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Abstract 

Background Curated databases of genetic variants assist clinicians and researchers in interpreting genetic varia-
tion. Yet, these databases contain some misclassified variants. It is unclear whether variant misclassification is abating 
as these databases rapidly grow and implement new guidelines.

Methods Using archives of ClinVar and HGMD, we investigated how variant misclassification has changed 
over 6 years, across different ancestry groups. We considered inborn errors of metabolism (IEMs) screened in new-
borns as a model system because these disorders are often highly penetrant with neonatal phenotypes. We 
used samples from the 1000 Genomes Project (1KGP) to identify individuals with genotypes that were classified 
by the databases as pathogenic. Due to the rarity of IEMs, nearly all such classified pathogenic genotypes indicate 
likely variant misclassification in ClinVar or HGMD.

Results While the false-positive rates of both ClinVar and HGMD have improved over time, HGMD variants currently 
imply two orders of magnitude more affected individuals in 1KGP than ClinVar variants. We observed that African 
ancestry individuals have a significantly increased chance of being incorrectly indicated to be affected by a screened 
IEM when HGMD variants are used. However, this bias affecting genomes of African ancestry was no longer signifi-
cant once common variants were removed in accordance with recent variant classification guidelines. We discovered 
that ClinVar variants classified as Pathogenic or Likely Pathogenic are reclassified sixfold more often than DM or DM? 
variants in HGMD, which has likely resulted in ClinVar’s lower false-positive rate.

Conclusions Considering misclassified variants that have since been reclassified reveals our increasing understand-
ing of rare genetic variation. We found that variant classification guidelines and allele frequency databases comprising 
genetically diverse samples are important factors in reclassification. We also discovered that ClinVar variants common 
in European and South Asian individuals were more likely to be reclassified to a lower confidence category, perhaps 
due to an increased chance of these variants being classified by multiple submitters. We discuss features for variant 
classification databases that would support their continued improvement.
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Background
Rare genetic diseases may affect as many as 1 in 20 Amer-
icans [1], but a definitive diagnosis is sometimes elusive 
[2]. In the past decade, exome and genome sequencing 
have improved the diagnostic rate for undiagnosed rare 
genetic diseases by 3- to fourfold over previously estab-
lished methods [2–4]. Identifying the causal variant(s) 
through sequencing can inform disease management 
by altering treatment, predicting disease progression, 
and informing risk to other family members including 
reproductive planning [5, 6]. However, identifying causal 
variants can be challenging. Clinicians must objectively 
weigh many sources of evidence to determine if a variant 
explains the proband phenotypes. Indeed, the majority of 
individuals with a suspected rare genetic disease remain 
undiagnosed after exome or genome sequencing [2, 7].

To standardize the classification of variants, in 2015, 
the American College of Medical Genetics and Genom-
ics (ACMG) and the Association for Molecular Pathol-
ogy (AMP) developed guidelines to unify norms across 
clinical laboratories [8]. Since then, a growing number of 
laboratories have adopted these guidelines [9]. As famili-
arity with the guidelines has grown, variant classification 
concordance across laboratories has increased from 71% 
in 2016 to 84% in 2020 [10, 11]. These variant classifica-
tion guidelines draw from several specialized research 
areas including population genetics, human gene iso-
forms, protein structure and function, and computational 
predictions of variant impact [12]. While these specialties 
have all made essential contributions to variant classifi-
cation, perhaps no resource has been more valuable than 
the creation of diverse databases of allele frequencies, 
which are used to identify variants that are too common 
to cause a rare disease. In 2012, the Exome Sequencing 
Project created the first large-scale database of exonic 
allele frequencies that included samples from both Euro-
pean Americans and African Americans [13]. In 2015, 
phase 3 of the 1000 Genomes Project (1KGP) became 
available, providing genome-wide alleles from thousands 
of global genomes [14]. This was quickly followed by pro-
gressively larger and more diverse databases, including 
ExAC [15], gnomAD [16], and ALFA (Phan et al.: ALFA: 
Allele Frequency Aggregator, unpublished). Here, we 
investigate trends in the accuracy of variant classification 
since 2014, during which these allele frequency resources 
grew tremendously.

Researchers communicate variant classifications 
through published articles and submissions to variant 
databases. Until recently, variants were primarily clas-
sified in locus-specific databases (LSDBs) that typically 
collected variants in a single gene. In an effort to stand-
ardize content and improve ease of access, many LSDBs 
used the same software, the Leiden Open Variation 

Database [17], and the Human Genome Variation Soci-
ety collected LSDBs to form a database of LSDBs [18]. 
Authoritative reference resources such as OMIM [19], 
GeneReviews [20], and GeneTests [21] often included 
additional variant information. Today, there are two lead-
ing genome-wide variant databases of clinical interest: 
ClinVar [22] and the Human Gene Mutation Database 
(HGMD) [23]. HGMD began in 1996, is now a commer-
cial product with subscriptions sold by Qiagen, and is 
curated directly from published literature by dedicated 
staff. A free version of HGMD is available that is several 
years out of date. HGMD labels disease-causing variants 
as either “disease-causing” (DM) or “likely disease-caus-
ing, but with additional uncertainty” (DM?). HGMD con-
tains nearly 385,000 variants classified as DM or DM?. 
Following calls to create an open-access database [24], 
in 2013, the NIH created ClinVar, a free-to-access data-
base (maintained by NCBI, currently with input from 
ClinGen) that accepts submissions from clinical labora-
tories, research groups, and specialized databases. Men-
delian disease-causing variants are submitted to ClinVar 
as either Pathogenic (P), Likely Pathogenic (LP), or Risk 
Allele for non-Mendelian effects. As of 2020, ~ 8000 users 
access ClinVar each day, and it currently contains P or LP 
classifications of nearly 218,000 variants [22]. By defini-
tion, P indicates a 99% chance of pathogenicity [25], and 
LP indicates a 90% chance of pathogenicity [8].

ClinVar and HGMD employ different strategies to 
reach the same goal: accurate variant classification. The 
largest volume (> 93%) of submissions to ClinVar come 
from clinical laboratories that typically use standard-
ized interpretation guidelines to classify variants for 
pathogenicity. In addition to cataloging pathogenic vari-
ants, ClinVar also catalogs variants classified as benign 
or uncertain. HGMD curates information directly from 
publications, which may include experimental assays 
of variant function [23], but does not record variants 
reported as benign or uncertain. These databases are rap-
idly growing. Since 2017, the number of unique ClinVar 
variants has doubled, and HGMD variants have grown by 
50%.

Several studies have attempted to assess the accuracy 
of cataloged variants using large sequencing cohorts of 
healthy individuals [26–30]. Two of the earliest studies 
searched for variants classified as pathogenic in individ-
uals sequenced in a population database created by the 
1000 Genomes Project (1KGP) [14]. These researchers 
identified individuals in 1KGP who were homozygous 
for one or more recessive variants classified as patho-
genic (henceforth, “indicated affected individuals”). Sur-
prisingly, these two studies found that most individuals 
harbored multiple homozygous variants that were cata-
loged by HGMD to cause early-onset disease. However, 
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individuals in 1KGP were all over 18  years of age and 
healthy enough to sign a consent form. Certainly, 1KGP 
individuals are not expected to be enriched for disease, 
yet these studies found that the implied rates of disease 
were higher in 1KGP than the known disease prevalence. 
There are two plausible explanations for this discrepancy. 
The first is that many benign variants were misclassified 
as pathogenic, which the authors concluded [28, 29]. 
An alternative explanation is that some Mendelian dis-
eases have been underdiagnosed. Since this is true for 
some disorders [31], we chose to analyze a subset that is 
screened for at birth and is likely not substantially under-
diagnosed (see the “Methods” section). With this modi-
fication, we believe that most, and likely all, of indicated 
affected individuals are not affected by a disease, and 
rather the classified pathogenic variants they harbor were 
misclassified (see caveats below). A similar approach has 
also been used to investigate ClinVar variants, which 
a 2018 study showed imply disease prevalence much 
higher than the recorded prevalence for several clini-
cally actionable or rare disorders [26]. Using orthogonal 
methods, researchers have identified variant features that 
are associated with the correct classification. Specifically, 
they have found that recently curated variants, with lower 
minor allele frequency (MAF), with multiple concordant 
submissions, and submitted by clinical laboratories, are 
more likely to be correctly classified [30, 32].

