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Abstract 

Background Fumarate hydratase–deficient renal cell carcinoma (FH-RCC) is a rare highly aggressive subtype of 
kidney cancer for which the distinct genomic, transcriptomic, and evolutionary relationships between metastatic and 
primary lesions are still unclear.

Methods In this study, whole-exome, RNA-seq, and DNA methylation sequencing were performed on primary-meta-
static paired specimens from 19 FH-RCC cases, including 23 primary and 35 matched metastatic lesions. Phylogenetic 
and clonal evolutionary analyses were used to investigate the evolutionary characteristics of FH-RCC. Transcriptomic 
analyses, immunohistochemistry, and multiple immunofluorescence experiments were performed to identify the 
tumor microenvironmental features of metastatic lesions.

Results Paired primary and metastatic lesions generally showed similar characteristics of tumor mutation burden, 
tumor neoantigen burden, microsatellite instability score, CNV burden, and genome instability index. Notably, we 
identified an FH-mutated founding MRCA (the most recent common ancestor) clone that dominated the early evolu-
tionary trajectories in FH-RCC. Although both primary and metastatic lesions manifested high immunogenicity, meta-
static lesions exhibited higher enrichment of T effector cells and immune-related chemokines, together with upregu-
lation of PD-L1, TIGIT, and BTLA. In addition, we found that concurrent NF2 mutation may be associated with bone 
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metastasis and upregulation of cell cycle signature in metastatic lesions. Furthermore, although in FH-RCC metastatic 
lesions in general shared similar CpG island methylator phenotype with primary lesions, we found metastatic lesions 
displaying hypomethylated chemokine and immune checkpoints related genomic loci.

Conclusions Overall, our study demonstrated the genomic, epigenomic, and transcriptomic features of metastatic 
lesions in FH-RCC and revealed their early evolutionary trajectory. These results provided multi-omics evidence por-
traying the progression of FH-RCC. 

Keywords Fumarate hydratase–deficient renal cell carcinoma, Whole-exome sequencing, DNA methylation, RNA-
seq, Tumor evolution, Metastatic lesions

Background
Fumarate hydratase–deficient renal cell carcinoma 
(FH-RCC) is a rare subtype of kidney cancer, character-
ized by either somatic or germline aberration of fuma-
rate hydratase (FH) gene, in which pathogenic germline 
mutation of FH gene is associated with hereditary leio-
myomatosis renal cell carcinoma (HLRCC) syndrome 
[1, 2]. FH-RCC exhibits highly aggressive clinical behav-
iors, with 56–63% of cases presenting with metastatic 
diseases at initial diagnosis and showing poor prognosis 
[3, 4]. Unfortunately, few effective treatment strategies 
are available for FH-RCC patients to date due to its rarity 
and our limited understanding of its molecular basis.

Previous studies have reported several mechanisms 
that may contribute to the aggressiveness of FH-RCC, 
including the Warburg effect, epithelial-to-mesenchymal 
transition (EMT), and CpG island methylator phenotype 
(CIMP) [5–9]. We and others also have delineated the 
clinicopathological, genomic, and epigenomic features 
for FH-RCC using primary tumor samples, in which we 
noticed the early presence of lymph node and/or bone 
metastasis [3, 4]. However, it is not fully understood 
whether the metastases in FH-RCC are molecularly simi-
lar or distinct from the primary tumors, and what are 
the evolutionary patterns of these metastases. Therefore, 
this study aims to identify the heterogeneity between 
matched metastatic and primary lesions of FH-RCC, 
reveal the evolutionary trajectory, and explore potential 
therapeutic strategies.

Methods
Patient selection and sample preparation
From 2014 to 2022, 90 cases with FH-RCC were included 
in our multi-center database established in West China 
Hospital. Generally, cases were from 19 provinces or 
municipalities of China. Firstly, all candidate RCC cases 
were screened using immunohistochemical staining 
(IHC) for FH protein and S-(2-succino)-cysteine (2SC) 
and reviewed by two experienced uropathologists. Diag-
nosis of FH-RCC was then confirmed by DNA sequenc-
ing with germline or somatic FH mutations.

All the FH-RCC cases in our database were systemi-
cally reviewed and 19 cases with available formalin-
fixed paraffin-embedded (FFPE) surgical samples from 
matched adjacent normal kidney tissues, primary tumor 
tissues, and metastatic tissues were then selected. Finally, 
19 cases with 23 primary and 35 matched metastatic 
lesions were selected. Whole-exome sequencing in all 
58 tumor samples, Methyl-Seq and RNA-seq were per-
formed in 37 tumor samples and 32 tumor samples, 
respectively. Among them, different regions of primary 
tumor were sampled for cases FH16, FH26, FH32, and 
FH42. The metastatic samples were originated from 
lymph node, primary surgical site, tumor thrombus, 
abdominal wall, retroperitoneal site, peritoneal site, ovar-
ian, and adrenal metastasis. For each case, the matched 
adjacent normal tissues (n = 8) or blood samples (n = 11) 
were collected for whole-exome sequencing (WES) to 
assess the genomic mutation characteristics. The study 
was conducted in accordance with the Declaration of 
Helsinki and all clinical samples were acquired with writ-
ten informed consents under permission from the Ethics 
Committee of West China Hospital of Sichuan Univer-
sity. All patients provided written consent for genetic 
analysis.

Clinicopathological characteristics and outcomes
Clinicopathological data including age, gender, family 
history, metastatic sites, TNM stage, histological type, 
ISUP grade, surgery types, and systemic treatment types 
were retrospectively collected. Synchronous metasta-
sis was defined as metastasis at the diagnosis of the pri-
mary renal cell carcinoma. Metachronous metastasis was 
defined as the presence of metastasis after a period of 
3 months post resection of primary lesions. For patients 
receiving systemic treatments, the first-line progres-
sion-free survival (PFS) was defined as the time from 
treatment initiation receiving first-line systemic treat-
ment to disease progression or death. Tumor response 
was defined by Response Evaluation Criteria in Solid 
Tumors (RECIST) version 1.1 28. For validation of the 
value of local treatment in patients with systemic ther-
apy, we screened 58 patients from the previous described 
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database. Baseline characteristics are summarized in 
Additional file 1: Table S1 and Additional file 2: Table S2. 
The modalities of systemic treatment included tyrosine 
kinase inhibitor (TKI) monotherapy, anti-VEGF inhibi-
tor plus TKI, mTOR inhibitor plus TKI, mTOR inhibi-
tor monotherapy, chemotherapy, anti-PD-1 inhibitor 
plus TKI, and anti-PD-1 inhibitor monotherapy. Differ-
ent systemic treatments were classified into two groups: 
immune checkpoint blockade (ICB)-based treatment 
(anti-PD-1 inhibitor + TKI or anti-PD-1 inhibitor mono-
therapy) and not ICB-based treatment (the rest modali-
ties of systemic treatment).

