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Abstract 

Background:  Intratumoral heterogeneity (ITH) is a hallmark of clear cell renal cell carcinoma (ccRCC) that reflects the 
trajectory of evolution and influences clinical prognosis. Here, we seek to elucidate how ITH and tumor evolution dur‑
ing immune checkpoint inhibitor (ICI) treatment can lead to therapy resistance.

Methods:  Here, we completed a single-arm pilot study to examine the safety and feasibility of neoadjuvant 
nivolumab in patients with localized RCC. Primary endpoints were safety and feasibility of neoadjuvant nivolumab. 
Then, we spatiotemporally profiled the genomic and immunophenotypic characteristics of 29 ccRCC patients, includ‑
ing pre- and post-therapy samples from 17 ICI-treated patients. Deep multi-regional whole-exome and transcriptome 
sequencing were performed on 29 patients at different time points before and after ICI therapy. T cell repertoire was 
also monitored from tissue and peripheral blood collected from a subset of patients to study T cell clonal expansion 
during ICI therapy.

Results:  Angiogenesis, lymphocytic infiltration, and myeloid infiltration varied significantly across regions of the 
same patient, potentially confounding their utility as biomarkers of ICI response. Elevated ITH associated with a con‑
stellation of both genomic features (HLA LOH, CDKN2A/B loss) and microenvironmental features, including elevated 
myeloid expression, reduced peripheral T cell receptor (TCR) diversity, and putative neoantigen depletion. Hypoth‑
esizing that ITH may itself play a role in shaping ICI response, we derived a transcriptomic signature associated with 
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neoantigen depletion that strongly associated with response to ICI and targeted therapy treatment in several inde‑
pendent clinical trial cohorts.

Conclusions:  These results argue that genetic and immune heterogeneity jointly co-evolve and influence response 
to ICI in ccRCC. Our findings have implications for future biomarker development for ICI response across ccRCC and 
other solid tumors and highlight important features of tumor evolution under ICI treatment.

Trial registration:  The study was registered on ClinicalTrial.gov (NCT02595918) on November 4, 2015.

Background
Clear cell renal cell carcinoma (ccRCC) is the most com-
mon histological subtype of kidney cancer and dem-
onstrates a high response rate to immune checkpoint 
inhibitors such as nivolumab, pembrolizumab, and ipili-
mumab [1–4]. However, only a subset of ccRCC patients 
respond to ICI, and biomarkers for ICI response in other 
disease settings such as tumor mutation burden, neoanti-
gen load, and mismatch repair deficiency do not associ-
ate with ICI response in ccRCC [5–8]. Recently, several 
studies have identified transcriptomic microenvironmen-
tal features including angiogenic gene expression, T cell 
infiltration, and myeloid activation that correlate with 
response or resistance to ICI and combination therapies 
in ccRCC [8–14]. This suggests that the ccRCC microen-
vironment, in addition to genomic factors, influences ICI 
response.

In parallel, recent work has demonstrated the preva-
lence of ITH in untreated ccRCC [15]. This study has 
largely focused on heterogeneity in the presence of key 
driver mutations and copy number alterations and has 
demonstrated that ccRCC tumors follow one of a small 
number of evolutionary trajectories, each of which is 
associated with distinct patterns of genomic ITH and 
clinical prognosis. However, the potential for non-
genomic heterogeneity in the tumor microenvironment, 
including but not limited to variability in the amount 
and identity of immune cells in spatially distinct regions 
of the same tumor is overlooked. Recently, we and oth-
ers described substantial heterogeneity in the tumor 
microenvironment (TME) in several small cohorts of 
ccRCC tumors both in the treatment-naïve and treat-
ment-exposed settings, raising the possibility that hetero-
geneity in the TME may itself shape the evolution of the 
tumor and its likelihood to respond to therapy [16, 17].

In this study, we hypothesized ccRCC tumors with 
elevated ITH constitute a genomically and immunologi-
cally distinct class of tumors, with distinguishing clonal/
subclonal genomic alterations, immunologic profiles, and 
therapeutic response trajectories. To test this hypothesis, 
we utilize whole-exome sequencing (WES), whole-tran-
scriptome sequencing (WTS), TCRseq, and histopatho-
logic multi-regional data across a cohort of untreated 
and ICI-exposed patients from a phase 2 clinical trial to 

reveal the molecular determinants of therapy response 
in ccRCC (Fig.  1 and Additional file  1: Table  S1). Our 
integrated analysis demonstrated that ITH is highly cor-
related among genomic, transcriptomic, and TME char-
acteristics. ITH-high tumors are enriched for features 
including SETD2 and PBRM1 mutations, HLA loss 
of heterozygosity (HLA LOH), and CDKN2A/B loss. 
Immunologically, ITH-high tumors display a depletion 
of putative neoantigens, elevated myeloid activation, 
and reduced T cell diversity that are in aggregate associ-
ated with escape from the anti-tumor immune response. 
Premised on these observations, we developed a tran-
scriptional signature for immune escape which correlates 
with distinct histopathologic patterns and is associated 
with ICI resistance across several diverse clinical trial 
cohorts.

Methods
Sample acquisition
After acquiring informed consent and institutional 
review board approval from Memorial Sloan Kettering 
Cancer Center (MSK), partial or radical nephrectomies 
were performed at MSK (New York) and stored at the 
MSK Translational Kidney Research Program (TKRCP). 
Samples were flash frozen and stored at − 80  °C prior 
to molecular characterization. Clinical metadata was 
recorded for all tumor samples. All patients represent 
clear cell histology and were treated via ICI alone or in 
combination with tyrosine kinase inhibitor (TKI). All 
treatments were administered prior to surgery in a neo-
adjuvant setting and biopsies were collected. Detailed 
clinical data and treatment regimen for each patient 
is included in Additional file  1: Table  S2. After obtain-
ing informed consent for tissue collection, samples 
were directly obtained from the operating room during 
nephrectomy. At the time of specimen extraction, sam-
ples of around 1–1.5  cm were obtained by the treating 
surgeon (A. A. H.) from spatially distinct tumor regions 
(at least 1  cm apart) and each one labeled according to 
its spatial location (relative to the adjacent kidney). For 
untreated patients (MR…) Additional file 1: Table S2, 3–5 
tumor regions and an adjacent normal kidney sample (at 
least 2 cm away from the tumor) were obtained. For all 
ICB-treated patients (Nivo…SC…), three to five tumor 
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regions, an adjacent normal kidney sample (at least 2 cm 
away from the tumor), and PBMC sample (in cellular 
preparation tubes, CPTs) were obtained.

Untreated cohort
Using and institutional database, we identified six 
patients with advanced or metastatic ccRCC that under-
went nephrectomy with multi-regional data available, 
MR01,02,03,05,06, SC03. Clinical and pathologic data is 
available in Additional file 1: Table S2.