Since many variants are found principally in a sin-
gle ancestral population, misclassification can lead to 
disparities in variant interpretation and clinical care. 
Indeed, one study determined that variants errone-
ously associated with sudden heart failure were found 
at higher allele frequency in Black Americans than in 
White Americans [33]. Fortunately, these misclassified 
variants were eventually corrected. However, until erro-
neously classified variants are corrected, which may take 
years, probands who harbor these variants may undergo 
inappropriate medical care. Furthermore, misclassi-
fied variants can have effects beyond the clinical care of 
individuals with those variants, since cataloged patho-
genic variants can influence novel variant classification. 
In the ACMG/AMP variant classification guidelines, 
two categories of evidence that support pathogenicity 
rely directly on cataloged variants: the same amino acid 
change as an established pathogenic variant (PS1) and 
a different amino acid change at the same residue as an 
established pathogenic variant (PM5). Misclassified vari-
ants can also have indirect effects through the ACMG/
AMP guidelines’ consideration of variant impact predic-
tors, which contribute supporting evidence (PP3, BP4). 
Since many variant impact predictors are trained or are 
validated on cataloged variants [34–37], their predictions 
may be influenced by misclassified variants. In the worst 

case, a researcher following the ACMG/AMP guidelines 
may be misled by misclassified variants to incorrectly 
classify a novel variant, either by using misclassified vari-
ants as direct evidence (PS1, PM5) or indirectly though 
variant impact predictors that were trained on misclassi-
fied variants (PP3, BP4). Such an event would propagate 
existing variant misclassifications and possibly reinforce 
disparities.

Variant databases have taken different approaches to 
address misclassifications. ClinVar introduced a star sys-
tem to indicate the review status of a variant classifica-
tion, in which a variant gains credibility when assertion 
criteria are provided, multiple submitters concur, or a 
classification comes from experts in the field who follow 
gene-specific classification guidelines [38]. These review 
stars are distinct from the actual classification or prob-
ability of pathogenicity. For example, if multiple submit-
ters classify a variant as VUS with assertion criteria, it will 
have two stars, indicating consensus that the pathogenic-
ity remains uncertain. Throughout our analysis, we assess 
variant reclassification, when a variant changes from one 
of the three major tiers (P/LP, VUS/Conflicting, or B/LB) 
to another major tier. To provide additional granularity, 
we also evaluate variant recategorization, which includes 
reclassification, as well as when a variant changes in the 
number of stars (such as P 1 star to P 2 stars). Wright 
et  al. found that variants classified as pathogenic with 
more review stars were more likely to be truly pathogenic 
[30]. ClinGen has also supported the formation of variant 
curation expert panels—composed of clinical laboratory 
staff, clinicians, and researchers with expertise relevant 
to a disease gene—which can provide high-confidence 
variant classifications and resolve conflicting variant clas-
sifications. Currently, ClinVar contains just 41 genes in 
which 10 or more variants are reported as reviewed by 
an expert panel, out of more than 3000 genes associated 
with a monogenic disorder by OMIM [19]. Although 
expert panels are promising, they have so far contrib-
uted to a small fraction of ClinVar variant reclassifica-
tions. HGMD curators reclassify variants based on newly 
published evidence such as functional studies or popu-
lation frequency, and their reclassification rate has been 
reported as similar to that of ClinVar [23, 39]. Here, we 
consider whether these reclassification efforts, in concert 
with improved resources, have reduced the number of 
apparently misclassified variants over time. We consider 
variants in a subset of well-studied genes with highly 
penetrant phenotypes.

Inborn errors of metabolism (IEMs) are a group of rare, 
primarily recessive, or X-linked monogenic disorders 
caused by defects in a metabolic enzyme or its cofactors. 
Newborns in most developed countries are screened for 
IEMs using blood metabolites. Untreated, many of these 
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screened IEMs are highly penetrant and lead to metabo-
lite accumulation that often causes irreversible disability 
or death. They are thus a model system for identifying 
false positives in variant databases, as they should not 
be present as pathogenic genotypes in healthy individu-
als. While many screened IEMs are debilitating or fatal 
in childhood unless treated, there are notable exceptions. 
For example, our screened IEMs include short-chain Acyl 
CoA dehydrogenase deficiency (SCADD; associated with 
ACADS) and hyperprolinemia type I (HPI; associated 
with PRODH), both of which often do not yield sympto-
matic disease [40, 41]. Additionally, our screened IEMs 
include ornithine transcarbamylase deficiency (OTCD; 
associated with OTC) and glutaric acidemia type II 
(GAII; primarily associated with ETFDH), both of which 
are often seen in late-onset forms which may not result in 
outward symptoms until adulthood [42, 43].

Because screened IEMs are systematically identified 
in the population, their maximum possible incidence is 
generally known, and there has been a greater opportu-
nity to identify and catalog the genetic variants that cause 
these diseases. Indeed, one recent study found potential 
benefits to screening newborns for IEMs using exome 
sequencing alongside mass spectrometry, the current 
standard for screening [44]. However, these researchers 
found it necessary to manually curate dozens of vari-
ants cataloged in ClinVar or HGMD for which the MAF 
was higher than expected for a rare disorder. Out of 60 
variants with MAF > 0.1%, they deemed 41 were not 
reportable due to insufficient published evidence for 
pathogenicity.

Variants with a MAF greater than expected from dis-
ease incidence are addressed in the 2015 ACMG/AMP 
variant classification guidelines [8] under the BA1 evi-
dence for benign variants. These guidelines recommend 
that a MAF > 5% in 1KGP, ExAC (now superseded by 
gnomAD), or the Exome Sequencing Project (ESP) may 
be considered stand-alone evidence that the variant is 
benign. In 2018, the guidelines for this classification were 
updated by Ghosh et al. to recommend that a MAF > 5% 
in any continental population dataset of at least 2000 
alleles (with some additional constraints) is stand-alone 
evidence the variant is benign [45]. We have explored 
how implementing the original or revised guidelines 
impacts our results.

Here, we investigated how the degree of variant mis-
classification has changed over time in ClinVar and 
HGMD, using screened IEMs as a model system. Build-
ing on previously developed methods [28, 29], we used 
samples in the 1000 Genomes Project (1KGP) to identify 
individuals who harbor genetic variants that have been 
listed in ClinVar or HGMD as pathogenic. We identi-
fied more individuals than expected compared to the 

incidence of screened IEMs, which allowed us to assess 
the specificity of each database. Since we do not measure 
false negatives, we cannot assess the sensitivity of each 
database even though the balance between specificity 
and sensitivity is an important tradeoff to consider. We 
examined how the number of likely false-positive individ-
uals indicated by ClinVar and HGMD changed over time, 
and we considered whether certain ancestry groups were 
over-represented.

Methods
Identifying indicated affected individuals in 1KGP
We used GRCh38 genotypes from 1KGP phase 3 [14] 
VCF files (downloaded on 14 November 2019) to iden-
tify individuals who harbor genotypes classified as 
pathogenic (defined as homozygous, hemizygous, or 
compound heterozygous) but who likely do not suffer 
from a screened IEM. 1KGP consists of 2504 individuals 
(661 of African ancestry, 347 of Latino ancestry, 504 of 
East Asian ancestry, 503 of European ancestry, and 489 
of South Asian Ancestry). Individuals were over 18 years 
of age and healthy enough to sign a consent form. Ances-
try was determined by superpopulation membership, 
as listed by the International Genome Sample Resource 
[46]. We created a curated list of 80 genes (Additional 
file 1: Table S1), associated with 48 IEMs screened by the 
California Newborn Screening Program [47] (henceforth, 
screened IEMs). These screened IEMs include some dis-
orders where a large fraction of affected individuals is 
asymptomatic. In our analysis below, we identified sev-
eral ClinVar variants in PRODH, associated with HPI. 
This condition is characterized by elevated levels of pro-
line, and it is sometimes considered benign and asympto-
matic [41]. However, there are reports of individuals with 
HPI who have a severe neurological impairment [48]. 
Additionally, recent long-term follow-up of patients with 
HPI suggests it results in impaired social skills, and there 
is evidence that deletions containing PRODH (and possi-
bly variants in PRODH) contribute to schizophrenia risk 
[49–51]. Given the possible clinical phenotypes associ-
ated with this gene, we retained it in our analysis.

