shared signatures across all studies after batch cor-
rection. This approach highlights the relevance of inte-
grating datasets to assess reproducibility and to power 
the discovery of disease signatures in novel and estab-
lished subpopulations.

Finally, the astrocyte signatures in autosomal-dom-
inant AD mirror many aspects of those described in 
LOAD. Brase et al. [48] showed relatively higher propor-
tions of an astrocyte cluster upregulating VIM, OSMR, 
and CTSB, like the ones found by Morabito et  al. [47], 
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and paralleling plaque-associated astrocytes identified in 
mouse models as well [59]. In addition, they found that 
homozygous carriers of MS4A rs1582763 have lower pro-
portions of homeostatic astrocytes and higher propor-
tions of an astrocyte subcluster upregulating the markers 
of plaque-associated astrocytes (i.e., GFAP, ID3, AQP4, 
ID1, and GSN) [48]. These findings suggest that different 
genetic architectures of AD might converge onto overlap-
ping axes of dysregulation in astrocytes.

In sum, these studies suggest that impairment of astro-
cyte function and transition to a more stress-associated 
or putatively reactive state are hallmarks of AD. Impor-
tantly, the overall heterogeneity of astrocytic signatures 
goes beyond the earlier A1/A2 neurotoxic/neuroprotec-
tive model [60], suggesting that astrocytes in the aging 
brain are altered along multiple temporal, spatial, and 
functional axes in the context of disease. This includes 
changes in classes of astrocytes once thought to be pre-
dominantly white-matter associated. An active area of 
research is discovering the putative associations between 
these continuous axes of biological variation and patho-
logical load, with the goal of better functional annota-
tion of subclusters (Fig.  4). Given the complexity of the 

astrocytic transcriptomic landscape, it is likely that fur-
ther studies will uncover additional signatures that show 
stage-specific progression in AD.

Cerebrovascular cells exhibit inflammatory profiles 
and selective vulnerability in AD
Given the potential dysfunction of the blood-brain bar-
rier in AD, it is expected that vascular cells may show 
altered signatures in the disease. However, as with micro-
glia, these cells form a small portion of the total popu-
lation, and subtle signatures may be obscured in bulk 
profiling data without specific enrichment for these cells. 
With single-nucleus approaches that isolate sufficient 
numbers of vascular cells, disease-specific signatures 
have become easier to assess. Grubman et al. [41] identi-
fied the upregulation of cytokine signaling and immune 
response genes in endothelial cells from the entorhinal 
cortex, including HLA-E, MEF2C, and NFKBIA. These 
findings were expanded on by two data sets that included 
larger numbers of vascular nuclei [28, 44], which identi-
fied multiple subsets of endothelia in AD donors that 
were enriched for genes associated with angiogenesis, 

Fig. 4  Open questions regarding cell type dysregulation and interactions that have not been extensively addressed by the studies described here. 
Some of these questions (left) are better served with the integration of data from new modalities and combined approaches (top right). This figure 
was created using the BioRender package
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such as ERG and VWF, as well as immune response genes 
such HLA-E and IFI27.

Recently, Yang et al. dramatically enriched vascular cell 
numbers per donor using a novel method for vessel iso-
lation and nucleus extraction for sequencing (VINE-seq) 
[30]. This study not only recapitulated the immune sign-
aling gene pathways in endothelial cells reported previ-
ously, but also showed that this inflammatory profile is 
present in venous endothelial cells. Using an endothe-
lial taxonomy based on spatio-functional differences of 
zonation [61], they mapped this potential immune sign-
aling profile to capillary and arterial endothelial cells 
specifically in APOE Ɛ4 carriers. Moreover, all three 
types of endothelial cells (venous, capillary, and arterial) 
were significantly depleted in AD samples. Among non-
endothelial cerebrovascular cell classes, this study found 
that pericytes expressing genes involved in extracellu-
lar matrix reorganization were depleted in AD, whereas 
pericytes expressing small-molecule transport genes did 
not show the same extent of depletion. Similarly, adjacent 
mural smooth muscle cells were also lower in AD and 
had the greatest number of AD upregulated genes of all 
perivascular cell types. Finally, perivascular fibroblasts, 
but not those that are meningeal, were also significantly 
lower in AD. The selective vulnerability of endothelial, 
mural, and fibroblast cells in AD may reflect the reported 
structural breakdown of the blood-brain barrier reported 
in LOAD [62].