Neoadjuvant multi‑regional cohort
This open-label, single-arm, pilot prospective study was 
done at Memorial Sloan Kettering Cancer Center and 

funded through the National Institute of Health’s Can-
cer Therapy Evaluation Program (CTEP) [1]. Primary 
endpoints were safety and feasibility of neoadjuvant 
Nivolumab. Patients received nivolumab (dose initially 
3  mg/kg, then protocol amended to 240  mg flat dose) 
every 2  weeks for 4 treatments. Surgery was planned 
7–14  days after the last dose. Prior to starting therapy, 
all patients had a kidney biopsy to confirm ccRCC, and 
tumor staging with renal protocol MRI and CT of the 
chest. After 4 doses and prior to surgery, patients also 
had a renal protocol MRI. Changes in primary tumor size 
were assessed according to Response Evaluation Criteria 
in Solid Tumors (RECIST) version 1.1. Resection of the 
primary tumor and lymph nodes was done according to 

Fig. 1  Patient characteristics and study design. A Multi-regional multi-omics was performed on 29 patients. Serial and multi-regional sampling 
strategies shown schematically. B In total, 6 out of 29 patients were untreated and the rest were treated with ICI or in combination with TKI. TCRseq 
of PBMC was performed at 4 time points on therapy for a subset of patients. In addition, pathological review was performed to assign N-TIL (tumors 
sparsely infiltrated by TILs), S-TIL (tumors dominated by stromal TILs), and ES-TIL (tumors with substantial levels of both epithelial and stromal TILs) 
classes to a subset of patients
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standard institutional procedures. From May 27, 2016, 
to September 9, 2019, 21 patients were screened and 
18 were enrolled into the study of which 17 had avail-
able genomic data. Baseline patient characteristics are in 
Additional file 1: Table S2. All patients had localized dis-
ease at time of enrollment and biopsy-proven clear cell 
RCC. Perioperative and pathological details are included 
in Additional file  1: Table  S2. Median time to nephrec-
tomy after the last dose of nivolumab was 10.5  days 
(range, 9–13  days). In this small group of patients 
who had cancer confined to the kidney, this approach 
appeared safe and feasible. The details and clinical out-
come of this trial are currently published in [1].

Metastatic multi‑regional cohort
Using an institutional database, we identified 6 additional 
patients who had received ICI prior to nephrectomy 
(Additional file  1: Table  S2). All patients had metastatic 
disease at time of ICI; two received anti-VEGF therapies 
before ICI.

Therapy response collection
All ICI-treated patients (NIVO) were only neoadjuvant 
treated and no responses were seen on imaging for any of 
the patients.

SC06: ipilimumab/nivolumab resistant (i.e., stable 
disease).

SC08: ipilimumab/nivolumab mixed response (partial 
response).

SC09: sutent then ipilimumab/nivolumab—progression 
of disease (progressed disease).

SC10: ipilimumab/nivolumab (complete response).
SC12: ipilimumab/nivolumab resistant (i.e., stable 

disease).
SC14: ipilimumab/nivolumab resistant then lenvatinib/

pembrolizumab-resistant (i.e., stable disease).

Multi‑regional sampling
For the prospective neoadjuvant trial and the “MR” 
samples, single-region biopsies were obtained preop-
eratively. Following nephrectomy, tumors were bivalved 
and 5 regions were chosen: One region from the tumor 
center and 4 from each quadrant (upper medial, upper 
later, lower medial, lower lateral). Grossly necrotic or 
hemorrhagic regions were avoided. For the remaining 
samples (those treated with definitive immunotherapy 
“SC”) regions were taken from distinct regions of tumors 
separated by 1–2 cm avoiding grossly necrotic or hemor-
rhagic regions).

Whole‑exome sequencing
Libraries for whole-exome sequencing were generated 
with TruSight Oncology DNA Library Prep Kit (V1) with 

40 ng input DNA per sample. TruSight Oncology index 
PCR products were directly used for enrichment, and 
target exome enrichment was performed using the IDT 
xGen Universal Blockers and IDT xGen Exome Research 
panel V1. A single-plex hybridization was done over-
night at 65  °C. Accuclear dsDNA Ultra High Sensitivity 
assay (Biotium) was used for library quantification of the 
post-enriched libraries. Post enrichment libraries were 
normalized using bead-based normalization and pooled. 
Samples were sequenced with 101  bp paired-end reads 
on Illumina NovaSeq™ 6000 S4 flow cell using the XP 
workflow for individual lane loading (12-plex per lane). 
On average, each sample yielded 500 million reads and 
MEDIAN_TARGET_COVERAGE depth of 360X.

Whole‑transcriptome sequencing
Libraries for whole-transcriptome RNAseq were gener-
ated with Illumina TruSeq Stranded Total RNA. One 
hundred nanograms RNA was used as input for Ribo-
Zero rRNA Removal Kit, with Illumina TruSeq RNA UD 
Indexes (96 indexes) for sample indexing. Qubit dsDNA 
High Sensitivity assay (Thermo Fisher Scientific) was 
used for library quantification. Sequencing was done 
on Illumina NovaSeq™ 6000 S2 (36-plex) or S4 (72-
plex) flow cell with 76 bp paired-end sequencing to pro-
duce ~ 200 million paired reads per library.

T cell repertoire sequencing
Libraries for T cell repertoire sequencing were generated 
with AmpliSeq for Illumina Library PLUS paired with 
AmpliSeq cDNA Synthesis for Illumina with 100 ng RNA 
input per cDNA synthesis reaction. The TCR beta-SR 
Panel was used for generating amplicons, and AmpliSeq 
CD Indexes Set A for Illumina were used for sample 
barcodes. Qubit dsDNA High Sensitivity assay (Thermo 
Fisher Scientific) was used for library quantification. 
Sequencing was done on the NextSeq 550 (41-plex) with 
151  bp paired-end sequencing to produce ~ 5 million 
paired reads per library.

WTS pipeline
WTS raw read sequences were aligned against human 
genome assembly hg19 by STAR 2-pass alignment [18]. 
QC metrics, for example general sequencing statistics, 
gene feature, and body coverage, were then calculated 
based on the alignment result through RSeQC. WTS 
gene-level count values were computed by using the R 
package GenomicAlignments [19] over aligned reads 
with UCSC KnownGene [20] in hg19 as the base gene 
model. The union counting mode was used and only 
mapped paired reads after alignment quality filtering 
were considered. Finally, gene-level FPKM (fragments 
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per kilobase million) and raw read count values were 
computed by the R package DESeq2 [21].

ESTIMATE
The ESTIMATEScore, which is the estimate of the pres-
ence of stromal and immune cells in tumor tissue, is cal-
culated through the ESTIMATE R package [22] based on 
a given gene expression profile in FPKM.

Immune deconvolution analysis
Two distinct popular computational methods, ssGSEA 
[23] and CIBERSORT [24], were chosen for immune 
deconvolution analysis. Signature gene lists of immune 
cell types for ssGSEA were obtained from Bindea et  al. 
[25] and Senbabaoglu et al. [4]. ssGSEA takes the sample 
FPKM WTS expression values as the input and computes 
an enrichment score for the given gene list of immune 
cell type relative to all other genes in the transcriptome. 
On the other hand, CIBERSORT also takes FPKM WTS 
expression values as the input but uses a signature gene 
expression matrix of interest immune cell types instead 
to compute the infiltration level of each immune cell 
type. The LM22 immune cell signature which was vali-
dated and published along with CIBERSORT is used. 
We also used FRICTION [26] to deconvolute WTS into 
absolute CD8 and CD4 T cells as well as CD19 B cells.

HERV quantification
We used WTS to quantify HERVs as described before 
[26]. Briefly, all WTS reads were aligned (using STAR 
aligner with optimized multi-mapping options) to a 
custom genome build where human reference (hg19) 
and HERV-specific reference are combined. Then reads 
aligned to non-HERV genes are removed and the rest are 
annotated. Three samples contained super high median 
HERVs (Grubbs test P < 0.05) and removed for better 
visualization.

WES analysis pipeline
Raw sequencing data were aligned to the hg19 genome 
build using the Burrows-Wheeler Aligner (BWA) ver-
sion 0.7.17 [27]. Further, indel realignment, base-quality 
score recalibration, and duplicate-read removal were 
performed using the Genome Analysis Toolkit (GATK) 
version 3.8 [28] following raw read alignment guide-
lines [29]. VarScan 2 [30], Strelka v2.9.10 [31], Platypus 
0.8.1 [32], Mutect2—part of GATK 4.1.4.1 [29], Somatic 
Sniper version 1.0.5.0 (SNVs only), and [33] were used for 
small variant calling, and combination of 2 out 5 callers is 
reported as per Cancer Genome Atlas Research Network 
recommendations [34]. Variants were filtered using the 
following criteria:

(1)	 Tcov (tumor coverage) > 10 and Taf (tumor allele 
frequency) ≥ 0.04 and Ncov (normal coverage) > 7 
and Naf (normal allele frequency) ≤ 0.01 and Tac > 4 
are set to PASS

(2)	 Common SNPs are eliminated by comparison to 
snp142.vcf

(3)	 Rare variants found in dbSNP are kept if Naf = 0
(4)	 Variants with Tcov < 20 or Tac < 4 are marked as 

low_confidence
(5)	 Only variants called by more than 1 caller are 

reported.
(6)	 Common variables gnomAD v 2.1.1 are excluded.

