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Abstract 

Background The association between microbes and cancer has been reported repeatedly; however, it is not clear if 
molecular tumour properties are connected to specific microbial colonisation patterns. This is due mainly to the cur‑
rent technical and analytical strategy limitations to characterise tumour‑associated bacteria.

Methods Here, we propose an approach to detect bacterial signals in human RNA sequencing data and associate 
them with the clinical and molecular properties of the tumours. The method was tested on public datasets from The 
Cancer Genome Atlas, and its accuracy was assessed on a new cohort of colorectal cancer patients.

Results Our analysis shows that intratumoural microbiome composition is correlated with survival, anatomic loca‑
tion, microsatellite instability, consensus molecular subtype and immune cell infiltration in colon tumours. In particu‑
lar, we find Faecalibacterium prausnitzii, Coprococcus comes, Bacteroides spp., Fusobacterium spp. and Clostridium spp. 
to be strongly associated with tumour properties.

Conclusions We implemented an approach to concurrently analyse clinical and molecular properties of the tumour 
as well as the composition of the associated microbiome. Our results may improve patient stratification and pave the 
path for mechanistic studies on microbiota‑tumour crosstalk.

Keywords Tumour microbiome, RNA‑Seq data deconvolution, Microbe‑tumour interaction, Microbiome biomarker

Background
Tumours are evolutionary systems and natural selec-
tion operates on their genomes, facilitating adaptation to 
the environment [1]. Therefore, the composition of the 
microenvironment has a profound impact on the selec-
tive forces shaping the tumour genome and may lead to 
distinct molecular subtypes. In this regard, the tumour 
microbiota is emerging as a significant determinant 
[2, 3], as demonstrated by the association of gastroin-
testinal dysbiosis with colorectal cancer [4, 5] and the 
impact of microbiota on tumour initiation, progression 
and therapy response [6]. However, to date only a few 
bacterial species have been shown to have oncogenic or 
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cancer-supportive capabilities [7], including Helicobacter 
pylori in gastric cancer [8] and Fusobacterium nucleatum 
and colibactin producing Escherichia coli in colon cancer 
[9, 10]. The interactions of bacteria with tumours engage 
specific metabolic activities along with physical contact 
and can modulate the host immune system [11, 12]. Nev-
ertheless, if and how bacteria contribute to shaping the 
molecular properties of the tumour and influence the 
clinical outcome is still poorly understood [13–17]. Can-
cer is a highly heterogeneous disease and the detection of 
subtypes and molecular characteristics of patients drove 
the development of personalised treatment strategies 
[18]. For personalised medicine, the microbiome plays 
a minor role so far. To change this, the first step would 
be to understand how the microbiome varies between 
subtypes and is associated with specific properties of the 
tumour. Addressing these points is currently challeng-
ing as it requires simultaneous characterisation of the 
microbiome and tumour properties of a large number of 
patient samples.

Recent studies have begun to explore the possibility 
of extrapolating information on tumour-associated bac-
teria from widely available human sequencing data, e.g. 
from whole exome sequencing (WXS) [19–26] or RNA 
sequencing (RNA-Seq) [20, 23–25, 27, 28]. Most of these 
studies focused on the differences between cancer types 
or tumour versus control tissue [20–24, 26, 28]. Recent 
studies suggested a link between the presence of specific 
bacteria in tumour samples and clinical properties of 
the tumours [21, 22, 25–27]. However, how much these 
associations could be influenced by batch effects and 
contamination is still under debate [19–22, 27] and a sys-
tematic study of the link between molecular, clinical and 
prognostic properties of tumours with their microbiome 
is still missing.

We implemented a computational workflow [29] to 
extract microbial reads from human RNA-Seq data, iden-
tify and eliminate experimental contamination and quan-
tify the associations between properties of the tumour 
and the species-level microbiome composition (Fig. 1a). 

We applied our workflow to colon, lung, brain, head 
and neck, ovary, skin and breast tumour samples from 
The Cancer Genome Atlas (TCGA) to reconstruct the 
tumour-specific microbiome. Subsequently, the accuracy 
of this workflow in inferring microbiome composition 
was validated in a novel cohort of colon cancer patients 
in which we simultaneously sequenced the tumour and 
quantified bacterial abundances by two independent 
approaches. Our results indicate strong associations 
between the bacterial composition and molecular, clini-
cal and prognostic properties of the tumour and high-
light specific bacterial species potentially associated with 
them. Finally, we explored associations with the immune 
compartment and bacterial metabolic peculiarities in the 
left and right colon.

Methods
Samples
After obtaining the required permission, we down-
loaded the RNA-Seq data from 3737 primary tumour 
and 318 solid tissue normal control samples from NCI 
Genomic Data Commons (GDC)/TCGA. The non-
malignant samples were taken during the biopsy of 
cancer patients from an adjacent area from the tumour 
site. The analysed samples belonged to colon adeno-
carcinoma (COAD [30], 382 primary tumour, 39 solid 
tissue normal), glioblastoma multiforme (GBM [31], 
152 primary tumour, 5 solid tissue normal), lung ade-
nocarcinoma (LUAD [32], 512 primary tumour, 59 
solid tissue normal), lung squamous cell carcinoma 
(LUSC [33], 499 primary tumour, 49 solid tissue nor-
mal), head and neck squamous cell carcinoma (HNSC 
[34], 499 primary tumour, 44 solid tissue normal), ovar-
ian serous cystadenocarcinoma (OV [35], 366 primary 
tumour), rectum adenocarcinoma (READ [30], 151 
primary tumour, 9 solid tissue normal), skin cutaneous 
melanoma (SKCM [36], 103 primary tumour, 1 solid 
tissue normal) and breast invasive carcinoma (BRCA 
[37], 1073 primary tumour, 112 solid tissue normal) 
patients. To avoid any possible intra-study bias caused 

Fig. 1 General overview on bacteria reconstructed microbiomes. a Summary of the microbial reconstruction workflow to detect clinical and 
molecular associations with bacteria. Each RNA sequencing BAM file was analysed by this workflow: after removing the human sequences, the rest 
of the reads were aligned to a set of microbial genomes from the National Center for Biotechnology Information (NCBI) and assigned to one or 
more species. The last step to reconstruct the microbiome of the samples involves a batch effect detection that identifies the influence of available 
technical properties on the reconstructed microbiome composition. Microbiome profiles are then corrected accordingly for the most relevant 
batch effects. Finally, the corrected microbiome profiles were tested for associations with clinical and molecular properties of the tumour, survival 
analysis and property classification. For the properties associated with microbiome composition, the bacterial composition underwent a property 
classification approach, while specific bacterial species were detected as linked to the property levels and the prognosis. Colon adenocarcinoma 
(COAD) bacterial reads were pooled into left and right‑sided, CMS1 and CMSs pooled and mutation burden high and low and underwent pathway 
profiling to compare metabolic differences between the sides of the colon, CMSs and mutational burden levels, respectively. b Principal component 
analysis on all the reconstructed bacterial microbiomes of the cancer types analysed. GBM, glioblastoma multiforme; LUAD, lung adenocarcinoma; 
LUSC, lung squamous cell carcinoma; HNSC, head and neck squamous cell carcinoma; OV, ovarian serous cystadenocarcinoma; READ, rectum 
adenocarcinoma; SKCM, skin cutaneous melanoma; BRCA, breast invasive carcinoma. Number of samples analysed in brackets

(See figure on next page.)
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by different sample preparations, we only considered 
samples analysed by the Illumina Truseq method (in 
COAD, LUAD and BRCA) and AllPrep RNA extrac-
tion (in OV) and removed the cases with duplicated 
samples (GBM and LUSC); the information about the 

preparation steps was downloaded from the GDC Leg-
acy Archive [38].