The findings from these snRNA-seq studies suggest 
two main components of vascular dysregulation in AD—
upregulation of an inflammatory/immune response sig-
nature and selective loss of fibroblast, endothelial, and 
mural cells. Importantly, these cell subsets also express 
similar numbers of genes associated with AD risk loci as 
microglial and myeloid cells [28, 30, 44]. Finally, given the 
close connection between the cerebral vasculature and 
the glymphatic system, an area of ongoing research is the 
link between perivascular composition and alterations in 
glymphatic function (Fig. 4). On the therapeutic side, the 
identification of specific subsets of cerebrovascular cells 
associated with disease, together with surface markers 
and signaling pathways identified by snRNA-seq studies, 
may lead to candidate-based approaches to repair dysreg-
ulated blood-brain-barrier function in AD.

Neuronal subtypes show selective vulnerability 
to tau and neurodegeneration
The ultimate cellular outcome in AD, which is also most 
proximately related to circuit dysfunction, is neurode-
generation. From a pathological perspective, the accu-
mulation of intracellular tau is primarily restricted to 
neurons and follows a stereotyped spread in the brain 
[3]. This selective appearance of pathology suggests that 

distinct neuronal types may be differentially vulnerable 
or resistant in the course of the disease. Indeed, brain-
mapping studies have identified neuronal subtypes that 
are likely to be lineage-specified [36]; thus, alterations in 
neuronal signatures in disease are likely due to selective 
vulnerability, rather than interconversion between differ-
ent neuronal classes.

Cortical neurons can be broadly divided into two 
groups—glutamatergic and GABAergic. Glutamatergic 
neurons, which can project locally to other neurons or 
long-range to distant cortical or subcortical regions, show 
layer-specific expression of marker genes in the cortex 
[34]. From a transcriptome perspective, they can be iden-
tified by the expression of glutamatergic genes such as 
SLC17A7 (VGLUT1). Since glutamate is primarily (but 
not exclusively) a mediator of excitatory signaling in the 
adult cortex, glutamatergic neurons coincide with func-
tional and structural definitions of “excitatory” or “pro-
jection” neurons [34, 36]. By contrast, most GABAergic 
neuron subclasses have local projections and show weak 
layer-specific enrichment; they coincide with “inhibitory” 
neurons (“interneurons”) and are marked by expression 
of genes in the GABAergic pathway, including GAD1, 
GAD2, and SLC32A1 (VGAT). Brain-mapping studies 
have shown that neuronal signatures, especially those of 
glutamatergic (putatively excitatory) neurons, are brain-
region specific and differ even among neighboring cor-
tical regions [63]. Although this region specificity is less 
pronounced for GABAergic (putatively inhibitory) cor-
tical neurons, it is not entirely absent [26, 34, 63]. Thus, 
given the regional stereotypy of tau pathology spread in 
AD, it is likely that these two major classes of neurons are 
affected in different ways in the course of the disease.

