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Abstract 

Background Molecular profiling of the tumour immune microenvironment (TIME) has enabled the rational choice of 
immunotherapies in some adult cancers. In contrast, the TIME of paediatric cancers is relatively unexplored. We specu‑
lated that a more refined appreciation of the TIME in childhood cancers, rather than a reliance on commonly used 
biomarkers such as tumour mutation burden (TMB), neoantigen load and PD‑L1 expression, is an essential prerequi‑
site for improved immunotherapies in childhood solid cancers.

Methods We combined immunohistochemistry (IHC) with RNA sequencing and whole‑genome sequencing across 
a diverse spectrum of high‑risk paediatric cancers to develop an alternative, expression‑based signature associated 
with  CD8+ T‑cell infiltration of the TIME. Furthermore, we explored transcriptional features of immune archetypes 
and T‑cell receptor sequencing diversity, assessed the relationship between  CD8+ and  CD4+ abundance by IHC and 
deconvolution predictions and assessed the common adult biomarkers such as neoantigen load and TMB.

Results A novel 15‑gene immune signature, Immune Paediatric Signature Score (IPASS), was identified. Using this 
signature, we estimate up to 31% of high‑risk cancers harbour infiltrating T‑cells. In addition, we showed that PD‑L1 
protein expression is poorly correlated with PD‑L1 RNA expression and TMB and neoantigen load are not predictive of 
T‑cell infiltration in paediatrics. Furthermore, deconvolution algorithms are only weakly correlated with IHC measure‑
ments of T‑cells.

Conclusions Our data provides new insights into the variable immune‑suppressive mechanisms dampening 
responses in paediatric solid cancers. Effective immune‑based interventions in high‑risk paediatric cancer will require 
individualised analysis of the TIME.
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Background
The comprehensive genomic analysis of paediatric can-
cer has provided a wealth of new insights into the dis-
tinct molecular nature of childhood cancers. The primary 
goals of many genomics studies of childhood cancers 
have focused on the identification of therapeutic options 
encoded in the genome of cancer cells that would oth-
erwise go unrecognised. Studies such as ZERO Child-
hood Cancer [1], INFORM [2] and the Pediatric Cancer 
Genome Project [3] have shown that this can translate 
into improved patient outcomes. However, the genomic 
data also includes information about the makeup of the 
tumour microenvironment, since the RNA of infiltrat-
ing immune cells, stromal and vascular cells are also 
sequenced.

The importance of deciphering the tumour immune 
microenvironment (TIME) has been driven by the 
extraordinary impact on the treatment of melanoma, 
lung adenocarcinoma and head and neck cancers [4] of 
agents (typically recombinant antibodies) that inhibit 
with immune checkpoint molecules such as programmed 
cell death 1 (PD1), its ligand PD1 ligand 1 (PD-L1) or 
cytotoxic T lymphocyte antigen 4 (CTLA-4), all of 
which downregulate T-cell activation [5, 6]. TIME and 
tumour-intrinsic features, such as PD-L1 expression, 
high tumour mutation burdens (TMB) and high neoanti-
gen load increase the potential for an anti-tumour T-cell 
response following anti-PD-1 treatment [7]. Evidence 
also suggests that a more diverse T-cell receptor reper-
toire is associated with improved response to anti-PD-1 
[8, 9]. However, whilst such biomarkers are applied in 
some paediatric cancer trials, there is limited evidence to 
support their validity, and most children with cancer are 
not responsive to immunotherapy [10–13]. This suggests 
strongly that the microenvironment of childhood cancers 
is distinct from common adult cancers, and successful 
immune therapies will require a better understanding of 
the make-up of the immune microenvironment in child-
hood cancer types.

The TIME comprises a diverse range of  CD45+ leuco-
cytes, collectively called tumour infiltrating leucocytes 
(TILs), which includes  CD4+ and  CD8+ T-cells, B-cells, 
tumour-associated macrophages, dendritic cells, mye-
loid-derived suppressor cells and natural killer cells. 
The TIME can be classified as ‘immune-inflamed’ with 
infiltrating T-cells, ‘immune-excluded’ where T-cells 
are present but confined to the tumour periphery, or 
‘immune-desert’ which denotes the total absence of 

T-cells [14]. Immunohistochemistry is the most estab-
lished and direct methodology to detect the presence 
of immune cells in a tumour and to assess the relation-
ship between immune and tumour cells. However, RNA 
sequencing (RNA-seq) is increasingly used to identify 
immune cell subsets in a tumour and to infer from gene 
expression profiles the probable nature of the TIME.

Clinical data from immunotherapy trials in adult can-
cers indicates that T-cell inflamed tumours are more 
responsive, and this has been a driver to develop multi-
ple different expression-based signatures to detect and 
characterise TILs [15–19]. Algorithms such as CIBER-
SORTx (CSX), quanTIseq and MCP-counter use the 
expression of key genes to infer the immune cell com-
position of the TIME from bulk RNA-seq data [20–24]. 
In contrast to adult cancers, TMB, PD-L1 expression, 
TIL signatures and deconvolution algorithms have not 
been systematically applied in paediatric cancers to 
predict tumour T-cell inflammation. Therefore, a key 
unmet challenge is identifying the molecular features 
of paediatric cancers which most accurately character-
ise the TIME. Two such biomarkers, TMB and PD-L1 
expression, appear to be less relevant in the paediat-
ric setting than in adult cancers, with the exception of 
rare hypermutated tumours harbouring a DNA mis-
match repair deficiency or polymerase proofreading 
deficiency. Whilst hypermutated tumours have been 
shown to respond to immunotherapy [25], most paedi-
atric tumours have an order of magnitude fewer muta-
tions than adult cancers [1, 26]. PD-L1 expression is 
reportedly low across paediatric tumour subtypes, and 
the correlation between transcript levels and protein 
expression is not well established [27, 28].