The population incidence of screened IEMs is approx-
imately 1 in 3200 [52]. Thus, if the 2504 individuals 
sequenced in 1KGP were a random sample with unknown 
health status at birth, we would expect less than 1 indi-
vidual to have a screened IEM. Given that most of the 
indicated affected individuals lived in countries without 
newborn screening programs before 1990 (Additional 
file 2: Table S2), they are unlikely to have been screened 
and treated early enough to prevent irreversible damage.

ClinVar GRCh38 variants were obtained from VCF files 
(downloaded on 8 January 2021) from the NCBI ClinVar 
FTP site [38]. VCF files were gathered from both archives 
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1.0 and 2.0 (starting with clinvar_20140401.vcf.gz and 
ending with clinvar_20201226.vcf.gz). Bcftools norm [53] 
was used to left-align and normalize indels. Only variants 
within our list of 80 genes were considered further. These 
methods are visually summarized in Additional file  3: 
Fig. S1A. Variants that were listed as only somatic or 
variants with null alt alleles were not considered further. 
For ClinVar archive 1.0 variants, variants were assigned 
clinical significance using the following categories: “0,” 
VUS; “2,” Benign (B); “3,” Likely Benign (LB); “4,” Likely 
Pathogenic (LP); and “5,” Pathogenic (P). Variants were 
inferred to have Conflicting classifications when they 
had classifications in two or more of the following three 
categories: B or LB, VUS, P, or LP. For ClinVar archive 
2.0 variants, variants were assigned clinical significance 
using the following categories: “Benign,” B; “Benign/
Likely_benign,” B; “Likely_benign,” LB; “Uncertain_sig-
nificance,” VUS; “Likely_pathogenic,” LP; “Pathogenic/
Likely_pathogenic,” P; “Pathogenic,” P; and “Conflict-
ing_interpretations_of_pathogenicity,” Conflicting. For 
variants with multiple classifications separated by com-
mas, if exactly one of the classifications was in the above 
list of categories, the variant was assigned to that cat-
egory (e.g., “Pathogenic,_risk_factor” would be assigned 
to P). Due to inconsistencies in review star annotation in 
archive 1.0 files before June 15, 2015, review stars were 
not considered before this date. For archive 1.0 files after 
June 15, 2015, “no_assertion_criteria_provided,” “no_
assertion_provided,” “not,” “no_criteria,” and “no_asser-
tion” were grouped as 0 review stars; “criteria_provided,” 
“conf,” and “single” were grouped as 1 review star; and 
“_multiple_submitters,” “_no_conflicts”, and “mult” were 
grouped as 2 review stars. For all archive 1.0 files, review 
stars were assessed manually for variants with an inferred 
pathogenic genotype in 1KGP. For archive 2.0 variants, 
“no_assertion_criteria_provided,” “No_assertion_pro-
vided,” and “no_interpretation_for_the_single_variant” 
were grouped as 0 review stars; “criteria_provided,” “_sin-
gle_submitter,” and “_conflicting_interpretations” as 1 
review star; and “_multiple_submitters,” “_no_conflicts,” 
and “reviewed_by_expert_panel” as 2 + review stars. We 
note that historically, pathogenic OMIM variants were 
initially uploaded to ClinVar as “single submitter” and 
later systematically recategorized to “no assertion crite-
ria provided.” Our recategorization results below suggest 
this event has been masked by subsequent submissions 
that also led to recategorization. In calculating indi-
cated affected individuals for each year, we reported the 
maximum number of individuals with an inferred patho-
genic genotype at any time in that year. In our analysis 
of 1KGP-indicated affected individuals, ClinVar submis-
sions were removed from consideration if the submitted 
condition was not a screened IEM (e.g., schizophrenia). 

Submissions for which the condition was “not provided” 
were included in our analysis. For all other analyses, it 
was not feasible to check the submitted condition of 
variants.

HGMD variants were obtained from privately archived 
versions of HGMD 2014.1 and 2016.2, and a recently 
accessed version of 2020.3 through Qiagen Digital 
Insights HGMD Professional. Only SNVs classified 
at least once as “DM” or “DM?” within our list of 80 
screened IEM genes were considered further. There were 
a handful of variants with two classifications, and these 
were assigned the more severe classification.

In our analysis using the 2015 BA1 guidelines, variants 
with a global MAF > 5% in 1KGP, the Exome Sequencing 
Project (ESP6500SI-V2), or gnomAD v2.1 exomes were 
removed from consideration. In our analysis using the 
2018 BA1 guidelines, variants with a global MAF > 5% in 
1KGP or ESP or a MAF > 5% in any gnomAD exome con-
tinental population were removed.

Ensembl Variant Effect Predictor with custom annota-
tions was used to annotate the 1KGP VCF with all fea-
tures. For rapid I/O of VCFs, we used cyvcf2 [54]. To 
identify when the ancestry composition of indicated 
affected individuals (aggregated across all screened 
IEMs) was significantly different from the ancestry 
composition of 1KGP or gnomAD, we first performed 
a two-sided Fisher’s exact test on a 5 × 2 contingency 
table that included the five continental populations 
(African, Latino, East Asian, European, South Asian), 
using fisher.test in the R “stats” package [55]. When the 
expected count for every population was greater than 
40, we instead performed a Pearson’s chi-squared test 
using chisq.test to reduce computation time. For those 
global analyses that showed significant deviation from 
the 1KGP database ancestry composition, we performed 
individual tests to identify the significantly skewed pop-
ulation. These individual tests were performed using a 
one-sided Fisher’s exact test on a 2 × 2 contingency table 
as described above. To correct for multiple tests, we used 
a 5% significance threshold with Bonferroni correction 
for 222 tests, yielding a p-value threshold of 2.2 ×  10−4. 
We determined 222 tests by calculating the total num-
ber of tests performed across all figures (including sup-
plementary figures), which were typically 1 Fisher’s exact 
test per bar, with an additional 5 tests per bar when the 
Fisher’s exact test was significant. Bars that had zero 
height were not tested. Odds ratios and 95% confidence 
intervals were determined using two-sided Fisher’s exact 
tests as described above.

Variant recategorization in ClinVar and HGMD
We next compared the degree of variant recategoriza-
tion in ClinVar and HGMD, and we also quantified how 
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ClinVar variant recategorization differs by ancestry. Clin-
Var and HGMD variants were filtered as described above. 
VEP [56] was used to annotate each variant with its gno-
mAD v2.1 exomes MAF. In order to identify recategori-
zations of review stars, for each time point available for 
ClinVar, each variant was classified into one of the follow-
ing categories: B/LB 3 stars, B/LB 2 stars, B/LB 1 star, B/
LB 0 stars, VUS, Conflicting, P/LP 0 stars, P/LP 1 star, P/
LP 2 stars, or P/LP 3 stars. At each time point available 
for HGMD, each variant was classified into one of the fol-
lowing categories: DM, DM?, DFP, DP, or R. These cat-
egories are defined in Stenson et al. [23]. HGMD variants 
that were removed from the database were classified as R. 
Variants categorized in any other category (such as “not 
provided”) and all ClinVar variants prior to June 15, 2015, 
were not considered. To create Fig. 2A, B, for each vari-
ant, we considered only its first category chronologically 
(typically its category when first entered into the data-
base) and its last category chronologically. These meth-
ods are visually summarized in Additional file 3: Fig. S1B.

