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Abstract 

Background Liquid biopsies and the dynamic tracking of somatic mutations within circulating tumour DNA (ctDNA) 
can provide insight into the dynamics of cancer evolution and the intra‑tumour heterogeneity that fuels treatment 
resistance. However, identifying and tracking dynamic changes in somatic copy number alterations (SCNAs), which 
have been associated with poor outcome and metastasis, using ctDNA is challenging. Pancreatic adenocarcinoma is 
a disease which has been considered to harbour early punctuated events in its evolution, leading to an early fitness 
peak, with minimal further subclonal evolution.

Methods To interrogate the role of SCNAs in pancreatic adenocarcinoma cancer evolution, we applied whole‑
exome sequencing of 55 longitudinal cell‑free DNA (cfDNA) samples taken from 24 patients (including 8 from whom 
a patient‑derived xenograft (PDX) was derived) with metastatic disease prospectively recruited into a clinical trial. We 
developed a method, Aneuploidy in Circulating Tumour DNA (ACT‑Discover), that leverages haplotype phasing of 
paired tumour biopsies or PDXs to identify SCNAs in cfDNA with greater sensitivity.

Results SCNAs were observed within 28 of 47 evaluable cfDNA samples. Of these events, 30% could only be identi‑
fied by harnessing the haplotype‑aware approach leveraged in ACT‑Discover. The exceptional purity of PDX tumours 
enabled near‑complete phasing of genomic regions in allelic imbalance, highlighting an important auxiliary func‑
tion of PDXs. Finally, although the classical model of pancreatic cancer evolution emphasises the importance of early, 
homogenous somatic events as a key requirement for cancer development, ACT‑Discover identified substantial het‑
erogeneity of SCNAs, including parallel focal and arm‑level events, affecting different parental alleles within individual 
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tumours. Indeed, ongoing acquisition of SCNAs was identified within tumours throughout the disease course, includ‑
ing within an untreated metastatic tumour.

Conclusions This work demonstrates the power of haplotype phasing to study genomic variation in cfDNA samples 
and reveals undiscovered intra‑tumour heterogeneity with important scientific and clinical implications. Implementa‑
tion of ACT‑Discover could lead to important insights from existing cohorts or underpin future prospective studies 
seeking to characterise the landscape of tumour evolution through liquid biopsy.

Keywords Pancreatic cancer, Tumour evolution, Intra‑tumour heterogeneity, ctDNA, Copy number, cfDNA, 
Circulating tumour DNA, Cell‑free DNA

Background
Pancreatic cancer is the seventh most common cause of 
cancer-related death worldwide [1]. Despite the increas-
ing incidence of this disease, effective treatments are 
lacking, and the prognosis for patients with pancreatic 
cancer remains exceptionally poor, with approximately 
70% of patients dying within 1 year of diagnosis [2].

There is therefore an urgent need to characterise vul-
nerabilities and evolutionary dependencies that might 
represent therapeutic targets in this disease. There is 
an ongoing debate about the contribution of subclonal 
alterations to the pathogenesis and progression of this 
disease. Genetic point mutations in this tumour type, 
particularly within the genes KRAS, TP53, SMAD4 
and CDKN2A, are predominantly, though not exclu-
sively, clonal [3]. It has therefore been suggested that 
when considering point mutations alone, subclonal 
selection might be limited in pancreatic adenocarci-
noma [4]. However, such studies have typically not 
focused on  somatic copy number alterations (SCNAs), 
that might act as a substrate for subclonal selection in 
tumours [5, 6].

To perform related analyses and resolve the evolution-
ary status and importance of SCNAs, it is for the most 
part necessary to have multiple tissue samples over space 
or time [7, 8]. However, it can be difficult to obtain these 
samples from patients with pancreatic cancer. This is due 
to the typically low tumour content of biopsy specimens 
in this disease as well as the difficulty of biopsy in patients 
with recurrent disease who are often profoundly unwell.

Non-invasive liquid biopsies, from which circulat-
ing tumour DNA (ctDNA) can be isolated, represent an 
important alternative strategy for gaining insight into 
tumour evolutionary dynamics over time, although exist-
ing approaches typically study point mutations, rather 
than SCNAs [9–11]. Similarly, obtaining patient-derived 
xenografts (PDXs) of tissue biopsies, which provide very 
pure near-replicas of patient tumours, can provide a use-
ful model to further understand cancer genomics while 
simultaneously overcoming the challenge of low tumour 
content in this disease and thereby enabling analysis of 
SCNAs [12, 13].

Here, we characterise the evolution of late-stage pan-
creatic cancer in a prospectively recruited, longitudinal 
patient cohort. Using ACT-Discover, which leverages 
matched  ’germline’ blood DNA, biopsy specimens, 
PDXs and/or ctDNA, we reveal the ongoing acquisition 
of subclonal alterations that would not have been iden-
tified within a single snapshot in space and time. Fur-
thermore, we utilise ACT-Discover to highlight instances 
of mirrored subclonal allelic imbalance in evolving can-
cer, suggestive of ongoing chromosomal instability and 
karyotype remodelling in advanced tumours. This work 
highlights important additional uses of liquid biopsy to 
understand tumour evolution.

Methods
Ethics committee approval
The study was approved by the Comité Ético de Inves-
tigación Clínica Regional de la Comunidad de Madrid 
(CEIC-R) and the Vall d’Hebron Institute of Research 
(VHIR) Ethics Committees. The research was conducted 
in accordance with the Declaration of Helsinki and local 
data protection laws. All patients were provided with 
written informed consent before enrolment. All data pro-
vided were anonymised in line with applicable laws and 
regulations.