Variants were annotated using Ensembl Variant Effect 
Predictor (VEP) [35]. Additional optimization and fil-
tering are applied for INDELS. INDELS in blacklisted 
regions (https://​www.​encod​eproj​ect.​org/​annot​ations/​
ENCSR​636HFF/) and low mappability regions (such as 
repeat maskers) are excluded as per [36]. Combination of 
filtered SNV and INDELS are used by maftools R pack-
age to generate oncoplots and summary plots, as per 
author’s recommendations (https://​www.​bioco​nduct​or.​
org/​packa​ges/​relea​se/​bioc/​vigne​ttes/​mafto​ols/​inst/​doc/​
mafto​ols.​html).

All nonsynonymous point mutations identified as 
above were translated into strings of 17 amino acids with 
the mutant amino acid situated centrally using a bioin-
formatics tool called NAseek. A sliding window method 
is used to identify the 8–11 amino acid substrings 
within the mutant 17-mer that had a predicted MHC 
Class I binding affinity of ≤ 2%Rank to one (or more) of 
the patient-specific HLA alleles. Binding affinity for the 
mutant and corresponding wild type nonamer is ana-
lyzed using NetMHCpan4.0 software. Only neoantigens 
with TPM > 1 are considered to be expressed.

Allele-specific copy number analysis is done by the 
FACETS v.6.1 [37]. Allele-specific HLA loss is deter-
mined using LOHHLA as described before [38].

RNA and TCR ITH scores
Gene- and patient-wise intra-patient heterogeneity 
scores were calculated using multi-region data. Data was 
first median-centered to remove any gene-level bias. For 
each gene, the difference between each pair of samples 
from the same tumor was calculated. The median dif-
ference between the paired-differences was then taken, 
yielding a gene-specific, patient-specific measure of het-
erogeneity. This was repeated for all genes, across all 
tumors, generating a matrix of gene by patient values. 
Gene intratumor heterogeneity values are summarized 
as the median value per gene across all tumors in the 
cohort. Patient intratumor heterogeneity values are sum-
marized as the median value per tumor across all genes. 

https://www.encodeproject.org/annotations/ENCSR636HFF/
https://www.encodeproject.org/annotations/ENCSR636HFF/
https://www.bioconductor.org/packages/release/bioc/vignettes/maftools/inst/doc/maftools.html
https://www.bioconductor.org/packages/release/bioc/vignettes/maftools/inst/doc/maftools.html
https://www.bioconductor.org/packages/release/bioc/vignettes/maftools/inst/doc/maftools.html
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Patient intratumor heterogeneity values represent the 
expected value of the absolute log2-fold change for a ran-
domly chosen gene within a given tumor.

TCR ITH score is defined as 1 − percentage of shared 
clonotypes across multiple regions of tumor based on 
WTS. T cell clones are estimated using MiXCR applica-
tion on Illumina BaseSpace (http://​bases​pace.​illum​ina.​
com/​apps/). Furthermore, all ITH scores are classified as 
high versus low using the median as threshold.

Distinction between dedicated TCRseq and TCR clones 
inferred from RNAseq using MiXCR
All TCR-associated data analysis in this study (including 
tissue or PBMC) are based on ultra-deep T cell repertoire 
sequencing (targeted TCRseq) to mitigate undersampling 
of T cell clones except TCR ITH analysis in Fig. 3B where 
ITH associated with multi-regional sequencing is derived 
from MiXCR T cell estimates from RNAseq data due to 
the lack of multi-regional TCRseq for all patients.

ccRCC evolutionary subtypes and intratumor DNA 
heterogeneity score
DNA ITH score is calculated as the ratio of subclonal 
to clonal driver genomic alterations including SNVs, 
INDELs, and SCNA [15]. A genomic alteration is defined 
to be subclonal if it is present in less than half of the 
regions collected in each patient. Patients with enough 
DNA biopsies collected are classified into 1 of the 7 
ccRCC evolutionary subtypes as described before [15]. 
We used neighbor joining tree construction in ape pack-
age in R [39] for reconstruction of tumor clones. TCGA 
ITH score was obtained from a previous study as meas-
ured by the number of clones estimated per sample using 
PhyloWGS [40]. Briefly, PhyloWGS is a method to infer 
tumor evolution evolutionary using the relationships 
between tumor subpopulations based on variant allele 
frequencies while considering copy number alterations.

HLA and TCR diversity
Shannon entropy is calculated to define TCR diversity 
[41]. We used MiXCR application on Illumina BaseS-
pace (http://​bases​pace.​illum​ina.​com/​apps/) for alignment 
and T cell clonotype identification. Immunarch (https://​
immun​arch.​com/) [42] was used for downstream analysis 
including visualization and data analysis. Morisita index 
[43] was used to measure clonotype overlap. HLA diver-
sity index is measured as adopted from [44] as described 
in [26].

Neoantigen depletion
The fraction of neoantigens depleted is defined for each 
sample where pre-treatment data was available. We first 
calculated the neoantigen depletion as the number of 

neoantigens that were undetectable after therapy but 
were detected pre-treatment. The fraction of neoantigens 
depleted was then defined as the ratio of the total number 
of depleted neoantigens over total pre-treatment neoan-
tigens. To distinguish neoantigen depletion due to con-
traction (immune elimination) from evasion, we exclude 
any neoantigens that were depleted without the presence 
of HLA LOH (defects in antigen presentation machin-
ery), or reduced expression, i.e., log2(FC) <  − 1 where FC 
is the fold change defined as the ratio of posttreatment 
TPM over pre-treatment TPM after correction for tumor 
purity. Conversely, a neoantigen is annotated and was 
deleted due to immune elimination if log2(FC) >  = 0, and 
no HLA LOH was detected. Likewise, HERV editing is 
defined as the median change in the expression of immu-
nogenic HERVs compared to pre-treatment expression. 
Immunogenic HERVs refer to HERV loci whose expres-
sion strongly correlates with TIL abundance, FDR < 0.05.

Weighted gene co‑expression network analysis (WGCNA) 
and gene signature extraction
We performed WGCNA [44] on all samples where the 
fraction of neoantigens depleted was available similar to 
previously described [11]. Briefly, genes with low expres-
sion values and invariant genes, that is, genes that were 
expressed in < 5% of samples or had s.d. ≤ 1 for expres-
sion (log2 TPM), were filtered together with non-coding 
genes. The soft power of 6 was chosen based on goodness 
of fit to a scale-free network. We first annotate modules 
as JAVELIN or angiogenesis according to the Spearman 
correlation between the module eigengene and JAVE-
LIN or angiogenesis ssGSEA scores (highest correlation 
is classified as JAVELIN or angiogenesis module). Like-
wise, among all modules, the module with the highest 
Spearman correlation with the fraction of neoantigens 
depleted was annotated as immune escape module (85 
genes). This 85 genes’ gene signature was strongly asso-
ciated with PFS of Avelumab plus Axitinib in JAVELIN 
Renal 101 (HR = 1.45, P = 0.02, Additional file 2: Fig. S1 
A). To further refine this gene signature, we first sorted 
genes based on their pairwise Spearman correlation 
(Additional file 2: Fig. S1 B) and then selected genes with 
the highest Spearman correlation such that no genes 
have a Spearman correlation < 0.6 (Additional file 2: Fig. 
S1 C). This reduced the number of genes to total of 12 
highly correlated genes known as immune escape signa-
ture (TIMP1, PXDN, COL15A1, OLFML2B, COL5A2, 
DLX5, SOX11, KLHDC8A, UNC5A, ADAMTS14, 
MMP11, FN1). Several genes (ADAMTS14, MMP11, 
FN1, COL5A1, COL5A2, and TIMP1) in this signature 
have previously been described as TGF-β-associated 
extracellular matrix genes that are linked to immune eva-
sion and immunotherapy failure [45].