We have undertaken a comprehensive characterisa-
tion of T-cell infiltration in a diverse spectrum of high-
risk paediatric cancers, combining IHC, RNA-seq and 
whole-genome sequencing (WGS). We have cross-
referenced the genomic and RNA-seq data with  CD8+ 
and  CD4+ IHC staining on the same tumour speci-
mens to define and validate a novel paediatric-specific 
gene signature that identifies tumours infiltrated by 
 CD8+ T-cells. Moreover, we explored the relationship 
between the gene signature we identified and transcrip-
tional features associated with distinct immune arche-
types, providing a unique and detailed insight into the 
molecular features of the immune landscape across a 
broad range of paediatric cancers. We also show that 
PD-L1 RNA expression correlated poorly with PD-L1 
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protein expression and that commonly used deconvolu-
tion algorithms had only weak correlations with IHC-
determined measures of T-cell infiltration. We propose 
that our novel signature provides a unique and more 
accurate identification of T-cell infiltrated paediatric 
cancers.

Methods
Patients and samples
This is a retrospective analysis of the tumour immune 
microenvironment from 347 patient samples that were 
obtained as part of the Australian ZERO Childhood Can-
cer Precision Medicine Program consisting of the TAR-
GET and PRISM clinical trials. The TARGET pilot study 
recruited patients from the two children’s hospitals in 
Sydney (Sydney Children’s Hospital, Randwick, and the 
Children’s Hospital at Westmead), Australia, from June 
2015 to October 2017 and was approved by the Sydney 
Children’s Hospitals Network Human Research Ethics 
Committee (LNR/14/SCH/497), with the results of the 
pilot study already published [29]. The PRISM clinical 
trial (NCT03336931) data for this analysis was collected 
from September 2017 to August 2020 at all eight paediat-
ric oncology centres around Australia (Sydney Children’s 
Hospital, Randwick; the Children’s Hospital at West-
mead, Sydney; Queensland Children’s Hospital, Brisbane; 
Perth Children’s Hospital, Perth; Women’s & Children’s 
Hospital, Adelaide; John Hunter Hospital, Newcas-
tle; Royal Children’s Hospital, Melbourne; and Monash 
Children’s Hospital, Melbourne) and was approved by 
the Hunter New England Human Research Ethics Com-
mittee of the Hunter New England Local Health Dis-
trict (reference no. 17/02/015/4.06) and the New South 
Wales Human Research Ethics Committee (reference no. 
HREC/17/HNE/29). The PRecISion Medicine for Chil-
dren With Cancer (PRISM) clinical trial is a multicentre 
prospective study of the feasibility and clinical value of a 
diagnostic service for identifying therapeutic targets and 
recommending personalised treatment for children and 
adolescents with high-risk cancer (Additional file 1: Fig. 
S1). The clinical trial enrolled the first patient on 22 Sep-
tember 2017 and is currently ongoing. Patients are eligi-
ble if they are 21 years of age and under, deemed to have 
a high-risk paediatric cancer with less than 30% chance of 
survival, life expectancy greater than 6 weeks and appro-
priate tissue samples available for analysis. The primary 
outcome of PRISM is to assess the proportion of patients 
for whom a personalised medicine recommendation 
can be made using a comprehensive diagnostic platform 
within a clinically relevant timeframe. Secondary out-
comes are to assess the proportion of tumour samples 
found to have actionable molecular alterations, propor-
tion of tumours where in  vitro high-throughput drug 

screening and in vivo drug sensitivity testing can be suc-
cessfully performed, proportion undergoing in vitro and 
in vivo drug screening where a potential treatment option 
is identified, the number of weeks from enrolment to a 
report being issued to the treating clinician, proportion 
of patients who subsequently receive the recommended 
personalised therapy and the description of the barriers 
or reason for patients not receiving the recommended 
personalised therapy. Informed consent was received for 
each patient enrolled on the clinical trial.

Data from 347 patients enrolled on either the TARGET 
pilot study [29] or the PRISM clinical trial are included 
in this analysis, of which the molecular landscape of the 
228 patients enrolled up until June 2019 has been pre-
viously described by Wong et al. [1]. The additional 119 
samples were from patients subsequently enrolled on 
PRISM between July 2019 and August 2020. Of the 347 
patient samples, 78 tumour tissue sections were obtained 
from all patients where sufficient tissue block mate-
rial was available to perform immune cell-specific IHC 
analysis. To perform a validation of the IPASS, an addi-
tional 57 patients with RNA-seq data were recruited 
onto PRISM after the IPASS was developed and were 
enrolled between August 2020 and February 2021, called 
the internal validation cohort. Of these 57 patients, 15 
had tumour tissue sections available for IHC. An external 
validation dataset was also acquired from the Institute 
for Genomic Medicine at Nationwide Children’s Hospital 
(NCH; Columbus, OH, USA) for 64 extracranial tumours 
with RNA-seq data, of which 11 had tumour sections for 
IHC. Patients at NCH were previously enrolled on an 
IRB-approved translational research protocol (IRB17-
00,206), which included exome- and RNA-seq of frozen 
tumour as well as banking of additional paraffin-embed-
ded tissue blocks.

Sequencing analysis
RNA-seq and whole-genome sequencing were con-
ducted on all ZERO samples, with data processing and 
analysis as described in Wong et  al. [1]. In brief, the 64 
samples received from NCH, the RNA-seq libraries were 
constructed following DNase treatment and ribosomal 
transcript depletion of total RNA extracts, using the 
NEBNext® Ultra™ II Directional RNA Library Prep Kit 
for Illumina (New England Biolabs Inc., Ipswich, MA, 
USA), according to the manufacturer’s instructions. 
Sequencing was performed on either Illumina HiSeq 
4000 or NovaSeq 6000 to generate paired 151 base-pair 
reads, followed by alignment to the GRCh38 reference 
genome. Transcripts per million (TPM) values were gen-
erated from aligned paired-end RNA sequence data using 
Salmon with bootstrapping set to 100 [30].
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Immunohistochemistry
We obtained 78 tumour tissue sections from paraffin-
embedded blocks of patients with high-risk CNS or 
extracranial tumours for IHC. We received an addi-
tional 15 tissue sections from ZERO and 11 from 
Nationwide Children’s Hospital (NCH) to perform CD8 
IHC as a validation cohort. Tissue sections were stained 
with CD45 (EP322Y, ab40763), CD8 (ab4055), CD4 
(EPR6855, ab133616) at a 1:500 dilution and PD-L1 
(rabbit monoclonal anit-PD-L1 primary antibody; Cell 
Signaling Technology, clone: E1L3N, CAT#13,684) at 
a 1:200 dilution on the Leica BOND RX. Human ton-
sil was used as the positive control for staining, as well 
as the negative control (secondary antibody only). 
Tumours were classified as PD-L1 positive if ≥ 1% of 
total cells displayed positive membranous staining 
as described previously [31]. Cytoplastic staining of 
PD-L1 was also detected; however, these cells were not 
classified as PD-L1-positive tumour cells. CD45, CD8 
and CD4 slides were scanned on the Aperio Scanscope 
XT and analysed using the QuPath [32] software to 
analyse the number (per mm2) of positive cells in the 
entire tumour section. Immunohistochemical staining 
for CD4 and CD8 was further qualitatively assessed by 
a paediatric pathologist (AJG) using a standard light 
microscope, blinded to the molecularly determined 
immune status of the tumour. An accompanying H&E-
stained slide was available for review for most cases. 
Tumours were classified as immune ‘cold’, ‘altered’ or 
‘hot’ as previously published [15]. There were few or 
absent CD4/CD8-positive T-cells in ‘cold’ tumours; 
more widespread T-cells in ‘hot’ tumours; whilst 
‘altered’ tumours contained either a moderate number 
of T-cells within the tumour or T-cells at the tumour 
periphery with absent intratumoural staining.