Patient enrolment
Twenty of these patients were enrolled on an investiga-
tor-initiating multicenter, open-label, randomised phase 
II clinical trial led by Dr. Hidalgo and sponsored by the 
Hospital Universitario de Fuenlabrada, Madrid, Spain 
(NCT02795650) that enrolled a total of 129 patients. 
Preliminary data of this trial was recently reported as an 
abstract [14]. This work does not report any data or result 
of the referred clinical trial. Additionally, 4 patients were 
enrolled from the Vall d’Hebron Institute of Oncology 
(VHIO, Barcelona, Spain). Plasma samples were collected 
from the patients as they enrolled to limit selection bias. 
Although 129 patients were enrolled, it was only possible 
to analyse DNA from a subset due to financial limitations 
(Additional file  1: Fig. S1). Overall, 87 tumour  samples 
(including 2 primary tumour, 22 metastasis, 8 PDX and 
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55 cell-free DNA (cfDNA) samples) and 24 germline 
samples from 24 patients were whole-exome sequenced. 
Of these, a total of 75 tumour samples (including 2 pri-
mary tumour, 18 metastasis, 8 PDX and 47 cfDNA 
samples) from 19 patients were evaluable and used for 
subsequent analyses.

Sample extraction and whole‑exome sequencing
DNA was extracted from tumour tissue using the QIA-
GEN DNeasy Blood and Tissue kit (Qiagen, Germany); 
100  µl of peripheral blood was used for extraction of 
germline DNA using the QIAGEN DNeasy Blood and 
Tissue kit (Qiagen, Germany) according to the manu-
facturer’s recommendation and quantified using the 
Qubit kit dsDNA HS (high sensitivity) Assay Kit (Thermo 
Fisher Scientific, USA). The Illumina HiSeq platform was 
used to perform whole-exome sequencing on metastatic 
biopsies and PDX samples. Metastatic samples were 
sequenced to a median depth of 103 × . Blood samples 
were collected in Streck BCT tubes, and cfDNA from 
1  mL of plasma was extracted using the QIAamp Cir-
culating Nucleic Acid Kit (Qiagen, Germany). Genomic 
libraries were generated using 10 to 15  ng of cfDNA 
and the ThruPLEX DNA or Plasma-seq Kit (Rubicon 
Genomics Inc., USA; now commercialised as SMARTer 
Thru-PLEX plasma-seq kit by Takara Bio, Otsu, Japan). 
Quality control of libraries was carried out in Tapesta-
tion (Agilent, USA), and amplified profiles of ~ 300 bp 
were considered for downstream analysis. The capture of 
the genomic coding regions for whole-exome sequenc-
ing (WES) was performed using the SureSelect Human 
All Exon V5 or V6 kits (Agilent, USA) and the aimed 
sequencing output was 12 Gb (100 ×) for germline DNA 
and 36  Gb (300 ×) for tumour and cfDNA. Sequencing 
was carried out in HiSeq or Novaseq Illumina sequencers 
platforms.

All sequencing data have been deposited in the Euro-
pean Genome–Phenome Archive under accession num-
ber EGAS00001007077.

Patient‑derived xenografts
Animal work was performed according to the proto-
cols approved by the Ethical Committees for the Use of 
Experimental Animals at Hospital Universivario de Fuen-
labrada, animal facility centro apoyo tecnológico (CAT) 
of the Universidad Rey Juan Carlos (URJC) and the Vall 
d’Hebron Institute of Oncology (VHIO), Spain.

Tumour samples
Hepatic metastatic samples from core needle biopsies 
were freshly collected into RPMI medium and added 

with pen/strep 1:100 v/v. Tumour samples, free from 
fat and necrotic tissue, were cut into small pieces of 3 x 
3 x 3 mm and embedded in Matrigel (Corning Matrigel 
Basement Membrane Matrix, #354234). Five- to 6-week-
old female Nod Scid Gamma mice (NSG) [strain NOD.
Cg-Prkdcscid Il2rgtm1Wji/SzJ] provided by Charles River 
were anaesthetised using isoflurane gas anaesthesia 
and administered with buprenorphine dosed at 0.2  mg/
kg. Subsequently, each piece of the tumour sample was 
implanted subcutaneously, by using an 18-gauge trocar, 
in one flank of the lower back of the mice. Due to the 
scarcity of the tumour samples proceeding from liver 
biopsies, in this first phase (F1, engraftment phase), only 
2 or 3 NSG were used to be implanted.

Establishment of xenograft
Five- to 6-week-old female athymic nude-Foxn1 (nude/
nude), mice [strain Crl:UN(NCr)-Foxn1 < nu >], provided 
by Charles River, were anaesthetised as above-men-
tioned. Xenografts obtained from F1 were excised, and a 
part was cut into small 3 × 3 × 3 mm fragments and then 
implanted subcutaneously in both mice flanks, in a group 
of 5–8 mice (F2, expansion phase). The remaining part 
of the xenograft was cryopreserved and/or processed 
for future biological studies. Before the tumours from F2 
reached a size of 1500  mm3, they were excised, cut into 
3 × 3 × 3  mm fragments and finally implanted into the 
experimental cohorts of mice that were treated with the 
drugs (F3 and successive).

Mice from all phases were monitored during the study 
and were humanely sacrificed after the appearance of any 
of the following: tumour size approaching 1500  mm3, loss 
of body weight, lethargy, dyspnea and/or pain.

Variant calling (and pipeline overview)
The samples were aligned to the reference human 
genome (hg19) using Burrows-Wheeler algorithm (BWA) 
[15]. The median coverage of the samples (excluding the 
PDX samples) was 103 (range 38–201)  and the median 
coverage of the PDX samples was 210 (range 49-424). The 
median coverage of the germline samples was slightly 
lower than the median coverage of the tumour samples 
(median of 94 and 107, respectively).