DNA extraction
All primary and metastatic tumor sections were reviewed 
by two pathologists to ensure tumor sections with at 
least 70% tumor nuclei. Representative sections of for-
malin-fixed paraffin-embedded (FFPE) tumor (8 μm) and 
matched normal tissues/blood samples were collected. 
High-quality genomic DNA was extracted by using the 
GeneRead DNA FFPE Kit (180,134, QIAGEN, Hilden, 
GER) according to the manufacturer’s instructions. Ger-
mline DNA (gDNA) was extracted from white blood 
cells using the Blood Genomic DNA Mini Kit (CW2087, 
Cwbiotech, Beijing, China).

Whole‑exome sequencing
Exome capture was performed using xGen Exome 
Research Panel v1.0 (IDT), and this was followed by 
paired-end sequencing using Illumina Hiseq Xten plat-
form (Illumine Inc, CA, USA). Mean sequencing depth 
was 278X (range from 36 to 576X).

Read alignment, BAM file generation and post‑alignment 
optimization
Clean reads were aligned to the reference human genome 
hg19 (Genome Reference Consortium GRCh37) using 
BWA 0.7.17 (Burrows-Wheeler Aligner) MEM algorithm 
with default parameters. BAM was coordinate sorted and 
PCR duplicates were removed with Sambamba version 
0.6.8. After the initial alignment of WES data, we fol-
lowed GATK v3.8 Best Practice to process all BAMs from 
the same patient. The detailed process was described in 
our previous studies [4, 10].

Somatic mutations analysis and somatic mutation 
signature profiling
The GATK MuTect2 pipeline was run for paired tumor-
normal somatic mutation calling. The resulting VCFs 
were filtered by Mutect2 FilterMutectCalls module, and 
FilterByOrientationBias module was used to filter out 
false-positive calls from OxoG and FFPE. Same as our 
previous studies [10], the resulting somatic SNVs and 

indels were further filtered according to the flowing cri-
teria: read depth ≥ 10 in both tumor and normal sam-
ples, mapping quality ≥ 40 and base quality ≥ 20, variant 
allele frequency (VAF) ≥ 5%, and supporting reads ≥ 5 
in tumor, VAF in tumor was ≥ 5 times than that of the 
matched normal VAF. Variants were annotated with 
Oncotator v1.9.9.0. To further avoid miscalling germline 
variants at least 19 read depth in the normal sample in 
dbSNP sites.

Tumor suppressor genes (TSGs) and putative cancer 
driver genes were obtained from TSGene version 2.0 
(https:// bioin fo. uth. edu/ TSGene/), IntOGen (https:// 
www. intog en. org) database, and COSMIC cancer gene 
census list (May 2017,http:// cancer. sanger. ac. uk/ census).

The R package MutationalPatterns [11] (v3.0.1) was 
used to extract the somatic motifs of these samples. 
Non-negative matrix factorization (NMF) was used to 
estimate the optimal number of mutation signatures 
extracted from WES samples. Cosine similarity were cal-
culated to measure the similarity between our identified 
signatures and COSMIC signatures v3.2 [cancer.sanger.
ac.uk/cosmic/signatures].

Germline mutation analysis
Germline SNVs and indels were called by GATK Hap-
lotypeCaller. The vcfs were annotated by InterVar [12] 
v2.0.2 to classify variants based on five-tiered categori-
zation system: pathogenic, likely pathogenic, uncertain 
significance, likely benign, and benign. Variants were 
selected if the InterVar or ClinVar annotation matched 
“Likely_pathogenic” or “Pathogenic”. The possible patho-
genic variants in normal samples with read depth ≥ 10, 
genotype quality ≥ 60, supporting allele reads ≥ 2, and 
VAF ≥ 0.1 were finally kept.

Somatic copy number alterations analysis
FACETS (v0.5.14) [13] was used to estimate tumor cel-
lularity and ploidy from paired tumor and normal WES 
data, and calculated allele-specific somatic copy number 
alterations. FACETS output was integrated with muta-
tion calls to assign mutation clonality and mutation-
specific copy number, including loss of heterozygosity 
(LOH). Copy number (CN) gains were defined as altera-
tions showing total CN > 2 and CN losses were defined as 
alterations showing total CN < 2. Arm-level events were 
defined as any gain or loss occurring in an autosome that 
involved at least 10% of the arm. Arm-level CNV events 
with frequency higher than 10% were included to com-
pare the shared proportion between primary and meta-
static lesions. To identify significantly focal CNV, we used 
the GISTIC2 (v2.0.23) [14], which considers both the 
frequency and amplitude of every CNV, was employed 
dified parameters “-smallmem 1 -broad 1 -brlen 0.7 -cap 

https://bioinfo.uth.edu/TSGene/
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1.5 -conf 0.99 -ta 0.2 -td 0.25—armpeel 1 -genegistic 1 
-savegene 1 -gcm extreme -js 4 -maxseg 2000 -qvt 0.25 
-rx 0”. The proportion of shared focal CNV events were 
calculated based on the number of significant focal CNV 
events. To measure CNV burden, fraction of copy num-
ber altered genome was calculated by dividing the num-
ber of bases in segments with mean log2 CN ratio > 0.1 
or <  − 0.1 by the number of bases in all segments. The 
average proportion of the genome with aberrant copy 
number, weighted on each of the 22 autosomal chromo-
somes, was estimated as the weighted genome instability 
index (wGII). Large deletion was detected using MPLA 
kit (SALSA MLPA Probemix P198 FH).