Next, for each ClinVar variant, we used gnomAD 
v2.1 exomes to determine the ancestry group in which 
it occurs at the highest MAF. For the five continental 
ancestries we considered, gnomAD v2.1 exomes consist 
of 106,814 individuals (8128 of African ancestry, 17,296 
of Latino ancestry, 9197 of East Asian ancestry, 56,885 
of non-Finnish European ancestry, and 15,308 of South 
Asian ancestry). These samples were aggregated primar-
ily from case–control studies of common adult-onset 
diseases [16]. To reduce bias from the unequal number 
of individuals in each ancestry group in gnomAD, all 
ancestry-specific MAFs below 6.152 ×  10−5 (the smallest 
possible MAF in African ancestry, which has the small-
est number of individuals in gnomAD) were set to zero. 
Next, each variant was assigned to the ancestry with the 
highest MAF. Variants with zero MAF in all ancestries 
were not considered further.

For each variant, we recorded all recategorizations 
it underwent. To avoid variants submitted prior to 
the introduction of review stars, only ClinVar reclas-
sifications after June 15, 2015, were considered. Clin-
Var GRCh38 VCF files (as described above) were used 
to identify recategorizations. Recategorizations were 
considered every month. Since more recent ClinVar 
VCFs were archived weekly, these were downsampled to 
approximate monthly archives. The removal of a ClinVar 
variant from the database was not considered a recatego-
rization. If a variant re-entered into ClinVar under a new 
category, it was considered recategorized.

Variant reclassifications were grouped into two catego-
ries: increasing confidence and decreasing confidence. 
Increasing confidence was defined as Conflicting or VUS 
to P/LP or B/LB with any number of stars. Decreasing 

confidence was defined as P/LP or B/LB with any num-
ber of stars to Conflicting or VUS. Variants were grouped 
by these categories, colored by assigned ancestry (see 
above), and visualized using Floweaver [57], resulting in 
Fig. 2C, E.

To correct for bias caused by the possible overrepre-
sentation of some ancestries in ClinVar, for each ancestry, 
we calculated the number of variants in each category. 
The number of variants per category was calculated for 
every month, yielding a measure we call variant-months. 
A variant-month is a measure of both the number of 
variants and how long they have been in ClinVar. For 
example, 2 variants classified in ClinVar for a month are 
2 variant-months, and 1 variant classified in ClinVar for 
2 months is also 2 variant-months (see Additional file 4: 
Supplementary text 3B for a detailed example). For each 
ancestry, we analyzed its assigned variants to determine 
how many variant-months were cataloged for each cat-
egory between June 15, 2015, and December 31, 2020. 
The differences in variant-months between ancestries 
reflect differences in genetic diversity as well as ClinVar 
submission bias. These variant-months are used to nor-
malize comparisons across ancestries which we report 
in reclassifications per variant-month. In normalizing 
a reclassification category (increasing confidence or 
decreasing confidence), we divide the number of reclas-
sifications by the variant-months of the source category. 
For example, if we wanted to compare increasing confi-
dence across ancestries, then for each ancestry, we would 
calculate the number of reclassifications with increas-
ing confidence among variants assigned to that ances-
try and divide that by the variant-months of the source 
category, in this case, VUS and Conflicting variants. 95% 
confidence intervals were calculated for each ancestry 
group as ± 1.96*sqrt(p*(1 − p)/n) where p is reclassified 
variants/variant-months of source variants and n is var-
iant-months of source variants. To identify significant 
reclassification rate differences between ancestries, we 
first performed a two-sided Fisher’s exact test on a 5 × 2 
contingency table (as described above) containing the 
number of reclassifications and the number of variant-
months of the source category for each ancestry. We then 
performed one-sided Fisher’s exact tests on 2 × 2 tables 
(as described above) for each possible pair of ancestries.

Results
Decrease over time in 1KGP individuals indicated 
as affected by Select ClinVar variants, indicating reduction 
in variants misclassified as P/LP with ≥ 1 review star
We analyzed ClinVar-screened IEM variants submitted 
between April 2014 and December 2020 and first exam-
ined a Select subset based on review stars (see the “Meth-
ods” section). This Select subset included P variants with 
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1 or more review stars (indicating the submitter included 
assertion criteria), which consisted of 2118 variants in 
2020 (Fig.  1A). In accordance with the 2015 ACMG/
AMP BA1 guidelines, we removed variants with a MAF 
that reached the threshold for classification as stand-
alone benign (global MAF > 5% in 1KGP, gnomAD, or 
ESP). This resulted in the removal of a single variant 
with 1 review star and a global MAF of ~ 5% (Additional 
file 5: Table S3). We later discuss applying the 2018 BA1 
guidelines. To identify individuals who harbored inferred 
pathogenic genotypes of these Select ClinVar variants, we 
used the 1KGP database. 1KGP includes 2504 individu-
als that are drawn approximately evenly from 5 continen-
tal populations (Fig.  1B). We considered individuals to 
be indicated affected if they were homozygous, hemizy-
gous, or compound heterozygous for one or more Select 
variants. We found a single indicated affected individual, 
with South Asian ancestry, who was homozygous for a P 
variant in ACADS (NM_000017.4:c.1108A > G) added to 
ClinVar in 2015, which was reclassified as Conflicting by 
2017 (Fig. 1C; Table 1). There have since been zero indi-
cated affected individuals through 2020.

Decrease over time in 1KGP individuals indicated 
as affected by Full ClinVar variants, indicating reduction 
in variants misclassified as P/LP with any number of  
review stars
In addition to considering variants in our Select ClinVar 
set, clinical laboratories will also typically review P and 
LP variants with 0 review stars (no assertion criteria) 
to determine if they can identify sufficient evidence for 
pathogenicity to influence their own classifications. To 
analyze these variants, we next considered the Full data-
set of ClinVar-screened IEM variants, which included 
P and LP variants with any number of review stars. We 
removed from consideration variants that fulfilled the 
2015 BA1 criteria. This eliminated six variants from 2014 
to 2020, with a median MAF in 1KGP of 12% (Additional 
file  5: Table  S3). We searched for individuals in 1KGP 
who were indicated affected (Fig.  1D). In 2014, there 
were 8 indicated affected individuals, which increased 

to 9 in 2015, and declined to just 1 by 2020 (reclassifi-
cation causes discussed below). Eleven variants played 
a role in the genotypes of these indicated affected indi-
viduals (Additional file 6: Table S4). We also considered 
whether P or LP variants led to a larger number of indi-
cated affected individuals. However, due to the relatively 
small fraction of variants where all submitters classified 
it as LP, the results of considering only P variants were 
nearly identical to considering both P and LP (Additional 
file 3: Fig. S2). We did not observe any statistically signifi-
cant skew in the ancestries of the 1KGP individuals who 
were indicated affected.

Decrease over time in 1KGP individuals indicated as 
affected by Select HGMD variants, indicating reduction 
in variants misclassified as DM
Similar to our ClinVar analysis, we first examined a 
Select subset of HGMD variants. This subset included 
HGMD DM (disease-causing) variants in any screened 
IEM gene, which consisted of 5833 variants in 2020. 
We removed one variant that met the 2015 BA1 criteria 
in 2014 and 2016 with a MAF of 20%. We removed an 
additional variant in 2016 with a MAF of 50% (Additional 
file  5: Table  S3). We investigated individuals in 1KGP 
who harbored Select HGMD variants, and we found 37 
indicated affected individuals in 2014, caused by 16 vari-
ants (Fig. 1E). Repeating this analysis with Select HGMD 
classifications from December 2020, we found 11 indi-
cated affected individuals in 1KGP (70% reduction from 
2014) due to 9 variants (reclassification causes discussed 
below). Three of these 9 variants were added to HGMD 
after 2014.