We additionally enrolled a cohort of 30 resectable colon 
cancer patients prospectively from European Institute of 
Oncology (IEO) hospital. The local Ethics Committee 

Fig. 1 (See legend on previous page.)
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approved the study and each patient was asked to sign 
an informed consent. We obtained from each patient a 
tissue sample of the tumour and non-tumour adjacent 
region (at 2 and 10 cm from the border of the pathologist-
assessed neoplastic lesion). Samples underwent RNA-Seq 
(90 samples), ribosomal RNA 16S gene (16S) sequencing 
(61 samples) and bacterial fluorescence in situ hybridisa-
tion (FISH, 10 samples). Two samples with low amounts 
of RNA-Seq bacterial reads (less than 300 reads) were 
removed from the final analyses.

RNA extraction, sequencing and analysis
RNA was extracted from flash-frozen tissues using the 
AllPrep DNA/RNA kit (Qiagen) following manufacturer 
recommendations. One hundred nanograms was used 
for RNA library preparation using the Illumina Truseq 
or Stranded Total RNA Prep Ligation with Ribo-Zero 
Plus kit (Illumina). In brief, after depleting rRNA, the 
RNA was fragmented at 94° C for 2 min. After retrotran-
scription and anchor ligation, the library was amplified 
(13 cycles). Sample quality and quantity were checked 
again by Bioanalyser and Qubit, respectively and then 
sequenced (50 base pair paired-end reads) by Illumina 
NovaSeq 6000.

Intending to reduce as much as possible the differ-
ences in the bioinformatic approaches used to analyse 
GDC/TCGA and the IEO cohort samples, we processed 
the IEO cohort samples with the same tools and the 
same parameters described by TCGA. We ran the STAR 
aligner (GRCh38) on the IEO cluster with the same 
parameters described in TCGA documentation (https:// 
docs. gdc. cancer. gov/ Data/ Bioin forma tics_ Pipel ines/ 
Expre ssion_ mRNA_ Pipel ine/).

FISH
Carnoy’s fixed and paraffin-embedded tumour tissues 
were processed for FISH following a modified version 
of the previously published protocol [39]. Briefly, after 
deparaffination and rehydratation, tissue slides were 
incubated for 3 h in the hybridization buffer (with a spe-
cific temperature and amount of formamide depending 
on each probe) with FISH probes targeting most of bac-
teria universally (EUB probe) in combination with probes 
targeting one of the following species specifically: Akker-
mansia muciniphila and Faecalibacterium prausnitzii 
(Additional file  1: Table  S1). Then, slides were washed, 
incubated with 4’,6-diamidino-2-phenylindole (DAPI) for 
nuclei staining and mounted. Image acquisition was per-
formed using an SP8 confocal microscope (Leica) at × 63 
magnification. Example images are shown in Additional 
file 1: Fig. S1a-b.

The comparison between RNA-Seq and FISH values 
was done using Spearman correlation for each analysed 

species. Data were calculated by normalising the bacte-
rial counts from FISH images by the number of EUB pos-
itive signals and total cells (DAPI) present in the images.

DNA extraction, 16S sequencing and analysis
We isolated a mucosal scrap from each tissue sample 
by gently scraping the mucosa with 1  ml of phosphate 
buffered saline (PBS) solution. Of this, 500  µl was used 
to extract DNA using the DNA Power Soil Pro Isola-
tion kit (Qiagen). DNA was quantified by Qubit, and 
the quality was assessed by Nanodrop. The amplifica-
tion and sequencing of the 16S V3–V4 regions were 
performed following the 16S Metagenomic Sequencing 
Library Preparation protocol [40]. Briefly, the first PCR 
(25 cycles) was performed using the 16S V3–V4 prim-
ers under the manufacturer’s instructions. Both forward 
and reverse primers (Additional file  1: Table  S1) were 
composed of Illumina overhang adapter sequences and 
the specific 16S sequences of primers. Then, the second 
PCR (8 cycles) was carried out to attach dual indices 
and Illumina sequencing adapters using the Nextera XT 
Index Kit. After pooling, DNA quality and quantity were 
checked by Bioanalyser and Qubit and run on a MiSeq 
flowcell (Illumina).

For validation of RNA-Seq data, the IEO cohort sam-
ples underwent 16S V3–V4 amplicon sequencing. The 
16S sequences were analysed using qiime2 [41]. Raw 
count tables were produced using q2-dada2 [42] with 
truncation length parameters set to the primer length. 
Taxonomic profiling was done by trimming whole-gene 
16S sequences from the SILVA 132 database [43] by the 
flanking region of the V3–V4 primers. The trimmed 
SILVA sequences were trained with the q2-classifier 
skclassify plug-in [44], after which the trained classi-
fier was run on the representative sequences output 
of DADA2 [42]. The majority of the sequences were 
resolved to genus level, so the output taxonomy table was 
collapsed to genus level and transformed into relative fre-
quencies for further analysis.

The comparison between RNA-Seq and 16S was made 
by subsetting the datasets to include only the intersecting 
genera between the two and then doing the Spearman 
correlation test on each genus. To understand how rare, 
low-abundance taxa (with many zero abundance values) 
are affecting the correlation, prevalence filtering was 
applied to both datasets, where genera that are present 
(i.e. bacterial relative abundance > 0) above a percentage 
threshold of number of samples in both datasets were 
kept (0%, 10%, 20%, 30%, 40%, 50% and 60%). The dis-
tribution of the Spearman coefficients across prevalence 
filter thresholds was visualised with a density plot, using 
one-sample Wilcoxon to test at each cut-off whether the 

https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/


Page 5 of 19Sambruni et al. Genome Medicine           (2023) 15:32  

median of the distribution is greater than zero (Addi-
tional file 1: Fig. S1c).

Tumour properties
Among the clinical information of samples provided by 
TCGA, we selected those that are lowly redundant, are 
available for most of the patients and are considered 
clinically relevant. In particular, we considered gender, 
body mass index (BMI), stage, history of other malig-
nancy, side, age at initial pathological diagnosis, history 
of colon polyps and percentage of normal cells. Among 
all the properties reported by TCGA, we also considered 
technical properties from which we assumed that they 
could potentially affect our results. Among the residual 
properties, we decided to select the ones that could be 
associated with the microbiota composition. To expand 
our analysis of clinical properties of the tumours, we 
took advantage of some previously published analyses 
on TCGA cohorts: we considered microsatellite insta-
bility (MSI) level [45] (as suggested by the authors, we 
classified as high MSI those samples with a MANTIS 
score > 0.4 and with a low MSI the ones with MANTIS 
score < or equal to 0.4), the CpG methylation phenotype 
(CIMP) status [46], the consensus molecular subtype 
(CMS) classification (determined from the tumour gene 
expression profile with the CMSclassifier R package [47]) 
and the stemness value [48].

We also considered two molecular properties of 
tumours: the aneuploidy status [49] and the driver gene 
mutation status. We quantified the status of the most fre-
quently mutated genes in colorectal cancer and the other 
cancer types [50] as the total number of mutations found 
in each TCGA sample using the GDC database collection 
[51]. We considered a gene mutated if it carries any type 
of non-silent mutation (silent mutations: silent, 5’flank, 
RNA, intron, 3’flank).