Tumor clonality and clonal inference
To infer the subclonal population structure for each 
tumor sample, PyClone-vi (https:// github. com/ Roth- 
Lab/ pyclo ne- vi) was used by integrating the variant allele 
frequencies of each mutation with the FACETS-derived 
absolute parental copy number information and purity 
estimates. PyClone generates clusters using a hierarchi-
cal Bayesian clustering model. Cluster with less than 3 
variants will be removed in following clonal evolution 
analysis. Copy number changes called by the Battenberg 
algorithm and read count information of each mutation 
across all regions in the same tumor were used to cal-
culate cancer cell fraction (CCF). Clonality of mutations 
was determined based on the Timing analysis using R 
package “MutationTimeR” [15]. Primary and metastasis 
shared clonal mutations were defined as Trunk/truncal 
mutations. According to the methods in a previous study 
[16], patients with none or very few (< 10) trunk SNVs or 
diffusely distributed cluster were excluded, which could 
be probably caused by low tumor purity or low sequenc-
ing quality. Clonal ordering and visualization for each 
patient were reconstructed using R package ClonEvol 
[17] (version 0.99.11). The number of bootstraps was set 
as 1000. Minimum probability that a CCF estimate for a 
clone in a sample is non-negative in an accepted clonal 
ordering was set as 0.05. Cluster center used median 
of each cluster. In this study, the most recent common 
ancestor (MRCA) was defined as the clone/subclone 
which harbors the full complement of alterations com-
mon to all the clones/subclones in the metastatic lesions 
[16, 18]. In addition, MPTevol was used to analyze the 
driving role of CNV events in the evolution of FH-RCC 
[19]. The allele-specific CNA-based phylogenetic trees 
were constructed based on a minimum event distance for 
intratumor copy number comparisons (MEDICCs) [20]. 
The allele-specific CNAs of each sample, obtained from 
facets, were further filtered by requiring (1) min number 
of BAF sites 30; (2) max copy number 15; (3) min CNV 
segment length 1e + 05. (i) number of BAF sites ≥ 30 

and (ii) max copy number ≤ 6. The overlapped segments 
(≥ 106 bp) from all samples and the corresponding num-
bers of A and B allele were extracted as the input of 
MEDICC. The bootstrap values of internal nodes were 
obtained by resampling the distance matrix 1000 times. 
The constructed phylogenetic trees were further visual-
ized by ggtree (R package, v3.0.1). MEDICC was used to 
infer CNA-based sample trees, and the phylogenetic tree 
was finally visualized by MPTevol plotCNAtree function 
with the number of bootstrap steps 500.

Infinium MethylationEPIC BeadChip assay
Genomic DNA was treated with bisulfite using the Epi-
Tect Fast Bisulfite Conversion Kits (59,802, Qiagen). All 
samples were processed in the same batch. Genome-wide 
DNA methylation profiles of samples (16 primary and 21 
metastatic tumors and 8 adjacent normal samples) were 
generated using Infinium MethylationEPIC BeadChip 
assay (EPIC array, Illumina). The assay determines DNA 
methylation levels at > 850,000 CpG sites and provides 
coverage of CpG islands, RefSeq genes, ENCODE open 
chromatin, ENCODE transcription factor-binding sites, 
and FANTOM5 enhancers. The assay was performed 
according to the manufacturer’s instructions and scanned 
on an Illumina HiScan. To avoid batch effects, 45 samples 
were randomly divided into six groups, with 8 samples in 
a group assayed on the same array.

EPIC array data processing and DMP identification
Raw EPIC array data were preprocessed using the 
ChAMP R/Bioconductor package with default settings. 
Different methylation position (DMPs) analysis was per-
formed on beta (β) value. We used a linear model (limma) 
with the empirical Bayes approach with normal control 
samples as the reference group. Genomic annotation of 
CpG sites were annotated using HumanMethylationE-
PICm probe annotations through ChAMP. The percent-
age of DMPs in each annotation region were calculated 
with R software and visualized with ggplot2. A probe was 
considered significantly differentially methylated if the 
methylation difference (β-values) between the tumor and 
normal control samples were at least 15% with a FDR-
adjusted (Benjamini-Hochberg) P-value < 0.01. The meth-
ylation of candidate probes for immune genes among 
different groups was compared using the Kruskal–Wallis 
test and Dunn’s test. The differential methylated probes 
between paired samples were also compared using paired 
t test or Wilcoxon signed ranked test. P-value < 0.05 was 
considered as significant difference.

Methylation profiling analysis
DeepTools2 [21] was used for methylation profiling anal-
ysis. In detail, the region between TSS and TES of whole 

https://github.com/Roth-Lab/pyclone-vi
https://github.com/Roth-Lab/pyclone-vi


Page 5 of 18Liang et al. Genome Medicine           (2023) 15:31  

genome genes or specific genes (for example, hallmark 
gene sets) were normalized into a relative equal length 
and extending 3000  bp of upstream and downstream. 
Regions were divided into 50 windows and average meth-
ylation was calculated in each window, and then visual-
ized as profile line plot.

Consensus cluster analysis
As our previous study, consensus cluster analysis was run 
for FH-deficient RCC cohort alone and combined with 
TCGA-KIRC/KIRP/KICH cohort, respectively. Methyla-
tion β-value matrix was adjusted firstly by removing fea-
tures with small variance and impute missing value with 
k-nearest neighbor (KNN). Three feature selection meth-
ods (SD, MAD, and CV) and five cluster methods (hclust, 
kmeans, skmeans, pam, and mclust) were chosen to infer 
possible stable consensus subgroup from 2 to 6 clusters 
with different number of top features. The best stable 
partitions from all methods were chosen based on check-
ing the membership matrix.

RNA extraction
RNAs were extracted and purified from FFPE tissues by 
the RNeasy FFPE Kit (73,504, Qiagen, Germany), accord-
ing to the manufacturer’s instructions, and quantified 
with Qubit RNA HS Assay Kit (Thermo Fisher Scientific). 
RNA quality and integrity were characterized using the 
Bioanalyzer and High Sensitivity RNA ScreenTape (Agi-
lent Technologies).

RNA‑seq libraries
Total RNA was isolated from each sample (29 tumor 
samples and 5 paired adjacent normal samples) using 
the Qiagen RNeasy formalin-fixed paraffin-embedded 
(FFPE) Kit (73,504, Qiagen, Hilden, Germany), following 
the protocol from the manufacturer. Purity and quan-
tity of total RNA were measured by Nanodrop. Integrity 
of RNA was evaluated using the RNA Nano6000 Assay 
Kit on the Bioanalyzer 2100 system (Agilent Technolo-
gies, CA, USA). One microgram RNA of per sample was 
used as input for the RNA sample preparations. Strand-
specific RNA sequencing libraries were generated using 
the Whole RNA-seq Lib Prep kit for Illumina (RK20303, 
ABclonal, Shanghai, China). Library quality was evalu-
ated on the Agilent Bioanalyzer 2100 system (Agilent, 
USA). Final libraries were sequenced at the Novogene 
Bioinformatics Institute (Beijing, China) on an Illumina 
Hiseq X10 platform by 150 bp paired-end reads.