Deconvolution algorithms
CIBERSORTx [21] deconvolution algorithm was per-
formed on the TPM expression matrix derived from 
RNA-seq data on 347 samples. The ‘impute cell fractions’ 
job mode was run in both absolute and relative mode 
against the LM22 signature [20]. The analysis was done in 
B mode for batch correction, quantile normalisation was 
disabled and 500 permutations performed. The deconvo-
lution module of quanTIseq [22] was performed on the 
pre-computed expression matrix (beginning at quan-
TIseq step 3) with –tumor = TRUE and –method = lsei 
where deconvolution was performed against 10 immune 
cell types and the fraction of uncharacterised cells identi-
fied. MCP-counter (v1.1) [23] R package was run on the 
gene expression matrix to identify 8 immune cell popula-
tions, endothelial cells and fibroblasts.

Development of the novel paediatric signature
The Immune Paediatric Signature Score (IPASS) was 
developed using a random forest machine learning 
approach. Using the IHC classifications, we combined the 
hot and altered together to form an immune-inflamed 
group. The cohort was randomly assigned into a train-
ing set (N = 34) and a test set (N = 35), with equal pro-
portions of immune-inflamed and -cold in each set. We 
obtained the expression profile for the training set and 
filtered for the 766 immune-specific genes present in the 
NanoString immune profiling panel [33]. The classifier 
was developed using the R packages caret [34] and ran-
domForest [35]. We then extracted those genes from the 
classifier (n = 15 genes) based on the highest GINI values. 
We converted this signature into an Immune Paediatric 
Signature Score (IPASS) by calculating the average sum 
of the log-transformed TPM values for the 15 genes in 
the signature. Using the entire cohort (N = 291), we then 
normalised the IPASS to obtain a score between − 1 and 
1. In the results, we describe the performance of IPASS 
using a normalised threshold of ≥  − 0.25, which corre-
sponds to a non-normalised threshold of ≥ 0.83 to clas-
sify samples as T-cell infiltrated.

T‑cell receptor sequencing
For the identification of T-cell clones, we used MiXCR 
(v3.0.13) [36] on bulk RNA-seq data using default 
parameters. Filtering and QC were performed within 
MiXCR and only clonotypes associated with TCR beta 
were extracted and used in the analysis. The total num-
ber of clones, total number of reads and proportions of 
each clone were assessed for all CNS and extracranial 
tumours.

Neoepitope prediction
OptiType (v1.3.3) [37] was performed on germline paired-
end whole-genome sequencing fastq files after fishing for 
HLA reads at 95% identity, taking only the top match with 
razers3 (v3.5.8) [38] (razers3 -i95 -m 1 -dr 0) to identify 
HLA types. Each end was filtered separately before run-
ning OptiType with default parameters for paired-end 
sequences. Somatic variant calls annotated with VEP were 
combined with the HLA typing for each patient and ana-
lysed through pVACseq [39] using NetMHCcons [40] for 
identifying the binding of candidate neoantigens for each 
HLA type. A mutant peptide was considered for each 
neoepitope if the mutant peptide had an  IC50 binding affin-
ity < 500  nM, the wild-type peptide had an  IC50 binding 
affinity > 500 nM and was expressed in RNA-seq (TPM > 1). 
Each mutation resulting in a predicted neoepitope was con-
sidered as only one neoantigen regardless of the number of 
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predicted neoepitopes. The total number of neoantigens 
for all CNS and extracranial tumours was assessed.

Immune gene expression
We sought to explore the expression of a selected list of 
immune checkpoint and regulatory genes (Additional 
file 1: Table S1) and assess the relationship to IPASS. We 
performed unsupervised hierarchical K-means clustering 
to identify specific groupings of immune genes where their 
expression profiles were most correlated with IPASS.

Immune archetype classification
For deeper immune classification, we applied the domi-
nant immune archetypes as defined in Combes et al. and 
followed the gene signature score methods described in 
the paper [41]. In brief, we downloaded the 12-gene sig-
natures supplied in their supplementary tables and ran the 
get_score.py function from the papers associated GitHub 
page (https:// github. com/ UCSF- DSCOL AB/ pan_ cancer_ 
immune_ arche types). This calculated a score for each sam-
ple for all 12 immune archetypes. The max score for each 
sample was identified, and the tumour was then assigned to 
this immune archetype.

Statistics
All statistical analysis and visualisations were performed in 
R (v3.6.2). All correlation analysis was performed using the 
Pearson correlation coefficient. The Shapiro–Wilk test was 
performed to test for normal distribution, F-test for equal 
variances and the Wilcoxon rank-sum test was used when 
normally distributed or equal variances were not observed 
when determining if chemotherapy, radiation or steroid 
treatment had an effect on T-cell infiltration. Fisher’s exact 
test was performed to assess the statistical association 
between IHC classification and IPASS immune designation 
of either T-cell infiltrated or cold.