The PDX samples were aligned to the reference human 
genome (hg19) as well as to the reference mouse genome 
(mm10) using BWA. Subsequently, bamcmp [16] was 
used to categorise reads into human only, human better, 
mouse only and mouse better. All reads mapping better 
to the human reference (human only and human better) 
were combined and used in downstream processing and 
analysis.
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The samples were processed using a modified version 
of the pipeline described in Jamal-Hanjani et  al. [17]. 
In brief, VarScan2 [18] and MuTect [19] were used to 
identify somatic variants and subsequently additional 
filtering was performed. A mutation was passed if the 
variant allele frequency (VAF) was greater than 2% and 
was called by both MuTect and VarScan2. If the muta-
tion was only called by VarScan2, a VAF of 5% was 
required. In both cases, a somatic p-value of ≤ 0.01 was 
required for the mutation to be called by VarScan2. Fur-
thermore, a sequencing depth ≥ 10 at the mutated posi-
tion was required in every sample. As a rule, > 5 reads 
were needed to support the variant call; however, if 
there were ≥ 3 reads supporting the variant call and the 
mutation was called by both VarScan2 and MuTect, the 
mutation was passed. Finally, the number of reads sup-
porting the variant in the germline needed to be < 3 with 
a VAF ≤ 1%.  Somatic variants were annotated as driver 
mutations as described in Jamal-Hanjani et al. [17] using 
a list of pan-cancer and pancreatic cancer genes curated 
by Bailey et al. [20]. 

Initial purity and ploidy solutions were obtained from 
the implementation of ASCAT [21] with manual review. 
Of the cfDNA samples, 6 samples had sufficient tumour 
purity to estimate copy number aberrations while the 
remaining 49 had very low tumour purity (estimated 
as < 5%). Six metastasis biopsies (from PAN103, PAN110, 
PAN114, PAN119, PAN121, PAN122) as well as one sam-
ple of the primary tumour obtained from PAN103 had < 
5% tumour content. The remaining 16 metastasis biop-
sies and the remaining sample of the primary tumour 
from PAN103, as well as the 8 PDX samples, had suffi-
ciently high tumour content (> 15%). The mean purity of 
these 31 samples was 54% (range 15–100%).

For two patients (PAN114, PAN122), no mutations 
from any of the samples passed filtering, therefore all 
samples (2 samples for PAN114, 4 samples for PAN122) 
from these patients were excluded from subsequent 
analyses. Additionally, three patients (PAN106, PAN119, 
PAN121) had no samples with sufficient tumour purity to 
determine copy number status; however, mutation data 
was still used for these cases. Thus, in total, 47 cfDNA, 
18 metastasis and 8 PDX, as well as 2  primary tumour 
samples, from 19 patients were deemed evaluable and 
used in subsequent analyses. Notably, for eight patients 
(PAN103, PAN104, PAN105, PAN108, PAN109, PAN113, 
PAN125, PANVH1), multi-sample copy number data was 
available.

Threshold analysis for lower SNV filters
For a subset of cfDNA samples (6 of 47), high tumour 
purity (≥ 15%) was observed. However, in the majority of 
cfDNA samples (41 of 47), tumour purity was below 5%. 

Therefore, tumour content and copy number aberrations 
could not be reliably estimated using ASCAT. Due to low 
tumour content, in most cases, de novo mutation calling 
only yielded a low number of mutations (median number 
of mutations: 3, range 0–100). In several cfDNA samples, 
no mutations were identified using de novo calling, while 
in the majority of samples (41 of 47), less than 10 muta-
tions were called.

In order to increase the power to detect mutations in 
the cfDNA samples, mutations confidently called in other 
samples of the same patient were leveraged. However, 
to reduce the rate of false-positive mutations, multiple 
thresholds were explored. We reasoned that  bona fide 
mutations in cfDNA samples should tend to be patient-
specific, unless they resided in driver mutations. Con-
versely, artefactual mutations or sequencing noise, are 
more likely to be recurrent across samples from different 
patients. Thus, we considered which filters can be used to 
optimise true positive mutations at the expense of false-
positive mutations.

Initially, all mutations that were confidently called in 
at least one sample of the patient were collated. Muta-
tions in cancer genes that were classified as driver muta-
tions were removed from this analysis as some overlap of 
such mutations can be expected. Subsequently, for each 
patient, read information for these high confidence muta-
tions was extracted from the alignment files of the sam-
ples of all patients using bam-readcount (https:// github. 
com/ genome/ bam- readc ount). For each patient, muta-
tions in each cfDNA sample were called from the initially 
passed mutations using a variant read count filter of 1, 
2, 3, 5, 10 or more reads and a VAF filter of greater than 
0%, 1% and 1.5%. Mutations positively identified in the 
cfDNA sample of interest based on these filters were sub-
sequently explored in cfDNA samples  from all patients. 
The proportion of mutations positively identified based 
on the same filters in at least one other cfDNA sample 
was calculated and weighed against the total number of 
mutations identified in the cfDNA sample of interest. The 
results can be seen in Additional file 1: Fig. S2.

To determine a reasonable threshold with which to 
positively identify high-confidence mutations in the 
cfDNA, the tradeoff between the total number of muta-
tions identified and the proportion of mutations also 
found in at least one other cfDNA sample was consid-
ered. When using lenient filters of one or more variant 
read and a VAF greater than 0%, at least one mutation 
was identified in all cfDNA samples (median 24; range 
1–124). However, in this case, more than 25% of muta-
tions for all cfDNA samples were found in samples of 
other patients (median 73%; range 33–100). Conversely, 
when using very stringent filters whereby 10 or more 
variant reads and a VAF greater than 1.5% were required 

https://github.com/genome/bam-readcount
https://github.com/genome/bam-readcount
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to call a mutation, 42 cfDNA samples had less than 5 
mutations (median 2; range 0–107), but in this case, only 
a single mutation was found in another cfDNA sample 
from another patient while the remaining samples did 
not share mutations. Thus, while stringent filters reduce 
the number of shared cfDNA mutations (which we can 
assume predominantly reflect false-positive mutations), 
these also considerably reduce the number of mutations 
called (and thereby the number of true positives).

We observed that adopting filters such that a variant 
read count of 3 or more was required as well as a VAF of 
greater than 1% or 1.5%, provided a reasonable balance 
between a high number of likely true positives and a very 
low estimated number of false positives (Additional file 1: 
Fig. S3).

SCNA rescuing
In the majority of cfDNA samples (41/47), the tumour 
purity was estimated as lower than 5%, meaning analy-
sis was not possible using ASCAT [21]. However, for 19 
patients, at least one tumour sample (metastasis biopsy 
or PDX) with purity greater than 5% was sequenced and 
could be leveraged for the estimation of copy number 
aberrations.