RNA sequencing data processing
Raw RNA-Seq reads were trimmed the adapter sequences 
and filtered low-quality bases using FASTP (v0.20.1) [22], 
followed by mapping to human genome reference hg19 

with STAR (v2.7.9a) [23]. During alignment, STAR was 
supplied with transcript models GENCODE v19 from 
https:// data. broad insti tute. org/ Trini ty/ CTAT_ RESOU 
RCE_ LIB/__ genome_ libs_ StarF v1.3. The quality control 
metrics were obtained using FastQC (v0.11.9) (https:// 
www. bioin forma tics. babra ham. ac. uk/ proje cts/ fastqc/), 
and alignment quality metrics of bam files were meas-
ured using RSeQC (v4.0.0) [24]. RNA abundance was cal-
culated using RSEM (v1.2.28) [25], and the RSEM results 
were converted with Bioconductor package tximport 
(v4.1) [26].

Analysis of differentially expressed genes (DEG)
DEGs were determined using the R package “limma” 
with cutoff p-value < 0.05. For paired/matched lesions 
from same patient, paired DEGs were calculated using 
paired t test or Wilcoxon signed ranked test. Upregu-
lated genes and downregulated genes were used to per-
form ontology and pathway enrichment analysis based 
on Gene Ontology and KEGG databases using R package 
“ClusterProfiler”.

Gene set enrichment analysis and single‑sample gene set 
enrichment analysis (ssGSEA)
Gene set enrichment analysis was conducted using the 
Gene Set Enrichment Analysis (GSEA) software version 
4.2.1 [27]. KEGG, GO, wikipathway, and Hallmark gene 
sets from Msigdb database [28] were utilized. ssGSEA 
was used for quantifying immune infiltration and activity 
in tumors using eTME, conserved pan-cancer microen-
vironment signature, wikipathway, and Immunedeconv 
signature set. Then, ssGSEA Z-score of each signature 
(i.e., antitumor cytokines) for each sample were used to 
compare the difference between primary and metastatic 
lesions. Normalized RNA-Seq data was used as input 
without further processing (i.e., no standardization or 
log transformation). Cell cycle score, tumor prolifera-
tion score, and immune score were calculated based on 
ssGSEA analyses. The median ssGSEA score for each 
subgroup was used in radar chart. For patients who 
had multiple metastatic lesions, a mean value was used 
to represent the signature of metastatic tumor. The dif-
ferential immune-related signature levels between pri-
mary and metastatic lesions were grouped according to 
patients and compared using paired t test or Wilcoxon 
signed ranked test.

Immunohistochemistry (IHC) and multiple 
immunofluorescence
IHC and multiple immunofluorescence were per-
formed as previously described [4]. Commercially 
available primary ki67 (clone MIB-1, 1:100, MXB bio-
technologies, Fujian, China) and PD-L1 (clone 22C3, 

https://data.broadinstitute.org/Trinity/CTAT_RESOURCE_LIB/__genome_libs_StarFv1.3
https://data.broadinstitute.org/Trinity/CTAT_RESOURCE_LIB/__genome_libs_StarFv1.3
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Dako) were used in this study. Multiplex immunofluo-
rescence staining was performed using primary anti-
CD163: ab182422 (Abcam, Cambridge, UK); CD20: 
L26 IR604(Agilent Technologies, California, USA); 
CD3: A0452 IR503(Agilent Technologies, California, 
USA); CD4: ab133616 (Abcam, Cambridge, UK); FoxP3: 
ab20034 (Abcam, Cambridge, UK); CD56: ab75813 
(Abcam, Cambridge, UK); CD68:ab213363 (Abcam, 
Cambridge, UK); CD8: ab178089 (Abcam, Cambridge, 
UK)); PD-1: D4W2J(86163S, CST, Massachusetts, USA); 
PD-L1: E1L3N(13684S, CST, Massachusetts, USA): CK: 
ab7753(Abcam, Cambridge, UK); S100: ab52642 (Abcam, 
Cambridge, UK). PD-L1 expression was assessed by 
tumor proportion score, which was defined as the per-
centage of tumor cells with membranous PD-L1 stain-
ing. PD-L1 expression > 1% was defined as positivity. 
We quantified the numbers of CD3 + T cells, CD4 + T 
cells, CD20 + B cells, CD68 + /163 + macrophages, and 
CD68 + /163- macrophages from random five 0.045  mm2 
fields of lesions. For the quantification of checkpoint 
molecules, we used CPS and TPS for the assessment of 
PD-L1 expression and measured the numbers of  TIGIT+ 
cells from random five 0.045  mm2 fields of lesions. Ki67 
index was calculated based on the percentage of Ki67-
positive nuclei of tumor cells. This information was 
described in the “Methods” section.

Statistics
All comparisons for continuous variables were per-
formed using the two-sided Mann–Whitney test for two 
groups and the Kruskal–Wallis test for more than two 
groups. For categorical variables, Pearson’s chi-square 
test with continuity correction or Fisher’s exact test was 
used. Pearson correlation analysis or Spearman cor-
relation analysis was used to evaluate the correlation 
between variables. Survival analyses were conducted 
using Kaplan–Meier method and the difference was 
tested using log-rank. A p-value less than 0.05 was con-
sidered statistically significant.

Results
Overview of sample and patient characteristics
In the present study, 19 cases with 23 primary and 35 
matched metastatic lesions were selected from our FH-
RCC database. To provide the genomic and transcrip-
tomic information of metastatic FH-RCC, we performed 
whole-exome sequencing in all 58 tumor samples, and 

Methyl-Seq and RNA-seq were performed in 37 tumor 
samples and 32 tumor samples, respectively (Additional 
file  3: Fig. S1A). Baseline clinicopathological character-
istics are summarized in Additional file 1: Table S1. The 
most frequent metastatic sites were retroperitoneal, 
mediastinal, and cervical lymph node (84.2%, 16/19) and 
bone (31.6%, 6/19). 17/19 patients received first-line sys-
temic therapies, including tyrosine kinase inhibitor (TKI) 
monotherapy (41%, 7/17), TKI plus PD-1 inhibitor (47%, 
8/17), and TKI plus mTOR inhibitor (12%, 2/17) (Addi-
tional file  2: Table  S2). Survival analysis demonstrated 
that patients with PD-1 inhibitor-based therapy achieved 
more favorable clinical outcomes than those with other 
therapeutic regimens (objective response rate (ORR) 
62.5% vs. 11.1%, P = 0.043, median progression-free sur-
vival (PFS) 22.7 vs. 9.6mo, P = 0.177).