Results
Deconvolution algorithms poorly distinguish individual 
cell types in high‑risk paediatric solid tumours
The ZERO Childhood Cancer Program sequences 
high-risk paediatric cancers (< 30% chance of survival) 
to identify potential molecularly targeted treatments 
[1]. The ZERO cohort includes diverse cancer sub-
types at various treatment stages—diagnosis, refrac-
tory, relapsed or secondary disease (Additional file  1: 
Fig. S2). We assigned tumours first into broad disease 

groups: tumours of the central nervous system (CNS) 
(N = 143), extracranial solid tumours (N = 148) or hae-
matological malignancies (HM) (N = 56). We further 
subdivided tumours into these broad categories by 
tumour subtype (Additional file  1: Fig. S2). RNA-seq 
and WGS were performed on 347 samples.

Deconvolution algorithms utilise the expression of 
key marker genes in bulk RNA-seq data to estimate 
the relative proportions and types of immune cells 
present in a sample. We applied CSX, quanTIseq and 
MCP-counter deconvolution algorithms to identify 
which tumours might have higher proportions of leu-
cocytes, in particular  CD8+ T-cells. Estimations of CD8 
T-cell abundance were comparable between algorithms 
(Additional file  1: Fig. S3a-c), so we subsequently 
focused on CSX. Unsurprisingly, predictions in haema-
tological malignancies were consistent with the malig-
nancy subtype—myeloid cells predominating in acute 
myeloid leukaemia, B-cells in B-acute lymphoblastic 
leukaemia and T-cells in T-cell leukaemia (Fig.  1a, b). 
All CNS samples had low total immune cell numbers 
(median = 2.6 cells; range 1.2–7.1). Five extracranial 
tumours had relatively higher immune cell abundance 
(> 10) than other samples (median = 2.7; range 1.1–
30.6; Fig.  1a). The predominant immune cell type in 
solid tumours (CNS and extracranial) was M2 mac-
rophages with lymphocytes making up less than 30%, 
on average, of the total immune cell populations (Addi-
tional file  1: Fig. S3d-e). However, there were notable 
exceptions. Twenty-five per cent of neuroblastoma 
(NBL) had predominant monocyte populations, as did 
some Ewing sarcomas (EWS), Wilm’s tumours (WT) 
and medulloblastomas (MB). A malignant peripheral 
nervous sheath tumour (MPNST), a NBL and an amelo-
blastic fibrosarcoma (classified as ‘sarcoma other’) all 
had activated mast cells comprising greater than 60% of 
the total immune cell population (Additional file 1: Fig. 
S3d-e). In 96% of CNS tumours,  CD8+ T-cells made up 
less than 10% (median = 5%; range 0–25%) of the pre-
dicted immune infiltrating cells (Fig. 1c). More extrac-
ranial tumours had  CD8+ T-cells, with 24% of samples 
having at least 10% (median = 5%; range 0–32%) of the 
immune infiltrating cells predicted to be  CD8+ T-cells 
(Fig. 1d). Thus, RNA-seq deconvolution of the immune 
landscape indicates that T-cell infiltrated paediatric 
tumours are rare.

(See figure on next page.)
Fig. 1 Deconvolution of bulk RNA sequencing in paediatric cancer. a Absolute immune cell abundance by CIBERSORTx (CSX) for each patient 
separated into central nervous system (CNS), extracranial, and haematological malignancies (HM), ordered from the highest number of leucocytes 
to the lowest. b Proportion of all leucocytes (y‑axis) for each HM patient (x‑axis) separated into acute myeloid leukaemia (AML), B‑precursor acute 
lymphoblastic leukaemia (BALL) and T‑cell acute lymphoblastic leukaemia (TALL). c, d Proportion of CD8 T‑cells in CSX within each patient classed 
by CNS (c) and extracranial (d) tumour subtypes

https://github.com/UCSF-DSCOLAB/pan_cancer_immune_archetypes
https://github.com/UCSF-DSCOLAB/pan_cancer_immune_archetypes
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High‑risk paediatric cancers are predominantly negative 
for PD‑L1 protein expression
We next explored the relationship between PD-L1 tran-
script abundance and PD-L1 protein expression in a sub-
set of 59 tumours (20% of the cohort) in which we could 
perform PD-L1 immunohistochemistry. These included 
both CNS and extracranial tumours. The samples were 
independently reviewed by an experienced pathology 
team, blinded to RNA-seq data, and classified as either 
PD-L1+ (≥ 1% cells) or PD-L1− (< 1% cells) using stand-
ard clinical criteria [31] (Fig. 2a). Only three samples were 
definitively PD-L1+ by IHC, one of which had extremely 
low levels of PD-L1 mRNA (0.69 TPM; Fig. 2b, c). Of the 
nine tumours with PD-L1 mRNA expression > 3 TPM, 
only two were PD-L1+ by IHC (Fig. 2c). This suggests that 
mRNA-based thresholds for identifying PD-L1+ paediat-
ric tumours may not reliably identify tumours which are 
PD-L1+ by IHC criteria, and PD-L1 TPM-based criteria 

in clinical trials of checkpoint inhibition require further 
validation.

Immunohistochemistry identifies immune hot and altered 
paediatric tumours
We next investigated tumour infiltration by  CD45+ cells, 
 CD8+ T-cells and  CD4+ T-cells using RNA-seq deconvo-
lution, and independent analysis of IHC staining for these 
markers. Seventy-eight samples, representing 27% of the 
cohort, were analysed (Fig. 3a, Additional file 1: Fig. S4a-
c). We used image analysis to quantitate the number of 
positive staining cells per  mm2 (Fig. 3b). In addition, each 
sample was independently reviewed by a pathologist for 
 CD8+ and  CD4+ infiltration, blinded to the computa-
tional or image analysis results. Tumours were classified 
as either immune inflamed (‘hot’), non-inflamed (‘cold’) 
or immune-excluded (‘altered’) using published cri-
teria [15] (Fig.  3c). One sample, without an adjacent 