Increase over time in 1KGP individuals indicated 
as affected by Full HGMD variants, indicating rise 
in variants misclassified as DM/DM?
To gain a larger picture of potential variant misclas-
sification in HGMD, we next considered the Full data-
set of HGMD variants classified to likely cause disease, 
which included DM and DM? variants (henceforth, Full 
HGMD variants). We removed 5 variants that met the 

Fig. 1 Number of 1KGP individuals indicated affected for screened IEMs by ClinVar or HGMD over time. A Number of screened IEM variants present 
in ClinVar or HGMD in 2014 and 2020. B Ancestry composition of individuals in 1KGP. C–F Bars are colored by ancestry as shown in B. Tick marks on bars 
cluster individuals by the variant classified as pathogenic that they harbor. Dashed black lines indicate the aggregate population incidence of screened 
IEMs. C The number of 1KGP individuals with an implied pathogenic genotype for a variant in Select ClinVar, defined as variants with a P classification 
with at least 1 review star. Variants that also have conflicting classifications (with VUS or B/LB) with 1 or more review stars are removed. D The number 
of 1KGP individuals with an implied pathogenic genotype for a variant in Full ClinVar, defined as variants with a P or LP classification. Variants that also have 
conflicting classifications (with VUS or B/LB) are removed. E The number of 1KGP individuals with an implied pathogenic genotype for a variant in Select 
HGMD variants, defined as variants classified as DM. 2014, 2016, and 2020 are shown because they are the years for which we have archived HGMD data. 
F The number of 1KGP individuals with an implied pathogenic genotype for a variant in Full HGMD variants, defined as variants classified as DM or DM?. G 
The number of affected individuals relative to the number of variants classified in each variant set. This approximates a false-positive rate, which has fallen 
over time for each database. *Data not available because the existing review star framework was not in place until 2015

(See figure on next page.)
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2015 BA1 criteria in 2014, 4 variants in 2016, and 7 vari-
ants in 2020 (Additional file 5: Table S3). We investigated 
individuals in 1KGP who harbored Full HGMD variants. 
In 2014, there were 126 indicated affected individuals in 
1KGP due to 20 DM and 12 DM? variants (Fig. 1F). This 
increase in the number of DM variants compared to our 

Select analysis is due entirely to compound heterozy-
gotes consisting of one DM variant and one DM? variant. 
Unexpectedly, we found indicated affected individuals 
increased over time, with 157 individuals in 2020, due to 
17 DM and 27 DM? variants. These include 7 DM? and 4 
DM variants that were added to HGMD since 2014.

Fig. 1 (See legend on previous page.)
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Ancestry skew discovered in 1KGP individuals indicated 
as affected by HGMD variants
These indicated affected individuals are not only a 
barometer for changes in potentially misclassified vari-
ants, but they can also inform whether particular ances-
try groups are more likely to be affected by variant 
misclassifications. Considering Select HGMD variants 
in 2014, African ancestry individuals were significantly 
more likely to be indicated affected (Fig. 1E). While 26.4% 
of individuals in 1KGP are of African ancestry (Fig. 1B), 
25 out of 37 (67.6%) of indicated affected individuals 
had African ancestry, which is significantly more than 
expected by chance (p <  10−6) and indicates an odds ratio 
of 5.8 for African ancestry individuals (95% CI: 2.8–12.8). 
By 2020, no populations were significantly skewed. Nota-
bly, in 2014, 2016, and 2020, no European ancestry indi-
viduals were indicated affected. When considering Full 
HGMD variants, we found that 89 out of 126 indicated 
affected individuals in 2014 and 94 out of 157 indicated 
affected individuals in 2020 were of African ancestry 
(both p <  10−15) (Fig. 1F). This translates to an odds ratio 
of 6.7 (95% CI: 4.5–10.2) in 2014 and 4.2 (95% CI: 3.0–
5.9) in 2020. Unlike the ancestry skew observed in Select 
HGMD variants, the ancestry skew in Full HGMD vari-
ants has persisted over time.

In both ClinVar and HGMD, there has been a decrease 
over time in the number of indicated affected individuals 
per cataloged variant
Since each ClinVar or HGMD dataset contains a different 
number of cataloged IEM-associated variants (Fig.  1A), 
we developed a metric to enable a comparison of false-
positive rate across datasets. For each available year, we 
calculated the number of indicated affected individu-
als in 1KGP divided by the number of cataloged vari-
ants. Although we cannot be certain that no individual 
in 1KGP has a screened IEM, this metric is a proxy for 
the false-positive rate of each database. In 2014, the Full 
ClinVar dataset indicated 7.3 affected individuals per 
1000 cataloged P or LP variants (Fig. 1G). By 2020, this 
false-positive rate had decreased by 97%. We could not 
determine a meaningful false-positive rate for the Select 
ClinVar dataset due to the several years with zero indi-
cated affected individuals. For Select HGMD variants, 
the false-positive rate decreased by 81%, with most of this 
decrease occurring between 2016 and 2020 (Fig. 1G). For 
Full HGMD variants, the false-positive rate decreased by 
26% from 2014 to 2020 (Fig.  1G). It may seem surpris-
ing that the false-positive rate of Full HGMD variants is 
decreasing given the increase in indicated affected indi-
viduals over time (Fig. 1F). However, this decrease is due 
to the ~ 60% growth in cataloged variants between 2014 

and 2020, which outweighed the growth in indicated 
affected individuals.

These three datasets have reduced the false-positive 
rate of their cataloged variants over time, yet false-pos-
itive rates currently differ greatly between them. As of 
2020, Full ClinVar variants indicate 0.22 affected indi-
viduals per 1000 cataloged pathogenic variants, which 
is an order of magnitude lower than Select HGMD vari-
ants, which indicate 1.9 affected individuals per 1000 
cataloged pathogenic variants (Fig. 1G). This, in turn, is 
an order of magnitude lower than Full HGMD variants, 
which indicate 25 affected individuals per 1000 cataloged 
pathogenic variants. We additionally compared the inci-
dence of screened IEMs inferred from each database with 
the known incidence of screened IEMs (Additional file 4: 
Supplementary text 1B, 2A; Additional file 3: Fig. S3, S4). 
Our findings were largely consistent with our indicated 
affected individual results. Furthermore, we replaced 
1KGP with gnomAD v3.0 genomes to assess the repro-
ducibility of our results. Overall, our gnomAD analy-
sis replicated all major findings from our 1KGP analysis 
(Additional file  4: Supplementary text 2C, F; Additional 
file 3: Figs. S5-S9).

Most ClinVar variants contributing to an inferred 
pathogenic genotype have been reclassified
Between 2014 and 2020, 11 screened IEM variants in the 
Full ClinVar dataset were part of an inferred pathogenic 
genotype in at least one 1KGP individual (Additional 
file  6: Table  S4). As of December 2020, 10 of these 11 
variants have been reclassified in ClinVar to a non-path-
ogenic category. Eight variants were reclassified to Con-
flicting, 1 variant to VUS, and 1 variant to B/LB, while 
one variant remained classified as P with 0 review stars. 
These variants were present in 7 genes: OTC (3), ASS1 
(2), PRODH (2), ACADS (1), MMAB (1), MMUT (1), and 
SLC22A5 (1). Variants within the same gene tended to be 
initially contributed by the same submitter. For example, 
GenMed Metabolism Lab submitted the first classifica-
tion for all three variants in OTC, and OMIM first pro-
vided both PRODH variants. For each variant, we also 
recorded the submitter that contributed the first non-
pathogenic classification but did not identify any patterns 
(Additional file 6: Table S4).

