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Abstract 

Background Pathogenic germline variants (PGVs) in certain genes are linked to higher lifetime risk of developing 
breast cancer and can influence preventive surgery decisions and therapy choices. Public health programs offer 
genetic screening based on criteria designed to assess personal risk and identify individuals more likely to carry PGVs, 
dividing patients into screened and non‑screened groups. How tumor biology and clinicopathological characteristics 
differ between these groups is understudied and could guide refinement of screening criteria.

Methods Six thousand six hundred sixty breast cancer patients diagnosed in South Sweden during 2010–2018 were 
included with available clinicopathological and RNA sequencing data, 900 (13.5%) of which had genes screened for 
PGVs through routine clinical screening programs. We compared characteristics of screened patients and tumors to 
non‑screened patients, as well as between screened patients with (n = 124) and without (n = 776) PGVs.

Results Broadly, breast tumors in screened patients showed features of a more aggressive disease. However, few 
differences related to tumor biology or patient outcome remained significant after stratification by clinical subgroups 
or PAM50 subtypes. Triple‑negative breast cancer (TNBC), the subgroup most enriched for PGVs, showed the most 
differences between screening subpopulations (e.g., higher tumor proliferation in screened cases). Significant differ‑
ences in PGV prevalence were found between clinical subgroups/molecular subtypes, e.g., TNBC cases were enriched 
for BRCA1 PGVs. In general, clinicopathological differences between screened and non‑screened patients mimicked 
those between patients with and without PGVs, e.g., younger age at diagnosis for positive cases. However, differences 
in tumor biology/microenvironment such as immune cell composition were additionally seen within PGV carriers/
non‑carriers in ER + /HER2 − cases, but not between screening subpopulations in this subgroup.

Conclusions Characterization of molecular tumor features in patients clinically screened and not screened for PGVs 
represents a relevant read‑out of guideline criteria. The general lack of molecular differences between screened/non‑
screened patients after stratification by relevant breast cancer subsets questions the ability to improve the identifica‑
tion of screening candidates based on currently used patient and tumor characteristics, pointing us towards universal 
screening. Nevertheless, while that is not attained, molecular differences identified between PGV carriers/non‑carriers 
suggest the possibility of further refining patient selection within certain patient subsets using RNA‑seq through, e.g., 
gene signatures.
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Trial registration The Sweden Cancerome Analysis Network – Breast (SCAN‑B) was prospectively registered at Clini‑
calTrials.gov under the identifier NCT02306096.

Keywords Hereditary breast cancer, Clinical screening, Gene expression, Gene variants, Molecular subtypes

Background
Breast cancer is the most common malignancy in 
women. Underlying causes of disease include lifestyle 
factors and reproductive history, but also germline 
predisposition. Proportions vary with ancestry, but an 
estimated 5–10% of breast cancer cases carry germline 
variants in genes associated with moderate to strong 
breast cancer risk (e.g., BRCA1, BRCA2, and CHEK2) 
[1, 2]. These variants can influence disease onset, pro-
gression, biology of the tumor, potential for therapy, 
risk of recurrence, and cancer risk of close relatives [3]. 
This has led to clinical genetic screening of women to 
detect and monitor families at risk, but also to provide 
access to risk-reducing prophylactic surgery and in cer-
tain instances targeted therapies for developed tumors 
[4, 5]. Criteria for genetic screening are designed to 
assess personal risk of developing cancer and likeli-
hood of being a carrier of a pathogenic germline variant 
(PGV) [6, 7]. Although specific criteria vary between 
countries, they usually include personal and family 
history of breast and/or ovarian cancer, young age at 
disease onset, male breast cancer, and in recent years, 
specific relevant clinical subgroups. Genetic screen-
ing offered to all breast cancer patients or to the gen-
eral population has also been implemented as part of 
research studies or in specific populations with high 
prevalence of founder variants [8, 9]. Recommenda-
tions regarding which genes to include in testing also 
vary, in part as an adaptation to the selection criteria 
implemented in the screening programs [10, 11].

PGVs in certain breast cancer predisposition genes 
are more strongly associated with specific clinico-
pathological characteristics and molecular subtypes 
of breast cancer [12–20]. Specific examples include 
association of the CHEK2 c.1100delC variant with ER-
positive disease [16, 17], and BRCA1, BRCA2, BARD1, 
BRIP1, PALB2, RAD51C, RAD51D, and TP53 variants 
with increased risks of triple-negative breast cancer 
(i.e., tumors that are negative for estrogen receptor 
[ER], for progesterone receptor [PR], and for ampli-
fication of the human epidermal growth factor recep-
tor 2/erythroblastic oncogene B [HER2/ERBB2] gene, 
TNBC) [18–20]. Moreover, PGVs may induce specific 
genomic patterns as exemplified by inactivating vari-
ants in BRCA1, which introduces characteristic genetic 
alterations in the tumor genome, representing the 
somatic genetic scars of DNA repair deficiency through 

defective homologous recombination that manifest in 
mutational and rearrangement signatures [21, 22].

Many studies have investigated the population-based 
prevalence and risk of breast cancer from PGVs in breast 
cancer predisposition genes [1, 2, 23–26]. Fewer studies 
have been able to describe how such PGVs impact clin-
icopathological and molecular patterns in population-
based breast cancer [13–15, 27, 28]. It has been suggested 
that risk stratification of women with breast cancer in the 
general population based on patient and tumor marker 
features is important to identify women at the highest 
risk of having germline alterations [1, 13]. Consequently, 
understanding clinical and molecular features and char-
acteristics of not only PGV carriers, but also between 
patients currently screened for variants according to 
guidelines (including those with no findings) and the 
non-screened population of patients in general appears 
important, representing a read-out of the current patient 
selection process. In this study, we particularly aimed 
to address the latter question through the analysis of a 
population-based cohort of 6660 breast cancer patients 
profiled by RNA sequencing (RNA-seq) from one single 
institution in southern Sweden with matched records of 
clinical genetic screening data. Specifically, we aimed to 
contrast patients that have been screened according to 
actual clinical decision versus patients not screened for 
germline variants in relevant clinical and molecular sub-
sets of breast cancer to determine if screened patients 
and/or their tumors are associated with specific clin-
icopathological or molecular characteristics not clearly 
stated in the testing guidelines, a study currently not 
reported at this scale.

Methods
Unselected population‑based breast cancer cohort
The Sweden Cancerome Analysis Network – Breast 
(SCAN-B) initiative [29, 30] (ClinicalTrials.gov ID 
NCT02306096, prospectively registered) first started 
enrolling participants in September 2010 and it is still 
ongoing. It has as primary outcomes the analyses of 
biomarkers, of their relationship to patient and tumor 
characteristics, and their relationship with invasive dis-
ease-free survival at different time points. In addition, 
overall survival and breast cancer-specific survival are 
included as secondary outcomes also calculated at dif-
ferent time points up to a 20-year follow-up. Six thou-
sand six hundred sixty patients diagnosed with primary 
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invasive breast tumors and enrolled in SCAN-B between 
September 1, 2010, and May 31, 2018, with curated 
RNA-seq and clinicopathological data available in Staaf 
et  al. [31] were included in this study, a cohort hereaf-
ter referred to as SCAN-B. A CONSORT diagram with 
sample inclusion/exclusion criteria is available in the 
supplementary material of the original publication [31]. 
This SCAN-B cohort has been shown to be representa-
tive of the underlying healthcare population from which 
they were recruited [31]. Clinicopathological and molec-
ular subtype information (PAM50 and Risk Of Recur-
rence [ROR] score [12]) implemented as described in 
Staaf et  al. [31] for the cohort are provided in Table  1. 
Patient ancestry and race were not available to this 
study. Patients were divided into clinically relevant sub-
groups according to ER, PR, and HER2 status (+ = posi-
tive, −  = negative), as well as lymph node (LN) status in 
some cases, resulting in five subgroups (Fig. 1). Subgroup 
enrollment into SCAN-B was similar between years of 
the study [31]. For analyses conducted within germline 
screened patients alone, the five clinical subgroups were 
combined into only three for larger sample size. Alter-
natively, patients were divided into four PAM50 molec-
ular subtypes derived from RNA-seq (Fig.  1). Not at all 
patients could be included in analyses using subgroups/
subtypes. See Additional file 1: Supplementary Methods 
for more information on SCAN-B subsets. Clinicopatho-
logical information by subgroup/subtype is provided in 
Additional file 2: Table S1.