Fig. 2 High‑risk paediatric cancers are predominantly PD‑L1 negative. a Representative immunohistochemistry (IHC) images for PD‑L1 in a control, 
positive and negative tumour. b Number of PD‑L1‑negative and PD‑L1‑positive samples with cancer category highlighted. c PD‑L1− (< 1%) and 
PD‑L1.+ (≥ 1%) by IHC compared to PD‑L1 expression by RNA‑seq (TPM, transcripts per million) in CNS (red) and extracranial tumours (blue)
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haematoxylin and eosin section, was classified as inde-
terminate. Seventy-six per cent (29/38) of CNS tumours 
were classified as cold, none as hot and 24% (9/38) were 
altered. Fewer extracranial tumours were cold (23/39, 
59%), 14 were altered (36%) and two hot (5%). Thus, 41% 
classified as either altered or hot (Fig. 3c). We observed a 
weak positive correlation between the IHC estimates of 
total leucocytes to the absolute immune cell abundance 
predicted by CSX (P = 0.01, r = 0.26; Fig.  3d). However, 
there was no significant correlation between the com-
putational and pathological estimates of the number of 
 CD8+ T-cells (P = 0.15, r = 0.16) or  CD4+ T-cells (P = 0.8, 
r = 0.03; Fig.  3e, f ). This suggested that CSX is not suf-
ficiently sensitive to distinguish individual immune cell 
types in paediatric samples characterised by low num-
bers of infiltrating immune cells. The poor correlation 
between histological and computational predictions of 
 CD8+ T-cell abundance was also true of quanTIseq and 
MCP-counter (Additional file  1: Fig. S4d-e). The CSX 
estimate of  CD8+ T-cell abundance in the two hot sam-
ples was the highest estimate in the extracranial cohort, 
whereas the estimated  CD8+ T-cell abundance in altered 
and cold samples was similar (Additional file 1: Fig. S4f ). 
Contrasting these data with the accurate leucocyte sub-
type predictions in haematological malignancies (Fig. 1b) 
suggests that the computational prediction of the 
immune microenvironment using the tested algorithms 
depends on immune cell abundance, which in most pae-
diatric tumours are too low to be reliable.

Corticosteroids, chemotherapy and radiation therapy 
have the potential to alter the TIME [42]. To explore this, 
we looked for correlations between these therapeutic 
interventions and the number of immune cells per  mm2 
in tumours. No significant difference was observed for 
 CD45+,  CD8+ or  CD4+ cells in patients who had received 
chemotherapy or radiation treatment within 42  days of 
biopsy in IHC data (Additional file  1: Fig. S5a-c). Fur-
thermore, there was no significant association between 
corticosteroid administration within 7  days of biopsy 
and lymphocyte numbers in CNS tumour patients, the 
population most likely to have received this treatment 
(Additional file 1: Fig. S5d-f ). This indicates that chemo-
therapy, radiation and corticosteroid administration are 
unlikely to be confounding variables altering the analysis 
of the TIME.

A novel immune signature predicts T‑cell infiltration 
in high‑risk paediatric tumours
We next used the IHC partitioning of tumours as 
immune hot, altered or immune cold to define a tran-
scriptional signature to predict  CD8+ T-cell infiltra-
tion of high-risk paediatric cancers. For this analysis, 
we clustered immune hot and altered samples together. 
We applied machine learning (see the ‘Methods’ sec-
tion) to generate a 15-gene signature on the training set 
(N = 34) which was further applied to the test set (N = 35) 
(Fig. 4a). We converted this signature into a score (here-
after referred to as the Immune PAediatric Signature 
Score (IPASS)) and normalised the IPASS to a range of 1 
(most inflamed) to − 1 (least inflamed). Using an IPASS 
of ≥  − 0.25 to indicate immune hot/altered and <  − 0.25 
to indicate immune-cold, the IPASS score had a posi-
tive predictive value of 78%, a negative predictive value 
of 92%, a sensitivity of 84% and a specificity of 88%. In 
the test set, the resultant signature predicted with 87% 
accuracy the immune classification of the tumours by 
IHC. This indicates that the IPASS score can indepen-
dently classify paediatric tumours as immune hot/altered 
(‘T-cell infiltrated’) or immune cold.

This gene signature, constructed to identify immune-
hot or immune-altered tumours, incorporates immune 
markers of inflammation and exclusion (Fig.  4a). 
Increased expression of NFATC3, TNFRSF18 (GITR), 
NFkb1, and CD27 are associated with T-cell activation. 
NFATC3 is a transcription factor which initiates the 
production of IL-2 [43], TNFRSF18 and CD27 are both 
T-cell costimulatory molecules [44], NFkb1 is a key tran-
scription factor generated downstream of T-cell receptor 
(TCR) signalling [45] and CTLA-4 is an immune check-
point expressed following TCR ligation [46, 47]. Both 
CTLA-4 and TNFRSF18 are highly expressed on Tregs 
and increased expression re-enforces the Treg suppres-
sor phenotype [44, 48]. FRP2 (N-formyl peptide recep-
tor 2) is broadly expressed by immune cells and binds 
several ligands derived from bacterial products leading 
to initiation of the danger signal response [49], whereas 
C1 esterase inhibitor is an inflammatory inhibitor [50]. 
CXCL9 and CXCL11 are key chemokines for the traffick-
ing of effector T cells into the tumour and are secreted 
by macrophages and stromal cells in response to IFN-γ 
secreted by T-cells [51]. Finally, increased expression of 

(See figure on next page.)
Fig. 3 Immunohistochemistry identifies immune‑hot and immune‑altered paediatric tumours. a Representative IHC images for CD45, CD8 and 
CD4 staining in CNS and extracranial tumours illustrating positive and negative tumours. b The number (cells/mm2) of  CD45+,  CD8+, and  CD4+ 
cells in CNS and extracranial tumours by IHC. Black horizontal line represents the mean. c Number of CNS and extracranial samples classified by CD8 
IHC as either immune‑cold, immune‑altered or immune‑hot. d Correlation between the absolute number of immune cells by CIBERSORTx (CSX) 
compared to number/mm2 of  CD45+ cells by IHC. e Correlation between the absolute number of CD8 T‑cells by CSX compared to number/mm2 of 
 CD8+ T‑cells by IHC. f Correlation between the absolute number of CD4 T‑cells by CSX compared to number/mm2 of  CD4+ cells by IHC. Blue line in 
(d–f) is the correlation line of best fit
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Fig. 3 (See legend on previous page.)
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LAMP3 (DC-LAMP) and CD141 (THBD or BDCA-3) 
[52] are expressed by mature and cross-presenting den-
dritic cell subsets. The transcriptional repressor SBNO2 
is expressed in macrophages following IL-10/STAT3 

signalling and contributes to the anti-inflammatory 
response [53]. Finally, B7-H3 expression by tumour cells 
is immune suppressive and a current target for immuno-
therapy strategies [54].