Finally, we inferred immune cell infiltration by running 
CIBERSORTx [52] from their web page on transcript per 
million (TPM) gene expression quantification with the 
default signature matrix LM22, B-mode batch correc-
tion activated, with 1000 permutations in both absolute 
and relative mode. We considered only the significant 
(p < 0.05) immune estimates. TPM were calculated from 
fragments per kilobase million (FPKM) tables from the 
GDC by dividing each FPKM value with the sum of the 
FPKM values of that sample and then multiplied by 1 
million. Ensembl IDs were converted to HUGO gene 
names using the annotation version v22. We tested con-
tinuous properties with a specific test (i.e. Spearman cor-
relation test), but if needed (i.e. for the independence 
test), we converted the continuous variables to discrete 
ones by binning the properties. To this end, we applied 
an approach to automatically find the best break points: 

if the frequency of zero values is over 30%, we considered 
the presence or absence (anything above zero considered 
as presence); if the distribution was normal (Shapiro test) 
or the distribution was bimodal (is.bimodal function 
from LaplacesDemon R package), we defined low and 
high values taking the mean or the lowest value between 
the two peaks as break, respectively; and if none of the 
previous conditions were satisfied, we binned the values 
by quartiles (low, medium–low, medium–high and high 
levels).

Microbiome reconstruction workflow
Our computational workflow [29] consisted of five steps:

(1) Microbial read extraction: we applied PathSeq from 
the Genome Analysis Toolkit [53] using the pro-
vided reference genomes prepared on 12/04/2017 
(human: GRCh38). We ran the tool PathSeq [54] 
with default parameters and for each bacterial spe-
cies we used the “score” values from the PathSeq 
output matrix to evaluate bacterial abundances: 
they take into account that species share homolo-
gous genomic regions. A read that maps to a com-
mon region cannot be assigned to only one taxon, 
so PathSeq provides a “weighted count” of the 
number of reads that map to the reference genome 
of the taxon considered. Considering taxon t, if 
a read maps only to the genome of the taxon t, it 
has a value of 1; if it does not map, it has a value of 
0; and if the read maps to more than one genome 
(to a common region), it has a value of 1/(number 
of genomes to which the read maps). The bacterial 
score of the taxon t is the sum of the values from all 
the reads.

(2) Genome redundancy adjustment: the reconstruc-
tion of the microbiome from human RNA-Seq 
with PathSeq can be affected by several prob-
lems: human samples can undergo contamination 
at different stages of processing (from surgery to 
sequencing) [23]. The detection of bacterial species 
can also be affected by the wrong identification of 
species due to technical reasons: technical sequenc-
ing errors (usually discarded in human analyses) 
can randomly map to bacterial genomes and the 
presence of common sequences shared by two (or 
even more) different species can alter the quanti-
fication or wrongly detect bacteria which are not 
present. To avoid taking into account the bacterial 
scores of non-detected species that share genomic 
regions with the real sample-derived ones, we only 
considered the bacterial scores of those species 
with at least one unambiguously mapping read. The 
bacterial score values were then intra-sample nor-
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malised so that all bacterial species scores sum up 
to 100 as a measure of bacterial relative abundance 
scaled to percentages.

(3) Batch effect detection and correction: to detect 
the major technical batch affecting the bacterial 
composition of each cancer type, we measured 
the Euclidean distances of samples in the first six 
principal components (PCs) of the principal com-
ponent analysis (PCA, collectively explaining more 
than 10% of the variability) of each cancer type. We 
compared the distributions of these distances of 
samples belonging to the same level of the techni-
cal property to the distances of samples belonging 
to different levels of that property by the Wilcoxon 
test. For example, we compared the distribution of 
the distances between the samples belonging to the 
same 96-well plate identifier (plate ID) to the dis-
tances between samples from different plate IDs. 
The technical property showing the lowest p value 
was considered the major batch effect in the ana-
lysed cancer type. For all the cancer types analysed, 
we determined that the plate ID is the most impor-
tant batch effect, except for GBM samples in which 
no clear technical batch effects were found. In the 
IEO cohort, the dominant detected technical batch 
was the sequencing run. In the PCA, we noticed 
a separation between samples sequenced with a 
different read length in COAD and READ tissues 
(Additional file 1: Fig. S2a). In fact, read length was 
the second-most influential factor identified by our 
batch effect detection approach. Correcting for 
the plate IDs also reduced this read length effect 
(Additional file 1: Fig. S2b), since it is strongly asso-
ciated with the plate IDs (Additional file  1: Fig. 
S2c). As major confirmation, we tested the clinical 
property associations with tumour COAD samples 
batch corrected for sequencing read length and we 
got similar results to the ones obtained correcting 
for plate IDs (Additional file 1: Fig. S2d-e, 3a). We 
also tested the clinical property association to the 
subset of tumour COAD samples with 48 bp-read 
length or 76-read length and observed that some 
of the associations still held (Additional file 1: Fig. 
S3b-c).

   To correct for the identified batch effect, the recon-
structed bacterial microbiome relative abundances 
were scaled and log-transformed. After that, we 
applied the ComBat function from the sva package 
in R [55], controlling for the known batch covari-
ate (the plate IDs or the sequencing run). Since 
some cancer types have few samples per plate, we 
pooled the plates with a low number of samples: 
plates were pooled if they had less than 10% of the 

total number of samples (frac), if frac > 5, frac was 
set to 5.

(4) Microbiome composition PCA: to investigate 
the differences between the whole reconstructed 
microbiota of samples with PCA, we applied the 
prcomp function from the stats R package. Before 
applying the method, we removed the species with 
zero bacterial relative abundances in all the sam-
ples analysed. After this, we selected the 1000 spe-
cies with the highest standard deviation values. The 
presence of outliers in the PCA can alter the results, 
so we measured the Euclidean distances between 
samples and, if one sample was the most distant 
to 95% of the other samples (or more), it was con-
sidered an outlier and removed. After removing an 
outlier, we reran the outlier identification method 
to identify and remove further outliers until no fur-
ther ones could be detected.

(5) Tumour property association with microbi-
ome composition: to test the specific association 
between the PCs and the tumour properties, we ran 
the PCA and compared the different distributions 
of the PC coordinates with the subgroups we were 
analysing with the Wilcoxon or Kruskal–Wallis test. 
We also tested the correlation between PC coor-
dinates and the tumour properties values with the 
Spearman correlation test. We considered the first 
six PCs since they can explain more than 10% of the 
total variability of the reconstructed microbiome 
for all the cancer types tested. For survival analysis, 
we considered as top PC-contributing species (200 
species) with the highest absolute loading values of 
each PC of the PCA (Additional file 2: Table S2).

Since there are different ways to deal with reads 
mapping to sequence-redundant regions of bacterial 
genomes, we wanted to understand if these different 
ways to estimate bacterial signals could affect our results. 
To this end, we tested if different COAD bacterial abun-
dance estimations could detect associations not previ-
ously found with the here described approach (steps 1 
and 2). We applied the same workflow considering only 
uniquely mapping reads per species (i.e. the unambigu-
ous reads) or using the sum of all the mapping reads, both 
unambiguous reads and reads mapping to redundant 
regions (i.e. the ambiguous reads). We detected and cor-
rected for the strongest batch effect (i.e. the sequencing 
plate, as identified with our current approach) and tested 
for significant associations between the first six PCs of 
the reconstructed microbiome PCA and tumour proper-
ties. All the approaches found side, MSI, CIMP and ane-
uploidy status associated with the bacterial compositions 
of samples (Additional file 1: Fig. S3d), while the relaxed 
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one (including ambiguous reads) detected also the asso-
ciation with the percentage of normal cells that was not 
previously identified.