Screening for variants in predisposition genes
Included SCAN-B patients were cross-matched to 
clinical genetic screening data performed at the Divi-
sion of Oncology, Department of Clinical Sciences in 
Lund, Lund University, Sweden—the main institution 
for screening in the area. Of 6660 patients, 900 (13.5%) 
had been referred to counseling and genetic screening 
according to practitioner’s choice based on at-the-time 
current guidelines, a clinical decision that is completely 
separated from enrollment in the SCAN-B study. Cur-
rent screening criteria rely mainly on patient gender, age, 
and family history (Table  2), and they were made more 
inclusive than the previous version [32] by changing, 
e.g., age cutoffs. Criteria are similar to those proposed in 
the National Comprehensive Cancer Network (NCCN) 
Guidelines [7]. The individual cause for a patient’s refer-
ral to screening was not accessible to the study due to 
ethical permissions. Based on clinical screening sta-
tus, each of the 6660 patients was assigned to either a 
screened or non-screened subpopulation. Clinicopatho-
logical characteristics for the screened and non-screened 
subpopulation are summarized in Table 1. Most screened 
patients were analyzed for PGVs in several genes through 

NGS-based hybrid capture panels [33] that include 11 
genes previously associated with breast cancer [1, 2] 
that are the focus of this study: ATM, BARD1, BRCA1, 
BRCA2, CDH1, CHEK2, PALB2, PTEN, RAD51C, 
RAD51D, and TP53. More information on screening can 
be found in the Additional file  1: Supplementary Meth-
ods. Variants had been classified as benign, likely benign, 
uncertain, likely pathogenic, or pathogenic, and clinical 
significance was compared to information on ClinVar 
[34] at date of accession (May 2020). In this study, likely 
pathogenic and pathogenic variants are combined and 
referred to only as pathogenic (similar to [1]), and likely 
benign and benign variants as benign. Germline variant 
waterfall plot and variant distribution in specific genes 
were created with the R packages ComplexHeatmap [35] 
v2.6.2 and trackViewer [36] v1.26.2 respectively. Protein 
domains were obtained from Pfam [37] according to 
UniProt entries P38398 (BRCA1), P51587 (BRCA2), and 
O96017 (CHEK2).

Gene expression analyses
RNA sequencing (RNA-seq) data had been obtained 
from fresh tissue specimens and processed as described 
[29, 30]. Fragments per kilobase million (FPKM) values 
were available for all 6660 SCAN-B cases. These were 
used in several steps such as classifying samples without 
Ki67 tumor cell proliferation biomarker status into low or 
high proliferation based on MKI67 expression values (see 
Additional file 1: Supplementary Methods). To calculate 
another tumor proliferation measure, expression values 
of genes associated with chromosomal instability and 
cell proliferation rate belonging to the CIN70 signature 
[38] (Additional file  2: Table  S2) were used to estimate 
rank scores per sample as described in Nacer et al. [39] 
(see Additional file 1: Supplementary Methods for more 
details). Here, a low rank score indicates a low in silico 
level of tumor proliferation for a given sample relative to 
the cohort. A similar approach was used to calculate an 
in silico immune response rank score based on 71 highly 
correlated genes previously associated with this pathway 
based on a gene network analysis in breast cancer [40] 
(Additional file 2: Table S2).

Differential gene expression analyses between groups 
were performed using significance analysis of microar-
rays (SAM) [41] based on the samr R package v3.0 sep-
arately for each clinical subgroup and PAM50 subtype 
with false discovery rate (FDR) adjustment of p-val-
ues (p ≤ 0.01 cut-off, Additional file  1: Supplementary 
Methods). Whenever up- or downregulated genes were 
identified in the screened subpopulation, a statistical 
overrepresentation test was performed using the PAN-
THER Classification System [42] v17.0 to identify pos-
sibly important represented pathways based on gene 
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function as outlined (Additional file  1: Supplementary 
Methods). To assess potential gene expression variance 
associated with screening status, dimensionality reduc-
tion through Uniform Manifold Approximation and 

Projection (UMAP) was performed on RNA-seq data for 
each subset independently with the R packages tidymod-
els v0.1.3 and embed v0.1.5 (Additional file 1: Supplemen-
tary Methods).

Table 1 Clinicopathological characteristics of patients and tumors in SCAN‑B divided by screening subpopulation

P chi-square test p-value corrected for multiple testing (8 tests) with the Benjamini–Hochberg method. Variable categories “Not available” and “Other” were excluded 
from calculations

Non‑screened patients
(n = 5760)

Screened patients
(n = 900)

Total
(n = 6660)

P

Gender  < 0.001

 Female 5732 (99.5%) 880 (97.8%) 6612 (99.3%)

 Male 28 (0.5%) 20 (2.2%) 48 (0.7%)

Age at diagnosis (years)  < 0.001

  ≤ 40 117 (2.0%) 212 (23.6%) 329 (4.9%)

 41–50 830 (14.4%) 214 (23.8%) 1044 (15.7%)

 51–60 1140 (19.8%) 157 (17.4%) 1297 (19.5%)

 61–70 1850 (32.1%) 205 (22.8%) 2055 (30.9%)

 71–80 1228 (21.3%) 87 (9.7%) 1315 (19.7%)

  ≥ 81 595 (10.3%) 25 (2.8%) 620 (9.3%)

Nottingham histologic grade (NHG)  < 0.001

 Grade 1 923 (16.0%) 103 (11.4%) 1026 (15.4%)

 Grade 2 2824 (49.0%) 361 (40.1%) 3185 (47.8%)

 Grade 3 1820 (31.6%) 332 (36.9%) 2152 (32.3%)

 Not available 193 (3.4%) 104 (11.6%) 297 (4.5%)

Tumor size 0.68

 T1 (< 20 mm) 3329 (57.8%) 547 (60.8%) 3876 (58.2%)

 T2 (20–50 mm) 1743 (30.3%) 267 (29.7%) 2010 (30.2%)

 T3 (> 50 mm) 169 (2.9%) 27 (3.0%) 196 (2.9%)

 Other/Not available 519 (9.0%) 59 (6.6%) 578 (8.7%)

Ki67 status  < 0.001

 Low 2890 (50.2%) 341 (37.9%) 3231 (48.5%)

 High 2870 (49.8%) 559 (62.1%) 3429 (51.5%)

Risk of recurrence (ROR) score  < 0.001

 Low 1937 (33.6%) 241 (26.8%) 2178 (32.7%)

 Intermediate 1287 (22.3%) 174 (19.3%) 1461 (21.9%)

 High 2329 (40.4%) 433 (48.1%) 2762 (41.5%)

 Not available 207 (3.6%) 52 (5.8%) 259 (3.9%)

Clinical subgroup  < 0.001

 ER + /HER2 − /LN − 2869 (49.8%) 328 (36.4%) 3197 (48.0%)