Among these 11 variants, we noticed a trend. Vari-
ants were initially submitted as P or LP when seen in 
an affected individual, even though there was limited 
evidence for pathogenicity. Most of these variants were 
submitted before review status stars were introduced to 
ClinVar. As more information became available, such as 
MAF, later submitters, most using defined criteria, clas-
sified these variants as VUS, B, or LB. One illustrative 
case is the variant NM_052845.4:p. Ala135Thr in MMAB 
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(Table  1). Through a semi-automated process, this vari-
ant was extracted from a GeneReviews table to a ClinVar 
record in February 2016 as P with two articles referenced 
to support the classification [58, 59]. These articles from 
2002 and 2006 describe two individuals with methyl-
malonic acidemia (MMA) cblB type who each harbor the 
same three unphased heterozygous variants: p.Ala135Thr, 
NM_052845.4:p.Arg191Trp, and NM_052845.4:p.Tyr-
219Cys. Both articles state the p.Ala135Thr variant was 
absent from their control samples, for which ancestry 
information was not provided. We now know the MAF 
of this variant in African ancestry individuals is approxi-
mately 1% in 1KGP and gnomAD exomes, corresponding 
to a disease incidence of 1 in 10,000 assuming complete 
penetrance. However, MMA cblB type occurs in less than 
1 in 50,000 births and has not been seen at elevated levels 
in individuals of African ancestry [52]. This variant was 
observed in a homozygous state in an African ancestry 
male in 1KGP, who most likely did not have MMA cblB 
type, which is a neonatal-onset disorder that results in 
severe disability and sometimes death without treat-
ment. To ensure that this genotype was not caused by 
errors in variant calling, we independently base-called all 
Select ClinVar variants, Full ClinVar variants, and Select 
HGMD variants present in a pathogenic genotype (Addi-
tional file 4: Supplementary text 1A, 2B, Additional file 7: 
Table S5). Since the P submission, GeneDx used variant 
classification criteria to classify this variant as VUS, cit-
ing the relatively high variant frequency as evidence for 
benignity. Invitae (with criteria) and Natera (without cri-
teria) have classified the variant as B. A plausible expla-
nation for this history of classifications is inadequate 
information about this allele’s pertinent population fre-
quency meant it was mistakenly associated with MMA in 
the two affected individuals.

As of 2020, there was a single 1KGP indicated affected 
individual. We examined the responsible ClinVar variant 
and found this variant could not be ruled out as disease-
causing. GenMed Metabolism Lab submitted this vari-
ant, NM_000531.6:p.Gly50Arg in OTC, an X-linked gene, 
in 2014 and cited an article in which researchers found 
this variant in a male with late-onset Ornithine transcar-
bamylase deficiency (OTCD) but did not provide the age 
of onset [60]. OTCD has a variable age of onset, with the 
oldest reported proband 44 years old when disease onset 
began [42]. No other evidence supports pathogenicity. 
However, because the 1KGP hemizygous South Asian 
ancestry male (NA21124) has not yet reached the maxi-
mal age of onset, a pathogenic classification cannot be 
ruled out.

Half of HGMD DM variants contributing to an inferred 
pathogenic genotype have been reclassified to DM?
In 2014, 16 Select HGMD variants contributed to an 
inferred pathogenic genotype in at least one 1KGP indi-
vidual (Additional file 8: Table S6). By December 2020, 8 
of these variants were reclassified to DM?, and an addi-
tional 3 DM variants were cataloged that contributed to 
an inferred pathogenic genotype. In total, we observed 
19 Select variants in an inferred pathogenic genotype, 
which were present in 11 genes: OTC (4), PAH (3), ASS1 
(2), CBS (2), CPT2 (2), ACAD8 (1), ACADS (1), ACADVL 
(1), SLC22A5 (1), SLC25A13 (1), and TAZ (1). We did 
not evaluate the Full HGMD variants in detail, but we do 
note that of the 32 DM and DM? variants that contrib-
uted to an inferred pathogenic genotype in 2014, none 
was reclassified to a non-disease-causing category by 
2020. Relationships between DM/DM? and P/LP variants 
are noted in Additional file 4: Supplementary text 2G.

HGMD rarely provides explanations for variant reclas-
sification, so it is difficult to directly investigate why 
certain variants were reclassified. Instead, we examined 
the evidence for pathogenicity of the 19 Select variants 
identified in an inferred pathogenic genotype in 2014, 
2016, or 2020. For each variant, we reviewed the articles 
cited by HGMD (Additional file 8: Table S6). According 
to the cited articles, researchers observed these variants 
in probands who were diagnosed with an IEM. None of 
the articles provided evidence for pathogenicity equiva-
lent to the ACMG/AMP guidelines, which is not surpris-
ing given that most of the articles were published prior 
to 2015. Additionally, 14 out of 19 studies (74%) did not 
show any direct evidence for the functional effect of the 
variant, such as experimental assays of gene expression 
or enzymatic activity, and therefore did not conclusively 
assign pathogenicity to the variant (Additional file  8: 
Table S6). Assay absence was highly correlated with later 
reclassification from DM to DM?. Of the 4 variants clas-
sified as DM in 2014 for which assays were performed, all 
remained DM through 2020. Of the 12 variants for which 
no assay was performed, 8 were reclassified to DM? by 
2020. Despite the predictive power of assay presence, 
the results of the assays were not always conclusive. For 
example, we found one 1KGP individual was homozy-
gous for the variant NM_000017.4:c.1108A > G (Met-
370Val) in ACADS, which was cataloged by HGMD as 
DM (Table  2). Yet, the original article cited by HGMD 
indicates that the variant c.1108A > G has a much more 
mild effect on tetramerization than all other putatively 
pathogenic variants tested [61]. Similarly, functional 
assays of the variant NM_000071.3:c.1105C > T(Arg369C
ys) in CBS in a yeast model indicated no effect on enzyme 
function in the article cited by HGMD [62] (Table 2).
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Applying expanded allele frequency stand-alone benign 
guidelines resolves ancestry skew in individuals indicated 
as affected by HGMD variants
We next considered how the use of the 2018 updated 
BA1 guidelines [45] changed the number of 1KGP 
individuals who were indicated affected. In accord-
ance with the guidelines, we removed variants that 
had a MAF > 5% in any gnomAD exomes continental 

population. This had no effect on our analysis of Select 
or Full ClinVar variants (Additional file 3: Fig. S10A, B). 
Applying these guidelines to Select HGMD variants led 
to the removal of 1 variant in 2014 and 2016 (Additional 
file 9: Table S7; Additional file 3: Fig. S10C). We found 
that this reduced the Select HGMD indicated affected 
individuals by 15 African ancestry individuals in 2014 
and 2016, while the 2020 individuals remained at 11. 
We next applied these guidelines to the Full HGMD 

Fig. 2 Variant reclassification in ClinVar and HGMD. A Reclassification paths of P/LP screened IEM ClinVar variants from 2014 (or first submission 
thereafter) to 2020, visualized in a Sankey plot in which line width represents the number of reclassified variants. Blue lines indicate increasing 
pathogenicity or review stars, orange lines indicate increasing benignity or reduced confidence of pathogenicity, and gray lines indicate no change. 
Numbers in parentheses provide variant counts of initial and final classifications for each category. B Reclassification paths of DM and DM? HGMD 
variants from 2014 to 2020. Disease-associated polymorphism (DP) and disease-associated polymorphism with additional functional evidence (DFP) 
are used to classify variants associated with disease but not necessarily disease-causing. Variants are retired (R) when they are found to no longer 
be associated with disease. C Reclassification paths of ClinVar variants from P/LP or B/LB to VUS or Conflicting. We plot only variants that could be 
assigned to a principal ancestry. Variant paths are colored by ancestry as in D. D Rate of reclassification of variants shown in C when normalized 
by the historical ancestry composition of variants in ClinVar. E Reclassification paths of ClinVar variants from VUS or Conflicting to P/LP or B/LB. F 
Rate of reclassification of variants shown in E when normalized by historical ancestry composition of variants in ClinVar
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variants, which led to the removal of 8 variants in all 
3  years and reduced the number of indicated affected 
individuals by 75% in 2014 and 62% in 2020 (Additional 
file 3: Fig. S10D). Additionally, there was no remaining 
significant ancestry skew after correcting for multiple 
tests (see the “Methods” section). Overall, when we 
remove P/LP and DM/DM? variants according to the 
2018 BA1 guidelines, the ClinVar and HGMD datasets 
had similar rates of false-positive individuals in 2014 
and only recently have their rates diverged (Additional 
file 3: Fig. S10E).