Comparison of the mutational features between primary 
and metastatic lesions
FH gene alterations were identified in all included 
patients, including 8 germline and 11 somatic mutations 
(Additional file 3: Fig. S1B). All germline and somatic FH 
mutations were mainly distributed in the lyase domain 
without hot spot mutation site. Except for case FH07 
sharing only one (c.802A > T) of two FH mutations 
(c.856A > T; c.802A > T), the rest of the primary lesions 
(n = 18) shared the same FH gene variants with matched 
metastatic lesions (n = 28). For cases with germline FH 
mutations, additional FH gene alterations could be fur-
ther identified in the second allele, including somatic 
mutations (FH22, FH38), loss of heterogeneity (LOH) 
(FH05, FH16, FH21, FH25, FH28), and a large dele-
tion event (FH42). Furthermore, among cases with only 
somatic FH alterations, three were validated to harbor 
concurrent FH gene large deletions (FH26, FH29, FH32, 
Additional file 3: Fig. S1C).

Overall, the mutational spectrum of metastatic lesions 
was similar to that of primary lesions (Fig. 1A). Besides 
FH, other frequent putative driver mutated genes iden-
tified in both metastatic and primary lesions included 
NF2, DST, SYNE2, FAT1, PIK3CA, POLQ, which were 
involved in Hippo, PI3K-AKT-mTOR, chromatin remod-
eling, and DNA damage repair pathways (Fig.  1A). Fur-
ther analysis revealed cases with NF2 mutation detected 
from metastatic lesions were significantly associated with 
the presence of bone metastasis (80%, 4/5 vs. 21.4%, 3/14, 
P = 0.038, Fig. 1B).

(See figure on next page.)
Fig. 1 The mutational landscape of paired primary and metastatic lesions of FH-RCC. A Integrated genomic and clinical data for 19 primary and 
matched metastatic lesions. B Percentage bar chart of presence of bone metastasis between patients with metastatic NF2 mutation and wild-type 
NF2. P-value was determined by Fisher’s exact test. C–G Paired ladder plots depict the changes of TMB, TNB, MSI, CNV burden, and WGII score 
in patient-matched cases. P-value was determined by Wilcoxon signed rank test. H,I Paired ladder plots depict the changes of WGII score in NF2 
wild-type and NF2 mutated subgroups. P-value was determined by Wilcoxon signed rank test
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Fig. 1 (See legend on previous page.)
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Additionally, we also compared the tumor mutation 
burden (TMB), tumor neoantigen burden (TNB), micro-
satellite instability (MSI) status, and mutational signature 
between primary and metastatic lesions. TMB of meta-
static lesions was as low as primary lesions (median 1.31/
Mb vs 1.3043/Mb, P = 0.57) (Fig. 1C). Both TNB (median 
1.31 vs 1.56, P = 0.74, Fig.  1D) and MSI score (median 
0.19 vs 0.46, P = 0.94, Fig.  1E) were similar between 
primary and metastatic lesions. The SNV-based muta-
tional signature 22, 35, 6, and 87 were consistently com-
mon in primary and metastatic lesions (Additional file 4: 
Table S3).

Metastatic and primary lesions had similar CNV bur-
den (0.40 vs 0.30, P = 0.17, Fig. 1F) and weighted genome 
instability index (WGII) (0.31 vs 0.24, P = 0.14, Fig. 1G). 
In subgroup analyses of WGII, no difference was found 
between NF2 wild-type metastatic and paired primary 
lesions (Fig.  1H). Among samples concomitant with 
NF2 mutation, we found higher WGII in metastatic 
lesions than primary lesions (median WGII 0.31 vs. 0.13, 
P = 0.03, Fig.  1I). Metastatic lesions shared 59% (16/27) 
of focal CNV events (Additional file 3: Fig. S2A) and 95% 
(55/58) of arm-level events with primary lesions (Addi-
tional file 3: Fig. S2B). The most frequently shared arm-
level events between primary and metastatic tumors 
included gain of chromosomes 2, 17, 16, 12, and loss 
of chromosomes 22q, 9, 18, 19, 1 (Additional file 3: Fig. 
S2C). Notably, metastatic lesions had a higher frequency 
of 22q loss events than primary lesions (52%, 10/19 vs 
21%, 4/19, P = 0.046), grouped according to patients 
(N = 19).

Clonality and phylogenetic trees of FH‑RCC 
A total of 114 clonal and 61 subclonal mutations were 
detected in the primary lesion, and 158 clonal and 71 
subclonal mutations in the metastatic lesions. We found 
68% (78/114) of clonal mutations in the primary lesions 
remained in the metastatic lesions. Besides, the propor-
tion of shared clonal mutations between the primary 
and metastatic lesions was statistically higher than that 
of subclonal mutations (49%, 78/158 vs. 24%, 17/71, 
P = 0.0003). These results indicated that during the 
metastasis of FH-RCC, metastatic lesions could reserve 
most primary clonal mutations, and clonal driver muta-
tions may mainly contribute to its metastasis.

Next, we constructed phylogenetic trees in each case 
using Pyclone and ClonEvol analysis. According to the 
clonal phylogenetic trees and CNV-based phylogenetic 
trees, we observed that driver genes (such as FH and 
NF2) and CNV events (such as 9p loss and 22q loss) 
were involved in FH-RCC evolution (Fig.  2A, Addi-
tional file 3: Fig. S3 and Fig. S4) as previously reported 

[29]. We defined the most recent common ancestor 
(MRCA) as the clone or subclone that contains full 
alterations common to all subclones from metastatic 
lesions. Based on the clonal phylogenetic trees, we 
found that all MRCAs of metastatic lesions were uni-
formly identified as the FH-mutated founding clone 
of primary lesions, which was demonstrated in both 
synchronous and metachronous metastases (Fig.  2A 
and Additional file  3: Fig. S3). Meanwhile, the phylo-
genetic trees based on the CNAs also confirmed that 
all MRCAs of metastatic lesions in each case derived 
from the founding clone of primary lesions (Additional 
file  3: Fig. S4). Taken together, these results strongly 
supported that the MRCA of the primary lesion already 
had the unique rapid metastatic capability and could 
directly dominate the tumor evolution, suggesting an 
MRCA-dominated evolutionary trajectory in FH-RCC 
(Fig. 2B).