 ER + /HER2 − /LN + 1495 (26.0%) 232 (25.8%) 1727 (25.9%)

 HER2 + /ER − 221 (3.8%) 33 (3.7%) 254 (3.8%)

 HER2 + /ER + 469 (8.1%) 95 (10.6%) 564 (8.5%)

 TNBC 489 (8.5%) 160 (17.8%) 649 (9.7%)

 Not available 217 (3.8%) 52 (5.8%) 269 (4.0%)

PAM50 molecular subtype (restricted by ER/HER2 status)  < 0.001

 Luminal A (& ER + /HER2 −) 2904 (50.4%) 359 (39.9%) 3263 (49.0%)

 Luminal B (& ER + /HER2 −) 1173 (20.4%) 155 (17.2%) 1328 (19.9%)

 HER2‑enriched (& HER2 +) 337 (5.9%) 53 (5.9%) 390 (5.9%)

 Basal (& ER − /HER2 −) 338 (5.9%) 143 (15.9%) 481 (7.2%)

 Other 1008 (17.5%) 190 (21.1%) 1198 (18.0%)
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In silico abundance estimates of different cell types 
were derived from bulk RNA-seq data by two approaches: 
(i) a marker gene-based method, xCell [43], used to 
evaluate the presence of 64 cell types locally with the R 
package v1.1.0, and (ii) a deconvolution-based method, 
CIBERSORTx [44], used online on absolute mode to 
impute fractions of six cell types (batch correction and 

quantile normalization disabled, 100 permutations). 
Other details and statistical approaches are outlined in 
Additional file 1: Supplementary Methods.

RNA-seq data were also used to identify expressed 
somatic variants using 6614 available variant call-
ing files from SCAN-B patients, 893 of which belonged 
to screened patients. Variant calls were created using 

Fig. 1 Project outline. Cohort division into clinically relevant breast cancer subgroups and PAM50 molecular subtypes including which information 
was used to compare the screened and non‑screened subpopulations. Patients without ER/HER2 information are not shown in the PAM50 division. 
Subsets surrounded by dotted lines were not included in the analyses (see Additional file 1: Supplementary Methods)

Table 2 Swedish Breast Cancer Group criteria for screening for variants in predisposition genes as implemented in 2017 and how 
many patients meet those criteria in SCAN‑B. Criteria from before 2017 are available in [32]

a  The other cancer cases can also be of ovarian cancer, early prostate cancer (before the age of 65), or pancreatic cancer. Bilateral breast cancer counts as two cases. 
b  NA number of patients could not be calculated since family history was not accessible to the study

Criteria SCAN‑B casesb

Breast cancer ≤ 40 years of age 329

Breast cancer ≤ 50 years of age if there is at least one other case of breast cancer in first‑degree or second‑degree  relativesa NA

Breast cancer ≤ 60 years of age if there are at least two other cases of breast cancer in first‑degree or second‑degree  relativesa NA

Triple‑negative breast cancer ≤ 60 years of age 298

Male breast cancer irrespective of age 48

Ovarian cancer including fallopian tube cancer and primary peritoneal carcinomatosis (not mucinous nor borderline) irrespective of 
age

NA

Meeting criteria for other hereditary syndromes that include breast/ovarian cancer NA
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a pipeline originally reported by Brueffer et  al. [45] but 
with a few modifications (Additional file  1: Supplemen-
tary Methods). Variant calling from RNA has short-
comings when compared to from DNA, but it can still 
generate similar, valid results (see [45] for a discussion). 
The pipeline also reports predictions of which genes are 
affected by the variant and functional impacts it can have. 
A total of 361,034 variants in nearly 14,500 genes were 
found in our cohort: 349,965 single-nucleotide variants 
(SNVs, 97%), 2538 insertions, and 8531 deletions. Most 
variants were predicted to affect untranslated regions 
(49.8%) or to cause missense amino acid changes in pro-
teins (33.5%), but several synonymous changes were also 
identified (11.9%).

Survival analyses and statistical methods
Survival analyses were performed with R v4.0.3 in 
RStudio using the survival v3.2.7 and survminer v0.4.8 
packages with overall survival (OS) and distant recur-
rence-free interval (DRFi) as clinical endpoints. Survival 
curves were compared using Kaplan–Meier estimates 
and the log-rank test. Hazard ratios (HR) and a 95% con-
fidence interval (CI) were calculated either through uni-
variate or multivariate Cox regression using the coxph 
function and verified to fulfill assumptions for propor-
tional hazards. Covariates in the multivariate analysis 
included patient age at diagnosis, NHG status, tumor 
size, and lymph node status. The latter one was not 
included for subgroups already stratified by it (e.g., ER + /
HER2 − /LN −). The categories “Other” and “Not availa-
ble” were excluded from statistical calculations, as well as 
other categories with less than five representatives in the 
screened subpopulation. All p-values reported are two-
sided and were compared to a level of significance of 0.05 
unless otherwise specified.

Results
What characteristics are associated with the screened 
subpopulation?
A main aim of this study was to contrast the two screen-
ing subpopulations to determine which clinicopathologi-
cal and molecular characteristics were associated with 
the screened patient group, whether these were explicitly 
part of the screening guidelines or not, providing us with 
a read-out of a real-world patient selection process. An 
outline of the project is included in Fig.  1. In total, 900 
patients (13.5%) of the SCAN-B cohort had been referred 
to genetic testing (referred to as the screened subpopu-
lation hereon). Notably, not all patients that fulfilled the 
screening criteria at the time of diagnosis were screened 
in practice. This study did not have access to family can-
cer history, but based on criteria including age, gender, 
and clinical subgroup alone, 211 patients in our cohort 

would have been screened when applying the guidelines 
from before 2017. However, only 150 (71%) of these were 
indeed screened for gene variants and therefore placed in 
the screened subpopulation in this study. When using the 
more inclusive criteria implemented in 2017 (Table  2), 
the number of patients that would have been screened 
in the cohort increased threefold to 598, but only 303 
(51%) were in fact screened. This drop in percentage is 
at least partially explained by the fact that most patients 
were enrolled before the guidelines changed. However, 
it should be noted that all cases of male breast cancer 
should have been screened irrespective of guideline ver-
sion, but less than half of the men in the cohort were 
referred to screening in the period of this study.

Table 1 outlines the cohort characteristics with respect 
to clinicopathological variables, ROR scores, and PAM50 
molecular subtypes. Based on the complete cohort, all 
included variables except for tumor size showed statis-
tically significant differences between the two screen-
ing subpopulations (corrected chi-square test p < 0.001). 
Screened patients were younger when diagnosed (47.4% 
were ≤ 50  years versus 16.4%) and enriched for TNBC 
and PAM50 Basal subtypes compared to non-screened 
patients. Tumor size did not differ statistically between 
screening groups, but tumors from screened patients 
generally had higher NHG status and were more often 
classified as more proliferative based on the Ki67 bio-
marker. Screened individuals also presented higher ROR 
scores. Lastly, screened patients showed better OS than 
patients that had not been screened for germline variants 
(log-rank test p < 0.001, Fig.  2a), but no difference was 
observed using DRFi as endpoint (p = 0.88, Additional 
file 3: Fig. S1).