Fig. 4 Novel paediatric immune signature predicts T‑cell infiltrated tumours. a Heatmap of the novel 15‑gene paediatric immune signature (IPASS) 
in patients with matched IHC (n = 78). The top annotation bar represents the cancer category, the second annotation is CD8 IHC classification 
and the third annotation bar is the normalised IPASS score measured between 1 (green) and − 1 (orange). IPASS distribution across b CNS and c 
extracranial tumours. d Number of validation samples classified by CD8 IHC as either immune‑cold, immune‑altered or immune‑hot. e IPASS for 
each validation sample assigned to their IHC CD8 classification (n = 26)
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We applied the IPASS to the remaining samples 
(n = 213) in our cohort. From all 291 samples, 102 T-cell 
infiltrated CNS and extracranial solid tumours were pre-
dicted (Fig.  4b, c, Additional file  1: Fig. S6a-b). Twenty 
per cent (29/143) of CNS tumours had T-cell infiltrated 
IPASS compared to 49% (73/148) of extracranial tumours 
(Fig.  4b, c, Additional file  1: Fig. S6a-b). This is in con-
cordance with the proportions identified by the IHC 
classification (Fig.  3c). T-cell infiltrated tumours were 
identified across all tumour subtypes except atypical tera-
toid rhabdoid tumours (ATRT) (Fig.  4b, c). In addition, 
21% of high-grade gliomas (HGG) and 15% of diffuse 
midline glioma (DMG), tumour subtypes sometimes con-
sidered non-inflamed [55, 56], had IPASS scores predict-
ing T-cell infiltration (Fig. 4b, Additional file 1: Fig. S6a). 
Of the extracranial tumours, relapsed neuroblastoma 
and MPNST had the highest proportion of immune-
infiltrated tumours. Individual examples of epithelioid 
sarcoma and alveolar soft part sarcoma (both sub-classed 
as ‘sarcoma other’) had the highest IPASS (Fig. 4c, Addi-
tional file  1: Fig. S6b). In keeping with our IHC results 
(Additional file 1: Fig. S5), IPASS was unaffected by prior 
treatment or corticosteroid administration (Additional 
file 1: Fig. S6a-b).

We tested the validity of the IPASS in an independent 
dataset (see ‘Methods’ section) which underwent bulk 
RNA-seq and IHC analysis as described for the original 
cohort. IHC classification in the validation dataset iden-
tified 8 cold, 16 altered and 2 hot tumours, which were 
significantly associated with the IPASS (Fisher’s exact 
p = 0.01; Fig.  4d, e). Extending the IPASS to all sam-
ples within the independent dataset that had RNA-seq 
(N = 121) identified twenty-six T-cell infiltrated tumours 
in an independent dataset (Additional file  1: Fig. S6c). 
Taken together, applying the IPASS to ZERO and the val-
idation cohorts suggests that 31% (128/412) of childhood 
solid tumours are T-cell infiltrated, with the majority fall-
ing into the ‘altered’ category, and up to 4% may be true 
‘hot’ tumours (Additional file 1: Fig. S6a-c).

IPASS correlates with other markers of immune infiltration
T-cell receptor (TCR) clonal diversity within a tumour 
has been linked to adaptive immune responses as it 
increased the capacity for T-cells to recognise antigens 
[57]. For extracranial solid tumours and CNS tumours, 

we calculated the number of T-cell clones present in 
each sample from bulk RNA-seq data and tested the 
correlations with IPASS (Additional file  1: Fig. S6d-e). 
The ‘glioma other’ subgroup (anaplastic pleomorphic 
xanthoastrocytoma, ganglioglioma and progressive low-
grade glioma) had the highest number of TCR clones of 
the CNS tumours. Osteosarcoma and neuroblastoma had 
the highest TCR diversity of the extracranial tumours. 
The number of T-cell clones positively correlated with 
IPASS (P = 1.2e − 11, r = 0.39; Fig.  5a, Additional file  1: 
Fig. S6f ).

Elevated tumour-specific neoantigen load is associated 
with an increased presence of T-cells, particularly in the 
context of adult tumours with high mutation burdens or 
childhood cancers arising as a result of germline muta-
tions in mismatch repair genes [25]. This relationship is 
far less clear in paediatric cancers with much lower muta-
tion burdens. We explored the relationship between the 
IPASS, TMB and neoantigen burden. There was a wide 
variation of neoantigen load across tumour types (Addi-
tional file  1: Fig. S7a-b). HGG had the greatest range 
(5–528), and of the ‘CNS other’ group, 2 choroid plexus 
carcinomas had over 200 predicted neoantigens (Addi-
tional file 1: Fig. S7a). In extracranial tumours, neoanti-
gen load ranged from 1 to 416, with 4 MPNST samples 
having > 100 predicted neoantigens. High individual neo-
antigen loads were also observed in adrenocortical carci-
noma and malignant germ cell tumour (both sub-classed 
as ‘solid other’) (Additional file  1: Fig. S7b). As antici-
pated, a significant correlation was observed between 
the number of neoantigens and the TMB (P = 2.2e − 16, 
r = 0.57; Additional file 1: Fig. S7c). However, neither the 
TMB nor the number of neoantigens positively correlated 
with the IPASS (P = 0.86, r =  − 0.01 and P = 0.96, r = 0.0, 
respectively; Fig.  5a, Additional file  1: Fig. S7d-e). This 
suggests that the quantity of mutations and neoantigens 
is not predictive of T-cell tumour infiltration in paediat-
ric cancers which have mutation burdens within the non-
hypermutated range (< 5 mut/MB). Interestingly, there 
was a significant negative correlation between the IPASS 
score and estimated tumour purity using WGS data 
(P = 1.6e − 14, r =  − 0.43; Additional file 1: Fig. S7f ). This 
might be expected if the TIME and other non-tumour 
cells make up a greater proportion of the sequenced sam-
ple. Together, these data establish that neoantigen load 