http://basespace.illumina.com/apps/
http://basespace.illumina.com/apps/
http://basespace.illumina.com/apps/
https://immunarch.com/
https://immunarch.com/
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TCGA validation of CDKN2A/B loss with ITH and myeloid 
enrichment
We downloaded WES data from TCGA KIRC cohort 
from https://​www.​cancer.​gov/​tcga and processed the 
raw data using the same pipeline used to process data 
generated for the multi-regional cohort as described ear-
lier. CDKN2A/B loss calls extracted and the association 
with ITH assessed. TCGA ITH score was obtained from 
a previous study as measured by the number of clones 
estimated per sample using PhyloWGS [40]. Likewise, to 
evaluate the association between CDKN2A/B loss and 
myeloid score, gene expression count data correspond-
ing to TCGA KIRC cohort was downloaded from https://​
www.​cancer.​gov/​tcga and ssGSEA of myeloid signature 
calculated as described earlier.

scRNAseq data analysis pipeline
scRNAseq data was downloaded from https://​www.​ncbi.​
nlm.​nih.​gov/​sra/​PRJNA​705464. This repository contains 
a Seurat object containing the raw counts, normalized 
counts, dimensionality reduction post-batch correction, 
and cell type identities based on Krishna et al. study [16], 
which was used for further analysis in this study.

Statistical analysis
All statistical tests were performed in R. To calculate 
correlations, cor.test with Spearman’s method was used. 
Tests comparing distributions were performed using 
wilcox.test. All statistical analyses were two-sided, and 
p-values were Benjamini–Hochberg corrected.

Results
The landscape of microenvironmental ITH in ccRCC​
To study ITH in ccRCC, we completed ultra-deep 
(median coverage of 360X) multi-regional whole-exome 
sequencing and whole-transcriptome sequencing 
across 142 tumor regions from 29 patients, including 6 
untreated and 23 post ICI (see “Methods” and Addi-
tional file  1: Table  S2. The details and clinical outcome 
of this trial are currently published in [1]). Tumor biop-
sies were extracted from different regions of the same 
primary tumor unless specified (Fig.  1A, B, Additional 
file  1: Table  S2). While intratumoral genetic heteroge-
neity in ccRCC is well-described [46], comparatively lit-
tle is known about the extent of microenvironmental 
heterogeneity and its relationship to other molecular 
features of the tumor. To measure the extent of intra-
tumoral microenvironmental heterogeneity, we lever-
aged multi-regional WTS of up to 5 regions from 29 
patients. Using single-sample gene set enrichment anal-
ysis (ssGSEA) of established gene signatures, we quan-
tified the expression of several TME gene expression 
signatures recently proposed as biomarkers of response 

to ICIs and antiangiogenic agents [47] (myeloid signa-
ture [9], JAVELIN signature [11], and angiogenesis signa-
ture, see “Methods” and Additional file 1: Table S3). We 
confirmed that these RNA signatures accurately quanti-
fied the abundance of key immune populations using 
matched immunofluorescence data, including statisti-
cally significant associations between CD31/angiogenesis 
(p = 0.0003), CD8/JAVELIN T cell signature (p = 0.02), 
and CD68/Myeloid infiltration (p = 0.0013) (Additional 
file 2: Fig. S2).

For each RNA signature, we normalized scores to cap-
ture the magnitude of expression relative to all other 
profiled regions in our cohort. We then investigated the 
variability of microenvironmental RNA signatures across 
regions, finding that they demonstrated extensive het-
erogeneity across tumor regions from the same patient 
(Fig.  2A). While a small number of patients showed 
relatively uniform immune infiltration (e.g., NIVO02, 
Fig.  2A), the significantly more common phenomenon 
was for patients to exhibit regions both above and below 
the median score for a microenvironmental feature of 
interest (e.g., angiogenesis in MR03, JAVELIN/T-effector 
signatures in NIVO22).

ITH in expression signatures had substantial con-
sequences on the accuracy of stratifying patients into 
high/low expressing groups based on a single-region 
biopsy. Using the myeloid signature (which has previ-
ously been associated with poor response to ICI [9]), 
we calculated the median myeloid score across all sam-
ples in the cohort and then assigned each tumor region 
to either a high myeloid or low myeloid group. Conse-
quently, we observed that the majority of patients had 
tumor regions classified into both myeloid-high and 
myeloid-low regions (Fig. 2C). Given that several of these 
signatures are under active investigation as biomarkers of 
response to ICI, we investigated more generally how clas-
sification of regions into high/low was affected by ITH. 
Remarkably, in more than half of the patients, clinically 
relevant signatures (Angiogenesis, T-effector, Myeloid, 
and JAVELIN) could not be consistently classified as 
high or low (Fig. 2B, 2 patients, i.e., MR05 and NIVO10 
were excluded since WTS data of only one region was 
available).

We hypothesized elevated microenvironmental het-
erogeneity may reflect the presence of underlying 
genomic driver alterations. To test this, we leveraged 
multi-regional WES data collected for these patients. 
Frequencies of established ccRCC driver alterations 
were in agreement with a previous multi-regional study 
by TRACERx Renal [15] (Fig. 3A). We performed unsu-
pervised hierarchical clustering of major ccRCC driver 
mutations (with mutation frequency > 10% across 
TCGA KIRC cohort and TRACERx Renal [15]) that 

https://www.cancer.gov/tcga
https://www.cancer.gov/tcga
https://www.cancer.gov/tcga
https://www.ncbi.nlm.nih.gov/sra/PRJNA705464
https://www.ncbi.nlm.nih.gov/sra/PRJNA705464
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were previously shown to be associated with ITH [15] 
(i.e., VHL, PBRM1, SETD2, BAP1) and genomic altera-
tions enriched with metastatic disease and ICI response 
(HLA LOH and CDKN2A/B copy number loss) [38, 
44, 48], ultimately identifying two clusters (Fig.  3B, 
Additional file  1: Table  S4). We compared the results 
of these clusters to aggregate, univariate measures of 
intratumoral DNA, RNA, and T cell receptor (TCR) 
heterogeneity. Interestingly, one cluster was character-
ized both by an enrichment of specific genomic altera-
tions (SETD2 mutations, Fisher exact test P = 0.002; 
CDKN2A/B copy number loss, Fisher exact test 
P = 0.0001; HLA LOH, Fisher exact test P = 0.0007). 
This same cluster of patients, which we refer to herein 
as “ITH-high”, had comparable levels of tumor purity to 
the other “ITH-low” cluster, but demonstrated elevated 
ITH at the level of somatic DNA alterations, RNA, and 
TCR (combined Fisher exact test P = 0.0495). Moreover, 
by classifying patients into previously described ccRCC 
evolutionary subtypes (Additional file  2: Fig. S3), we 

observed that PBRM1-driven tumors were enriched 
in the ITH-high cluster (on sample level, Fisher exact 
test P = 0.0018), in agreement with TRACERx Renal 
[15]. We did not find any association between ITH and 
other gene mutations (Fisher exact test P > 0.5). How-
ever, this finding must be treated with caution due to 
our relatively small cohort size as well as low number of 
regions collected in some patients. These findings were 
robust to the number of regions collected per tumor, 
and we found no significant association between ITH 
and exposure to ICI (Fisher exact test P = 0.65, Fig. 3B); 
however, due to the small size of our untreated cohort, 
this analysis might be underpowered. Together, our 
results demonstrate that (1) ITH is not restricted to 
genomic events, but rather is pervasive in the transcrip-
tome, microenvironment, and immune compartment of 
ccRCC tumors, and (2) correlates with specific somatic 
events at the level of individual patients (i.e., PBRM1 
and SETD2 mutations, HLA LOH and CDKN2A/B 
loss).