Can the differences between screening subpopulations be 
explained by clinically relevant breast cancer subsets?
Breast cancer is a heterogeneous disease that can be fur-
ther divided into subsets that are associated with specific 
molecular characteristics. To compare screening sub-
populations while accounting for this likely confounder, 
the SCAN-B cohort was stratified into clinically relevant 
breast cancer subgroups and PAM50 molecular subtypes 
totaling nine subsets of patients (Fig. 1, Additional file 2: 
Table  S1). When screened groups within subsets were 
examined, previously observed differences were less pro-
nounced or not significant (Additional file  2: Table  S1). 
Age at diagnosis was the only variable that differed sig-
nificantly in all subgroups/subtypes analyzed after mul-
tiple testing correction: patients subjected to genetic 
screening were always younger on average. The only 
other variable showing significant differences between 
screening subpopulations was the Ki67 biomarker, 
for which screened TNBC patients were more often 
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classified as having more proliferative tumors (high Ki67, 
corrected p = 0.01). Within PAM50 molecular subtypes, 
evidence of a borderline non-significant trend (corrected 
p = 0.05) of higher ROR scores in screened Luminal B 
patients and higher NHG status in screened Luminal A 
patients was also observed. To further explore differences 
between screening subpopulations within relevant clini-
cal and molecular subsets, we analyzed associations with 
prognosis, gene expression signatures, gene expression 
pathways, cell type composition, and expressed somatic 
variants.

Prognosis
The OS difference seen in the complete cohort remained 
significant for ER + /HER2 − /LN − , HER2 + /ER + , 
TNBC, PAM50 Luminal A, and Basal cases (Fig.  2a, 
Additional file  3: Fig. S2). Using DRFi as endpoint, sur-
vival analyses showed no difference between screening 
subpopulations for any of the subgroups/subtypes (log-
rank p > 0.05, Additional file  3: Fig. S1). Univariate Cox 
regression also showed a significant decrease in the risk 
of dying in screened patients for those subgroups/sub-
types with OS differences (Fig. 2b). To better understand 
what characteristics may be driving this decrease, multi-
variate Cox regression was also performed for the three 
clinical subgroups (Fig.  2c). This revealed significant 

hazard ratios linked to an increase in the risk of death for 
older patients and for patients with larger tumors, as well 
as for TNBC patients whose cancer had spread to lymph 
nodes, but not related to screening subpopulations.

Gene expression signatures
To verify that screened patients in some breast cancer 
subsets had more proliferative tumors, we calculated a 
tumor cell proliferation rank score in silico for each sam-
ple (see “Methods”). TNBC cases showed the greatest 
difference in rank scores between screening subpopula-
tions, with higher proliferation associated with screened 
patients (Mann–Whitney test p < 0.001) corroborating 
the Ki67 immunohistochemistry results (Fig.  3a). Three 
other subgroups/subtypes showed moderate evidence of 
higher tumor proliferation in the screened group, though 
observed differences were less pronounced.

Expression pathways
Supervised gene expression analysis was performed to 
identify differentially expressed genes (DEGs) between 
screened and non-screened patients. Eight out of nine 
patient subsets showed < 130 DEGs between screening 
subpopulations with an FDR ≤ 0.01, and most identified 
DEGs showed lower fold change values (Fig. 3b, Addi-
tional file 2: Table S3). To further analyze the potential 

Fig. 2 Patient outcome. a Kaplan–Meier curves contrasting the two screening subpopulations (S: screened, N‑S: non‑screened) including all 
patients in the study and including only patients that belong to the three main clinical subgroups using overall survival as endpoint. b Univariate 
OS and DRFi hazard ratio with 95% confidence interval for screened patients in clinical subgroups/molecular subtypes when using non‑screened 
patients as reference (ref ). c Multivariate OS hazard ratio with confidence interval for patients in three clinical subgroups. Categories used as 
reference for each variable are marked in gray. Asterisks in b and c indicate failure of fulfilling the proportional hazards assumption for Cox 
regression (p < 0.05)



Page 8 of 20Nacer et al. Genome Medicine           (2023) 15:25 

gene expression variance associated with screening 
status, we performed unsupervised UMAP analysis 
showing that screening group association does not sub-
stantially appear to explain mRNA expression variance 
in any of the patient subsets (Additional file 3: Fig. S3a), 
consistent with the differential expression findings. 
However, in TNBC there were more DEGs between 
screening groups (Fig.  3b). Gene ontology pathway 
enrichment analysis of the downregulated genes in 
TNBC screened patients identified cellular metabolic 
processes and regulation of these processes as down-
regulated in the screened group, whereas the analysis 

of the upregulated genes identified DNA replication, its 
regulation and double-strand break repair as upregu-
lated in screened TNBC patients (Additional file  2: 
Table S4).

Cell type composition
We investigated whether the tumor microenviron-
ment, and in particular the immune cell landscape, 
differed between screening subpopulations with two 
different tools. None of the six immune cell types with 
proportions estimated by CIBERSORTx differed sig-
nificantly between screening groups for any breast 

Fig. 3 Differences between screening subpopulations within clinical subgroups/PAM50 molecular subtypes found through gene expression data. 
a Distribution of a tumor proliferation measure calculated in silico per sample by screening status of patients and by relevant clinical subgroups 
or PAM50 molecular subtypes. b Fold change distribution and number of differentially expressed genes in screened patients when compared to 
non‑screened patients. c, d Enrichment scores of two immune cell types by screening status and by age at diagnosis (in years) within all TNBC cases. 
R = Spearman’s correlation coefficient



Page 9 of 20Nacer et al. Genome Medicine           (2023) 15:25  

cancer subgroup/subtype after multiple testing correc-
tion (Additional file 2: Table S5). Similarly, no evidence 
of difference was seen based on the in silico immune 
response rank score in any patient subset (Additional 
file 3: Fig. S3b). Using xCell, statistically significant dif-
ferences after multiple correction were present only in 
TNBC, where screened patients showed lower enrich-
ment scores of M2 macrophages and higher scores 
of type 2  T-helper cells (Fig.  3c, d, Additional file  2: 
Table  S5). These differences seem to be driven by the 
greater number of younger patients in the screened 
group since scores of both cell types correlated with 
age (Fig. 3c, d). Of the remaining stromal or epithelial 

cell types, two cell types not typically associated with 
breast cancer or breast tissue differed between screen-
ing groups: chondrocytes and sebocytes (Additional 
file 3: Fig. S3c).

Expressed somatic variants
To analyze differences in the pattern of somatic vari-
ants between screening subpopulations, we extracted 
expressed somatic variants from RNA-seq data for 
most patients in the cohort (Fig.  4a). Disregarding syn-
onymous variants, the median number of filtered vari-
ants found per tumor sample was effectively the same 
in non-screened and screened subpopulations (Fig.  4b). 

Fig. 4 Expressed somatic variants patterns in the cohort. a Proportion of SCAN‑B patients with expressed somatic variants in the 10 genes with 
highest number of somatic variants in the cohort. b, c Distribution of filtered somatic variants found per tumor sample stratified by b screening 
status or by c clinical subgroup, with median variant number annotated. d Proportion of patients with expressed somatic variants by screening 
status of patients and by clinical subgroups. Only the 10 genes with the most somatic variants in each subgroup are shown
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However, median number of variants varied between 
clinical subgroups (Fig.  4c). To account for other possi-
ble variation in subgroups, we compared frequencies of 
variants in the 10 genes with most variants in screened 
and non-screened patients separately for each clinical 
subgroup (Fig.  4d). The largest difference was observed 
for PIK3CA in TNBC cases, where the screened group 
showed a lower proportion of patients with somatic vari-
ants than the non-screened, a difference that was not 
significant after multiple testing adjustment (p = 0.21) 
(Additional file 2: Table S6).

In summary, when screening subpopulations were fur-
ther stratified into the nine subsets, most clinicopatho-
logical and prognosis differences observed between 
screened and non-screened patients at full cohort level 
were not statistically significant. Further molecular inves-
tigations based on RNA-seq data also showed little dif-
ference between screening subpopulations in the subsets 
except for TNBC, where significant differences were 
found in the gene expression signatures, expression path-
ways, and immune cell landscape analyses.