(See figure on next page.)
Fig. 5 Immune genes and archetypes provide insight into TIME of paediatric tumours. a Heatmap of 12 immune checkpoint genes associated 
with IPASS in extracranial tumours (n = 148). The top annotation bar represents the cancer category, the second annotation is CD8 IHC classification 
and the third annotation bar is the normalised IPASS score measured between 1 (green) and − 1 (orange). Below the heatmap, the annotation 
bars represent the number of T‑cell receptor (TCR) clones, tumour purity (percentage of malignant cells), tumour mutation burden (TMB) and 
neoantigen load. b, c IPASS score (highlighted by hot/altered (red) or cold (blue)) for each sample assigned to their given dominant immune 
archetype in b CNS and c extracranial tumours. Archetype key: dendritic cells (DC), immune stromal rich (ISR), immune rich (IR), classical DC (cDC) 
and immune desert (ID)
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Fig. 5 (See legend on previous page.)
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and TMB are not indicative of T-cell infiltrated pheno-
type in most paediatric solid tumours.

We next characterised the expression of a selected list 
of immune checkpoint and regulatory genes (Additional 
file  1: Table  S1) to identify those most associated with 
an IPASS >  − 0.25, in order to understand the poten-
tial immune suppression mechanisms regulating T-cell 
infiltration in high-risk childhood cancers. A subset 
of 12 genes showed a strong statistical association with 
high IPASS scores by K-means clustering (Fig. 5a, Addi-
tional file  1: Fig. S7g-h). These include members of the 
TNF-receptor superfamily CD70 and TNFRSF9 (CD137, 
41BB), Programmed-death ligands 1 and 2 (CD274 and 
PDCD1LG2), lymphocyte-activation gene 3 (LAG3) and 
T-cell immunoglobulin genes TIGIT and TIM3 (Fig. 5a). 
Taken together, increased expression of these genes is 
a further indication that elevated IPASS is indicative of 
T-cell activation within these tumours. In CNS tumours, 
these 12 immune genes were weakly associated with 
higher IPASS scores, in part because fewer CNS samples 
had scores indicative of T-cell infiltration (Additional 
file 1: Fig. S7g).

T-cell tumour infiltration may be indicative of several 
distinct immune archetypes, both immune rich (IR) and 
immune desert (ID), within the TIME [41]. We used 
expression signatures associated with immune arche-
types to explore the associations between the IPASS 
and IR and ID immune archetypes (Fig.  5b, c; Addi-
tional file  1: Fig. S7i-j). Higher IPASS scores were sig-
nificantly more likely to be associated with IR archetypes 
(P = 0.0026). Most CNS tumours were ID and domi-
nated by archetypes associated with high numbers of 
monocytes or macrophages (Fig.  5b). There were more 
IR archetypes in extracranial tumours but no associa-
tions of statistical significance with tumour subtypes, 
indicating the diverse archetypes across our cohort are 
not constrained by tumour type. Some trends, such as 
the predominance of the monocyte archetype in ID neu-
roblastoma and the lack of any osteosarcomas with an 
ID archetype of any sort, may prove significant in larger 
cohorts. However, the association between the higher 
IPASS scores and IR archetypes indicates that IPASS is 
identifying immune-infiltrated TIME in most paediatric 
cancer types. The detailed nature of the TIME appears to 
vary at an individual level.

Discussion
The tumour transcriptome provides high-resolution 
insights into the cellular and molecular basis of individual 
tumours and the surrounding TIME [1, 2]. We set out to 
characterise the TIME from the sequencing performed in 
the ZERO Childhood Cancer programme; however, most 
tools that are used to deconvolute the immune signature 

from bulk RNA-seq data have been developed from adult 
cancer data sets [21–23]. Thus, we developed a paediatric 
cancer-specific transcriptional tool, based on a ‘ground 
truth’ of IHC classification of inflammation status 
(inflamed, excluded or desert) through integrating these 
findings with RNA-seq. One important motivation is that 
many current biomarkers used as surrogates for inflamed 
tumours, such as TMB, neoantigen load and PD-L1 tran-
script expression [25, 58, 59] have limited applicability 
in the paediatric setting, where mutation burdens and 
neoantigen abundance are far lower than in most adult 
cancers [26]. Thus, whilst we show that neoantigen load 
correlates with TMB, neither variable correlates with 
T-cell infiltration. Moreover, if the true HLA affinity 
threshold is lower than commonly used for neoantigen 
prediction, then the number of true antigens in paediat-
ric tumours may be even lower than in silico predictions 
[60]. Therefore, beyond the small subset of paediatric 
patients with hypermutated tumours, an important chal-
lenge is to characterise the TIME of paediatric tumours 
with more typical TMB (< 5 muts/Mb). Our data clearly 
indicate that a proportion of such tumours do harbour 
infiltrating T-cells. The specific tumour epitopes pre-
sented to and recognised by infiltrating T-cells may be 
more critical for potential T-cell responses than the abso-
lute neoantigen load.

An important relationship we explored is that between 
the PD-L1 gene and protein expression on tumour cells 
or antigen-presenting cells. The importance of this rela-
tionship is emphasised as PD-L1 gene expression is a cri-
terion on which paediatric patients are selected for in a 
trial of anti-PD-L1 therapy [58]. Appropriate selection of 
patients is critical to trial success, and our data may pro-
vide one explanation for the limited anti-tumour activity 
to ipilimumab, pembrolizumab, nivolumab and atezoli-
zumab seen in paediatric patients [11, 12, 61, 62]. In our 
cohort, PD-L1 protein expression cannot be reliably pre-
dicted from RNA-seq data. This is in part because the 
transcript expression is, in most instances of paediatric 
cancer, very low (median TPM 0.92) and likely below lev-
els where the relationship between transcript abundance 
becomes a reliable predictor of protein abundance. There 
is a poor correlation between PD-L1 mRNA expres-
sion levels and protein levels in paediatric cancers. Fur-
thermore, data from phase I clinical trials of checkpoint 
inhibitors in childhood cancers shows that PD-L1 mRNA 
levels are a weak predictor of clinical response, even 
whilst most responders are PD-L1 positive by IHC [12, 
13]. This suggests that PD-L1 IHC has greater utility than 
mRNA transcript abundance, but alone is not sufficient 
to predict response. Low transcript levels of PD-L1 do 
not necessarily indicate that a tumour lacks PD-L1 pro-
tein. Using PD-L1 transcript counts, 15% of our cohort 



Page 14 of 18Mayoh et al. Genome Medicine           (2023) 15:20 

would be eligible for trial inclusion but only two of these 
had unequivocal evidence of PD-L1 protein expression. 
Conversely, the TPM criteria would have excluded a 
patient who was, by IHC, PD-L1+. The better informed 
patient selection might improve the generally disappoint-
ing results of anti-PD-1 immunotherapies in paediatrics, 
as is becoming clearer in the use of these agents in hyper-
mutated tumours [25] and INI-negative tumours [63].