Comparison of transcriptomic features between primary 
and metastatic lesions
Next, we performed RNA-seq for primary lesions 
(N = 12), metastatic lesions (N = 20), and adjacent nor-
mal kidney tissues (n = 5) from this cohort (Additional 
file  3: Fig. S1A). Compared with adjacent kidney tis-
sues, both primary and metastatic tissues showed the 
enrichment of inflammatory response, cell cycle, DNA 
replication, DNA damage response pathways (Addi-
tional file  3: Fig. S5A and Additional file  3: Fig. S5B). 
Principal component analysis found that for each case, 
metastatic lesions and paired primary lesions were con-
gregated closely (Additional file  3: Fig. S5C and Addi-
tional file 3: Fig. S5D).

However, further analysis still found some differ-
entially expressed genes (DEGs) between primary 
and metastatic lesions. Compared to paired primary 
lesions, a total of 194 and 510 DEGs were upregulated 
and downregulated in metastatic lesions, respectively. 
Importantly, among those upregulated DEGs, immune-
related pathways, including cytokine-cytokine recep-
tor interaction, chemokine signaling, inflammatory 
response, human complement system, IL6-JAK-STAT3, 
IFN-gamma response, and KRAS DN signaling pathway 
were predominantly enriched (Fig.  3A). Results from 
single-sample gene set enrichment analysis (ssGSEA) 
further showed that metastatic lesions had higher 
immune scores (median 838.6 vs 644.3, P = 0.01, paired 
t test, Fig. 3B), compared to paired primary lesions. But 
there was no significant difference between metastatic 
lesions and paired primary lesions in tumor prolifera-
tion rate scores (paired t test P = 0.21, Fig. 3C) and cell 
cycle scores (P = 0.15, paired t test, Fig. 3D).
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Fig. 2 Clonality and phylogenetic trees of FH-RCC. A Evolutionary tree and clonal relationship between paired primary and metastasis. Cases were 
grouped into “synchronous” and “metachronous” metastasis. Metastasis and primary lesions shared clones were marked as red. The most recent 
common ancestor (MRCA) was denoted by the first node in the phylogenetic tree. B Summary of evolution pattern was displayed as fishplots. 
Patients with synchronous and metachronous metastasis were both featured as MRCA-dominated punctuated evolutionary pattern
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Higher immune infiltration lymphocytes in metastatic 
lesions
Based on a conserved pan-cancer microenvironment 
signature set (Additional file 3: Fig. S5E), both primary 
and metastatic tumor lesions were identified to have 
upregulated tumor infiltration lymphocyte (TIL) asso-
ciated signatures compared to adjacent kidney tissues. 
Furthermore, compared to primary lesions, matched 
metastatic lesions showed higher T cells (P = 0.01), 
effector cell traffic (P = 0.0012), co-activation molecules 

(P = 0.02) and antitumor cytokine (P = 0.001) signa-
tures, and numerically higher Th1 cells (P = 0.06) and 
effector cell (P = 0.06) signatures (Fig. 3E, F), indicating 
the more activated anti-tumor immune-environment 
in metastatic regions. Multiple immunofluorescence 
staining of two cases (FH42, FH48) further validated 
a higher density of CD3 + T cells, CD4 + T cells, and 
CD20 + B cells in metastatic lesions (Additional file  3: 
Fig. S6A). We also compared the potential differ-
ent levels of immune cells between non-lymph node 

Fig. 3 Distinct transcriptomic features and immunogenic phenotype between primary and metastatic lesions in FH-RCC. A Enrichment analysis 
of paired upregulated genes between metastatic lesions and primary lesions. B Paired ladder box plots depict the changes of immune score in 
patient-matched cases. Y-axis represents ssGSEA Z-score. P-value was determined by paired t test. C Paired ladder box plots depict the changes 
of tumor proliferation rate in patient-matched cases. Y-axis represents ssGSEA Z-score. P-value was determined by paired t test. D Paired ladder 
box plots depict the changes of cell cycle in patient-matched cases. Y-axis represents ssGSEA Z-score. P-value was determined by paired t test. E 
Heatmap depicts the conserved pan-cancer microenvironment signature analysis in paired normal, primary, and metastatic lesions. ssGSEA Z-score 
are used. F Paired ladder box plots depict the changes of Th1 cells, T cells, effector cells, effector cells traffic, co-activation molecules, and antitumor 
cytokines in patient-matched cases. Y-axis represents ssGSEA Z-score. P-value was determined by paired t test
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metastases and lymph node metastases, and no differ-
ence was found (Additional file 3: Fig. S6B). At the same 
time, we found much higher expression of chemokine 

ligand family in metastatic lesions (Fig. 4A, B). Corre-
lation analysis demonstrated a positive correlation of 
these chemokine ligand molecules with immune cells, 

Fig. 4 Immune evasion mechanisms of metastatic FH-RCC. A Volcano plot of DEGs in metastatic lesions compared with paired primary lesions of 
FH-RCC. B Expression of chemokine ligand family (CCL21, CCL19, CCL2, CCL3, CCL4L2, CCL18) in metastatic lesions, compared to paired primary 
lesions. Y-axis represents TPM of gene expression. P-value was determined by Wilcoxon signed rank test. C Correlation analysis of chemokine 
ligand family molecules (TPM) and immune microenvironment signatures(ssGSEA Z-score). D Paired ladder box plots depict the change of 
myeloid-derived suppressor cell-related signatures in patient-matched cases. Y-axis represents ssGSEA Z-score. P-value was determined by 
Spearman correlation analysis. E Representative pictures of multiple immunofluorescence staining demonstrated RNA signature-based difference 
of CD68 + /CD163 + TAMs between primary and metastatic lesions, and quantitative analysis of CD8 + , CD68 + /CD163 + cells in cases FH42 and 
FH48. P-value was determined by t test. Scale bar: 100 µm



Page 12 of 18Liang et al. Genome Medicine           (2023) 15:31 

such as T cells and Th1 cells (Fig.  4C). These findings 
suggested the high enrichment level of TILs in meta-
static lesions among FH-RCC.

Immune evasion mechanisms and potential therapeutic 
targets for metastatic FH‑RCC 
Despite an activated anti-tumor immune microenvi-
ronment within the FH-RCC lesions, we still observed 
aberrations in several negative immune regulators, 
which might be involved in immune evasion. We found 
that myeloid-derived suppressor cell-related signatures, 
such as M2-like TAMs and immune suppression by 
myeloid cells, were significantly upregulated in meta-
static lesions (Fig.  4D). Multiple immunofluorescence 
further confirmed the differential levels of CD68 + /
CD163 + TAMs between primary and metastatic 
lesions (Fig. 4E).