PGVs identified in screened patients and their prevalence 
within clinical subgroups and molecular subtypes
Results presented above indicate that differences in 
tested clinicopathological and molecular features 
between screened and non-screened patients are largely 
accounted for by the clinical and molecular subsets 
investigated. However, PGV prevalence is known from 
literature to differ according to subsets. Therefore, we 
analyzed the PGV patterns specifically in the screened 
SCAN-B cohort. Due to current ethical permissions, only 
variants in genes of interest specific to each patient and 
reported to referring clinicians were available for match-
ing with clinicopathological and molecular data in this 
study. These limitations resulted in different screening 
rates for the 11 genes included here (Fig.  5a, Table  3). 
In total, 124 screened patients had a PGV detected, and 
three genes harbored the majority of PGVs in the cohort: 
BRCA1, BRCA2, and CHEK2—even though the latter 
was one of the least tested genes (Table  3). The major-
ity of identified PGVs caused frameshift (n = 70) or non-
sense (n = 23) functional changes (Fig.  5b). Figure  5c 

shows PGVs in BRCA1, BRCA2, and CHEK2 including 
the well-known and here individually most frequent vari-
ant CHEK2 c.1100delC (see Additional file 2: Table S7 for 
the full variant list).

PGVs were not equally distributed between clini-
cal subgroups and PAM50 subtypes (Table  3, Fig.  5b, 
c). Patients with TNBC carried PGVs more often than 
those with ER + /HER2 − or HER2 + tumors (chi-square 
p = 0.01): on average one PGV every 20 genes tested, 
nearly twice as often as in ER + /HER2 − (1 in 35) or 
HER2 + cases (1 in 37). Among the 560 patients with 
ER + /HER2 − tumors, PGVs were reported more often 
in patients with PAM50 Luminal B tumors than Luminal 
A. Moreover, patients with Luminal B cases carried PGVs 
more often than patients with tumors of other molecular 
subtypes (chi-square p = 0.001) with one PGV in every 
24 genes tested. The 128 patients with HER2 + tumors in 
our cohort presented a percentage of patients with PGVs 
similar to ER + /HER2 − tumors, few of which belonged 
to the molecular subtype HER2-enriched. The TNBC 
subgroup had the highest percentage of patients with 
PGVs, almost all in the PAM50 Basal subtype.

BRCA1 PGVs were by far the most frequent germline 
alteration in screened TNBC patients (Table  3). Within 
BRCA1 specifically, PGVs were associated with the 
TNBC clinical subgroup and the PAM50 Basal subtype 
(Fisher’s exact tests p < 0.001). In our cohort, BRCA2 
PGVs were associated with the Luminal B molecular sub-
type (Fisher’s exact test p = 0.01), but not with any of the 
clinically relevant subgroups (p = 0.53). An association 
between CHEK2 PGVs and ER + tumors was seen only 
when analyzing patients tested specifically for variants 
in this gene (chi-square test p = 0.02). Many variants of 
uncertain significance for which pathogenicity is still 
unclear were also detected here (Fig. 5c), and these could 
alter results if a large number were determined to be 
pathogenic.

Do screened patients with PGVs differ from those 
without PGVs?
Based on the availability of matched clinical and molecu-
lar data in the SCAN-B cohort, we next analyzed whether 
clinicopathological and molecular differences existed 
between screened patients with and without PGVs, using 

(See figure on next page.)
Fig. 5 Overview of pathogenic germline variants found in 900 screened patients. a Referring clinicians requested different genes be investigated 
for germline variants in different patients, thus genes were screened at different rates in SCAN‑B. b Outer horizontal barplots show the distribution 
of clinical subgroups (left) and molecular subtypes (right) of those with PGVs for each gene of interest that showed at least one patient with PGV 
in SCAN‑B. Vertical barplots show the number of patients with PGVs among those screened specifically for a gene divided by clinical subgroups 
(left) and molecular subtypes (right). Waterfall plot in the middle shows the predicted molecular consequence of PGVs found in the 124 patients. 
c Lollipop plots showing predicted protein impact of PGVs (above) and variants of uncertain significance (VUS, below) found in BRCA1, BRCA2, and 
CHEK2 colored by clinical subgroup (left) and PAM50 molecular subtype (right). Splicing variants are not shown. Each circle represents one patient 
with that variant. T367M amino acid modification in CHEK2 = c.1100delC variant
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Fig. 5 (See legend on previous page.)



Page 12 of 20Nacer et al. Genome Medicine           (2023) 15:25 

Ta
bl

e 
3 

PG
Vs

 fo
un

d 
in

 p
at

ie
nt

s 
w

ith
 fu

ll 
ge

ne
s 

sc
re

en
ed

 fo
r g

er
m

lin
e 

va
ria

nt
s, 

di
st

rib
ut

ed
 b

y 
cl

in
ic

al
 s

ub
gr

ou
p 

an
d 

PA
M

50
 m

ol
ec

ul
ar

 s
ub

ty
pe

a   P
at

ie
nt

s 
w

er
e 

te
st

ed
 fo

r m
or

e 
ge

ne
s 

th
an

 re
po

rt
ed

 in
 th

is
 s

tu
dy

, b
ut

 s
cr

ee
ni

ng
 re

su
lts

 a
re

 li
m

ite
d 

to
 g

en
es

 th
at

 w
er

e 
of

 s
pe

ci
fic

 in
te

re
st

 a
nd

 re
po

rt
ed

 b
ac

k 
to

 c
lin

ic
ia

ns

G
en

e
Pa

tie
nt

s
te

st
ed

a
Pa

tie
nt

s 
w

ith
 P

G
Vs

 
w

ith
in

 
te

st
ed

ER
 +

 /H
ER

2 
−

 (L
N

 −
 &

 L
N

 +
)

H
ER

2 
+

 (E
R 
−

 &
 E

R 
+

)
TN

BC
N

ot
 a

va
ila

bl
e

A
ll

Lu
m

in
al

 A
Lu

m
in

al
 B

O
th

er
 

PA
M

50
 

su
bt

yp
es

A
ll

H
ER

2‑
en

ri
ch

ed
O

th
er

 
PA

M
50

 
su

bt
yp

es

A
ll

Ba
sa

l
O

th
er

 
PA

M
50

 
su

bt
yp

es

BR
CA

1
87

3 
(9

7.
0%

)
43

/8
73

 
(4

.9
%

)
8/

53
8 

(1
.5

%
)

3/
34

6 
(0

.9
%

)
3/

14
6 

(2
.1

%
)

2/
46

 (4
.3

%
)

5/
12

7 
(3

.9
%

)
1/

52
 (1

.9
%

)
4/

75
 (5

.3
%

)
26

/1
56

 
(1

6.
7%

)
25

/1
39

 
(1

8%
)

1/
17

 (5
.9

%
)

4/
52

 (7
.7

%
)

BR
CA

2
87

1 
(9

6.
8%

)
36

/8
71

 
(4

.1
%

)
23

/5
39

 
(4

.3
%

)
7/

34
5 

(2
%

)
12

/1
49

 
(8

.1
%

)
4/

45
 (8

.9
%

)
3/

12
6 

(2
.4

%
)

1/
52

 (1
.9

%
)

2/
74

 (2
.7

%
)

9/
15

4 
(5

.8
%

)
8/

13
7 

(5
.8

%
)

1/
17

 (5
.9

%
)

1/
52

 (1
.9

%
)

TP
53

36
7 

(4
0.

8%
)

3/
36

7 
(0

.8
%

)
1/

20
2 

(0
.5

%
)

1/
12

2 
(0

.8
%

)
0/

56
0/

24
1/

67
 (1

.5
%

)
1/

29
 (3

.4
%

)
0/

38
0/

83
0/

79
0/

4
1/

15
 (6

.7
%

)

PA
LB
2

30
5 

(3
3.