For each case, the segmentation as provided by ASCAT 
for each of the samples with tumour content > 5% 
was overlapped to determine the minimum consist-
ent genomic regions across all samples. Each of these 
genomic regions had a number of SNPs associated with 
the segment, with individual B-allele frequency (BAF) 
estimates for each SNP as well as a segmentBAF (i.e. the 
median BAF across the segment) calculated by ASCAT.

For each of these minimum consistent genomic 
regions, the sample with the largest segmentBAF was 
selected, and all SNPs associated with the segment were 
classified as belonging to allele A or B based on the indi-
vidual BAF estimates within that sample being greater or 
less than 0.5, respectively. The classification of SNPs was 
then applied to all other samples, including those with no 
discernible tumour content, in a given patient.

If the segmentBAF of all samples was equal to 0.5, 
meaning no copy number aberration was detected at that 
locus, the SNPs were not phased. 

To determine whether a copy number aberration was 
present in another sample from the same patient, com-
parisons were performed to test whether the distribu-
tion of SNPs from alleles A and B were significantly 
different in the sample of interest. For this comparison, 
only segments were considered where a copy number 
aberration was detected by ASCAT in at least one sam-
ple. A Wilcoxon test was then used to compare the BAF 
distributions of the SNPs belonging to alleles A and B 
(p < 0.005).

Finally, for segments with copy number aberrations, 
mirrored subclonal allelic imbalance (MSAI) [17] was 
explored. If for a given segment, the BAFs of SNPs clas-
sified as belonging to allele A, i.e. the major allele, were 
significantly lower than the BAFs of SNPs belonging 
to allele B  in a given sample (one-sided Wilcoxon test, 
p < 0.01), the segment was defined as exhibiting mirrored 
subclonal allelic imbalance.

Estimating tumour content in cfDNA samples
For a subset of samples in the cohort (31 samples) includ-
ing 17 tissue samples as well as 6 cfDNA samples, tumour 
purity could be estimated using ASCAT. Additionally, 
for each sample, the mean VAF of ubiquitous mutations 
(mean clonal VAF) could be calculated. The mean clonal 
VAF reflects the purity of the tumour sample. Indeed, 
consistent with this, the two measures (mean clonal VAF 
and ASCAT estimated purity) were highly correlated, 
and using a linear model, the slope and intercept could be 
calculated (Additional file 1: Fig. S4). Using these values, 
a purity estimate for low-purity cfDNA samples could be 
calculated using the mean clonal VAF calculated for each 
sample.

Simulating BAF profiles
For a given purity p and copy number estimates of allele 
A CNa and B CNb , the expected BAF BAFe can be calcu-
lated as [21]:

To simulate a segment with  a total of N  SNPs, first 
the number of SNPs allocated to allele B  (NB)  was 
randomly sampled from a binomial distribu-
tion (n = N , p = 0.5) and the number of SNPs allocated 
to allele A was set to N − NB.  Then, for each SNP the 
BAF was calculated as follows: given  a purity p , copy 
number estimates of allele A CNa and B CNb the expected 
BAF was calculated using the equation above. The num-
ber of variant reads containing the SNP was sampled 
from a binomial distribution (n = D, p = BAFe) . Finally 
the BAF of the SNP was calculated as the number of vari-
ant reads divided by the depth D . This was repeated for 
all SNPs of allele B and a similar approach was applied to 
simulate SNPs for allele A.

Downsampling of PAN104 PDX
To simulate different effective purity samples from 
PAN104 PDX, the MixBAMs function from MASCoTE 
[22] was used with the PAN104 PDX and PAN104 ger-
mline samples as input. The BAMs created by the tool 
were then run through Platypus [23] in order to calculate 
the read counts and BAFs of all SNPs that were then used 

BAFe =
1− p+ (p ∗ CNb)

2− 2 ∗ p+ p ∗ (CNa + CNb)
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as input for ACT-Discover. The original PAN104 PDX 
sample was used as the high-purity reference to perform 
the SNP phasing.

Calculating the overall classification of SCNA 
heterogeneity
Copy number segments that could not be phased in any 
sample were defined as “no SCNA detected” overall. If 
mirrored subclonal allelic imbalance was detected in at 
least one sample, the segment was classified as “MSAI” 
overall. If the major allele was consistent across all sam-
ples, this was defined as a “homogeneous SCNA”. If no 
allelic imbalance could be detected in a sample, 100 sim-
ulations of SNPs at a depth of 50, given the same copy 
number state, purity of the sample, and number of SNPs 
on the segment were performed and the outputted BAFs 
tested. If in at least one of the 100 simulations allelic 
imbalance could not be detected, the segment in the sam-
ple was defined as not confidently absent and therefore 
excluded from the overall classification. Only samples 
with confidently detected or absent events were used.

Results
Patient cohort
We assembled a prospectively recruited cohort 
of 24 patients with advanced pancreatic ductal 

adenocarcinoma who had undergone sampling of their 
metastatic lesion (Fig.  1, Additional file  1: Fig. S1). 
Three of these patients were recruited with M0 dis-
ease and subsequently relapsed, while twenty-one had 
M1 disease upon recruitment into the study. Twenty-
one patients were followed up until death, with three 
patients alive at the end of the study period. One 
patient was lost to follow-up. The median survival from 
the date of biopsy of the metastatic lesion was 264 days 
(range 13–730 days).

Whole-exome sequencing (WES) of a metastatic 
biopsy specimen was performed on 22/24 patients, 
including one patient where, in addition to the metasta-
sis, two regions of the primary tumour were sequenced. 
For eight patients, patient-derived xenograft (PDX) 
models were derived from the metastasis biopsy and 
subjected to WES, including one patient in which it was 
not possible to perform WES on the metastatic biopsy. 
Furthermore, a total of 55 cell-free DNA (cfDNA) sam-
ples were extracted, ranging from 1 to 8 (median 2) per 
patient.