Fig. 2  TME ITH in ccRCC. A Intratumoral heterogeneity of several gene expression signatures across multiple tumor regions. For each patient, each 
tumor region is assigned a unique color. For each vertex on the radar plot, we plot the Z-score of the relevant RNA signature relative to all other 
samples in the cohort. Min and max radius for each feature in each panel represent min and max of that feature across the cohort. A wide (narrow) 
spread of dots for a given feature in a single patient corresponds to qualitatively large (small) heterogeneity of that microenvironmental RNA 
signature in that patient. B For each gene signature, the number of patients who were classified as high or low or a mixture of high and low across 
tumor regions are shown. Two patients (MR05 and NIVO10) were excluded since WTS data of only one region was available. Also, pre-treatment 
regions of ICI-treated patients were excluded to avoid treatment-related effects in these signatures. C Intratumoral heterogeneity of myeloid score 
observed across multiple regions of tumors of patients in this study
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ITH‑high ccRCC tumors are immunologically distinct
Comparing the TME characteristics of ITH-high and 
ITH-low patients, we observed that ITH-high tumors 

(defined as all regions belonging to a patient who is classi-
fied as ITH-high) were characterized by high myeloid and 
low T cell effector (Teff) signatures (Fig.  3C). Similarly, 

Fig. 3  Landscape of ITH in ccRCC. A Oncoprint of key ccRCC driver mutations and copy number alterations for all regions of all 29 patients in this 
cohort. Margin shows comparison between mutation frequency observed in this cohort and TRACERx Renal. B We have performed unsupervised 
hierarchical clustering of genomic features including patient level presence or absence of a small variant in VHL, PBRM1, SETD2, BAP1 (most 
commonly mutated genes) as well as loss of heterozygosity in HLA genes as well as 9p (which includes CDKN2A/B) SCNA which are known to affect 
ICI response. Heatmap shows ITH high vs low classification across data type. Annotation illustrates evolutionary subtypes and treatment status of 
patients. A patient is annotated as wildtype if all regions are wild type for that alteration. Cases where ITH score could not be calculated due to lack 
of sufficient number of biopsies are shown in gray pixels. CIN: chromosome instability. C Association between antigen presentation machinery 
(APM), effector T cell (Teff ) and myeloid gene signatures, and ITH. Wilcox P, false discovery rate (FDR), and linear mixed effect (LME) P shown. D 
Intratumoral heterogeneity and myeloid score are associated with CDKN2A/B loss in TCGA KIRC cohort. E ITH low patients show a significantly 
higher TCR diversity, richness, and clone count
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a signature associated with antigen presentation (APM) 
[4] was downregulated in ITH-high patients, consistent 
with elevated levels of HLA LOH in the ITH-high sub-
type. To validate if genomic features uniquely charac-
terizing ITH-high tumors (HLA LOH and CDKN2A/B 
loss) might be more generally associated with myeloid 
infiltration in a large, independent cohort, we obtained 
DNA and RNA sequencing data from the TCGA KIRC 
study and scored samples by the presence of CDKN2A/B 
loss, ITH (as measured by the number of clones esti-
mated per sample using PhyloWGS, see “Methods”), 
and myeloid infiltration. This analysis confirmed that 
in ccRCC, CDKN2A/B loss was associated with higher 
levels of ITH (P = 3 × 10−5) and higher myeloid infiltra-
tion (P = 7 × 10−5) (Fig.  3D). However, the association 
between genomic ITH and myeloid infiltration did not 
reach statistical significance in TCGA KIRC cohort sug-
gesting the association between myeloid infiltration and 
ITH is likely indirect through certain genomic events 
such as CDKN2A/B loss.

The findings above suggested that ITH-high tumors may 
be distinct in their immunophenotype, including in the 
diversity of their T cell repertoire. We therefore investi-
gated the association between ITH and T cell diversity both 
peripherally and within the tumor. To do so, we compared 
the overlap between tissue-resident and peripheral T cells. 
Repertoire overlap analysis (Additional file 2: Fig. S4) illus-
trated a high degree of shared clonotypes across different 
tumor regions from the same patient, but a lack of shared 
clonotypes across patients. ITH-high patients demonstrated 
a significantly lower peripheral TCR diversity, richness, and 
clone count compared to ITH-low patients (Fig.  3E), sug-
gesting that elevated heterogeneity in the primary tumor is 
associated with reduced peripheral immunologic diversity 
in a manner that is consistent with reports in other diseases 
[49]. However, the association between ITH and TCR diver-
sity remains correlative and future mechanistic studies are 
required to establish a causal relation between these two 

features of tumor and immune-phenotype. Together, the 
above data argue that elevated molecular heterogeneity in 
ccRCC tumors is associated with a distinct microenviron-
mental and immunologic phenotype.

ICI therapy is associated with loss of putative neoantigens 
and HLA LOH
The clinical management of ccRCC (for which pre-surgical 
biopsies are often not indicated or used) makes serial pro-
filing of primary tumors on therapy challenging, rendering 
our understanding of how ICI may remodel tumor physi-
ology incomplete. To overcome this challenge, we took 
advantage of 16 patients from our neoadjuvant nivolumab 
clinical trial who had WES performed on their pre-treat-
ment biopsies. This offered a unique opportunity to inter-
rogate both genomic adaptations (including both somatic 
mutations and the expression of potentially immunogenic 
endogenous retroviral elements, HERVs) to ICI therapy 
and immunologic changes in the T cell repertoire.

Focusing first on genetic alterations, we anticipated 
that ICI administration would lead to elimination of 
some tumor clones and therefore a contraction in total 
mutation count. However, we observed no consistent 
trend in the change of either SNV or indel mutational 
count following ICI therapy (Additional file  2: Fig. S5). 
Nevertheless, the number of nonsynonymous SNVs that 
were predicted to bind to MHC complex in silico was 
consistently reduced across all patients and all biopsies 
except for NIVO03 (Additional file 2: Fig. S5 and Fig. 4A). 
An opposite trend was observed in the number of puta-
tive non-binders, suggesting a selection in favor of non-
neoantigenic mutations by tumor during clonal evolution 
(Fig. 4A).

In order to characterize the clonality of putative neo-
antigen depletion across distinct tumor regions, we 
counted all 8–11 amino-acid-long putative neoantigens 
seen prior to treatment but deleted in at least one biopsy 
after treatment. Among 7 patients with at least 4 tumor 

Fig. 4  The landscape of heterogeneity of neoantigen depletion. A Change in the number of nonsynonymous binder SNVs (predicted in silico) 
and nonsynonymous non-binder SNVs compared to pre-treatment. Reduction in only putative neoantigens illustrates selective pressure and 
immunoediting. One sample Wilcox test P (compared to zero) is shown. B Clonality of neoantigen depletion. Only strong binders are shown. C 
Association between neoantigen depletion and ITH subtypes. D, E Immunoediting in an HLA-intact patient NIVO20 through reduced neoantigen 
expression. NKA/NKB/NKC (shown in RED) are normal adjacent tissues 1, 2, and 4 cm away from the center of the tumor; BX (shown in blue) 
represents pre-treatment biopsy; RA/RB/RC/RD/RE (shown in green) illustrate 5 tumor regions from the treated tumor sample. F Immunoediting 
with amino acid resolution. Higher phenylalanine (F) depletion compared to glutamic acid (E) and arginine (R) suggests immune selection. 
G Association between putative neoantigen depletion and myeloid activation across all regions of patients where pre-treatment WES data 
was available (n = 16 patients). H Association between the fraction of expressed putative neoantigens depleted and immune signatures. In H, 
correlations are calculated across different regions of the same patient, for all patients with > 3 treated, as well as pre-treatment RNA samples were 
available (n = 7 patients). I, J HERVs are enriched in tumors compared to normal samples and are associated with treatment. K HERV depletion 
association with myeloid signature. L Clonotype tracking of dominant untreated T cell clones in treated regions of patient NIVO20. The color of each 
ribbon shows different T cell clones, and the width is scaled corresponding to the frequency of that clone. Tissue data consists of 5 tumor regions 
after treatment (RA/RB/RC/RD/RE), one single normal adjacent (NKC), and one tumor region pre-treatment (BX). Likewise, PBMC data points on 
treatment are NIVO20-68, -54, -40, -12. M, N TCR diversity is negatively associated with neoantigen depletion and HLA LOH

(See figure on next page.)
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Fig. 4  (See legend on previous page.)