In addition, ssGSEA revealed numerically higher 
checkpoint molecule signatures (Fig.  5A) and higher 
transcriptomic levels of CD274, BTLA, and TIGIT 
(Fig. 5B) in metastatic lesions. The expression of PD-L1 
and TIGIT were also validated at the protein level 
(Fig. 5C, D). Both primary and metastatic lesions mani-
fested high expression of PD-L1 (positive rate for primary 
lesions 84%, metastatic lesions 93%), which was consist-
ent with our previous findings [4] (Fig. 5C). These results 
might not only explain potential mechanism for immune 
evasion but also imply promising therapeutic targets for 
FH-RCC.

Transcriptomic features between primary and metastatic 
lesions in FH‑RCC harboring NF2 mutation
We also explored the TME features of paired metastatic-
primary according to NF2 alteration status. Among cases 
with NF2 mutation, the metastatic lesions showed obvi-
ously higher levels of cell cycle-associated signatures than 
primary lesions (Fig.  6A) and NF2 wild-type metastatic 
lesions (Fig.  6B). While no difference was found in cell 
cycle signatures between metastatic and primary lesions 
for cases without NF2 mutation (Fig. 6A). Although the 
relatively small sample size probably impacted this NF2-
associated transcriptomic heterogeneity, it still pro-
vided some evidence for the vital tumor-shaping role of 
NF2 alteration in FH-RCC. Ki67 staining results further 
showed a case that NF2 mutated metastatic lesions had 
a higher ki67 index than paired primary lesions (Fig. 6C). 
Among metastatic lesions, cases harboring NF2 muta-
tion had higher ki67 index compared to NF2 wild-type 
metastatic lesions(P = 0.02, Fig.  6D). These results pro-
vide initial evidence for the role of NF2 in the evolution 
of FH-RCC.

Methylation phenotypes support the activation of immune 
infiltration status revealed by transcriptome
We use EPIC array to compare the methylation pattern 
of tumor and normal samples. We found that tumors 
had significantly higher global methylation levels than 
normal tissues, especially in the upstream area of TSS 
(transcription start site) and downstream of TES (tran-
scription end site) (Additional file  3: Fig. S7A). TSNE 
and unsupervised clustering results further verified 
the different distribution of tumor and normal sam-
ples (Additional file 3: Fig. S7B, and S7C). In addition, 
most metastatic and primary FH-RCC lesions (35/37, 
95%) were identified as CIMP phenotype, which was 
consistent with our previous research work (16/20). We 
merged 450  K methyl-seq data from TCGA-pan RCC 
cohort and revealed that all primary and metastatic 
FH-RCC were distributed into CIMP-RCC cluster 
through T-distributed stochastic neighbor embedding 
analysis (Fig. 7A) and unsupervised clustering analysis 
(Additional file 3: Fig. S7D).

We further compared the differentially methyl-
ated probes between primary and metastatic lesions. 
Although most of the EPIC probes exhibited similarly 
hypermethylated levels both in primary and metastatic 
lesions, there was still a small number of probes being 
identified as differentially methylated probes between 
paired metastatic and primary FH-RCC lesions, of 
which only 1305 probes were hypermethylated, and the 
rest of probes (24,526) were hypomethylated (Fig.  7B, 
and additional file 3: Fig. S7E).

In line with the transcriptional activation of immune 
signals, genes with hypomethylated loci were enriched 
in the inflammatory response, allograft rejection, IL2-
STAT5 signaling, and complement pathways (Addi-
tional file  3: Fig. S7F and Additional file  3: Fig. S7G) 
both in primary and metastatic lesions. Compared with 
paired primary lesions, the hypomethylated probes in 
metastatic lesions were enriched in genes involved in 
chemokine signaling, T cell receptor signaling, inflam-
matory response, Th1 and Th2 cell differentiation, 
cytokine-cytokine receptor interaction, IL2-STAT5 
signaling, B cell receptor signaling pathway, PD-L1 
expression, and PD-1 checkpoint pathway in cancer 
and Interferon-gamma response (Fig.  7C). Specifically, 
chemokine-related genes (CCL21, CCL19, CCR7) and 
immune checkpoint-related genes (BTLA, CD274, and 
TIGIT) were found to have lower methylation levels in 
both primary and metastatic lesions (Fig. 7D). Further 
comparison showed that the degree of hypomethylation 
within the molecules mentioned above in metastatic 
lesions was more prominent than in primary lesions 
(Fig. 7E, Additional file 3: Fig. S8A, and S8B).
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Discussion
The present study compared the molecular heterogenei-
ties between metastases and primary lesions of FH-RCC. 
Our data revealed that FH-RCC was characterized as a 
unitary MRCA-dominated early evolutionary pattern. 

Although similarly high levels of lymphocyte infiltra-
tion and cell cycle signal were found both in primary and 
metastatic lesions of FH-RCC, the enrichment of T effec-
tor cells and immune-related chemokines, together with 
immune checkpoint molecules (PD-1/PD-L1, TIGIT, and 

Fig. 5 The expression of immune checkpoints in metastatic FH-RCC. A Paired ladder box plots depict the checkpoint molecule signatures 
(measured by ssGSEA analysis) change in patient-matched cases. Y-axis represents ssGSEA Z-score. P-value was determined by paired t test. B Paired 
ladder box plots depict the changes of CD274, BTLA, and TIGIT in patient-matched cases. Y-axis represents TPM of genes. P-value was determined 
by Wilcoxon signed rank test. C Expression and quantitative analysis of PD-L1 by IHC in metastatic and paired primary lesions. Scale bar: 100 µm. D 
Expressions of CD8 and TIGIT were quantitatively analyzed at the protein level by multiple immunofluorescence staining in patient-matched cases. 
P-value was determined by t test. Scale bar: 100 µm
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BTLA), were identified in metastatic lesions. These find-
ings provide the molecular basis for the lethal character-
istics and discovery of potential promising therapeutic 
agents.