To compare the variations of bacterial abundances of 
species related to specific properties of the tumour (e.g. 
the abundances in the left versus the right side of the 
colon in the primary tumour), we used the generalised 
log fold change, as described in Wirbel et al. [56].

LASSO regression model
In order to test if the bacterial composition could serve 
as potential biomarker for clinical tumour properties, we 
trained a least absolute shrinkage and selection operator 
(LASSO) logistic regression machine learning model [57] 
to distinguish stage, MSI status, CMS and the percent-
age of normal cells across all COAD samples. To have a 
binary classification problem, the tumour properties were 
adjusted to obtain only two classes, when needed: the 
stage information was split into early (stages I and II) and 
late (stages III and IV) stage; for each CMS, a new label 
was created in which every CMS was grouped against 
the rest of the CMSs (e.g. CMS1 versus all other CMSs); 
finally, the percentage of normal cells were split by low 
(zero value) and high (over 10%). We selected 500 bacte-
ria with the highest standard deviation (SD) on which we 
then trained a LASSO regression model with the SIAM-
CAT package in R [58], using a 10 times repeated tenfold 
cross-validation strategy. Given the repeated cross-val-
idation, there are multiple predictions for each sample 
(whenever it was used as a test sample during a single 
round of cross-validation). We therefore averaged all pre-
dictions across the cross-validation repeats to get a single 
prediction per sample, which was then used to assess the 
accuracy of the model. For classification of non-malignant 
versus tumour samples, we selected 200 bacteria with the 
highest SD and grouped the samples by Patient ID during 
cross-validation, since we used only paired samples.

Pathway analysis
To compare the pathways enriched in the tumour colon 
properties (e.g. the two sides of the colon), we pooled 
together the PathSeq output BAM files of the primary 
tumour samples from the same sublevel (e.g. from the 
left and the right sections). We then analysed these 
pooled reads with HUMAnN 3.0 [59] and, as suggested 
by the authors of this tool, we normalised the pathway 
abundances to copies per million (CPM). We filtered 
out the low-abundance pathways (abundance below the 
first quartile, 30.49 CPM on the left, 27.02 CPM on the 
right, 26.74 CPM in CMS1, 31.27 CPM in pooled CMSs, 
26.18 CPM in high mutation burden and 25.36 CPM in 
low mutation burden) and then we considered the path-
ways showing at least one third higher abundance than 

the other sublevel (e.g. sides of the colon) as differentially 
active.

We applied bootstrapping to estimate the significance 
of our observations: we randomly picked one third of the 
samples from each sublevel in 50 independent permuta-
tions and applied HUMAnN as described above to obtain 
pathway distributions of the sublevels (e.g. in left and 
right). The distributions of the previously identified path-
ways were compared with the Wilcoxon test and a false 
discovery rate (FDR) multiple-test corrected q value < 0.2.

Survival analysis
The cBioPortal for Cancer Genomics disease-free survival 
(DFS) and overall survival (OS) data were downloaded 
from cBioPortal [60, 61]. To measure the association 
between survival and the microbiome composition, we 
applied Cox proportional-hazard models with the coxph 
function of the survival R package. First, we ran univari-
ate Cox models on the top six PC coordinates separately 
and selected the significant ones. To exclude the possible 
impact on survival due to clinical properties associated 
with PCs, we tested the selected PC coordinates together 
with their associated properties in a multivariate model 
and checked whether PCs remained significant. To take 
into account properties with different scales, we scaled 
continuous properties to be in the range 0–1. We fur-
ther validated our results by running the Kaplan–Meier 
analysis on PC coordinates that are not confounded by 
associated properties (in this case, we used original PC 
coordinates). To stratify patients into “high” and “low” 
groups, maximally selected rank statistics were adopted. 
To detect which bacterium is associated with the relapse 
probability, we applied univariate Cox analysis to the 
batch corrected values of the first 100 bacteria with the 
highest loadings of the PCs associated with relapse prob-
ability (PC4). We then multiple-test correct the p value of 
the Wald test, selecting for q < 0.2 species.

Filter criteria on bacteria
We applied two different approaches to select the species 
of interest:

(1) High-confidence set of species: given the high 
number of bacterial species detected in the cancer 
types analysed, we defined three filters to remove 
the low-present, batch-affected bacteria and select 
the cancer type–specific ones. To remove the bac-
teria whose distribution is affected by the domi-
nant batch effect of the cancer type, we applied 
the Wilcoxon test to their relative abundances and 
removed the bacteria with FDR multiple-test cor-
rected q value < 0.1. To filter out the low prevalent 
bacteria, we selected those bacteria detected in 
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at least 10% of the samples of the cancer type of 
interest. To select cancer type–specific bacteria, 
we finally selected those bacteria showing a higher 
mean in the cancer type analysed than in the other 
types.

(2) Colon–specific set of species: we screened the 
bacteria by applying the presence and cancer type-
specificity filters described above. After that, in 
order to test for differentially abundant species 
between different levels of properties, we applied 
a non-parametric Mann–Whitney test: the inde-
pendence_test function as implemented in the R 
package coin [62]. To consider the batch effect pre-
sent in the samples, we applied the independence_
test blocking for the property we considered the 
dominant technical batch. Finally, we considered 
bacteria statistically significantly associated with a 
property, if their multiple-testing corrected q value 
(FDR method) was below 0.1.

Results
Microbiome reconstruction from RNA‑Seq data of different 
cancer types
A computational workflow was implemented (Fig.  1a) 
to reconstruct the microbiome by extracting bacterial 
reads from RNA-Seq data [54], detecting and correct-
ing for contaminants and batch effects and summa-
rising global microbiome composition trends using 
dimensionality reduction (see “Methods”). We started 
by reconstructing the microbiome from nine TCGA 
RNA-Seq studies on epithelial tumours. These studies 
originate from tissues strongly exposed to microbiota, 
namely colorectal, head and neck, skin, lung and breast 
epithelial tissues; additionally, we analysed ovary, where 
exposure to microbiome is under debate [63] and brain 
tissue, which is largely sheltered from microbes in con-
trast with epithelial cancers (in total 3737 samples). 
This analysis yielded 59,592,060 bacterial reads (0.02% 
of the total reads; Additional file  1: Fig. S4a) mapping 
to 11,961 bacterial species and, surprisingly, detected 
bacterial signals in all the cancer types analysed, includ-
ing brain tumours (GBM). Next, we aimed to remove 
those bacterial reads that might originate from con-
tamination and bacteria only supported by ambiguous 
genomic regions. To minimise these effects, first, we 
included only the bacteria detected by at least one read 
mapping to a non-redundant region (18,236,650 unam-
biguous reads). Then, we used a bacterial score that 
weights the reads by the number of genomes they map 
to (based on 39,081,191 reads associated with 10,910 
bacterial species; Additional file  1: Fig. S4b,c) (see 
“Methods”). Bacterial scores were then intra-sample 

normalised to obtain bacterial relative abundances. 
With this approach, we reduced the number of bacterial 
species detected per sample and recovered a significant 
fraction of reads shared by multiple genomes that would 
otherwise be discarded. We next established a step in 
the workflow to computationally correct the technical 
variation affecting the reconstructed microbiome (see 
“Methods” for details): to compare samples from differ-
ent cancer types, we applied a PCA on the species of the 
bacterial microbiome showing the highest variability 
between samples (using the 1000 bacteria with the SD) 
(Fig. 1b). This approach revealed that the reconstructed 
microbiome clustered by cancer type, suggesting cancer 
type–specific bacterial composition. However, when we 
analysed each cancer type, technical factors were also 
critical for the clustering, with plate ID emerging as the 
strongest contributor. After correcting for these batch 
effects (see “Methods”), differences between the recon-
structed microbiomes were only minimally affected by 
technical factors (Additional file 1: Fig. S4d), suggesting 
that our approach can quantify the presence of bacterial 
reads on a broad number of samples while controlling 
for sources of unwanted technical variation and noise in 
the data.