Genomic characteristics of pancreatic metastasis
The genomic characteristics of the evaluable patient 
cohort are displayed in Fig.  2. This information was 
gathered from the analysis of WES of metastatic biopsy 

Fig. 1 Cohort overview. Cohort of patients with metastatic pancreatic cancer. The date of metastatic biopsy relative to the time of diagnosis, 
systemic anti‑cancer therapy, liquid biopsies and death are annotated. ctDNA ‑ circulating tumour DNA; VAF ‑ variant allele frequency
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samples (total n = 18; of which 16 had sufficient tumour 
content > 5%), primary tumour samples (total n = 2, of 
which 1 had sufficient tumour content > 5%), any PDX 
samples (n = 8), and cfDNA samples with sufficient 
tumour content (i.e. > 5%; n = 6). Clustering of mutations 

using a modified version of PyClone [24] was used to 
resolve the clonal status of genomic events and to recon-
struct the subclonal architecture of tumours. The median 
number of mutations detected among the cohort of 19 
evaluable tumours was 84 (range 26–718). The number 

Fig. 2 Genomic characteristics. The top panel shows the mutation load for each tumour, split into clonal mutations that are found in all samples, 
and subclonal mutations found only in a subset. The second panel shows the fraction of each admixed sample estimated to be derived from 
tumour (purity), split by whether the sample was derived from a tissue sample of primary tumour (n = 1), metastasis (n = 16), patient‑derived 
xenograft (n = 8), or cfDNA (n = 6). Only samples with an estimated tumour purity > 5% are shown. The third panel shows the different genomic 
events for a set of cancer genes of interest. Mutations are represented as tiles, and somatic copy number aberrations (SCNAs) are overlaid as 
triangles. The colour of the tiles and triangles represents the timing of the mutations and copy number events, respectively. The final panel shows 
the proportion of mutations attributed to different mutational signatures for each patient. The five patients on the right of the figure, which are 
greyed out, do not have sufficient mutations (less than 50) to perform reliable signature deconvolution
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of clonal (estimated to be present in every cancer cell) 
mutations detected (mean 72.2, SD 37.1) was less variable 
than the number of subclonal mutations (mean 71.4, SD 
139.4).

Within the 19 tumours from which at least one sam-
ple of adequate tumour purity (> 5% tumour content) 
was isolated, the karyotype of tumours was characterised 
using ASCAT [21]. The estimated tumour content of tis-
sue, PDX and cfDNA samples are displayed in Fig. 2. The 
median weighted genomic instability index of samples, 
capturing the proportion of the genome that differs from 
ploidy, was 0.41 (range 0.18–0.91).

Using a list of cancer genes (comprising pan-cancer 
and pancreatic cancer genes) curated by Bailey et al. [20], 
we analysed putative driver events within the patient 
cohort. The majority of patients harboured high-confi-
dence clonal driver mutations within KRAS (14/19) and 
TP53 (13/19 patients), consistent with previous reports 
[3, 25]. No subclonal mutations were detected within 
these genes. SCNAs were also commonly detected at 
genomic loci containing driver alterations within the 19 
tumours with karyotype profiling. There was evidence 
of clonal loss-of-heterozygosity (LOH) at 9p (encod-
ing CDKN2A; 79% of patients, 87% clonal), 17p (TP53; 
95% of patients, 94% clonal) and 18q (SMAD4; 74% of 
patients, 93% clonal). Gain of the region of chromosome 
12p containing the KRAS oncogene was seen in 42% of 
tumours, occurring subclonally in 38% of cases. Other 
frequently observed SCNAs included loss of PTEN (54% 
of patients, 100% clonal) and SMARCA4 (58% of patients, 
64% clonal).

Next, mutational signatures, reflecting activity of 
endogenous and exogenous processes during tumour 
evolution, were characterised across the cohort  using 
deconstructSigs [26]. We observed patterns of common 
mutational signatures that are consistent with those 
previously reported, with clock-like mutational pro-
cesses  (e.g. SBS1 and SBS5) underpinning the majority 
of mutations [27]. Within the tumours of 4 patients har-
bouring a germline or somatic BRCA1 or BRCA2 muta-
tion, a trend towards a higher activity of SBS3 (associated 
with defects within the homologous recombination DNA 
repair pathway) was observed (median number of 
mutations associated with SBS3: 163 vs 24.1, Wilcoxon 
p = 0.096, Additional file  1: Fig. S5). We confirmed the 
association between a higher number of mutations asso-
ciated with SBS3 and germline BRCA mutations within 
the TCGA  cohort of pancreatic tumours (median num-
ber of mutations associated with SBS3: 16.2 vs 3.61, 
Wilcoxon p = 0.029; Additional file  1: Fig. S6). Of note, 
the same relationship was not observed when compar-
ing tumours with and without loss-of-heterozygosity 
at these loci. Furthermore, elevated mutation burden 

and presence of  SBS6, a single-base substitution signa-
ture associated with mismatch-repair deficiency was 
observed within  patient PANVH4. Further examination 
of the mutations identified within this tumour revealed 
a single intergenic mutation, a G > A transition at posi-
tion 47,739,509 on chromosome 2 (hg19 build; equiva-
lent to position 47,512,370 hg38 build) adjacent to MSH2, 
which has not been reported previously in the literature 
but might plausibly underpin the SBS6 mutational signa-
ture and high mutation burden observed.

Multiple temporospatial sampling to identify additional 
genomic variation within ctDNA
To assess the value of ctDNA in monitoring the ongo-
ing evolution of pancreatic cancers, serial blood plasma 
samples were extracted from each patient. WES was 
performed on each plasma sample at a median depth of 
105 × (range 35–205) and a bespoke analytical pipeline, 
ACT-Discover was developed for the detection of ctDNA 
and the characterisation of the genomic variation within.