Page 12 of 20Golkaram et al. Genome Medicine          (2022) 14:143 

regions sequenced, we observed an enrichment for puta-
tive neoantigen depletion across 4 or more sites (Fig. 4B). 
To assess the link between ITH and neoantigen deple-
tion, we examined the magnitude of putative neoanti-
gen depletion in each patient by measuring the average 
number of putative neoantigens deleted per biopsy (i.e., 
the ratio of the deleted neoantigens in a treated region 
compared to pre-treatment over the total number of pre-
treatment neoantigens). Using this metric, we observed 
a strong association between neoantigen depletion and 
ITH subtypes (Fig. 4C). Focusing on patient NIVO20, all 
6 identified depleted putative neoantigens were deleted 
in at least 4 regions, suggesting putative neoantigen 
depletion is a clonal event (Fig.  4D). Genes expressing 
these depleted neoantigens demonstrated a 2–threefold 
reduction in expression related to pre-treatment biopsy 
(NIVO20-RA/RB/RC/RD/RE vs NIVO20-BX) (Fig.  4E). 
Together with the data above, these observations suggest 
that ICI therapy in ccRCC is associated with the clonal 
loss of mutations with elevated immunogenicity.

Premised on prior reports [50] of the increased 
immunogenicity of hydrophobic residues, we sought to 
determine whether a selective pressure exists on cer-
tain neoantigens. We compared the number of amino 
acids preserved versus depleted upon immunotherapy 
and noticed a strong selection against phenylalanine (F, 
extremely hydrophobic) in favor of arginine (R, extremely 
hydrophilic) and glutamic acid (E, extremely hydrophilic) 
in our cohort (Fig. 4F).

Next to elucidate the link between the TME and neo-
antigen depletion (Additional file  1: Table  S5), we com-
pared different TME gene expression signatures and the 
fraction of neoantigen depleted. We observed that the 
fraction of neoantigens depleted was strongly associated 
with myeloid-high regions (n = 16 patients whose pre-ICI 
treatment WES data was available, Fig. 4G). The associa-
tion between myeloid activation and neoantigen deple-
tion remained strong when total number of neoantigens 
depleted was used (instead of fraction) (Additional file 2: 
Fig. S6B) or when putative neoantigen (transcriptional) 
expression was taken into account (n = 7 patients whose 
pre-treatment WTS data was available, Fig. 4H) and was 
not affected by variation in tumor purity (Additional 
file 2: Fig. S6). Furthermore, the correlation between the 
degree of neoantigen depletion and myeloid infiltration 
was also evident when examining different regions of 
individual patients, where highly depleted regions were 
associated with the highest myeloid and lowest Immune-
Score (Fig. 4H).

A recent study [51] identified tumor infiltrating lym-
phocyte-specific HERV epitopes that are translated, can 
bind to MHC I complex, and induce high-avidity cyto-
toxic T cells. In [51] as well as other previous reports 

[52], overexpression of HERVs on tumor cells has been 
reported and a link to ICI response has been documented 
[53]. To interrogate other tumor-intrinsic features asso-
ciated with immune response in our cohort, we utilized 
our deep RNA sequencing (~ 200 million reads/library) 
to quantify HERV expression. HERVs were overexpressed 
in tumors compared to normal tissues in our cohort 
(Fig.  4I), and median HERV (median of all HERV loci 
investigated) was correlated to angiogenic expression 
(Additional file 2: Fig. S8A). Notably, PBRM1 mutations, 
which lead to further HIF upregulation [54] and angio-
genic expression [55, 56], were also positively associated 
with HERV (Additional file 2: Fig. S8B), consistent with a 
recent report [57]. In agreement with [53], we then con-
firmed the association between the median expression 
of different HERV loci and TIL abundance (Additional 
file 2: Fig. S8A). Median HERV was anti-correlated with 
tumor purity; however, the association between HERV 
expression and TIL abundance remained valid even 
when HERV expression was corrected for tumor purity 
(Additional file  2: Fig. S8A). Conversely, we observed a 
significant reduction in HERV expression an observa-
tion akin to reduction in neoantigens (Fig. 4J). Likewise, 
we observed a strong correlation between HERV editing 
(i.e., change in the expression of immunogenic HERV 
loci after treatment, see “Methods”) and myeloid signa-
ture further highlighting the association between neoan-
tigen depletion and myeloid enrichment (Fig.  4K). Due 
to the limitations of HERV quantification using WTS, 
we could not rule out that a strong correlation between 
HERV and TIL abundance might be due to expression 
of HERV on immune cells. However, the expression of 
HERV on ccRCC tumor cells has been previously shown 
[58] and their immunogenicity is well-established [51]. 
Nevertheless, rigorous determination in future stud-
ies of cell-specific expression of HERVs will be criti-
cal to understanding their putative association with ICI 
response.

Finally, using TCRseq of tissue-resident and peripheral 
T cells, we investigated the impact of ICI and neoantigen 
depletion on T cell diversity. Focusing again on patient 
NIVO20 where TCR data of multiple regions of pre-
treatment and ICI-treated tumor were available, we eval-
uated the degree of overlap between T cell clonotypes 
at different regions and time points, i.e., pre-treatment, 
on-therapy, and post ICI treatment (Fig.  4L). Tracking 
dominant tissue-resident T cell clonotypes, we noticed a 
substantial depletion of dominant T cell clones upon ICI 
therapy (Fig. 4M). This observation was mirrored across 
our entire cohort, where we observed a strong negative 
association between peripheral TCR diversity and neo-
antigen depletion and allele-specific HLA loss across the 
entire cohort where PBMC TCRseq data was collected 
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(Fig.  4M, N). Together, if validated using future mecha-
nistic experiments, our findings suggest that neoantigen 
depletion in primary ccRCC tumors is associated with 
peripheral loss of neoantigen reactive T cells. However, 
at this point, no causal relationship between neoantigen 
loss and TCR diversity can be drawn.

Subclonal evolution underlies immune escape
In order to understand the immunologic mechanisms 
driving subclonal evolution after ICI, we investigated 
in detail patients whose tumors underwent subclonal 
immunoediting in distinct regions. Strikingly, sub-
clonal reconstruction revealed recurrent subclonal 
evolution of HLA LOH and CDKN2A/B loss follow-
ing ICI therapy (Fig.  5A). Notably, we observed HLA 
LOH and CDKN2A/B loss co-occur in 9 patients (Fisher 
exact test P = 0.003) and most tumor regions (Fisher 
exact P = 5 × 10−7) (Fig.  5B). Strikingly, comparing the 
untreated and treated regions, we only observed a sig-
nificant immunological response (as measured by Th1 
response) in regions without CDKN2A/B loss or HLA 
LOH (Fig. 5C), suggesting that HLALOH or CDKN2A/B 
loss are subclonal determinants of response to ICI [38, 44, 
48]. This is consistent with recently published data [49] 
indicating the loss of 9p21—encompassing CDKN2A/B—
confers a cold tumor immune microenvironment and 
resistance to ICI. In that study, Han et al. [49] linked 9p21 

loss to a decreased abundance of B, T, CD8 T, NK cells 
and cytotoxic lymphocytes, and an increased fractions of 
macrophages, as well as reduced TCR CDR3 repertoire 
abundance and diversity. We interpret our observations 
to mean that immunoediting occurs under selective pres-
sure by which certain tumor subclones transform to a 
less immunogenic phenotype through HLA LOH and 
CDKN2A/B loss, and that this subclonal selection can 
produce a highly heterogenous TME.