An ongoing area of research in AD is the extent to 
which different neuronal subgroups are vulnerable or 
resistant to pathology and disease progression. How-
ever, bulk studies pose challenges in identifying changes 
in subtypes of neurons beyond the two major classes 
described above. By contrast, snRNA-seq studies have 
identified vulnerability to pathology in deep layer glu-
tamatergic neurons in specific brain regions. Leng et al. 
[45] showed that RORB+ glutamatergic neurons are 
selectively depleted in the entorhinal cortex, but not in 
the superior frontal gyrus, evidence for layer- and subset-
specific early-stage neurodegeneration in AD. Similarly, 
Otero-Garcia et  al. [43] used a novel partial cell body 
sorting technique to identify that a subset of neurons in 
layer 2/3, as well as a subset of deeper layer RORB+-pos-
itive neurons in the frontal cortex, are enriched among 
cells with higher abundance of intracellular AT8+ tau in 
their somata. In addition, these vulnerable sets of neu-
rons share a common upregulation of genes encoding 
for synaptic and cytoskeletal proteins [43], as has been 
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found in other snRNA-seq studies [40, 44]. This study 
also identified certain RORB+ neuronal subsets as being 
resistant to the accumulation of tau pathology, whereas 
the RORB+/PCP4+ subgroup preferentially accumulates 
tau; this suggests that not all projection neurons, even 
within the same cortical layer, are equally vulnerable. 
Thus, these studies now assign specific molecular mark-
ers to layer-specific neuronal loss that has been described 
through careful immunohistochemistry and histology 
over two decades ago [64, 65]. Overall, these subtype-
specific molecular signatures could form the basis for 
therapeutic avenues focused on protecting vulnerable 
neuronal subtypes in layers 2/3 and 4, thus mitigating 
circuit-related and cognitive impairment in AD.

Single-cell studies have also linked neuronal profiles 
with NEFL and APOE, two genes heavily studied in AD. 
Multiple snRNA-seq studies have reported the loss of 
neurons with high expression of NEFL in AD [28, 42, 
43]. This corroborates prior histological studies showing 
alterations in NEFL distribution in intact tissue in indi-
viduals with mild and severe AD [64, 65]. In addition, 
this finding gels with the observation that higher levels of 
NEFL in cerebrospinal fluid may serve as a biomarker for 
LOAD progression. With regard to APOE, a gene with 
risk variants associated with AD, Brase et  al. reported 
higher proportions of neurons expressing the AD-risk-
associated gene APOE in autosomal-dominant AD [48]. 
However, this detection of APOE above background 
levels has not been consistently found in LOAD studies, 
suggesting either technical variability across studies or a 
difference between LOAD and familial AD.

Whereas projection neuron loss has been noted as 
a hallmark of neurodegeneration and circuit function 
dysregulation, less has been known about GABAergic 
neurons in the cortex in AD. In mouse models of AD, 
for example, GABAergic neurons can exhibit resist-
ance to the spread of tau, particularly in the entorhinal 
cortex [66]. The extent to which subtypes of GABAer-
gic neurons show differential vulnerability has remained 
under-explored. Cain et al. [28] suggest there is a selec-
tive loss of SST+ neurons in the frontal cortex, with cor-
responding resistance in PVALB+ neurons. Since both 
subgroups of neurons originate from the medial gangli-
onic eminence, this finding suggests that selective vulner-
ability in GABAergic neurons does not necessarily affect 
all cell types from a given lineage. Similarly, Brase et al. 
found that two GABAergic neuron populations showed 
significant associations to autosomal-dominant AD and 
also that these subsets might be affected earlier than glu-
tamatergic neurons in this form of the disease [48]. Over-
all, the impact of AD pathology on GABAergic neurons 
is under-explored, and further investigation is needed to 

establish the temporality of how these neurons are selec-
tively affected during the progression of the disease.

On the neuronal front, single-cell studies have pro-
vided an unprecedented resolution to study neuronal 
selective vulnerability in AD. However, important ques-
tions remain regarding how neurons are dysregulated 
and how their interactions with glia shape their vulner-
ability or resistance through disease (Fig.  4). It is still 
unclear whether the subset of RORB+ excitatory neu-
rons in the entorhinal cortex, which are depleted in early 
stages of AD, correspond with the RORB+ subsets har-
boring tau tangles in the frontal cortex [43]. The extent to 
which this signature of vulnerability tracks the stereotyp-
ical pattern of tau pathology spread throughout the cor-
tex is also unclear. Finally, the implication of subsets of 
GABAergic neurons, which are known to be dysregulated 
in neuropsychiatric disease, raises intriguing questions 
as to how the disruption of excitation and inhibition in 
the cortex may contribute to cognitive symptoms in AD. 
Further investigation into these aspects of selective vul-
nerability, shared signatures across cortical regions, and 
circuit-level dysfunction is all likely to yield new classes 
of therapeutic interventions related specifically to neu-
ronal changes in AD.