ClinVar variants are reclassified at a rate sixfold greater 
than those in HGMD
Our analysis of reclassified variants has so far consid-
ered only those variants which contributed to an inferred 
pathogenic genotype in 1KGP individuals. To identify 
broad trends in variant recategorization in ClinVar and 
HGMD, we considered all screened IEM variants that 
were recategorized in tier or review stars in ClinVar or 
HGMD between 2014 and 2020.

Out of 16,857 ClinVar variants, 3772 (22%) were recatego-
rized between April 2014 and December 2020 (Additional 
file 3: Fig. S11). Of these recategorized variants, 28% were 
recategorized 2 or more times. To simplify our analysis, for 
each variant, we considered only the variant’s category when 
it first entered ClinVar and the variant’s category at the end 
of 2020. Of the 4917 P/LP variants in ClinVar between 2014 
and 2020, we found 1655 (34%) were recategorized by the 
end of 2020 (Fig. 2A). Seventy-eight percent of these recate-
gorizations were towards greater evidence for pathogenicity, 
and the remaining 22% were towards reduced evidence for 
pathogenicity (8% of all P/LP variants). The most common 
recategorization towards greater evidence for pathogenic-
ity was from P/LP 1 star to P/LP 2 stars. The most common 
recategorization towards reduced evidence for pathogenic-
ity was from P/LP 1 star to Conflicting.

HGMD-screened IEM variants were recategorized 
substantially less often than those in ClinVar. Out of 4777 
variants classified as DM or DM? in 2014 or 2016, just 40 
(0.8%) were recategorized. Seven of these recategoriza-
tions were from DM? to DM, and the remaining 33 were 
towards reduced evidence for pathogenicity (0.7% of all 
DM or DM? variants). The most common recategoriza-
tion towards reduced evidence for pathogenicity was 
from DM to DM?. Between 2014 and 2020, only 6 DM or 
DM? variants were retired.

When considering variants recategorized towards 
reduced evidence for pathogenicity, we found that Clin-
Var variants were recategorized at a rate 11-fold greater 
than those in HGMD. We recognize this analysis is 
impacted by the greater number of available time samples 
and variant categories in ClinVar compared to HGMD, 

because every recategorization in HGMD is also a reclas-
sification. However, when we repeat this analysis con-
sidering only ClinVar variants at time points for which 
HGMD data is available, while also collapsing ClinVar 
pathogenic variants to just 2 categories (P and LP), the 
difference is reduced but remains 11-fold to two signifi-
cant figures. Because HGMD does not have a mechanism 
to classify variants as Conflicting, we repeated this analy-
sis while also removing from consideration ClinVar vari-
ants reclassified to Conflicting. This revealed that ClinVar 
variants were reclassified sixfold more often than those 
in HGMD. Another relevant comparison is between Clin-
Var 0 star variants and HGMD, which also shows signifi-
cantly greater reclassification in ClinVar (Fig. 2A).

ClinVar variants common in European and South Asian 
individuals were more likely to be reclassified to a lower 
confidence category
In our earlier analysis, we identified ancestry skew in 
likely misclassified variants. Next, we investigate whether 
ancestry influences overall reclassification rates of vari-
ants in ClinVar. Historically, large-scale exome and 
genome sequencing projects (from which MAF is often 
derived) have undersampled non-European individuals 
[63, 64]. Thus, we suspected that non-European individ-
uals may shoulder a larger burden of variants that were 
initially classified as P or LP due to uncertain MAF and 
later reclassified to be VUS or Conflicting. At the same 
time, we recognized that the largest ClinVar submitters 
are located in countries where a majority of the popula-
tion has European ancestry. Consequently, variants com-
mon in European ancestry individuals may have a greater 
chance of being classified by multiple submitters which 
could lead to Conflicting classifications.

To distinguish which of these effects likely dominate in 
ClinVar, we determined whether variants present in specific 
ancestries were disproportionately likely to be reclassified. 
First, for each variant, we used gnomAD exomes to identify 
the continental ancestry group with the highest MAF, and 
we assigned the variant to that ancestry group. gnomAD 
exome MAFs were normalized to avoid bias from sample 
size differences between ancestries (see the “Methods” sec-
tion). We first considered variants for which the classifica-
tion was reduced in confidence, which includes P/LP and B/
LB variants that were reclassified to VUS or Conflicting. For 
those variants that could be assigned to an ancestry, we visu-
alized reclassifications using Sankey diagrams in which line 
width represents the number of reclassified variants, and 
lines were colored by ancestry (Fig. 2C). We observed that 
European ancestry variants were the largest group in most 
reclassification paths. However, this analysis did not account 
for the differences in ancestry composition of the variants 
submitted to ClinVar. To control for this potential bias, for 
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each ancestry, we normalized by both the number of vari-
ants assigned to that ancestry and the duration in which 
they were in ClinVar which we measure in variant-months 
(see the “Methods” section). One variant-month is equiva-
lent to a single variant classified in ClinVar for 1 month. We 
normalized only by variants that could have contributed to 
the reclassification (in this case, P/LP and B/LB). Control-
ling for the ancestry composition of variants in ClinVar, we 
found that variants for which European ancestry individu-
als had the highest MAF were reclassified towards greater 
uncertainty at a rate of ~ 0.8% per variant-month (Fig. 2D). 
This was approximately twice the rate of reclassification 
for variants for which African, East Asian, or Latino ances-
tries (all p < 8 ×  10−5) had the highest MAF (Fig.  2D). This 
is consistent with our observation that among all variants 
classified in ClinVar, a larger fraction of European ancestry 
variants were classified as Conflicting (Additional file 3: Fig. 
S12). South Asian variants were also found to have elevated 
reclassification towards greater uncertainty of approxi-
mately 0.6% per variant-month, which is significantly higher 
than East Asian or African variants (both p < 2 ×  10−4).

We also considered variants for which classification 
increased in confidence, which includes VUS or Conflict-
ing variants that were reclassified to P/LP or B/LB. After 
visualizing these reclassifications with Sankey plots, we 
observed that in many reclassification paths, European 
variants were not the largest group (Fig.  2E), in con-
trast with reclassification paths towards less confidence. 
Indeed, when we normalized by the ancestry composi-
tion of variants in ClinVar, we found no significant dif-
ference between variants most common in African, East 
Asian, European, or South Asian ancestry, each of which 
was reclassified at ~ 0.3% per variant-month (Fig. 2F). The 
exception were variants most common in Latino ances-
try, which were reclassified at ~ 0.1% per variant-month.

Discussion
Variant databases are under continuous development and 
growth [22, 23]. Several studies have attempted to cap-
ture this progress at different snapshots in time, although 
these studies have generally looked at different data-
base elements, making comparisons across time difficult 
[26–28, 65]. Here, we investigated not a single point in 
time but evaluated systematically the same disorders over 
6 years across two different databases.

Both ClinVar and HGMD have shown marked 
improvements in variant classification accuracy over time
In both databases, we observed a decrease over time in 
the number of 1KGP individuals indicated affected by an 
IEM. Based on the high temporal resolution the ClinVar 
archives afford, we can see this change was most pro-
nounced in 2016 through 2018 after the establishment 

of the 2015 ACMG/AMP guidelines and coincident with 
allele frequency resources such as ExAC. We believe 
screened IEMs provide an informative lens that reveals 
broader database trends that may be representative of 
thousands of rare genetic disorders.

