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Abstract 

Background The gut microbiome is a critical modulator of host immunity and is linked to the immune response 
to respiratory viral infections. However, few studies have gone beyond describing broad compositional alterations 
in severe COVID‑19, defined as acute respiratory or other organ failure.

Methods We profiled 127 hospitalized patients with COVID‑19 (n = 79 with severe COVID‑19 and 48 with moderate) 
who collectively provided 241 stool samples from April 2020 to May 2021 to identify links between COVID‑19 severity 
and gut microbial taxa, their biochemical pathways, and stool metabolites.

Results Forty‑eight species were associated with severe disease after accounting for antibiotic use, age, sex, and vari‑
ous comorbidities. These included significant in‑hospital depletions of Fusicatenibacter saccharivorans and Roseburia 
hominis, each previously linked to post‑acute COVID syndrome or “long COVID,” suggesting these microbes may serve 
as early biomarkers for the eventual development of long COVID. A random forest classifier achieved excellent perfor‑
mance when tasked with classifying whether stool was obtained from patients with severe vs. moderate COVID‑19, 
a finding that was externally validated in an independent cohort. Dedicated network analyses demonstrated frag‑
ile microbial ecology in severe disease, characterized by fracturing of clusters and reduced negative selection. We 
also observed shifts in predicted stool metabolite pools, implicating perturbed bile acid metabolism in severe disease.

Conclusions Here, we show that the gut microbiome differentiates individuals with a more severe disease course 
after infection with COVID‑19 and offer several tractable and biologically plausible mechanisms through which gut 
microbial communities may influence COVID‑19 disease course. Further studies are needed to expand upon these 
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observations to better leverage the gut microbiome as a potential biomarker for disease severity and as a target 
for therapeutic intervention.

Keywords SARS‑CoV‑2, Microbiome, Machine learning

Background
Over 670 million individuals worldwide have been 
infected with SARS-CoV-2 and developed coronavi-
rus disease-2019 (COVID-19), culminating in nearly 
7 million lives lost [1]. The gut microbiome is a critical 
modulator of host immunity [2] and affects the immune 
response to respiratory viral infections (e.g., influenza A 
virus subtype H1N1, severe acute respiratory syndrome 
[SARS], and Middle East respiratory syndrome) [3–6]. 
Several early studies have explored the link between 
broad alterations in gut microbial communities and 
COVID-19, demonstrating the generalized enrichment 
of opportunistic pathogens and depletion of commensals 
[7–18].

Most prior studies have largely focused on the pres-
ence, absence, or the differential abundance of specific 
microbes in COVID-19 [7, 9–16, 19, 20], and few have 
interrogated microbial network dynamics to identify 
which co-occurring or co-excluded species are founda-
tional to maintaining microbial homeostasis. This repre-
sents a missed opportunity to identify potential bacterial 
targets to restore a more favorable, health-promoting 
gut configuration. Similarly, other studies have not con-
sidered how these shifts might influence gut metabolite 
pools. Finally, prior studies interested in exploring the gut 
microbiome in COVID-19 have largely sought to char-
acterize the differences in healthy controls compared to 
infected patients rather than those with moderate com-
pared to severe disease [7, 10–12, 14, 16]. Establishing 
a predictive biomarker of disease severity may improve 
early identification of at-risk patient populations that 
require immediate intervention or those that are more 
likely to benefit from effective antiviral therapies [21].

It remains unclear what role the gut microbiome plays 
in regulating the severity of COVID-19 in hospitalized 
patients and what specific microbially-mediated mecha-
nisms may underlie this relationship. To address these 
questions, we conducted a study of hospitalized patients 
with COVID-19 at a US tertiary medical center. Using 
metagenomic profiling of fecal samples collected from 
these patients, we demonstrate significant depletions of 
Fusicatenibacter saccharivorans and Roseburia hominis 
in severe COVID-19, reductions of which have previ-
ously been linked to post-acute COVID-19 syndrome 
(PASC) or long COVID [18, 22]. Strikingly, we observed 
these declines during patients’ index hospitalizations, 
suggesting the presence of an early microbial signal that 

may predict the development of a long-term complica-
tion. We further use network analysis to identify sig-
nificant changes in microbial co-occurrence networks 
in severe COVID-19 and perform complementary pre-
dicted metabolite analyses to further link these changes 
to alterations in bile acid pool and short-chain fatty acid 
(SCFA) levels, offering biologically plausible mechanisms 
to explain the link between gut microbial communities 
and COVID-19 disease severity.