Ongoing developments and new technologies
The advent of new technologies, as well as improve-
ments in single-cell approaches, mark a new horizon in 
the study of neurodegenerative diseases, including AD. 
Although sc/snRNA-seq techniques have become rou-
tine in profiling human brain tissue, they have impor-
tant limitations. These include the loss of spatial context, 
reduced sensitivity for certain genes, and some degree of 
discrepancy with other modalities such as proteomics. 
One area of explosive growth has been the development 
of spatial profiling methods, which eliminate the need for 
tissue dissociation and thus capture disease-associated 
changes in the native context [67]. Transcriptome-wide 
approaches such as the 10x Genomics Visium plat-
form (formerly known as Spatial Transcriptomics) and 
NanoString’s GeoMx DSP, or highly multiplexed in  situ 
hybridization/immunohistochemical methods such as 
MERFISH, SeqFISH, Nanostring, 4i, and Codex, all allow 
for the interrogation of multiple RNA or protein species 
in intact tissue. This allows analysis of not only cell type-
specific alterations, but also changes in the arrangement 
of cell types with respect to each other and with respect 
to pathological features, both of which are impossible in 
single-cell approaches requiring dissociation. In mouse 
tissue, a multiplexed ISH study identified microglial sig-
natures enriched near amyloid beta plaques [68] whereas 
a large-scale Spatial Transcriptomics study on ALS iden-
tified major cell type spatial changes in the human spinal 
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cord [69]. The significant immune compositional changes 
local to the accumulation of proteinopathies identified 
by both of these studies provide new insight into poten-
tial immune-targeting therapeutic approaches. Thus, as 
these methods scale with respect to spatial resolution, 
throughput, and cost, they may ultimately obviate the 
need for dissociation-based methods to profile tissue at 
the single-cell level across the transcriptome.

Another axis of investigation being applied to human 
brain tissue is simultaneous interrogation of the tran-
scriptome and epigenome (Fig. 4). As shown in Table 1, 
Morabito et  al. generated mRNA and ATAC profiles 
on separate sets of nuclei from the same samples [47] 
and highlighted the importance of ATAC-seq in linking 
genetic risk variants to cell type-specific mRNA profiles, 
as well as oligodendrocyte  epigenetic alterations in dis-
ease progression. The results agree with previous studies 
mapping open chromatin around AD risk loci in a cell 
type-specific way using snATAC-seq alone [70], infer-
ring causal links between genetic risk factors and cell 
type dysregulation. Newer approaches now exist to pro-
file mRNA and chromatin accessibility in the same nuclei 
(as opposed to parallel sets from the same sample); this 
would allow for more direct linking between risk genes, 
chromatin state, and cell type profiles, leading to poten-
tial new insight into changes during earlier stages of the 
disease. Similarly, single-cell mRNA+DNA methyla-
tion platforms in development would allow for alterna-
tive measurement of epigenetic profiles, further linking 
genetic risk factors and cell type-specific transcriptomes. 
Finally, it has now become possible to study gene per-
turbation effects through techniques like CROP-seq [71] 
or Perturb-seq [72], which allow for highly parallelized 
profiling of dozens to hundreds of genetic perturbations 
in vitro. Although the in vitro model does not fully reca-
pitulate aging brain cells, it nonetheless provides a model 
to test hypotheses about causal mutations or gene pertur-
bations on specific cell types. As these multi-modal plat-
forms and methods improve, they thus hold the promise 
of identifying genetic and epigenetic alterations upstream 
of transcriptomic changes and potentially link gene-by-
environment interactions to cell type-specific transcrip-
tomic changes (Fig. 4).