Comparison with experimental detection approaches 
to characterise the microbiome
To better understand how accurately our computational 
approach is able to reconstruct true tissue microbiome 
composition, we applied the same workflow to a cohort 
of 30 non-metastatic colon cancer patients who under-
went surgical resection at the IEO (Milan). From each 
patient, we analysed both the tumour and the non-malig-
nant tissues (Additional file 3: Table S3). We first verified 
that the IEO cohort grouped with TCGA colon samples 
in microbiome space (Fig.  2a,b). Second, we evaluated 
the agreement of microbial genus profiles inferred from 
RNA-Seq data with those generated by sequencing the 
DNA of bacterial ribosomal RNA 16S from the same 
samples, an established approach for profiling tissue-
resident microbiota. Spearman rank correlation showed 
good agreement between the two methods when filtering 
for bacterial genera with a prevalence higher than 20% 
across samples (Fig. 2c; p = 0.004; one-sample Wilcoxon 
test, rs = 0.17; Spearman correlation) and the correlation 
is stronger when considering highly prevalent bacteria 
(Additional file  1: Fig. S1c). As expected, colon adeno-
carcinoma samples from TCGA and IEO are grouped 
together even at the genus-level PCA, see Additional 
file  1: Fig. S1d. Third, we performed FISH on intesti-
nal tissues from a subset of ten colon cancer patients 
of the IEO cohort using probes targeting specifically A. 
muciniphila and F. prausnitzii, two bacteria found under 
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physiological conditions in the digestive tract [64], see 
Additional file 1: Fig. S1a-b.

When compared with reconstructed signals obtained 
by our workflow, the FISH signals showed a good cor-
relation for A. muciniphila (rs = 0.58; Spearman corre-
lation; with a prevalence of 0.5 in RNA-Seq data) and 

F. prausnitzii (rs = 0.21; Spearman correlation; with a 
prevalence of 1 in RNA-Seq data) (Fig. 2d,e). Those cor-
relations were not statistically significant. In summary, 
these analyses indicate that RNA-Seq experiments from 
human samples can be used to accurately quantify bac-
terial species, especially those with higher prevalence.

Fig. 2 Validation of the reconstructed microbiome profiles from The Cancer Genome Atlas (TCGA) with the European Institute of Oncology (IEO) 
cohort. a Principal component analysis of microbiome profiles from the TCGA (primary tumour and non‑pathological solid tissue normal samples) 
and the IEO cohort shows cross‑cohort clustering of colon adenocarcinoma samples. b Total number of normal and tumour samples. c Density 
plot of the Spearman coefficients describing the correlation between the 76 most abundant bacterial genera (present in more than 20% of the 
samples) profiled in both RNA sequencing (RNA‑Seq) and ribosomal RNA 16S gene (16S) sequencing data. The majority of correlation coefficients 
are significantly larger than zero (p < 0.005, one‑sample Wilcoxon test), meaning a similar tendency of detecting bacteria by the two approaches. 
d Correlation between the reconstructed microbiome (RNA‑Seq bacterial relative abundances) and fluorescence in situ hybridisation (FISH) 
quantification of two bacteria, Faecalibacterium prausnitzii and Akkermansia muciniphila. Pearson (rp) and Spearman (rs) coefficients are indicated. e 
Representative FISH images of A. muciniphila and F. prausnitzii. GBM, glioblastoma multiforme; LUAD, lung adenocarcinoma; LUSC, lung squamous 
cell carcinoma; HNSC, head and neck squamous cell carcinoma; OV, ovarian serous cystadenocarcinoma; READ, rectum adenocarcinoma; SKCM, skin 
cutaneous melanoma, BRCA, breast invasive carcinoma. Number of samples analysed in brackets
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Association between bacterial composition and clinical 
and molecular properties of colon cancer
We next wondered if we could use the extracted bacterial 
reads to detect associations between clinical properties 
of the tumours and the composition of the microbiome. 
Considering that the accuracy of the bacterial extraction 
from RNA-Seq data differs across species, we first tested 
for associations between coordinates of TCGA samples 
in the PCA of the microbial abundance space with spe-
cific tumour properties. We considered the first six PCs, 
which together covered more than 10% of the variation in 
microbiome composition (see “Methods”).

We initially tested for associations with 14 clinical prop-
erties on each analysed cancer type, including age, gen-
der, tumour location (i.e. side), BMI, presence of previous 
malignancy, history of polyps, stemness of the sample, 
percentage of normal cells, stage of the tumour, MSI sta-
tus, CIMP status, CMS (the gene expression–based clas-
sification of colon cancer subtypes) [47], aneuploidy status 
and mutation burden, when available (see “Methods”). 
We were able to detect associations between the microbi-
ome, as quantified by the microbial PCs, and the proper-
ties of the COAD samples (Fig. 3a). For most cancer types, 
no significant or mildly significant associations (q < 0.1 or 
q < 0.2; Wilcoxon, Kruskal–Wallis or Spearman correla-
tion test) were detected, apart from a mild association of 
mutation burden and stemness in BRCA (q = 0.19, Spear-
man correlation test), see Additional file  1: Fig. S5a-h. 
Only for COAD the PC coordinates of the reconstructed 
microbiome showed association with side, CMS, mutation 
burden, stemness and history of polyps; we also detected 
mild associations (0.1 < q < 0.2 Wilcoxon, Kruskal–Wallis 
or Spearman correlation test) with MSI status, CIMP sta-
tus, age, aneuploidy status and gender and other malignan-
cies (Fig. 3a,b and Additional file 1: Fig. S6a-v). To test the 
robustness of our approach and exclude that our observa-
tions could be influenced by technical biases, we repeated 
the analysis of associations with clinical properties on a 
small, high-confidence set of species by stringent filtering 
of the bacteria detected in COAD samples by prevalence 
and cancer type specificity as well as removing species 
that co-vary with technical properties of the samples (see 
“Methods”). We could reconfirm side, MSI and aneuploidy 
associations with microbial composition based only on 44 
species (Additional file 4: Table S4) that could be quanti-
fied with high confidence (Additional file 1: Fig. S7a).

Moreover, to reconfirm the associations between the 
bacterial composition and tumour properties and explore 
a potential future use of bacterial biomarkers, we wanted 
to test if the bacterial composition of COAD samples can 
classify clinical properties. We trained a LASSO logistic 
regression model on the reconstructed bacterial com-
position of the COAD samples to classify the tumour 

properties for which we had sufficient separation in PCA 
space and a minimum number of samples in each class: 
side, MSI and CMS (see “Methods”). We predicted MSI 
and CMS1 samples with an area under the receiver oper-
ating characteristic curve (AUC) of 0.7 (Additional file 1: 
Fig. S8a, c, d) and we classified tumour location (left ver-
sus right side of the colon) with a slightly lower AUC of 
0.64 (Additional file 1: Fig. S8a, e).