Methods
Study population
From April 2020 to May 2021, we prospectively enrolled 
127 consecutive hospitalized patients aged ≥ 18  years 
with confirmed COVID-19 at the Massachusetts Gen-
eral Hospital to a longitudinal COVID-19 disease sur-
veillance study. Patients were categorized as having 
severe COVID-19 if they required admission to the 
intensive care unit with acute respiratory failure (the 
need for oxygen supplementation ≥ 15 L per minute 
(LPM), non-invasive positive pressure ventilation, or 
mechanical ventilation) or other organ failures (such as 
shock requiring vasopressor initiation) [23]. Otherwise, 
they were categorized as having moderate COVID-19. 
Patients were screened daily for inclusion from among 
all admitted individuals for whom a designation of pos-
sible SARS-CoV-2 infection was flagged by hospital 
infection control. COVID-19 infection status was subse-
quently confirmed with at least one positive nasopharyn-
geal SARS-CoV-2 polymerase chain reaction (PCR) test. 
An optional biospecimen collection protocol was nested 
within this longitudinal study, which allowed collection 
of additional clinically relevant biospecimens, includ-
ing stool samples. All consecutive eligible consenting 
patients were included.

Sample/data collection
Fresh stool was collected and refrigerated at 4℃ until 
aliquoting/freezing at − 80℃ (typically within 4  h of 
collection) from adult patients enrolled in the prospec-
tive biospecimen collection study (241 samples from 
127 admitted patients). Participants were able to pro-
vide stool samples as frequently as once daily, as well as 
declining donation on any given day (while remaining 
in the study). Study coordinators blinded to case sta-
tus abstracted data from the electronic health record 
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using a double data entry approach with discrepan-
cies adjudicated by re-abstraction or after discussions 
with supervising authors. We collected information 
on admission age (years), biological sex (male, female), 
race (White, Black, Asian, American Indian, Mixed, or 
Other), ethnicity (non-Hispanic or Hispanic), admis-
sion BMI (kg/m2), comorbidities including history 
of cancer, pulmonary, or cardiac disease, hyperten-
sion, hyperlipidemia, and diabetes mellitus (each yes/
no), smoking history (active, former, never, unknown, 
and pack-years among smokers), and their composite 
admission Charlson Comorbidity Index, a validated 
score predictive of in-hospital mortality [24]. Informa-
tion on hospital course, including admission Simplified 
Acute Physiology Score II (SAPS II) [25] and Sequen-
tial Organ Failure Assessment (SOFA) scores [26] were 
calculated from routine laboratory results and clinical 
assessments. The use of antibiotics, antivirals includ-
ing remdesivir, hydroxychloroquine, corticosteroids, 
anti-IL-6 therapy, any form of oxygen support, high-
flow oxygen, bilevel positive airway pressure (BiPAP) 
ventilation, or mechanical ventilation (each yes/no) was 
collected. Mortality within 90  days of admission was 
ascertained in the post-study period.

Extraction protocols
Stool samples, reagent-only negative controls, and mock 
community positive controls (Zymo Research) were 
extracted using either the AllPrep PowerFecal DNA/
RNA 96 Kit (Qiagen) or the Maxwell HT 96 gDNA 
Blood Isolation System (Promega) [27]. SARS-CoV-2 
viral load was quantified as per CDC guidelines [28] 
using the 2019-nCoV N1 primer and probe set [28], as 
well as human RNaseP as an internal control. Each RT-
qPCR reaction contained TaqPath™ 1-Step RT-qPCR 
Master Mix (Thermo Fisher), RNA template, the CDC 
N1 or RNaseP forward and reverse primers (IDT), 
probe, and RNase-free water to a total reaction volume 
of 10 μl. Viral copy numbers were quantified using N1 
quantitative PCR (qPCR) standards (IDT) in tenfold 
dilutions to generate a standard curve. The assay was 
run in triplicate for each sample with three no-template 
control wells per 384 well plate.

Microbial sequencing
Samples were sequenced by two metagenomic sequenc-
ing facilities at the Broad Institute and Baylor College 
of Medicine according to their standard established 
platforms. DNA was prepared for sequencing using the 
Illumina Nextera XT DNA library preparation kit. All 
libraries were sequenced with a target of 3  GB output 
at 2 × 150  bp read length using the Illumina NovaSeq 
platform.