9%
)

4/
30

5 
(1

.3
%

)
3/

17
1 

(1
.8

%
)

1/
10

5 
(1

%
)

2/
45

 (4
.4

%
)

0/
21

0/
51

0/
20

0/
31

1/
73

 (1
.4

%
)

1/
68

 (1
.5

%
)

0/
5

0/
10

PT
EN

28
3 

(3
1.

4%
)

0/
28

3
0/

15
6

0/
91

0/
49

0/
16

0/
51

0/
25

0/
26

0/
63

0/
60

0/
3

0/
13

CD
H
1

28
0 

(3
1.

1%
)

0/
28

0
0/

15
4

0/
89

0/
48

0/
17

0/
50

0/
25

0/
25

0/
63

0/
60

0/
3

0/
13

RA
D
51
C

22
2 

(2
4.

7%
)

1/
22

2 
(0

.5
%

)
0/

12
8

0/
78

0/
36

0/
14

1/
34

 (2
.9

%
)

1/
16

 (6
.2

%
)

0/
18

0/
52

0/
49

0/
3

0/
8

RA
D
51
D

22
2 

(2
4.

7%
)

0/
22

2
0/

12
8

0/
78

0/
36

0/
14

0/
34

0/
16

0/
18

0/
52

0/
49

0/
3

0/
8

CH
EK
2

18
6 

(2
0.

7%
)

33
/1

86
 

(1
7.

7%
)

23
/1

04
 

(2
2.

1%
)

15
/6

2 
(2

4.
2%

)
6/

29
 (2

0.
7%

)
2/

13
 (1

5.
4%

)
6/

36
 (1

6.
7%

)
0/

13
6/

23
 (2

6.
1%

)
1/

36
 (2

.8
%

)
1/

34
 (2

.9
%

)
0/

2
3/

10
 (3

0%
)

AT
M

94
 (1

0.
4%

)
4/

94
 (4

.3
%

)
3/

51
 (5

.9
%

)
1/

33
 (3

%
)

2/
10

 (2
0%

)
0/

8
0/

17
0/

4
0/

13
1/

24
 (4

.2
%

)
0/

22
1/

2 
(5

0%
)

0/
2

BA
RD

1
10

 (1
.1

%
)

1/
10

 (1
0.

0%
)

1/
7 

(1
4.

3%
)

0/
3

0/
1

1/
3 

(3
3.

3%
)

0/
0

0/
0

0/
0

0/
3

0/
3

0/
0

0/
0

A
ll 

ge
ne

s
90

0
12

4/
90

0 
(1

3.
8%

)
62

/5
60

 
(1

1.
1%

)
28

/3
59

 
(7

.8
%

)
25

/1
55

 
(1

6.
1%

)
9/

46
 (1

9.
6%

)
16

/1
28

 
(1

2.
5%

)
4/

53
 (7

.5
%

)
12

/7
5 

(1
6.

0%
)

37
/1

60
 

(2
3.

1%
)

34
/1

43
 

(2
3.

8%
)

3/
17

 (1
7.

6%
)

9/
52

 (1
7.

3%
)



Page 13 of 20Nacer et al. Genome Medicine           (2023) 15:25  

the same methodology as above to compare screening 
subpopulations. The rationale behind these analyses was 
that any differences found could potentially be used for 
improving the screening selection process. Since PGV 
prevalence varied between clinical and molecular sub-
sets, the investigation was performed at a general level 
as well as within smaller subsets similar to what was 
done in the first part of this work (Fig.  6). Consider-
ing the entire screened subpopulation, patients carrying 
PGVs were younger (chi-square corrected p = 0.01, five 
tests) and had tumors with higher Ki67 scores (p < 0.001), 
higher NHG status (grade 3, p < 0.001), and higher ROR 
scores (p < 0.001) than patients without PGVs but showed 
no difference in tumor size (p = 0.6) (Additional file  2: 
Table  S8). However, screened patients showed no dif-
ference in OS (log-rank p = 0.59) nor in DRFi (p = 0.27) 
between those with and without PGVs (Additional file 3: 
Fig. S4).

When the comparisons were made within clini-
cal subsets, only PGV-carrying patients with ER + /

HER2 − tumors showed the same trends as in the total 
screening population with higher Ki67 score (chi cor-
rected p < 0.01), NHG (p = 0.001), ROR score (p = 0.01), 
and in silico proliferation rank scores (Mann–Whit-
ney corrected p = 0.001, seven tests) (Fig.  7a, Addi-
tional file 2: Table S8, Additional file 3: Fig. S5a). Within 
PAM50 molecular subtypes with ≥ 10 PGV carriers, a 
significant difference was only observed in the Lumi-
nal B subset, where patients carrying PGVs more often 
exhibited tumors of higher NHG (grade 3, p < 0.01) and 
higher in silico proliferation (p < 0.01) (Additional file  2: 
Table  S8). Finally, there was no difference in OS nor in 
DRFi between those with and without PGVs when strati-
fied by clinical/molecular subsets (all log-rank p > 0.05) 
(Additional file 3: Fig. S4).

Since different numbers of patients were tested for 
variants in different genes, we also investigated clin-
icopathological variables separately for patients that 
had specific genes tested. This meant that patients 
were restricted to those screened for germline BRCA1, 

Fig. 6 Outline of the comparison within screened patients. Division of screened patients into clinical subgroups and PAM50 molecular subtypes 
and which information was used to compare those with and without PGVs. Patients without information or belonging to different groups than the 
ones included are not shown
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Fig. 7 Comparison between screened patients with and without pathogenic germline variants. a Distribution of clinicopathological variables in 
560 screened patients from the ER + /HER2 − clinical subgroup. b Fold change of differentially expressed genes (FDR ≤ 0.01) in patients with PGVs 
when compared to those without PGVs in clinical subgroups/molecular subtypes that had more than 10 patients with PGVs. c Distribution of an 
immune response measure calculated in silico per sample stratified by patient germline variant status and clinical subgroups/PAM50 molecular 
subtypes. p = corrected Mann–Whitney test p‑values, 6 tests. d Cell fraction of two immune cell types with statistically significant differences 
between PGV groups in ER + /HER2 − cases. e Distribution of a gene expression immune response score in ER + /HER2 − cases stratified by whether 
patients had PGVs in specific genes. f Proportion of patients with expressed somatic variants in 10 genes stratified by patient germline variant status 
for BRCA1, BRCA2, and CHEK2. Only genes with a statistically significant difference between groups through Fisher’s exact test are identified
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BRCA2, or CHEK2 variants, then split into clinical/
molecular subgroups, and then into those with or with-
out PGVs in the tested gene. This resulted in six sub-
sets of interest with ≥ 10 PGV carriers (Fig. 6). Only in 
BRCA2-tested patients with ER + /HER2 − tumors were 
PGVs associated with higher Ki67 scores (chi-square 
corrected p = 0.02, 30 tests), higher NHG (p = 0.01), 
higher ROR scores (p = 0.02), and higher in silico pro-
liferation scores (Mann–Whitney corrected p = 0.01, 
six tests). The last observation regarding tumor pro-
liferation was also seen in patients with and with-
out PGVs for BRCA2-tested PAM50 Luminal B cases 
(Mann–Whitney corrected p = 0.01, six tests).