To further shed light on the how tumor evolution can 
transform TME, we sought to analyze the spatial distri-
bution of TILs within the TME and their interaction with 
the stromal compartment using immunohistochemi-
cal data. Following A.W. Zhang and colleagues [59], a 
dedicated genitourinary pathologist classified tumor 
regions into 3 subtypes according to the co-localization 
of tumor infiltrating lymphocytes and tumor cells based 
on lymphocyte morphology: N-TIL (tumors sparsely 
infiltrated by TILs), S-TIL (tumors dominated by stro-
mal TILs), and ES-TIL (tumors with substantial levels of 
both epithelial and stromal TILs) (Additional file 2: Fig. 
S9, Additional file 1: Table S6). We observed that an ES-
TIL enriched TME is strongly associated with regions 
with HLA LOH (ES = 4, N = 7, S = 5 compared to ES = 2, 
N = 32, S = 21 in HLA-intact regions, Fisher’s exact test 
P = 0.036) or loss of CDKN2A/B (ES = 4, N = 7, S = 9 
compared to ES = 2, N = 32, S = 17 in regions without 

Fig. 5  Branch evolution demonstrates immune evasion. A Evolutionary tree illustrates tumors can exploit concurrent HLA LOH and CDKN2A/B loss 
to escape immune surveillance. B Co-occurrence of HLA LOH and CDKN2A/B can be seen both across regions and patients. C Differential immune 
response to ICI therapy in patients with CDKN2A/B loss or HLA LOH or belonging to ITH high subtype
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loss of CDKN2A/B, Fisher’s exact test P = 0.03) whereas 
N-TIL pathology is linked with regions with no HLA 
LOH and no CDKN2A/B loss across the cohort. These 
findings suggest that despite abundant TILs, post ICI ES-
TIL are associated with tumor clones that have evolved 
genetic mechanisms for evasion of the immune response 
(HLA LOH and/or CDKN2A/B loss). However, future 
mechanistic studies are needed to pinpoint the primary 
genomic event that transforms the ccRCC TME into a 
cold niche.

An adverse ccRCC TME is enriched stroma and myeloid 
signatures
We hypothesized that neoantigen depletion could be 
associated with a specific transcriptional signature, akin 
to those identified in clinical trial settings as biomark-
ers for response to ICI in ccRCC. To identify such a 
signature, we performed unsupervised Weighted Gene 
Co-expression Network Analysis (WGCNA) [60] to 
reconstruct modules from our transcriptomic samples 
similar to [11] (Fig. 6A). Reassuringly, we identified two 
gene expression modules #7 and #4 reflecting established 
microenvironmental features associated with therapeu-
tic response in ccRCC: immune inflammatory response 
(“JAVELIN-like” signature) and “angiogenesis-like” 
(Fig.  6A, B). We next assessed the correlation between 
the expression of each WGCNA gene module and neoan-
tigen depletion. While the JAVELIN-like and angiogene-
sis-like modules showed no association with neoantigen 
depletion, module 16 demonstrated the strongest asso-
ciation (Fig.  6A). Correlation analysis with previously 
known gene expression signatures illustrated that mod-
ule 16 (which we refer to as an “Immune Escape” signa-
ture) was strongly associated with myeloid and stroma 
features of TME. The Immune Escape signature also 
resembled a recently described pan-cancer TGF-β sig-
nature derived in a previous study [45] which was linked 
to cancer-associated fibroblasts enriched in immune 
evasion and immunotherapy failure. However, no asso-
ciation between the Immune Escape signature and treat-
ment status was observed (Wilcox P = 0.79) (Additional 
file 2: Fig. S10).

To reveal the primary cellular populations driving the 
Immune Escape signature in the ccRCC TME, we lev-
eraged scRNAseq from multiple tumor regions, lymph 
node, normal kidney, and peripheral blood of two ICI-
naïve and four ICI-treated patients [16] (n = 167,283 
single cells). We identified 28 clusters (Fig.  6C) using 
Louvain clustering [61, 62], and each cluster was anno-
tated based on our previous study [16]. As expected, 
scRNAseq revealed enrichment of this signature in 
renal epithelium, tumor stroma, and tumor-associated 
macrophages (TAMs) and monocytes (Fig.  6C). Hence, 

scRNAseq, histopathological evaluation, and immunoflu-
orescence (Additional file 2: Fig. S10B) further confirmed 
the association between Immune Escape and neoanti-
gen depletion (Fig. 6A, Spearman correlation = 0.6), ITH 
(Fig.  6D, Wilcox P = 0.003), myeloid activation (Fig.  6B, 
Spearman correlation = 0.8, Additional file  2: Fig. S10B) 
and with stroma, and renal epithelium histopathology 
(Additional file 2: Fig. S9 and Fig. 6E, F).

Immune Escape correlates with clinical outcome to ICI 
therapy
Several previous studies have associated signatures of 
Immune Escape with poor clinical outcome in ICI-
treated patients [63]. Thus, we evaluated whether our 
Immune Escape signature can correlate with clinical 
outcome to ICI treatment. We obtained publicly avail-
able RNAseq data for several clinical trials including 
phase 3 JAVELIN Renal 101 trial [11]—a phase III ran-
domized anti-PD-L1 (avelumab) plus tyrosine kinase 
inhibitor (TKI, axitinib) versus multi-target TKI (suni-
tinib), IMmotion151 [64]—a phase III trial comparing 
anti-PDL1 (atezolizumab) plus anti-angeniogenesis agent 
(bevacizumab) versus TKI (sunitinib) in first-line meta-
static renal cell carcinoma, CheckMate 009/010—a phase 
I/II, aPD-1 (nivolumab) treated, and CheckMate 025—a 
phase III randomized mTOR inhibitor (everolimus) ver-
sus aPD-1 [10]. We stratified patients by the median 
score (see “Methods”) of the 3 gene signatures obtained 
in our study (i.e., module 4/JAVELIN_like, 7/angiogene-
sis-like, and 16/immune escape).

The Immune Escape signature was strongly associ-
ated with the response to all three ICI regimens (ave-
lumab plus axitinib HR = 1.53 P = 0.008, atezolizumab 
plus bevacizumab HR = 1.35 P = 0.019, and nivolumab 
HR = 1.45 P = 0.02, Fig.  7 and Additional file  2: Fig. 
S11). In contrast, the JAVELIN-like inflammatory sig-
nature was strongly associated with clinical outcome 
to avelumab plus axitinib (HR = 0.64 P = 0.006), but no 
association with clinical benefit was found between 
atezolizumab plus bevacizumab (HR = 0.82 P = 0.126) 
or nivolumab treatment (HR = 0.97 P = 0.823) (Fig.  7). 
Similarly, the angiogenesis-like signature was strongly 
correlated with the response to sunitinib in both IMmo-
tion151 (HR = 0.48 P < 0.001) and JAVELIN Renal 101 
(HR = 0.68 P = 0.008) as expected, but not with ICI-
associated regimens. Associations between the Immune 
Escape signature and therapeutic response remained 
valid even when thresholds other than median were used 
to define immune escape high and low (Additional file 2: 
Fig. S12). Even though the Immune Escape signature was 
also associated with response to sunitinib in JAVELIN 
Renal 101, no association between sunitinib response 
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or mTOR inhibition was observed in IMmotion151 and 
CheckMate 025. Overall, this analysis suggests that a 
transcriptional signature associated the tendency to 

lose putative neoantigens after ICI is associated with 
response to combination ICI therapy and nominates a 
new potential biomarker for this therapeutic regimen.