Sequence bioinformatics
Taxonomic and functional profiles from both locally 
recruited patients and publicly available sequences from 
our external validation cohort [19] were generated using 
the bioBakery 3 shotgun metagenome workflow 3.0.0, 
the details of which have previously been described [29]. 
Briefly, human reads were filtered using KneadData 0.10.0 
and taxonomic profiles generated using MetaPhlAn 3.0.0 
[30]. Functional profiling was conducted using HUMAnN 
3.0.0 [30], resulting in gene family abundance tables 
assembled into higher order MetaCyc pathways [31].

Given the tight coupling and relatively conserved 
nature of gut taxonomic and metabolite profiles [32], we 
used the MelonnPan-predict 0.99.023 workflow [33] to 
interrogate the functional relationship between COVID-
19 severity and microbial community metabolism. In 
brief, MelonnPan uses an elastic net model to conserva-
tively predict putative metabolite levels based on stool 
UniRef90 gene family abundance.

Statistical analysis
To compare patient characteristics between study 
groups, we used standard statistical tests, including chi-
squared (χ2) tests or Fisher’s exact testing for categorical 
variables, the Student’s t-test for normally distributed, 
non-categorical variables, and nonparametric Wilcoxon 
rank sum tests for all others. Differences with two-tailed 
p-value ≤ 0.05 were considered significant.ɑ-diversity was 
calculated using the Shannon index with the “diversity” 
function from the R package vegan [34]. Principal coor-
dinates analyses (PCoA) were performed using species-
level Bray–Curtis dissimilarity metrics with the “vegdist” 
function in the vegan package. 

After filtering out features with no variance and low 
(< 10%) prevalence, we performed differential abundance 
testing of species-level taxonomy, MetaCyc pathways, 
and predicted stool metabolites using linear mixed-
effects models to account for a nested data structure 
from repeated sampling of non-independent samples:

Machine learning model building and evaluation were 
conducted using the SIAMCAT  v.1.13.3 package [35]. 
Log-transformed species with pseudocount were filtered 

log(feature) ∼ intercept + COVID − 19 severity

+ age + sex + prior antibiotic use

+ race + ethnicity + BMI

+ Charlson Comorbidity Index

+ remdesivir + corticosteroids

+ days since admission

+ SARS − CoV − 2 stool viral load

+ sequencing depth + (1 | participant)
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to remove biomarkers with low overall abundance and 
z-transformed. A nested cross-validation procedure was 
applied to calculate prediction accuracy by splitting data 
into training and testing sets for twice-repeated, fivefold 
cross-validation. To account for longitudinal sampling 
[35], data splits were stratified by participant ID, ensuring 
samples from the same individual were used in the same 
fold. For each split, a random forest (RF) regressor was 
trained and subsequently used to predict COVID-19 dis-
ease severity. To evaluate model performance, we used the 
lambda parameter to maximize the area under the receiver 
operator characteristic curve (AUROC) with a 95% confi-
dence interval (CI) for cross-validation error. We used the 
make.predictions function of SIAMCAT  to assess 
model performance on our external validation dataset. 

To assess whether ecological dynamics may help 
explain observed differences in taxonomy, we performed 
dedicated microbial network analyses. To account for our 
longitudinal data structure and the non-independence 
of longitudinal samples from the same individual, we 
restricted this analysis to each participant’s first collected 
stool (all other analyses used the entire dataset). Network 
construction was conducted using the “netConstruct” 
function in NetCoMi v.1.0.2 [36], normalized using a 
modified centered-log ratio and limited the resulting 
network to microbes with an absolute Pearson correla-
tion ≥ 0.4 (approximately equal to the 95th percentile 
of correlation matrix distribution). Network hubs were 
identified as those in the top quintile of degree, between-
ness, and closeness centrality in each network (moderate 
vs. severe COVID-19, respectively). Finally, comparison 
of moderate and severe networks was performed using 
the “netCompare” function with 10,000 permutations.