The high frequency of early and high-volume distant 
metastases in FH-RCC is the leading cause of death. 
Understanding the evolutionary trajectory of metastasis 
is particularly important for guiding clinical treatment 
and predicting natural outcomes [15, 29–31]. Based on 
the analysis of matched primary and metastatic lesions, 

we found that FH-RCC exhibited an MRCA-dominated 
punctuated evolutionary pattern. Metastases of FH-RCC 
could be predominantly seeded directly from the earli-
est FH-driven MRCA of the primary lesion, which is 
very similar to a small subset of cases with rapid progres-
sion reported by TRACERx renal team [29]. This unique 
evolution pattern usually suggests that the metastatic 
competence is acquired in the primary MRCA, leading 
to rapid progression. It can also explain the feature of 
high-volume metastases accompanied by small primary 

Fig. 6 Transcriptomic features between primary and metastatic lesions in FH-RCC harboring NF2 mutation. A Paired ladder box plots depict the 
changes of signatures of tumor proliferation rate, retinoblastoma gene in cancer, G1 to S cell cycle control, and cell cycle in patient-matched cases. 
The above and inferior panels indicated NF2 mutation and wild-type subgroups, respectively. P-value was determined by paired t test. B The box 
plot of signatures of tumor proliferation rate, retinoblastoma gene in cancer, G1 to S cell cycle control, and cell cycle in NF2 mutated metastatic 
lesions compared to NF2 wild-type lesions. C,D Representative image of KI67 staining in patient-matched cases (FH28 and FH29), quantitative 
analysis was performed between NF2 mutated metastatic lesions and NF2 wild-type metastatic lesions using Ki67 index

(See figure on next page.)
Fig. 7 Methylation phenotype and heterogeneity between primary and metastatic lesions. A T-distributed stochastic neighbor embedding (TSNE) 
analysis. Data of FH-RCC included in the present study and TCGA-pan RCC cohort were both integrated into TSNE map. B Differentially methylated 
probes identified between paired metastatic and primary FH-RCC. C Enrichment analysis of hypomethylated probes in metastatic lesions 
(compared to the paired primary lesions). D Heatmap of methylation levels of chemokine-related and immune checkpoint-related genes in paired 
normal, primary, and metastatic lesions. E Box plots depict the difference in of hypomethylation degree among normal, primary, and metastatic 
lesions of FH-RCC. P-value was determined by the Kruskal-Wallis test and Dunn’s test



Page 15 of 18Liang et al. Genome Medicine           (2023) 15:31  

Fig. 7 (See legend on previous page.)
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lesions, as occult micro-metastases may already be pre-
sent at the initial diagnosis [29]. Recent studies have 
revealed that most primary and paired metastatic lesions 
of RCC are of great distinction, which is consistent with 
the theory that most RCC evolution are driven by an 
accumulation of genetic changes (called branched evo-
lution) [29, 32]. In contrast, a minority of RCCs are still 
found to have low intratumor heterogeneity and rapid 
progression (called punctuated evolution pattern) [29]. 
Our genomic analysis found the genomic and transcrip-
tomic aberrations identified in multiple, spatially distinct 
metastases derived from a single individual were highly 
concordant, although a limited number of unique events 
specific to any particular tumor lesion was evident. These 
findings suggest that clinical decision-making based 
on a biopsy from a single primary or metastatic site is 
reasonable.

Different from other RCC subtypes, local treatments 
for patients with either non-metastatic or metastatic 
FH-RCC should also be considered for clinical decision-
making. Given the MRCA-dominated punctuated evolu-
tionary pattern of FH-RCC, primary tumors may act as 
a reservoir of metastasis, prompting active local treat-
ments. Hence, local treatment of primary or metastatic 
lesions appears to be aggressive. This is mainly based on 
the following aspects. Radical nephrectomy might be 
the preferred local treatment for those without metasta-
sis to eliminate tumors at the maximum extent. Recent 
prospective clinical trials (CARMENA and SURTIME) 
recommended against cytoreductive nephrectomy (CN) 
for metastatic ccRCC patients [33, 34]. While for patients 
with metastasis, based on the distinct evolution trajec-
tory, limited genomic heterogeneity between metastatic 
and primary lesions, together with young age and rela-
tively good performance status, it is reasonable to specu-
late that patients with metastatic FH-RCC could benefit 
from CN. Moreover, elevated TILs and PD1/PD-L1 sign-
alings among metastatic lesions could provide additional 
supportive evidence for CN among patients with meta-
static FH-RCC to achieve a more favorable response to 
PD-1/PD-L1-based immunotherapy. Our FH-RCC data-
base further validated that patients with local treatments 
have a superior survival benefit than those without local 
therapies. However, due to the limited cases, selection 
bias is hard to avoid; we need to take these data seriously 
and carefully select patients for local treatment. Taken 
together, these shreds of evidence suggest that active 
local treatment of primary or metastatic lesions can be 
applied for suitable cases after careful consideration of 
the patient’s condition.

Although the transcriptomic characteristics between 
metastases and primary lesions were generally similar 

(both with high immunogenicity), some differential 
findings were still revealed. It has been reported by 
our and others’ studies that metastatic lesions of RCC 
have a different immune microenvironment to primary 
lesions [35, 36]. The metastatic lesions of FH-RCC 
had echoes of higher immune infiltration than that of 
the primary lesions, which included enrichment of T 
effector cells, immune-related chemokines, and upreg-
ulation of expression of PD-L1, TIGIT, and BTLA. 
Furthermore, we found epigenetic changes between 
primary and metastatic lesions aligned with tran-
scriptomic results. Taken together, these clues could 
not only give us a reasonable explanation for immune 
escaping from PD-1/PD-L1 therapy but also imply 
therapeutic agents targeting these immune checkpoints 
should be explored in the future (NCT04773951)[37].

Since NF2 is the most frequently co-mutated gene 
in FH-RCC, we further analyzed its association with 
clinicopathologic features. The results showed that 
NF2 mutation may be associated with bone metastasis. 
However, little is known about the potential mecha-
nism, further study is needed to validate this finding. 
In addition, we performed subgroup analysis based on 
NF2 alteration status and revealed more activated cell 
cycle signaling in metastatic lesions in cases with NF2 
mutation. Cell cycle-related signal has been identi-
fied to be involved in PD-1 inhibitor drug resistance in 
other solid tumors [38–41]. Actually, in clinical results 
from our FH-RCC database, relatively poor response 
to PD-1/PD-L1-based therapy and adverse prognosis 
among patients with NF2 mutation were observed (data 
not shown). Of course, options such as cell cycle inhibi-
tors are also worth being explored among patients with 
NF2 mutation. On the other hand, for those without 
NF2 mutation, cell cycle activation might interfere with 
PD-1 inhibitor-based immunotherapy, so cell cycle 
inhibitor combined with PD-1 inhibitor might further 
improve the efficacy of PD-1 inhibitor-based therapy 
[42, 43].

Limitations of the present study include the retro-
spective study design, small sample size, and no fresh 
tissues. Future multi-center studies with larger sample 
size and multiple biopsy regions are needed to further 
verify our findings.

Conclusions
We identify an FH-mutated founding clone dominated 
early evolutionary pattern in FH-RCC. More impor-
tantly, differences in immune-related signals between 
metastatic and primary lesions may support potential 
immune checkpoint-targeting strategy patients with 
metastatic FH-RCC.
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