Next, we performed differential gene expression analy-
sis between patients with and without PGVs stratified 
by clinical subgroups and molecular subtypes. Five sub-
sets showed too few DEGs between groups to be studied 
further (Fig.  7b, Additional file  2: Table  S9). The ER + /
HER2 − subgroup, however, had substantially more 
DEGs that permitted a gene ontology pathway enrich-
ment analysis (Additional file 2: Table S10). In this sub-
group, the downregulated genes in cases with PGVs were 
overrepresented in biological processes such as protein 
and vesicle localization to the cilium, while the upregu-
lated genes identified, e.g., oxidative phosphorylation, 
positive regulation of cytokine production, double-strand 
break repair via break-induced replication, mitotic DNA 
replication, and positive regulation of T-cell proliferation 
as upregulated processes.

We also investigated whether the tumor microenviron-
ment differed between patients with and without PGVs 
within the six clinical/molecular subsets. There was 
strong evidence of differences in immune composition 
within ER + /HER2 − and within Luminal B cases based 
on the in silico immune response rank score for which 
patients without PGVs showed lower values (Fig.  7c). 
For specific cell types, differences were found only in 
the ER + /HER2 − clinical subgroup after multiple test-
ing correction (Additional file 2: Table S11). In this sub-
group, the proportion of B-cells differed significantly 
between PGV groups and the difference in CD8 + T-cells 
was borderline not significant (Fig. 7d). B-cells were also 
differentially enriched between PGV groups with xCell, 
along with eight other cell types such as M1 macrophages 
and type 2  T-helper cells (Additional file  1: Fig. S5b). 
While not all statistically significant differences here 
are expected to be true biological differences (e.g., myo-
cytes were considered different even though their mean/
median enrichment scores were < 0.01 in both groups), 
these analyses indicate that immune response differ-
ences could exist between those with and without PGVs. 
Interestingly, ER + /HER2 − patients with PGVs in genes 
commonly associated with homologous recombination 

deficiency such as BRCA1, BRCA2, and PALB2 showed 
higher immune response rank scores than those with 
PGVs in other genes or without any PGVs in the 11 genes 
studied (Fig. 7e).

Lastly, we looked for an association between expressed 
somatic variants and germline variants by comparing 
patients with and without PGVs in BRCA1, BRCA2, and 
CHEK2 separately without clinical subgroup/molecular 
subtype restriction (Fig.  7f ). This was performed con-
sidering all screened patients that had somatic informa-
tion extracted from RNA-seq (n = 893) for the 10 genes 
with most somatic variants per gene subset. Patients with 
PGVs in BRCA1 showed more somatic TP53 variants and 
less somatic PIK3CA variants than expected when com-
pared to those without any or with benign germline vari-
ants (Fisher’s exact test corrected p < 0.001). None of the 
other comparisons performed showed significant asso-
ciation between PGVs and somatic variants after correct-
ing for multiple testing (Additional file 2: Table S12).

In summary, differences between breast cancer patients 
with and without PGVs in the predisposition genes tested 
were generally only found in the ER + /HER2 − subgroup 
and the PAM50 Luminal B subtype. Significant differ-
ences included changes in tumor proliferation, immune 
response scores, immune cell composition, and expres-
sion pathways through differentially expressed genes.

Discussion
In this study, we have comprehensively analyzed the 
occurrence and distribution of germline alterations in 
11 genes associated with higher risk of breast cancer and 
their impact on the tumor genome through the merging 
of routine clinical screening data with a transcription-
ally profiled population-based breast cancer cohort from 
a single institution. A particular focus of the current 
investigation was to analyze whether differences in clini-
cal and molecular features existed between carriers and 
non-carriers of PGVs, but also between the screened and 
non-screened subpopulations of patients as partitioned 
by current screening guidelines.

Controversy exists on how to optimize genetic screening 
criteria for genes associated with breast cancer risk [7, 10, 
11, 46, 47]. Irrespective, current guidelines do not identify 
all carriers of PGVs, as exemplified by findings in a Swedish 
population [32, 48]. Risk estimation in women with breast 
cancer based on features such as tumor markers has been 
suggested as an important method for identifying screen-
ing candidates in the general population [1, 13]. However, 
for this approach to be fully validated, it appears relevant 
that the clinicopathological and molecular features of 
breast tumors in the currently screened and non-screened 
subpopulations be better understood. A few studies with 
a population-based approach have studied breast cancer 
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patients with PGVs and further mapped them to detailed 
clinicopathological variables [13–15, 27]. However, to the 
best of our knowledge, no large-scale population-based 
study has been conducted to date that also include high-
dimensional genomic data like RNA-seq matched with 
clinical screening information to allow the investigation 
of breast cancer transcriptional subtypes, prognostic/
predictive gene signatures, differentially expressed genes, 
expressed somatic variants, and composition of the tumor 
microenvironment (TME).

It has been reported that breast cancer patients with 
PGVs have features of more aggressive disease compared 
to patients with no such alterations [14, 15, 28]. Con-
sistently, the screened subpopulation in our study, likely 
enriched for patients with PGVs, showed typical features 
of aggressive disease (e.g., higher NHG, Ki67 status, ROR 
scores, and specific PAM50 subtypes). These results are 
expected based on the screening guidelines (e.g., younger 
patients, diagnosis of TNBC, etc.). However, the screen-
ing subpopulations alone are not representative of the full 
cohort or the breast cancer population from which they 
were selected. Interestingly, when stratified into relevant 
clinical subgroups or PAM50 molecular subtypes, differ-
ences between screened and non-screened patients in 
the cohort were mainly non-significant (disregarding that 
screened patients are generally younger as a clear reflec-
tion of screening guidelines) suggesting that stratification 
variables largely accounted for observed differences. Sim-
ilarly, our unsupervised and supervised gene expression 
analyses suggest that screening groups do not represent 
distinct transcriptional entities when stratified into rel-
evant clinical or molecular subsets, but rather mixes of 
different biological breast cancer groups. Moreover, we 
did not find strong evidence of differences in the TME 
between screening subpopulations in patient subsets. 
Notably, both for the TME and for the supervised differ-
ential gene expression analyses in this study, TNBC was 
the subset with the clearest differences between screened 
and non-screened patients. We believe these differences 
reflect an overrepresentation of a molecular phenotype 
of TNBC related to DNA repair deficiency (most promi-
nently homologous recombination deficiency, HRD) 
and characterized by younger disease onset in screened 
patients compared to a more proposed luminal andro-
gen-like phenotype found more often in older patients 
(and thus overrepresented in non-screened patients) 
[49–53].

It has not been fully established whether carriers of 
PGVs in specific genes are associated with poorer out-
come in a general breast cancer context [14, 15, 54, 55]. 
In our cohort, although screened patients with presuma-
bly more PGVs showed a better outcome (OS) than non-
screened patients both in general and in some subsets, 

these differences were not significant when survival anal-
yses were adjusted for variables such as age at diagnosis. 
Moreover, using DRFi as clinical endpoint, there was no 
difference between screened and non-screened patients 
in any subset. Within the screened subpopulation specifi-
cally, no difference in patient outcome (OS nor DRFi) was 
seen between carriers and non-carriers of PGVs in eight 
genes associated with higher risk of breast cancer. It is 
important to notice that not finding a PGV in a gene does 
not mean that the gene is fully functional in a patient’s 
tumor. In fact, we have recently shown that TNBC cases 
with somatic BRCA1 promoter hypermethylation (the 
main mechanism of HRD in a population-based SCAN-
B TNBC cohort [49]) appear as genomic phenocopies of 
TNBC cases with germline BRCA1 variants [56]. Notably, 
in the study by Glodzik et al. [56], we found patients with 
somatic BRCA1 promoter hypermethylation more often 
than carrying inactivating germline BRCA1 or BRCA2 
variants (35 vs. 26% respectively) in a set of 46 SCAN-B 
TNBC patients that underwent clinical BRCA1/BRCA2 
genetic screening due to family history and/or young age 
at diagnosis. Together, these findings could act as con-
founders in different analyses.