Two-step filtering approaches were applied to detect 
mutations and SCNAs within ctDNA. Initially, we 
screened for de novo somatic variants within each sample 
independently using stringent filters, including a variant 
allele frequency (VAF) filter of > 5%. Overall, this revealed 
that a median of 8% (range 0–54%) of mutations detected 
within ctDNA were not shared with the tissue samples, 
highlighting that unbiased sampling in the blood can dif-
fer substantially from single-sample tissue biopsies that 
frequently capture a tiny minority of total tumour cells 
[28].

We subsequently performed an analysis of personalised 
(i.e. patient-specific) mutations analogous to that carried 
out in other studies [9, 29–32], in which a lower threshold 
of evidence was required to detect variants that had also 
been observed within another tumour sample derived 
from the same patient (see the “Methods” section). To 
optimise our approach for the identification of patient-
specific mutations within independent samples, we per-
formed a sensitivity analysis for thresholds used in calling 
mutations (Additional file 1: Figs. S2 & S3, the “Methods” 
section). This suggested that a mutant read count filter 
of ≥ 3 reads, combined with a VAF filter of > 1.5% was 
required to identify true positive mutations while mini-
mising potential false positive calls arising from common 
sequencing errors.

We then applied the same logic to the detection and 
analysis of SCNAs. Using ASCAT, genomic segments 
that were in allelic imbalance within each sample with 
adequate tumour purity were identified [21]. These 
segments contained multiple single nucleotide poly-
morphisms (SNPs), enabling the phasing of parental hap-
lotypes. Using phased SNPs we could then investigate 
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whether allelic imbalance was observed in additional 
samples, even in those with low tumour purity. Simulated 
data, whereby segments containing different numbers 
of SNPs in the context of loss-of-heterozygosity, at dif-
ferent sample tumour fractions (purity), were then que-
ried to establish the sensitivity and specificity of such an 
approach (Fig.  3A). This indicated that, for example, at 
purity of 0.1%, a haplotype-aware approach would be able 

to identify allelic imbalance within a segment containing 
at least 50,000 SNPs.

Next, we validated these findings using real data from 
patient tumours. Using a downsampling approach [22], 
we tested the ability of ACT-Discover to identify allelic 
imbalance with increasingly impure samples (Fig.  3B, 
Additional file 1: Fig. S7). In data derived from sequenc-
ing of the PDX sample (estimated tumour content: 95%) 

Fig. 3 Tumour‑informed analysis of somatic mutations and copy number alterations. A Simulated data testing the sensitivity of ACT-Discover at 
tumour content between 0 and 10% with differing numbers of simulated SNPs per segment. At a simulated purity of 5–10%, segments containing 
only 50 SNPs could be rescued using ACT-Discover. At a simulated purity of 0.1%, only segments containing 50,000 SNPs or more could be rescued. 
B Downsampling approach testing the sensitivity of ACT-Discover in the context of reduced effective tumour content. At simulated purity of ~ 10% 
(i.e. 10% PDX content), 97% of this allelic imbalance remained detectable. Even at 1% effective purity, 20% of allelic imbalance was detectable, 
and at 0.1% effective purity, it was still possible to detect allelic imbalance, albeit only 5%. C Number of mutations identified within each sample, 
coloured by whether they were identified using de novo somatic mutation calling or whether they required a tumour‑informed approach, and the 
number of copy number alterations identified within each sample, coloured by whether they were identified using de‑novo copy number calling 
or whether they required a haplotype‑informed approach. D Copy number profiles of metastasis and three cfDNA samples of patient PANVH2. 
For each segment, a sample was selected that had the greatest absolute difference of BAF values to 0.5. The SNPs were then coloured based on 
whether they were greater than 0.5 (orange) or less or equal than 0.5 (purple). This colouring was then used for the SNPs in the segment in all other 
samples. It was not possible to phase SNPs coloured in grey. Segments where in at least one sample SNPs coloured in purple have BAF values 
greater than 0.5 can be classified as having mirrored subclonal allelic imbalance. Examples of this can be seen on chromosome 2q and 7p
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from PAN104, 65% of the genome was identified as being 
in allelic imbalance. Adding in matched germline reads to 
simulate an admixed sample of lower purity reduces the 
fraction of events it is possible for ACT-Discover to iden-
tify. However, at simulated purity of ~ 10% (i.e. 10% PDX 
content), 97% of this allelic imbalance remained detecta-
ble. Even at 1% simulated purity, 20% of allelic imbalance 
was detectable, and at 0.1% effective purity, it was still 
possible to detect allelic imbalance, albeit only 5% of all 
allelic imbalance. Reassuringly, when we “downsampled” 
to a simulated purity of 0% (i.e. using 100% germline 
DNA reads), no allelic imbalance (which would repre-
sent a false-positive call) was detected. This suggests 
that ACT-Discover can elucidate substantial information 
relating to tumour aneuploidy from cfDNA samples with 
ctDNA fractions of around 1% and can still recover ele-
ments of this in samples with even lower tumour content.

We summarise our mutation and SCNA-rescuing 
approaches in Fig.  3C. We observed a median of 24.5 
(range 5–115) mutations within 20 of 47 cfDNA samples, 
of which a median of 22% (range 0–73%) had been res-
cued using the patient-informed approach (Fig. 3C). Sim-
ilarly, we observed a median of 4.5 and mean of 30 (range 
1–141) SCNAs within 28 of 47 cfDNA samples. Analy-
sis of the allelic frequencies of phased personalised SNPs 
within paired samples from within individual patients 
confirmed this approach enabled the identification of 
SCNAs at lower thresholds (see the “Methods” section). 
Strikingly, a median of 100% and mean of 82% (range 
3.5–100%) of SCNAs, including every SCNA within 22 
cfDNA samples, were only detectable using haplotype 
phasing, and, as such, would be missed in the absence 
of ACT-Discover (Fig. 3C). Additionally, we also applied 
ACT-Discover to the matched germline samples to ensure 
we were not overcalling allelic imbalance. Reassuringly, 
no allelic imbalance was detected.