Each colon cancer CMS is characterised by specific 
molecular and clinical properties and we wondered if 
this was the case also for their microbial composition. 
Indeed, microbiome composition varied significantly 
with CMSs, with CMS1 being linked to a distinct micro-
biome (Fig. 3b). Since CMS1 is characterised by strong 
immune cell infiltration and activation of immune eva-
sion pathways, we characterised the immune landscape 
from gene expression data [52]. Among the 22 immune 
cell types detected, we found an association between 
the PCs and the estimates of dendritic cells, memory B 
cells, regulatory T cells (Tregs) and mast cells in COAD 
samples (q < 0.1; Wilcoxon, Kruskal–Wallis or Spear-
man correlation tests, see “Methods”) and other mild 
association with eosinophils, macrophages M2 and rest-
ing CD4 memory T cells, both in terms of abundance 
and proportions of immune cells per sample (Fig.  3c 
and Additional file  1: Fig. S9a). Moreover, when test-
ing the associations of the bacterial composition with 
the immune cell proportions of the other cancer types, 
we detected several interesting associations: Tregs 
were associated with the majority of the cancer types 
(COAD, LUAD, LUSC, HNSC and BRCA), followed by 
dendritic cells (COAD, READ, HNSC and BRCA) and 
resting CD4 memory T cells (COAD, LUAD, HNSC and 
BRCA), while monocytes and neutrophils are examples 
of immune cell subtypes associated with a specific can-
cer type (BRCA and HNSC respectively), see Additional 
file 1: Fig. S10 for details. This infiltrating immune cell 
analysis highlights that some immune cell subtypes are 
more frequently found associated with the bacterial 
composition of the tumour while others are more can-
cer type specific. Along with immune-mediated inter-
actions, the bacteria-host crosstalk relies on mutual 
metabolic exchanges in both physiologic or pathologi-
cal conditions. To explore bacterial pathway activity, 
we quantified the microbial metabolic pathways using 
a tool to profile the abundance of bacterial metabolic 
pathways from metagenomics or -transcriptomics data 
[59]. As our approach revealed substantially fewer bac-
terial reads than direct bacterial sequencing approaches, 
we decided to group samples and pool their reads. As 
tumour side showed one of the strongest associations 
with the reconstructed microbiomes, we quantified the 
differential signals of bacterial metabolic pathways in 



Page 11 of 19Sambruni et al. Genome Medicine           (2023) 15:32  

the pooled left versus right colon tumours (Additional 
file 5: Table S5). After filtering out low-abundance path-
ways (see “Methods”), we chose those with a differen-
tial abundance of at least 30% when comparing the left 
versus the right side and substantiated their differential 

abundance via bootstrapping subsets of samples (q < 0.2; 
see “Methods”). This revealed stronger signals for path-
ways of fatty acid biosynthesis in the left side of the 
colon, in particular in the palmitate to cis-vaccenate 
synthesis pathway (we found a higher abundance of 

Fig. 3 Associations of microbiome profiles reconstructed from colon adenocarcinoma (COAD) with tumour properties. a Heatmaps of the q values 
of the association and correlation between the first six principal components (PCs) of COAD microbiome profiles (PCs in rows, clinical properties 
in columns). b Boxplot of PC2 coordinates by consensus molecular subtypes (CMS), highlighting the particular behaviour of CMS1 microbiome 
profiles. c Heatmap analogous to a that links the first six microbiome PCs of COAD samples and immune cell infiltration (relative quantification by 
CIBERSORTx). d Kaplan–Meier analysis of disease‑free survival on patients stratified by high or low values of PC4. CIMP, CpG methylation phenotype; 
MSI, microsatellite instability; BMI, body mass index; NK, natural killer. Number of samples analysed in brackets
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(5Z)-dodecenoate biosynthesis I, palmitoleate biosyn-
thesis I (from (5Z)-dodec-5-enoate) and cis-vaccenate 
biosynthesis) and stearate biosynthesis, in concord-
ance with literature [65–69]. The TCA cycle was associ-
ated with the left side of colon. It was previously found 
enriched in colorectal cancer-associated bacteria [70]. 
We applied the same approach to CMS and mutation 
burden since they showed the strongest association 
with the reconstructed microbiomes together with side. 
We pooled CMS2, 3 and 4 samples and compared their 
metabolic pathways with the ones of CMS1 samples but 
no pathways showed significantly different abundance 
in one of the two groups (Additional file  5: Table  S5). 
When we compared the pathways of high and low 
mutation burden samples, we detected two subgroups 
more abundant in high mutation burden samples: one 
is associated to DNA degradation (inosine 5’-phos-
phate, purine ribonucleosides, adenosine and guano-
sine nucleotides degradation), the other is associated to 
sugar metabolism (starch, D-glucarate and D-galacta-
rate, GDP-mannose, glucose, glucose-1-phosphate and 
xylose degradation) (Additional file 5: Table S5).

The genetic background of the host is an essential 
determinant of both tumour growth and progression and 
has been suggested to also influence the tumour-associ-
ated microbial ecosystem [71, 72]. Thus, we investigated 
the association of the bacterial composition detected 
in tumour samples with two molecular properties of 
tumours: the mutation status of frequently mutated genes 
(i.e. the driver genes mutation status) and the abnormal 
number of chromosomes (i.e. the aneuploidy status). 
We did not detect any significant association between 
the microbiome composition and the driver gene muta-
tion status in colon cancer [50] (Additional file  1: Fig. 
S11a). In other cancer types, we did not observe any 
associations between microbial composition and muta-
tion status of their driver genes either (Additional file 6: 
Table  S6). Likewise, no significant association emerged 
between extracted microbiome composition and chro-
mosomal gain or loss in COAD (Additional file  1: Fig. 
S11b, Additional file  7: Table  S7 and Additional file  8: 
Table S8), even though we detected a significant associa-
tion between the bacterial composition and the general 
quantification of the degree of aneuploidy, which quan-
tifies the overall deviation from a diploid karyotype, see 
Fig.  3a. However, we detected an association between 
microbes and specific chromosome aneuploidy status in 
HNSC (14, 16 and 20 chromosome loss), OV (alteration 
of chromosome 14) and READ (chromosome 2 deletion) 
(Additional file 1: Fig. S12a-c, Additional file 7: Table S7 
and Additional file 8: Table S8), even though in this case 
no significant associations have been detected between 
the bacterial compositions of these cancer types and the 

general chromosomal number alteration, see Additional 
file 1: Fig. S5.

Since molecular and immunological characteristics of 
the tumour are associated with clinical outcome of colon 
cancer [73], we next sought a link between the microbial 
composition extracted from RNA-Seq data and clinical 
prognosis. Therefore, we fitted Cox proportional-hazard 
models to the top six PC coordinates and performed 
univariate analyses assessing the impact of each PC 
coordinate on OS (Additional file 1: Fig. S13a) and DFS 
(Additional file 1: Fig. S13b). We found that PC4 was sig-
nificantly associated with DFS: among the top 20 bacteria 
contributing to PC4, we found Cutibacterium granulo-
sum, Corynebacterium tuberculostearicum, Moraxella 
osloensis, Gemella haemolysans, Staphylococcus epider-
midis, Finegoldia magna, Lawsonella clevelandensis and 
Acinetobacter baumannii. We then stratified patients into 
“high” and “low” groups according to PC4 coordinates 
and applied Kaplan–Meier analysis: patients with higher 
PC4 coordinates had a higher probability of relapsing 
(Fig. 3d). Importantly, the survival association was inde-
pendent of the molecular and clinical properties (e.g. age, 
polyps history and mutation load) associated with PC4 
(multivariate Cox model, Additional file 1: Fig. S13c). We 
applied the same analysis to the other cancer types but 
only PC4 of COAD resulted in a significant association 
with DFS (q = 0.03, univariate Cox model), see Additional 
file  9: Table  S9. Together, those results suggest a direct 
link between microbiome composition and the risk of 
relapse in COAD samples.