In our cohort, 13.5% (n = 900) of patients underwent 
clinical screening. In a comparative study of unselected 
breast cancer in Sweden during 2001–2008 by Li et  al. 
[48], 8.2% of 5099 patients were screened as part of clini-
cal practice identifying only 38% of patients with BRCA1 
or BRCA2 alterations, which had a prevalence of 1.8% 
in the population. The difference in screening frequency 
between the two studies is likely due to a specific screen-
ing initiative in 2015–2016 in the catchment region of the 
SCAN-B study [33]. In our cohort, BRCA1 and BRCA2 
were the most ordered clinical analyses (97% of screened 
patients) and PGVs were detected in 4.8 and 4.0% of all 
screened SCAN-B patients (8.8% combined) translat-
ing to a prevalence of 0.65 and 0.54% respectively in the 
entire cohort (1.19% combined). In comparison, when 
only the clinically tested patients from Li et al. are con-
sidered, 8.4% had a BRCA1/BRCA2 alteration corre-
sponding to a prevalence of 0.69% in all 5099 patients 
[48]. Compared to large population-based studies from 
other demographic contexts [1, 2], observed PGV fre-
quencies in SCAN-B patients were lower, likely due to 
incomplete screening of patients. Together, our observed 
PGV frequencies for BRCA1/BRCA2 appear consistent 
with a similar demographic context, considering the vari-
ations in, e.g., screening referral.

Frequency of PGVs in genes associated with higher 
risk of tumors has been shown to vary with clinically 
relevant breast cancer subgroups [13]. For the same 11 
genes reported here, Hu et al. [13] reported PGVs in 9.2% 
of their ~ 55,000 patient cohort distributed in clinical 
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subgroups as follows: 7.6% in ER + /HER2 − (LN + and 
LN −) cases, 7.3% in HER2 + /ER − , 8.0% in HER2 + /
ER + , and 13.2% in TNBC. In SCAN-B, 13.8% of screened 
patients had PGVs: 11.1% in ER + /HER2 − cases, 12.6% 
in HER2 + /ER − , 12.1% in HER2 + /ER + , and 23.1% in 
TNBC. Consistent with Hu et al., TNBC had the highest 
frequency of PGVs by approximately two-fold. However, 
our screened cohort is considerably smaller than that of 
Hu et al. and has a different composition of characteris-
tics such as age at diagnosis and clinical subgroup, which 
may influence the observed PGV proportions. Had all 
SCAN-B patients been tested for the genes of interest, 
percentages reported here would most likely be lower.

This study corroborated reported associations between 
PGVs in specific genes with clinical (e.g., CHEK2 and 
ER + disease) and molecular subtypes (e.g., BRCA1 and 
PAM50 Basal) [1, 2, 57]. BRCA2 PGVs were recently 
reported to be associated with ER − disease [2], while 
others have associated these alterations with hormone-
driven disease [58–61] including the Luminal B subtype 
[57], which is consistent with what we found. In our 
screened cohort, BRCA2 PGVs were more frequent in 
ER + /HER2 − Luminal B patients (8.1%) than in TNBC 
Basal (5.8%) or TNBC patients in general (5.8%), and 
ER + /HER2 − patients of molecular subtypes other than 
Luminal A/B had a BRCA2 PGV frequency of 8.9%, 
though this was a smaller subset of patients (n = 45). 
Together, this suggests that tumors from patients with 
BRCA2 PGVs have more aggressive features. The indi-
cation of a higher in silico immune response in ER + /
HER2 − tumors with PGVs in prototypical HRD-related 
genes (BRCA1, BRCA2, PALB2) was also interesting and 
warrants further investigation in larger cohorts includ-
ing in  situ tissue validation. Moreover, it remains to be 
validated if this association is due to the high genomic 
instability associated with HRD in these tumors [22] and 
whether it has prognostic implications. PGV frequency 
in the other analyzed genes was too low for association 
analyses. Also confirming previous studies, PGVs in 
BRCA1/BRCA2 were distributed across different protein 
domains of the genes, while the European founder vari-
ant c.1100delC was dominating in CHEK2 [62–64].

The main strengths of this study are the comprehen-
sive available clinical tumor data based on national qual-
ity registries, the centralized single institution screening 
ensuring technical consistency over the years, the pop-
ulation-based cohort with detailed clinicopathological 
annotation [29, 31, 49], and the depth of molecular profil-
ing based on unbiased mRNA sequencing of fresh tumor 
tissue. Still, important limitations also apply. The study 
is limited by germline testing requests made by refer-
ring clinicians, i.e., only results from the requested test 
is accessible for research under current ethical approvals 

even though a comprehensive multigene NGS panel is 
used. Thus, we acknowledge that screening rates dif-
fer over years depending on guidelines, local initiatives, 
and SCAN-B study enrollment, and that the study groups 
do not represent matched case–control groups. Con-
sequently, the true prevalence of PGVs in the SCAN-B 
catchment region is likely higher than presented here—if 
all patients had been tested and all NGS panel genes had 
been reported, results would likely be similar to findings 
by Li et al. in a similar demographic context [48]. How-
ever, it should be noted that while clinical testing results 
were not available for all genes for all patients, the pop-
ulation frequency of many of these genes is well below 
0.75% [2], suggesting that the number of missed PGV car-
riers would still be very low in our data. As such, the cur-
rent study represents a population-based view of genetic 
variants and screening cohort characteristics with real-
life limitations from routine healthcare that also include 
patient and clinician preference. Moreover, despite being 
the largest study to date connecting high-dimensional 
transcriptional data to clinical screening, our study is 
still underpowered for detailed analyses of, e.g., gene-
specific PGVs beyond BRCA1, BRCA2, and CHEK2, 
especially within less common clinical subgroups and 
PAM50 molecular subtypes. Finally, while all patients in 
this study had available RNA-seq data, this method is 
not optimal for deriving a complete view of somatic vari-
ants in bulk tumor tissue. A bias in the genes, SNVs, and 
their frequencies reported herein may be expected com-
pared to DNA-based sequencing, especially concerning 
alterations causing silencing of tumor suppressor genes 
that would typically not be detected by variant calling in 
RNA-seq data.

Conclusions
The current study has focused on comprehensive high-
resolution molecular characterization of a current 
screening subpopulation (based on real-world clinical 
decision making) versus non-screened patients using a 
population-based RNA-seq profiled patient cohort with 
6660 individuals, a type of study not reported at this 
scale to date. We show that while expected clinicopatho-
logical differences coupled to screening criteria exist 
between screening subpopulations, they were mostly 
non-significant after stratification by clinically relevant 
breast cancer subgroups and PAM50 molecular subtypes 
that reflect the known heterogeneity in this tumor type. 
In addition, we show that there were also no large sig-
nificant differences between carriers and non-carriers of 
PGVs when considering relevant subgroups/subtypes. 
There were, however, some differences in the ER + /
HER2 − subgroup when partitioned by PGV status, 
indicating that there might still be room for improving 
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risk assessment of being a PGV carrier and develop-
ing tumors by using other molecular data not currently 
included in the screening criteria. While this study rep-
resents to the best of our knowledge the largest such 
RNA-seq based study to date, it remains to be deter-
mined whether a more focused analysis/profiling using 
all possible aspects of RNA-seq (e.g., with additional 
gene signatures, expressed variants, mutational signa-
tures) on a larger cohort of screened patients could iden-
tify the molecular traits that would further enrich it for 
patients with high likelihood of PGVs, thus potentially 
refining current patient selection through guidelines for 
screening.
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