Figure  3D shows an exemplar case (PANVH2) that 
illustrates the utility of ACT-Discover. Here, the PDX 
sample enabled inference of parental haplotypes for the 
47.4% of the genome that was subject to allelic imbalance. 
Analysis of groups of SNPs from phased parental alleles 
within ctDNA uncovered multiple instances of allelic 
imbalance, at chromosome 1p, 6q, 11q, 12, 17p (contain-
ing the TP53 locus) and 18q within a paired ctDNA sam-
ple. The use of an alternative approach, ichorCNA [33], 
which seeks to identify copy number variation based on 
observed changes in read depth alone and does not phase 

SNPs, failed to observe these events, highlighting the 
added value of ACT-Discover (Additional file 1: Fig. S8).

In total, 9 of 16 patients (PAN104, PAN105, PAN109, 
PAN112, PAN113, PAN115, PAN119, PAN125, PAN129) 
who had cfDNA samples collected at diagnosis were 
found to be ctDNA positive based on mutations. Nota-
bly, of the 7 who were negative, only 4 patients (PAN110, 
PAN117, PAN120, PAN121) remained ctDNA-negative 
during the disease course. Within the 16 patients with 
evaluable samples at diagnosis, there was a trend that 
did not meet statistical significance towards a favourable 
outcome in those without ctDNA detected at that point, 
consistent with other work in appropriately powered 
cohorts [34] (p = 0.18, Additional file 1: Fig. S9).

Karyotype intra‑tumour heterogeneity 
throughout the disease course
Using ACT-Discover, it was possible within a subset of 
patients to characterise in detail the evolutionary dynam-
ics of somatic genomic variation, at the level both of 
point mutations and SCNAs, during the disease course.

One such patient, PAN113, presented with metastatic 
pancreatic cancer. Thirty-one days following diagnosis, 
and prior to the patient receiving systemic anti-cancer 
therapy, a biopsy of the metastatic lesion (estimated 
tumour content of 44%) was obtained alongside a con-
comitant cfDNA sample with estimated ctDNA content 
of 70%, according to ASCAT (Fig.  4A). It was therefore 
possible to reconstruct a detailed estimate of tumour 
karyotype from both samples. Each sample revealed sub-
stantial aneuploidy, with 51% and 82% of the genome 
in allelic imbalance within the metastatic sample and 
ctDNA, respectively. However, substantial copy number 
heterogeneity, affecting 22% of the genome, was observed 
between the karyotypes derived from the metastatic 
biopsy and the ctDNA sample. Notably, mirrored sub-
clonal allelic imbalance (MSAI; where the maternal allele 
is gained or lost in one subclone of a tumour, but the 
paternal allele is gained or lost in another independently) 
was identified at two genomic loci: part of chromosome 
4q (containing the tumour suppressor FAT1) and a focal 
segment on the p arm of chromosome 2 (Fig.  4C, D). 
These events are suggestive of parallel evolution, con-
verging upon disruption to specific genomic loci, in this 
case, events at 4q and 2p. Furthermore, this highlights 
the presence of at least two distinct subclones at the 
point of sampling and prior to systemic treatment, one of 

(See figure on next page.)
Fig. 4 Heterogeneity of somatic copy number alterations in an untreated cancer. A Timeline of patient PAN113 showing sample collection and 
treatment. B Phylogenetic tree showing mutation clusters arising prior to, and after, systemic anti‑cancer treatment. A putative driver mutation 
in CREBBP arises during treatment. C Heterogeneity of somatic copy number alterations (SCNAs). Events occur in parallel, potentially indicative of 
convergent evolution, or are heterogeneous between a metastatic sample and cfDNA extracted at the same time point. Ongoing heterogeneity is 
detected over time in subsequent cfDNA samples. D Copy number profiles of metastasis and three cfDNA samples of patient PAN113
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Fig. 4 (See legend on previous page.)
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which was not biopsied but was capable of shedding an 
amount of ctDNA that exceeded that of the subclone that 
was sampled at diagnosis.

Furthermore, in PAN113, serial ctDNA biopsies 
were extracted on days 50 and 137 following diagnosis 
(Fig. 4A). The ctDNA content of these samples was simi-
larly high, at 37% and 76%, respectively. These samples 
were taken during systemic anti-cancer treatment with 
the agents gemcitabine and paclitaxel, and further evolu-
tion of mutations and SCNAs was observed. For example, 
a tumour subclone was detected at day 137 containing a 
de novo mutation within the cancer gene CREBBP that 
was not detected in either the metastatic biopsy or within 
the previous two cfDNA samples (Fig.  4B). Within this 
subclone that may have emerged in response to treat-
ment, mutations were also detected within the genes 
AKAP9 and ACSL6, both of which are listed in the COS-
MIC cancer gene census [35]. Importantly, there was 
evidence of further karyotype remodelling during treat-
ment (Fig. 4C, D). MSAI was observed on chromosome 
arms 11q (containing a number of cancer genes including 
ATM and KMT2A) and 12p, suggestive of ongoing clonal 
evolution and potential selection of SCNAs during treat-
ment in this patient (Fig. 4C, D). Other SCNA heteroge-
neity was observed at sites of chromosomes 3, 4, 7, 14, 18 
and 20.

It was also possible to compute phylogenetic trees for 
a total of 6 patients (Additional file  1: Fig. S10) and to 
detect copy number information for a total of 15 cases 
using liquid biopsy samples (Additional file  1: Figs. 
S11-S25).

For case PANVH2, in whom one cfDNA sample con-
taining sufficient ctDNA to study SCNAs was extracted 
during follow-up, differences in copy number profile 
were observed across multiple chromosomes, includ-
ing MSAI at chromosome 2q, 6p and 7p. Similarly, in 
PAN108 focal segments of MSAI were observed in the 
cfDNA samples on chromosomes 17 and 19. Further het-
erogeneity was observed in SCNAs between tissue biop-
sies and ctDNA samples within PAN104 and PAN109; 
of note, the ctDNA from PAN109 was extracted on the 
same day as the metastasis was sampled.