Finally, the advent of large-scale proteomic methods 
applied at the single-cell level will provide valuable insight 
into disease-associated processes and potential therapeu-
tic avenues missed by transcriptomics-only studies. Bulk 
proteomics studies [73] suggest that certain signals and 
modules may be missed by corresponding bulk RNA-seq 
studies. Currently, single-cell proteomics on peripheral 
cells can quantify hundreds of proteins in an individual 
cell [74] or both RNA-seq and dozens of surface proteins 
through CITE-seq [75]. However, for brain tissue, tissue 

dissociation remains an important challenge for both of 
these methods; indeed, this challenge cannot be bypassed 
easily, given that proteins are substantially more dis-
persed throughout the entire arbor of a cell as compared 
to RNA. This limitation is circumvented by highly multi-
plexed immunohistochemical approaches such as 4i and 
Codex, which interrogate intact tissue. Although these 
latter methods are currently limited by antibody selection 
and the degree of multiplexing possible, they show prom-
ise in identifying cell type rearrangements as well as cell 
type-specific protein expression changes in tissue [76, 
77]. Together, these advances in proteomics may usher 
in a new era of disease-specific target identification and 
protein-based biomarkers and therapeutic modulation of 
cell types.

The integration of multiple modalities with sc/snRNA-
seq has implications not only for tissue profiling, but also 
for the clinic. Whereas brain tissue itself is not viable as 
a biomarker for disease staging and assessment in living 
patients, the application of profiling methods to tissue 
can yield new candidate biomarkers likely to be detected 
in more accessible compartments such as CSF. By iden-
tifying key genes dysregulated across disease stages in 
the cross-sectional studies described here, these new 
approaches may help refine the set of biomarkers for AD 
stratification and progression. In parallel, the characteri-
zation of vulnerable and resistant cell types, together with 
upregulated and downregulated signatures within classes 
of cells, yields a new slate of gene candidates for further 
study. Cell surface markers, in particular, may lead a new 
class of targetable molecules to modulate or mitigate cell 
type changes observed through sc/snRNA-seq and other 
modalities in brain tissue. Thus, the refinement of molec-
ular profiling methods in terms of modality and spatial 
context is an important frontier in cell type targeting-
based approaches for disease management.

Conclusions
Although relatively new, the profiling of human brain tis-
sue in AD using sc/snRNA-seq has already revealed mul-
tiple cell type-specific alterations associated with disease 
phenotypes. In addition to characterizing vulnerable and 
resistant neuronal subclasses—which is challenging to do 
in bulk studies—the selective changes in cerebrovascular 
and glial signatures show a host of systemic effects asso-
ciated with AD. Although these studies cannot in them-
selves establish causality without the use of alternative 
techniques such as Mendelian randomization [28, 78] or 
validation using gene perturbations in model systems [71, 
72], they still highlight key cell type-specific signatures 
that may lead to the identification of surface molecules 
and targets for therapeutics.
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With new profiling methods and much larger sample 
sizes on the horizon, this picture of cell type-specific 
changes will be continuously refined. The introduction of 
new techniques to profile cells in intact tissues, combined 
with the multi-modal dissociated single-cell profiling 
approaches described here, will further identify putative 
associations between cell signatures and pathology, as 
well as potential cell-cell interactions (Fig. 4). These new 
frontiers in tissue profiling and analysis will help narrow 
down potential target genes and pathways for clinical 
investigation; whereas single-cell approaches have nar-
rowed down bulk profiling targets to specific cell types, 
spatial approaches and larger sample sizes will further 
refine these targets with increased statistical confidence 
and context with respect to pathological features. By 
expanding clinical studies to include cell  type perturba-
tions, in combination with pathology-clearing measures, 
these types of studies are likely to prioritize additional 
therapeutic candidates for pre-clinical studies, leading 
ultimately to more varied therapies to stratify, monitor, 
and combat the effects of AD pathology on cognitive 
function.
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