Fig. 6  Immunoediting correlates with stroma and myeloid signatures. A) WGCNA identifies gene expression modules associated with inflammation 
(“JAVELIN-like”), angiogenesis, and Immune Escape. Gene dendrogram was first generated and then modules were extracted using dynamic tree 
cutting (top). Modules were annotated by comparing the correlation between the module eigengenes and previously known gene signatures 
describing different phenotypes (bottom). B Modules 7 (black), 4 (salmon), and 16 (magenta) are associated with previously described signatures, 
JAVELIN, angiogenesis, and myeloid/stroma. C scRNAseq demonstrates the cell type enrichment of Immune Escape signature in ccRCC patients. 
Different colors represent different cell types inferred from scRNAseq data. UMAP plot illustrates single cells collected from all 6 patients including 
treated and untreated patients. Computational extracted clusters were annotated as previously described [15]. D, E Association between ITH 
groups, Immune Escape signature, and N/S/ES pathologies. F These regions demonstrate an elevated Immune Escape gene signature in NIVO21. 
RA, RB, RC, RD, and RE denote different regions of a tumor sample
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Discussion
Here we used spatiotemporal, multimodal profiling to 
investigate the link tumor genomics, microenviron-
mental heterogeneity, peripheral immune response, and 
eventual immune escape in advanced and metastatic 
ccRCC. The fundamental discovery of our analysis is 
that ITH manifests well beyond the tumor genome and 
produces highly heterogeneous immune microenviron-
ments in the tumor.

Emerging data on biomarkers of response to ICI in 
ccRCC has identified two potentially paradoxical obser-
vations: first, that TIL abundance alone is an insuf-
ficient predictor of ICI response [9], and second, that 
the presence of myeloid cells correlate with resistance 
to both ICI and anti-VEGF treatments. Strikingly, we 

observed that high myeloid score tumors were associ-
ated with neoantigen depletion which could, in prin-
ciple, render ICI treatment ineffective. In agreement 
with this, we derived a transcriptomic signature asso-
ciated with neoantigen depletion and Immune Escape, 
which was expressed in renal epithelium, tumor stroma 
as well as tumor-associated macrophages (TAMs) and 
monocytes. This Immune Escape signature was asso-
ciated with response to several ICI regiments in pub-
lished clinical trials. In total, these findings suggest that 
myeloid cells are associated with tumor clones that have 
evolved mechanisms to escape anti-tumor immune 
responses. Critically, such a hypothetic model requires 
detailed work and mechanistic validation in immuno-
competent systems, which we are actively developing.

Fig. 7  Association between immune escape and clinical outcome to checkpoint blockade. Survival analysis shows the association between 
gene signatures obtained in this study and clinical outcome of different independent retrospective trials. A Immune Escape and JAVELIN-like 
signatures are associated with PFS in patients treated Avelumab plus Axitinib in JAVELIN Renal 101 cohort. B Immune Escape signature, but not 
the JAVELIN-like signature, correlates with the response to atezolizumab plus bevacizumab in IMmotion151 but not JAVELIN signature. C Immune 
Escape signature, but not the JAVELIN-like signature, correlates with the efficacy of anti-PD1-treament in CheckMate 009, 010, 025



Page 17 of 20Golkaram et al. Genome Medicine          (2022) 14:143 	

Why do regions with neoantigen depletion demon-
strate elevation of myeloid cells but not cytotoxic T cells 
that would presumably eliminate tumor clones? Cancer 
immunoediting proceeds through three phases: elimi-
nation, equilibrium, and escape [65]. Throughout these 
phases, tumor immunogenicity evolves, and thereby, 
despite possible initial response to therapy, acquires 
immunosuppressive mechanisms that may enable dis-
ease progression. Our data suggests that myeloid-high, 
stroma-enriched (Fig.  6D), neoantigen-depleted tumor 
regions historically experienced a cytotoxic T cell 
response, which prompted the selection of tumor clones 
losing neoantigens and/or HLA/CDKN2A/B. Such a 
loss of target antigens through HLA LOH or neoantigen 
depletion would result in loss of antigen-TCR stimula-
tion, leading to death of the corresponding neoantigen 
reactive T cells (Fig. 8). The selection of hydrophobic resi-
dues during the course of neoantigen depletion is another 
intriguing finding of our study. As demonstrated by oth-
ers [49], hydrophobicity can result in an increased immu-
nogenicity of the neoantigens. In agreement with this 
notion, we showed that the hydrophobic epitopes are the 
most frequently depleted neoantigens likely due to the 
higher immunogenicity. Likewise, HERVs were pruned 
by immune selection which might imply that HERVs are 
associated with immune recognition of HERV expressing 
tumor cells and thus, ICI-treated regions of the tumor 
may reduce HERV expression. Importantly, as with other 
findings in this analysis, the association between neoan-
tigen loss and myeloid activation observed in our data 
remains purely correlative, and future studies will be nec-
essary to mechanistically establish how immune evasion 
spatiotemporally evolves in ccRCC following ICI therapy.

Our multi-regional data also has significant implica-
tions for biomarker development. We demonstrated that 
TME markers of response such as JAVELIN and mye-
loid scores can be heterogenous within tumor regions 
(Fig. 2, Additional file 1: Additional file 2: Fig. S13). This 
underscores the importance of accounting for ITH when 
these signatures are used for patient selection for a spe-
cific therapy and longitudinal monitoring of therapies. 
Given recent data that ICI may have a role in adjuvant 
therapy following nephrectomy for high-risk disease, 
our data would suggest that several regions of the pri-
mary tumor should be sampled specially in the presence 
of ITH-associated genomic alterations (e.g., HLA LOH 
and CDKN2A/B loss). An intriguing finding was a trend 
towards lower ITH in ICI-treated tumors, even though 
this observation did not reach statistical significance. If 
validated in other studies, this in part can be attributed 
to outgrowth of few nonimmunogenic tumor subclones 
that managed to escape immune surveillance upon ICI 
treatment.

An important limitation of this study is that TME het-
erogeneity of metastatic disease was not assessed and 
may be less of an issue in biomarker development. Our 
study has several other potential limitations including its 
small sample size. To overcome this shortcoming, we val-
idated several of our major findings in several independ-
ent cohorts. Another potential limitation of our study is 
the unavailability pre-treatment multi-regional sequenc-
ing data. However, inclusion of multi-regional data from 
6 untreated patients allowed us to account for ITH in 
untreated tumors. Moreover, our neoadjuvant cohort was 
treated with single agent nivolumab over a short course 
which may not reflect the TME, and genomic changes 
induced by more potent combination strategies. Finally, 

Fig. 8  A hypothetical model for spatiotemporal evolution of ccRCC links ITH to immune escape and adverse TME. Cancer cell death, potentially 
by cytotoxic killing, early in tumor evolution selects for tumor clones with HLA LOH and/or CDKN2A/B loss. This promotes the evolution of a TME 
depleted of antigen-specific T cells and enriched for myeloid cells
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we portrayed the characteristics of an adverse TME 
which may contribute to ICI resistance. Our study clearly 
demonstrates the interplay between genomic events and 
TME transformation from a cytotoxic to a cold immu-
nophenotype. However, these findings remain purely an 
association of several contributing factors to ICI resistant 
and the exact causative hierarchy of events requires fur-
ther investigation.

Conclusions
Our findings clearly suggest that the ccRCC genome and 
microenvironment co-evolve, and that loss of putative 
neoantigens (including SNVs, indels, and HERVs) is asso-
ciated with a qualitatively myeloid-high environment and 
the loss of HLA and CDKN2A/B. These distinct genomic 
alterations are also associated with more peripheral 
changes, i.e., reduced T cell clonal diversity in the periph-
eral circulation. In conclusion, we find distinct genomic 
event enriched in immune escape tumor microenviron-
ment in ccRCC both across and within tumors. Our find-
ings have implications for future biomarker development 
for ICI response across ccRCC and other solid tumors.
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