The IPASS score is primarily to detect T-cell infiltra-
tion of high-risk paediatric cancers. Our data suggests 
that there are subsets of paediatric tumours, thought 

previously not to be inflamed, which may in fact harbour 
a diverse T-cell repertoire. The questions this raises are 
what antigens are these T-cells responding to and what 
immunosuppressive pathways characterise individual 
paediatric cancers? The IPASS gene signature not only 
identified genes indicative of T-cell activation (from the 
‘hot’ samples) but also genes involved in the suppression 
of T-cell responses (from the ‘altered’ samples), across a 
broad range of childhood cancers. We have represented 
the IPASS in a conceptual diagram depicting the tumour 
immune cellular and signalling network (Fig.  6). Thus, 

Fig. 6 The IPASS gene signature describes a complex immune network within paediatric cancers. A concept figure depicting the potential immune 
cell interactions which feature the IPASS genes. The IPASS describes interactions which both drive and control anti‑tumour immunity.  CD8+ T‑cells 
(blue) recognise tumour‑associated antigen on mature and cross‑presenting dendritic cells (pink) [CD141, LAMP3] and secrete IFN‑γ, which induces 
cancer cell MHC‑I and PD‑L1 expression. IFN‑γ response genes [CXCL9, CXCL11] are derived from tumour associated macrophages (TAMs, mauve) 
and are key chemokines for trafficking of  CXCR3+ effector T‑cells into the tumour. Control over this effector T‑cell trafficking is mediated by tumour 
cell secretion of LIF which suppresses TAM CXCL9. In addition, IL‑10/STAT3 signalling in TAMs induces SBNO2, a transcriptional co‑repressor which 
contributes to the anti‑inflammatory response. The IPASS includes genes expressed by activated T‑cells [NFATC3, NFKb1, CD27, CTLA4, GITR], in 
contrast to the immune suppressor Tregs (purple) constitutively express [GITR, CTLA4]. The functional effect of B7-H3 is context dependent, B7-H3 
expression on tumour cells is immune suppressive. The transmembrane receptor FPR2 senses ligands from bacteria products and generates a 
danger signal. This figure was created in Biorender
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whilst increased expression of NFATC3, TNFRSF18, 
NFkb1, CD27 and CTLA4 are indicative of T-cell activa-
tion [43–47, 64], TNFRSF18 and CTLA4 are also highly 
expressed on Tregs, which are involved in downregu-
lating antitumour immune responses [44, 48]. CD70 is 
expressed on antigen-presenting cells and co-stimulates 
T-cell via binding to CD27 [64]. CD137 [65] is also a 
costimulatory molecule expressed on activated T-cells 
within tumours, along with the immune checkpoints 
LAG3, TIM3 and TIGIT [66]. Whilst PD-L2 is constitu-
tively expressed by antigen-presenting cells [67], PD-L1 
is upregulated on tumour cells and antigen-presenting 
cells following IFN-γ stimulation [68]. The expression 
of leukaemia inhibitory factor (LIF) is a novel feature of 
the IPASS, as LIF has not previously been identified as a 
prominent feature of the TIME in paediatric cancer. LIF 
is a ligand for the LIF receptor (LIFR) and a member of 
the interleukin-6 cytokine family [69]. LIF has immuno-
suppressive functions in some tumour contexts, in part 
by repressing CXCL9 (also part of the IPASS) and  CD8+ 
T-cell infiltration of tumours [70]. Establishing the role of 
LIF in the TIME of childhood cancers potentially opens 
up the possibility of combined LIF inhibition and anti-
PD-L1 immunotherapy.

A pan-cancer score like IPASS is necessarily reduc-
tive, focused on developing validated and robust ways of 
characterising immune-altered and hot tumours across 
the broad spectrum of paediatric oncology pathologies, 
but sacrificing some of the detailed individual features of 
the TIME. Furthermore, the numbers of samples across 
all tumour subtypes on which we have IHC also limit 
the resolution of the score. We tried to address this by 
exploiting other expression-based signatures developed 
following high-resolution characterisations of the cell 
type and gene-expression profiles of a broad, adult pan-
cancer cohort [41]. This showed, at one level, that our 
IPASS score is identifying samples with immune-rich 
signatures, and with a bias towards T-cell infiltration. 
Furthermore, there are also diverse TIMEs both within 
tumour subtypes and across the paediatric pan-cancer 
landscape. Although the numbers of tumours in each 
subtype limited the capacity to establish definitive links 
between tumour types and TIME archetypes, it is likely 
that such patterns will emerge with expanded sequenc-
ing of paediatric tumours, particularly if the presentation 
of certain tumour-specific antigens, for example, fusion 
oncogenes, are important in invoking a T-cell response.

Conclusions
Combining the IPASS with other approaches such as 
the immune archetypes provides a more nuanced and 
detailed insight into the specific mechanisms operating 
within individual cancers that distinguish hot and altered 

tumours from cold tumours, and the complex mecha-
nism of immune evasion. This, we propose, will be the 
basis of detailed understanding of the immunological fea-
tures unique to paediatric cancers, and the development 
of therapeutic approaches that can realise the potential 
of immunotherapy in solid childhood cancers. A key 
question to be tested in future clinical trials is whether 
a score such as IPASS identifies a population of high-risk 
childhood cancers with an inflamed tumour microenvi-
ronment that are more likely to benefit from immuno-
therapies. By bringing together molecular and clinical 
response data across multiple clinical trials, it may be 
possible to refine biomarkers of clinical response.
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