In total, using an approach that classified genomic 
segments according to whether allelic imbalance was 
homogenous (i.e. consistent across samples with suf-
ficient tumour content to detect it at high confidence) 
or heterogeneous (i.e. there were instances of karyo-
type heterogeneity across samples), 13 of 15 patients 
demonstrated evidence of karyotype heterogeneity 
with a median of 26.6% (range 0–91.2%) of the genome 
affected by allelic imbalance found to be heterogeneous 
across samples in a patient. Importantly, this feature was 
strongly correlated to the estimated tumour content of 

cfDNA samples based on the mean clonal VAF (Addi-
tional file  1: Figs. S4, S26, the “Methods” section). This 
highlights that karyotype heterogeneity is relatively com-
mon in pancreatic cancer, and that our power to deter-
mine its ubiquity is intimately linked to the extent of 
sampling (in this case, it is possible that lack of tumour 
content masks the discovery of spatio-temporal inter-
sample heterogeneity).

Discussion
Liquid biopsy and the analysis of cell-free DNA has 
emerged as a promising biomarker for patient stratifi-
cation and the detection of minimal residual disease [9, 
36, 37]. It has also shown convincing utility in studies of 
tumour evolution, such as tracking of phylogenetic clones 
using point mutations over time [9]. However, it is clear 
that substantial functionally impactful variation occurs at 
the level of somatic copy number alterations. The ability 
to detect such events through liquid biopsy could repre-
sent an important adjunct to studies of tumour evolution.

To that end we have developed a novel approach, ACT-
Discover, which leverages allele-specific haplotype phas-
ing from a tumour, PDX or high-purity cfDNA sample to 
identify heterogeneity of allelic imbalance between sam-
ples taken across time and space, thereby enabling explo-
ration of ongoing tumour evolution.

Insights into pancreatic cancer evolution prior to and 
in response to treatment are urgently required given 
that 70% of patients die within one year of diagnosis [2]. 
In a small cohort of patients with advanced pancreatic 
cancer, we have used ACT-Discover to reveal karyotype 
heterogeneity both before and during treatment across 
multiple patients with late-stage disease, suggestive of 
ongoing genetic remodelling that would not be otherwise 
detected.

In our small cohort, we observe homogeneity among 
driver mutations such as within KRAS and TP53, which 
in isolation are supportive of the model of pancreatic 
cancer evolution that describes a punctuated course with 
early, clonal events. However, within one case, we find 
significant pre and post-treatment karyotype heteroge-
neity, and evidence within ctDNA of a putative driver 
mutation within the tumour suppressor gene CREBBP 
arising through treatment over time. Analysis of allele-
specific haplotype profiles reveals MSAI affecting dispa-
rate genomic loci, with 12 instances of this phenomenon 
occurring across four cases. This might indicate parallel 
evolution and selection whereby there is ongoing optimi-
sation of clonal fitness.

Within our study, which was limited by the extent of 
ctDNA shedding from each tumour, and the resultant 
tumour fraction detected within cfDNA, it was only pos-
sible to investigate allelic imbalance using ACT-Discover 
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within 16 patients. Within this subset of patients, we 
identified an element of karyotypic heterogeneity within 
each case, highlighting the potential additional informa-
tion that might be conferred by ACT-Discover.

ACT-Discover is not the first approach to search for 
SNCAs within cfDNA. Indeed, other approaches lever-
age the subtle differences in read depth or B-allele fre-
quencies suggestive of underlying SCNAs in order to 
increase assay sensitivity [38–40]. ACT-Discover lever-
ages tumour-informed allele-specific SCNA detection 
to explore karyotype heterogeneity during tumour evo-
lution. Future studies should consider this dimension 
where possible, and need only be limited by the extent of 
aneuploidy within tumours, the fraction of the genome 
sampled (whole-genome sequencing might augment this 
approach), the ctDNA fraction within the blood (which 
can be substantial, particularly in late-stage disease), as 
well as multiple sampling.

To leverage the haplotype-phasing approach of ACT-
Discover, at least one sample of sufficient tumour purity 
to identify parental haplotypes within areas of allelic 
imbalance, particularly loss-of-heterozygosity, is required. 
Alternatively, orthogonal methods for phasing, for exam-
ple, through long-read sequencing, could be applied. 
Of note, in this study, 8 PDXs had been curated. PDXs 
provide extremely pure tumours, and in our study ena-
bled haplotyping of substantially greater fractions of the 
genome than would otherwise have been available. This 
highlights an important auxiliary function of PDXs [41].

Notwithstanding the limitations of the cohort size 
and ctDNA detection methodology presented here, 
through the use of whole-exome sequencing of liq-
uid biopsy specimens, we detected ctDNA within the 
blood of 9 out of 16 patients at the time of metastatic 
biopsy. A trend towards worse outcomes was observed 
within these patients. Importantly, the approach used 
in this study was not optimised for ctDNA detection 
and sensitivity in comparison with other approaches [9, 
36, 37] (such as multiplex droplet digital PCR), and so 
it is likely that the 7 patients in whom ctDNA was not 
detected might include “false-negative” cases, where 
ctDNA was present but below the limit of detection. 
Taken with other studies, which have identified ctDNA 
within a plurality of patients with pancreatic adenocar-
cinoma, this suggests ctDNA might be a biomarker in 
pancreatic cancer patients [42].

One limitation of this work is that through using 
conventional whole-exome sequencing of ctDNA, we 
are restricted to the analysis of samples with very high 
tumour content in the blood. Therefore, it is likely we 
have underestimated the overall degree of karyotype 
heterogeneity among the cohort. Furthermore, future 
work should seek to understand the extent of SCNA 

heterogeneity throughout the disease course, from pre-
cancer lesions to primary and metastatic disease. This 
would likely only be possible with approaches that con-
sider the whole genome, or individual sites at much 
greater depth.

Conclusions
Our findings underscore the importance of sampling 
approaches across time and space in cancer, as well as 
the importance of ctDNA-based approaches in docu-
menting the course of tumour evolution, and highlight 
intra-tumour heterogeneity within late-stage pancre-
atic cancer.
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