The higher number of indicated affected individuals 
in HGMD relative to ClinVar likely reflects the different 
methods each database uses to source and catalog 
variants
Perhaps our most striking finding is the large difference 
between the number of affected individuals indicated by 
HGMD and ClinVar in 2020. However, this difference is 
not entirely surprising. The authors of published litera-
ture may not apply formal variant classification guidelines 
to their variants and in some cases imply pathogenicity by 
inclusion in tables of variants. HGMD states that its cura-
tion policy is “to err on the side of inclusion and enter a 
variant into the database even if its pathological relevance 
may be questionable” and uses DM? classifications for this 
purpose as well as frequency flags in its online interface 
[66]. Additionally, HGMD does not capture conflicting 
evidence from VUS or B/LB classifications and must con-
tend with the heterogeneity of the literature. On the other 
hand, the clinical laboratories that contribute to ClinVar 
typically apply professional guidelines to classify variants 
and aim for consistent reporting for clinical use. An addi-
tional factor may be the increasing use of assertion criteria 
in variants contributed to ClinVar, which compels contribu-
tors to include consistent supporting evidence leading to a 
classification or provide a public contact for their records. 
In contrast, many journals (from which HGMD curates 
variants) do not require that variants be classified accord-
ing to current clinical practice guidelines. Therefore, this 
analysis should not be seen as a duel between two com-
peting databases, but rather a quantitative comparison 
between two distinct methods for sourcing and cataloging 
variants. These distinct methods led to the 100-fold differ-
ence between the false-positive rate of individuals indicated 
affected by Full ClinVar variants and Full HGMD variants, 
observed in both 1KGP (Fig. 1G) and gnomAD (Additional 
file 3: Fig. S5G). While the Full HGMD rate (~ 25 indicated 
affected individuals per 1000 cataloged variants) is still rela-
tively low, our analysis allows us to quantify this difference 
in specificity between the two databases. It is possible that a 
clinical analysis using HGMD, which has more unique DM 
or DM? variants than ClinVar has unique P or LP variants, 
would result in a higher sensitivity analysis, but we are not 
able to assess false negatives in this study. Understanding 
the differences between these databases may be valuable 
to not only clinical researchers, but also to non-domain 
experts such as computational researchers, who sometimes 
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use HGMD and ClinVar interchangeably to develop variant 
interpretation methods [67].

Updated BA1 guidelines to classify common variants 
as benign remove lingering ancestry-specific false-positive 
variants
Due to founder mutations, individual IEM variants are 
often enriched in a single ancestry. However, when we 
consider the total burden of all screened IEMs, conti-
nental ancestry groups appear to be affected at similar 
rates [52]. We found that African ancestry individuals 
were disproportionately indicated affected in 2014 when 
HGMD Select variants were considered, but this skew 
was resolved by 2020. Yet, all of the DM variants caus-
ing the ancestry skew in 2014 were reclassified to DM?. 
Thus, when considering HGMD Full variants, we found 
that significant African ancestry skew remained. Encour-
agingly, when we applied the 2018 BA1 guidelines, we 
observed no significant ancestry skew among Full or 
Select HGMD variants. This suggests that much of the 
observed ancestry skew is due to population-specific 
common variants. This likely reflects the historical lack 
of African ancestry samples in large sequencing projects 
[68, 69]. HGMD in particular may be susceptible to these 
factors, since it catalogs variants directly from publica-
tions, including older literature that was written when 
common variants in African ancestry individuals were 
poorly characterized. When older studies are given the 
same credence as recent ones, these disparities are more 
likely to be perpetuated.

Outlier “zombie” variants should be a priority for ClinVar 
to address
Among ClinVar variants that were reclassified, very rarely 
did the initial submitter change their classification, and 
instead nearly all were reclassified due to subsequent 
conflicting classifications that largely included asser-
tion criteria. We carefully examined 10 ClinVar variants 
which previously contributed to an inferred pathogenic 
genotype but have since had new non-pathogenic classi-
fications submitted. By 2020, eight of these variants were 
classified as Conflicting. For many variants, this is an 
accurate descriptor and reflects enduring disagreement 
among submitters. However, for some variants, this may 
be a byproduct of ClinVar’s current design—an archive 
of claims of variant significance without a mechanism to 
vet them. ClinVar calculates an overall classification of a 
variant based on aggregating all submissions. An older, 
incorrect classification is suppressed only if a submission 
with a higher review status is submitted. For example, if 
an incorrect submission is at a 0-star level (no assertion 
criteria), a newer submission with assertion criteria will 
override the classification. Likewise, an expert panel or 

professional guideline (3 or 4 stars) will override classi-
fications on a variant with 0–2 stars review status. How-
ever, if submissions are of the same review status, the 
record remains Conflicting until the P or VUS submitter 
changes or retracts their submission. If a submitter is not 
responsive to requests to update entries from the broader 
community, then an older submission will persist in the 
aggregate classification calculated by ClinVar. Although 
this system has advantages (historical knowledge is not 
lost), it may also impede the resolution of variants and 
indicate conflict when there is a large consensus. For 
example, NM_054012.4:c.323G > T in ASS1 is currently 
listed in ClinVar as Conflicting, yet it has the following 
classifications with at least 1 review star: 1 B, 4 LB, and 1 
VUS. The VUS classification is from 2017, while the 5 B/
LB classifications are more recent. Although researchers 
have found that older variant classifications tend to be less 
accurate, their influence persists [32]. This is even more 
true for HGMD, which predates ClinVar and thus also 
contains a large fraction of older classifications. Given the 
rapid increase in our ability to determine variant MAF 
and predict variant pathogenicity, even in the past 5 years, 
it may be reasonable to request ClinVar submitters refresh 
older outlier classifications or have ClinVar deprecate 
them to reduce the influence of incorrect “zombie” clas-
sifications that persist and lead to unnecessary conflicts. 
Regardless of the exact strategy, methods to confirm the 
validity of older outlier classifications will be valuable.

This work has several limitations. Among rare diseases, 
the variants associated with screened IEMs are unusu-
ally well-curated thanks to newborn screening programs. 
Thus, screened IEMs are not necessarily representative 
of many rare diseases. Furthermore, our primary analysis 
was limited by the comparably small size of 1KGP rela-
tive to the rarity of IEMs. At the same time, 1KGP has 
several advantages, including its approximately even rep-
resentation of the 5 major continental ancestries and its 
open availability of genomes, which allowed us to iden-
tify individuals who are compound heterozygous for vari-
ants classified as pathogenic and to validate the quality of 
nearly all analyzed variants. These unique features give 
1KGP enduring value. Both 1KGP and gnomAD lack rep-
resentation from some populations, including the Middle 
East, Oceania, and much of the African continent. These 
gaps impede the identification of benign variants from 
their high allele frequency in these populations. As this 
problem afflicts both clinical laboratory variant classifica-
tion and our analysis, it is possible that our results may 
not be applicable to such underrepresented populations. 
Our analysis was particularly sensitive to putatively mis-
classified variants on the X chromosome since we consid-
ered males who were hemizygous for a variant classified 
as pathogenic to be indicated affected. This explains 
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the relatively high number of observed OTC and TAZ 
variants flagged by our analyses of ClinVar and HGMD, 
despite the extreme rarity of their associated disorders. 
Finally, since few ClinVar submitters provide detailed 
explanations for their classification, and HGMD does not 
provide detailed explanations for its classifications, for 
many variants, it is difficult to determine with confidence 
why classifications changed over time.

Conclusions
We have investigated how the false-positive rate of Clin-
Var and HGMD variants has changed over time. Our 
results suggest that ClinVar has a lower false-positive 
rate than HGMD due to variant reclassification occur-
ring in the past few years. We noted patterns in vari-
ant reclassification and found that variant classification 
guidelines and diverse allele frequency databases princi-
pally contributed to these reclassifications. In agreement 
with the lower false-positive rate of ClinVar variants, we 
found that variants classified as pathogenic in ClinVar 
are reclassified sixfold more often than those in HGMD, 
suggesting that misclassified variants are more readily 
reclassified in ClinVar than HGMD. We also discovered 
that variants common in European and South Asian indi-
viduals were significantly more likely to be reclassified 
from P/LP or B/LB to VUS or Conflicting. We conclude 
that although the allele frequency of variants common in  
European individuals has been known for longer, due to 
the increased chance they will be classified by multiple 
submitters, they are more often reclassified from a confi-
dent category to a less confident category in ClinVar. We 
anticipate that this work will be a valuable benchmark of 
the progress that has been made in variant interpretation, 
of interest to the individuals who maintain these databases, 
the clinical laboratories and researchers who use these 
databases regularly, and the computational researchers 
who use these databases for training and testing methods.
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