To understand if these associations were detectable 
only in the tumour microenvironment or reflect a more 
general dysbiosis of the colon, we tested if the associa-
tions between our 14 clinical properties and microbiome 
composition hold in the non-malignant tissues available 
from TCGA. The reconstructed microbiome of these 
non-malignant samples of the colon did not show an 
association with the clinical properties available (Addi-
tional file 1: Fig. S14a). However, the lack of significance 
might be due to lower statistical power (TCGA contains 
only 39 non-malignant colon samples). To exclude this 
possibility, we tested the same associations in the subset 
of tumour samples paired with the non-malignant ones. 
For seven of the previous ten significant associations, we 
observed lower significance levels in the paired, reduced 
tumour cohort compared to non-malignant, showing a 
tendency of association similar to the one detected with 
the full COAD cohort (Additional file 1: Fig. S14b). Even 
though we could not rule out that significant associa-
tions may be seen with a larger number of non-malignant 
samples, the complete absence of associations suggests 
that the detected ones in our initial pool of samples are 
tumour-microenvironment specific. Given the absence of 
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associations detected in the non-malignant COAD sam-
ples, we wondered if the bacterial composition of sam-
ples could be used to distinguish between non-malignant 
and tumour samples. We trained another LASSO regres-
sion model to classify the status (non-malignant versus 
tumour) of samples based on the reconstructed bacterial 
composition: using the 39 non-malignant samples and 
their paired tumour counterparts, we reached an AUC 
of 0.83 (Additional file 1: Fig. S8b,f ), highlighting that we 
can predict the malignancy status of the sample from its 
reconstructed bacterial composition.

Identification of bacteria associated with specific 
cancer‑related properties
Our previous analyses revealed links between micro-
biome composition and different properties of colon 
tumours. To further refine this, we investigated if spe-
cific bacteria were associated with each of the different 
properties. To identify the species associated with the 
left- or right-sided tumours, we tested for abundance 
differences for a subset of colon-specific species (cancer 
type–specific and prevalent in colon cancer samples, see 
“Methods”), while controlling for the technical variation 
(independence test blocking by plate ID; see “Methods”) 
(Fig. 4a). We found nine species whose abundances dif-
fered between the left and the right side of the colon. In 
particular, we discovered that F. prausnitzii, Coprococ-
cus comes and two Bacteroides spp. (Bacteroides vulga-
tus and Bacteroides thetaiotaomicron) showed higher 
abundances in the samples from the right (Fig.  4a and 
Additional file 10: Table S10). Notably, these four bacte-
ria were among the 20% of species contributing the most 
to PC2, the most robust side-associated PC (Fig. 3a). In 
addition, in the previously described LASSO regression 
model, F. prausnitzii showed a high relative weight on 
the right side of the colon (Additional file  1: Fig. S8e). 
When the same approach was applied to the other prop-
erties significantly associated with PCs (q < 0.2; Wilcoxon, 
Kruskal–Wallis or Spearman correlation tests), CMS 
and MSI status were the only two showing an associa-
tion with specific bacterial taxa. Specifically, five species 
had a higher abundance in MSI high samples (Additional 
file 10: Table S10), including Bacteroides fragilis, Clostrid-
ium asparagiforme, Fusobacterium sp. OBRC1 and 
Bacteroides sp. 3_2_5 (Fig. 4b), which were strongly con-
tributing to the two PCs associated with MSI level (PC2 
and PC6). B. fragilis, C. asparagiforme and F. sp. OBRC1 
were also highlighted by the LASSO regression model 
as a marker of MSI high samples (Additional file 1: Fig. 
S8c). We also tested which bacteria were associated with 
the highly immune infiltrated CMS1 subtype (Fig. 4c and 
Additional file 10: Table S10) and found 18 bacteria from 
Clostridium, Bacteroides, Fusobacterium, Actinomyces 

and Peptostreptococcus genera, and Firmicutes phylum. 
Even if not F. nucleatum itself, which has been previ-
ously linked to the growth and progression of colorectal 
cancer [73–75], we detected five Fusobacterium species 
with a higher level in the CMS1 subgroup. These bacteria 
contributed to PC2 or PC6, the two PCs associated with 
CMS. Moreover, five species of Clostridium were found 
associated with CMS1: while Clostridium perfringens was 
not contributing to PC2, the LASSO model used it to 
classify CMS1 samples, together with Fusobacterium per-
iodonticum and F. sp. OBRC1 (Additional file 1: Fig. S8d).

A similar approach was applied to detect potential 
associations of specific bacteria to subtypes of immune 
cells. In this regard, 12 bacteria were associated with the 
absence of resting mast cells (with an opposite tendency 
for activated mast cells): B. fragilis, Clostridium clostridi-
oforme, Clostridiales bacterium 1_7_47FAA and Clostrid-
ium sp. FS41 (Fig. 4d and Additional file 10: Table S10). 
All of them contributed to PC2, which was associated 
with mast cell infiltration, and C. clostridioforme was 
among the bacteria associated with CMS1.

Finally, we tested if there were any specific bacteria 
associated with patient survival. Given the association 
of PC4 with the DFS of COAD patients, we selected 100 
bacteria with the highest PC4 loading values and per-
formed a univariate Cox analysis. Seventeen bacteria 
showed significant positive associations with the relapse 
probability (hazard ratio > 3; q < 0.2; Wald test; Additional 
file  10: Table  S10), including Corynebacterium matru-
chotii, A. baumannii, Pseudomonas stutzeri and Propi-
onibacterium namnetense.

Even if we did not identify strong associations between 
the bacterial composition and tumour properties of the 
other cancer types, we anyway tested if any single bacte-
ria were associated with clinical properties. We selected 
the most prevalent bacteria (present in 10% or more 
samples, see “Methods”) and tested their association to 
tumour properties in all the investigated cancer types 
(Additional file 1: Fig. S15). LUAD, HNSC, OV and BRCA 
showed at maximum two properties with associated spe-
cies, READ four, compared to COAD with six properties 
being associated with differential species abundance, see 
Additional file 11: Table S11.

Given the associations of single bacterial species with 
tumour properties in COAD, we wondered if we could 
identify associations even at the genus level. On the genus 
level, we assessed the reliability of quantification by com-
paring 16S and RNA-Seq data. As shown in the Additional 
file  1: Fig. S16, we detected 18 high-confidence genera 
(Spearman R > 0.25, Additional file 1: Fig. S16) and tested 
their association with clinical properties. We detected 
seven associated properties and all of them were previously 
observed at the species level. With the PCA approach at 
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the species level, we detected a higher number of signifi-
cant associations (q < 0.2; 22 significant q) than with a single 
genera approach (16 significant q). Some associations such 
as with MSI and CIMP were missing at the genus level, 
hinting at a lower sensitivity when using genera and sug-
gesting that these could be species-specific associations.

Discussion
Tumour development mirrors species evolution in the 
sense that tumours acquire random alterations that may 
confer a fitness advantage or disadvantage to the clones 

that carry the alteration. While in species evolution 
the modulatory effect of the environment on fitness 
and hence selection is well established (e.g. the shape 
and size of the beak of Darwin finches is an adaption 
to availability of food), the link between the ecologi-
cal niche in which tumours grow and selective forces 
favouring specific phenotypes is much less clear. Our 
present work focuses on detecting different microbes in 
the tumour niche, intending to identify how differences 
in bacterial composition are associated with specific 
tumour properties.

Fig. 4 Species associated with colon adenocarcinomas properties. Barplots of the means of the bacterial relative abundances of a subset of the 
bacterial species with differential distribution in a the side, b microsatellite instability (MSI) level, c consensus molecular subtype (CMS) and d mast 
cells resting. In total, we found nine bacteria associated with side, five with MSI, eighteen with CMSs and twelve with resting mast cells. Error bars 
showing the standard error
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Heterogeneity in both the human microbiome compo-
sition and tumour molecular properties poses a challenge 
for association studies of bacteria and tumour properties 
as it requires a large number of samples. Our approach 
allowed us to overcome this problem since we were able 
to deeply portray the clinical and molecular properties 
of every tumour, taking advantage of the high amount 
of information and analyses of TCGA cohort patients 
and, concurrently, reconstruct the bacterial composi-
tion of each sample analysed. Moreover, the possibility 
of observing and correcting the technical differences of 
the reconstructed microbiomes prevents the detection 
of spurious associations. This batch correction workflow 
makes it possible in principle to combine these analyses 
with other datasets to further increase statistical power 
by leveraging the large amount of human RNA-Seq 
experiments that are publicly available.

The composition of bacteria that we reconstructed 
from human RNA-Seq data is affected by biases and con-
tamination thus limiting our capability to investigate the 
bacterial ecosystem of the tumour. The impact of some 
of these biases can be quantified from the association 
of the bacterial composition with technical features that 
are reported by TCGA. Our computational approach 
detects and corrects for the most strongly associated 
feature. Technical features are highly correlated among 
each other and, thereby, when correcting for the strong-
est associated feature, our approach substantially reduces 
the impact of other technical features too. Still, we cannot 
rule out that weaker or undetected batch effects remain 
and may still influence our observations. In addition, it is 
sometimes difficult to decide if a reported property of the 
tumour is in fact a technical or biologically relevant fea-
ture (e.g. the percentage of normal cells).

Indeed, further validations and improvements may 
be needed for accurately profiling intratumoural bacte-
ria as our approach cannot perfectly mirror the actual 
abundance of each single bacterium as it is the case with 
metagenomics methods that show a large variability in 
accuracy across methods [76]. Using PCA allowed us to 
robustly capture prominent trends of variation in bacte-
rial composition and circumvents the need to quantify 
every single bacterial taxon accurately. With this inte-
grated workflow and the systematic analysis of a total of 
264 tumour properties, we went beyond previous work 
which established links involving particular tumour 
properties, species or tumour types [19–28]. This con-
firmed previous observations (e.g. CMS, clinical out-
come) and revealed novel associations (e.g. aneuploidy 
status).

Besides these global relationships with bacterial com-
position, we detected specific bacteria associated with 
those tumour properties. Some of them have already 

been associated with colon cancer and inflammation or 
gastrointestinal diseases [47, 77–83] while others have 
been identified in healthy colon [84, 85]. In particu-
lar we identified B. fragilis, some strains of which are 
known commensals of the human gut, whereas others 
can enhance tumour growth via production of an enter-
otoxin that commensal strains are lacking. This entero-
toxin can induce tumours in several ways, one of them 
includes immune cell deregulation [86]. While among 
the healthy related bacteria, we found F. prausnitzii 
enriched in the right side of the colon: F. prausnitzii is 
also known as one of the main anaerobic bacteria that 
feed the colon cells by fermentation [84], which is one 
of the main roles of microbiota in the proximal colon 
[87]. The differences in the sides of the colon were also 
evident in the modification of the chemical context of 
the tumour [65]: for example, we showed the differ-
ences in bacterial fatty acid metabolism of the tumours 
from the two sides of the colon. Interestingly, some 
of the pathways associated with the left part of the 
colon were previously associated with cancer [65–68] 
or inflammation [69]. In particular, palmitate accu-
mulation has been shown to contribute to creating an 
immune-suppressive tumour microenvironment [88]. 
In this context, the immune system involvement rep-
resents another mechanism connecting bacteria with 
tumour properties: previous studies have demonstrated 
that the interaction between bacteria and the immune 
system can shape the growth and progression of spe-
cific tumour subtypes [11]. Here, mast cells were most 
strongly linked with bacteria amidst all tested immune 
cell subtypes. With the advantage of using human colon 
cancer samples, this result confirms previous studies 
demonstrating that bacteria can induce mast cell acti-
vation in mouse models or in small cohorts of patients 
[89, 90]. Moreover, the infiltrating immune cells are 
associated with the tumoural bacterial composition 
not only in colon cancer, but also in other cancer types. 
Interestingly, for these tissues few other bacterial com-
position associations were detected. We observe that 
some immune cell subtypes are more frequently asso-
ciated to the bacterial composition of the tumour, e.g. 
the Tregs and dendritic cells. These two cells are known 
to be reactive to microbial stimuli and play a role in 
microbial regulation [91, 92]. Moreover, we identified 
different types of DNA degradation pathways associ-
ated with mutation burden of the tumour (e.g. purine 
degradation). This highlights an interesting association 
between bacterial metabolism and mutational pro-
cesses that should be further explored.

These differences can directly affect (or be affected by) 
the properties of the tumour since they shape its chemi-
cal environment: interactions through immune cells and 
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metabolism can be used to describe and represent the 
tumour niche as an evolving ecosystem.

Despite clinical prognosis in colorectal cancer depend-
ing strongly on the time of diagnosis, almost half of the 
resected colon tumours relapse within 5  years from sur-
gery [93]. Here we showed that the bacterial composition of 
tumours can be predictive of patient prognosis. Among the 
bacteria we identified, A. baumannii, P. namnetense and P. 
stutzeri associated with bad prognosis and have been previ-
ously linked to human diseases or cancer [94–97].

In our analysis, we decided to focus on the associa-
tion between colon cancer properties and microbiome 
composition. While we observed particularly strong 
associations in colon, we would like to clarify that we 
also observed weaker associations in other cancer types 
(e.g. breast). Those should be explored further in future 
studies. While other studies observed the specific asso-
ciation between colon cancer properties such as sur-
vival and microbiome composition too [19, 20, 26], we 
here systematically test a large number of molecular 
and clinical features and, therefore, expand beyond the 
previous work. The large number of detected associa-
tions might reflect the specific quantity and diversity 
of the colon microbiome and its direct influence on the 
colon [98, 99].

Despite the clear clinical relevance of some of our 
observations (such as associations of the bacterial com-
position of tumour to patient’s prognosis), the primary 
aim of this study is to better understand the tumour and 
its environment as a system where the probability of 
occurrence of components are statistically linked to each 
other. Further experimental work would be needed to 
address directionality and causality of the described asso-
ciations. However, our work indicates that the microbial 
component of the tissue microenvironment might influ-
ence selection in tumour evolution and outcome.

Conclusions
By showing that specific consortia of bacteria are 
associated explicitly with molecular and clinical prop-
erties of the tumour, we suggest that the profiling of 
bacterial composition can be developed into a stratifi-
cation biomarker, with relevant implications in prog-
nosis predictions and with the potential to implement 
colon cancer therapies, e.g. immune checkpoint inhib-
itor therapy.
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