Results
Participant characteristics and overall gut community 
structure
We enrolled 127 hospitalized COVID-19 patients. 79 
(62.2%) had severe disease and 48 (37.8%) had moder-
ate disease. Collectively, they provided 241 stool sam-
ples (Fig.  1a, Additional file  1: Fig. S1). While BMI was 
higher in the severe group, there were no statistically 
significant differences observed between severity groups 
based on age, sex, race, ethnicity, various comorbidi-
ties, and smoking history (Additional file  1: Table  S1). 
Patients with severe COVID-19 had a higher mean body 
mass index (BMI) as well as Simplified Acute Physiol-
ogy Score II (SAPS II) [25] and Sequential Organ Failure 
Assessment (SOFA) scores [26], each a validated clinical 
assessment tool to risk stratify hospitalized patients’ risk 
of mortality [37, 38]. Severe COVID-19 patients more 
frequently received antibiotics, antivirals, and ICU thera-
pies. Patients with severe COVID-19 had higher 90-day 

mortality compared to those with moderate disease 
(22.8% vs. 4.2%, p-value = 0.01).

Gut microbial diversity was significantly reduced in 
severe COVID-19 after adjusting for factors such as 
recent antibiotic use (Fig. 1b, p-value < 0.0001). We found 
that COVID-19 disease severity explained a statistically 
significant proportion of variance in Bray–Curtis dis-
tances (4.04%, FDR p-value = 0.01), while other demo-
graphic factors and details related to hospital course 
had either a modest and/or non-statistically significant 
effect on overall community structure—this finding was 
not fully explained by characteristic trade-offs along the 
Bacteroidetes/Firmicutes axes of variation [39] or prior 
antibiotic usage (Fig. 1c, d). No major batch effects attrib-
utable to sequencing center were observed, and thus, 
subsequent analyses were conducted on pooled sam-
ples (multivariable PERMANOVA  R2 for batch = 1.2%, 
p-value = 0.12, Additional file 1: Fig. S2).

Differential abundance testing
Using multivariable linear mixed-effects modeling 
accounting for SARS-CoV-2 stool viral load, (which has 
previously been linked to increased COVID-19-related 
mortality [40]), age, sex, antibiotic use, race/ethnicity, and 
other relevant clinical metadata (Methods), we observed 
statistically significant differences in 48 species-level 
taxa between severe and moderate COVID-19 (FDR-
corrected p-value < 0.05, Fig.  2a and Additional file  1: 
Table S2). All but two of these taxa (Candida albicans & 
Enterococcus faecalis) were relatively depleted in severe 
disease (Fig. 2a, b), a trend concordant with the observed 
decrease in species richness and evenness. While not 
directly comparable, the highest absolute β-coefficients 
from our multivariable modeling for antibiotic use was 
3, while 27 of 48 significant taxonomic associations 
demonstrated coefficients >|3|, suggesting a consistently 
stronger link between COVID-19 severity and altera-
tions in relative microbial abundance than antimicrobial 
therapy (Additional file 1: Table S2). We identified signifi-
cant depletions of Fusicatenibacter saccharivorans and 
Roseburia hominis (Fig.  2b), consistent with prior work 
showing the relative contraction of each in patients with 
post-acute COVID-19 syndrome (PASC), also known 
as “long COVID” [18, 22]. The abundance of F. saccha-
rivorans and R. hominis were not significantly associated 
with clinical factors included in our model, including age, 
sex, and BMI (all FDR p-values > 0.05), though there was 
a trend towards increased E. faecalis with greater time 
between hospital admission and sample collection (FDR 
p-value 0.052; Additional file 1: Table S2).

Eight taxa were positively associated with stool 
SARS-CoV-2 viral load, including Methanobrevibacter 
smithii and Bilophila wadsworthia, as well as several 
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Alistipes spp (Additional file  1: Table  S2). Interest-
ingly, an expansion of R. hominis was associated with 
increased stool viral load (Additional file  1: Table  S2). 
Corresponding to community-wide depletions in 
microbial diversity, biochemical pathways encoded by 
gut bacteria were also significantly altered in severe 
COVID-19, including reductions in amino acid biosyn-
thesis (e.g., glutamine synthesis), isoprenoid biosyn-
thesis, and short-chain fatty acid production (SCFA) 
pathways, including glycerol degradation, acetyl-CoA 
fermentation, and methanogenesis from acetate (Addi-
tional file 1: Table S3 and Additional file 1: Fig. S3).

To ensure the robustness of our findings, we per-
formed a sensitivity analysis in which we performed 
our multivariable differential abundance testing on 

stool collected within 30 days of admission (the median 
length of stay). We showed that other than an antici-
pated loss of power from decreased sample size, our 
findings were not materially altered. Of the 48 differ-
entially abundant species in our primary analysis, 32 
remained significant with this more stringent criteria. 
When similarly restricting our analysis to samples pre-
ceding the use of antibiotics (if any), 35 of the 48 dif-
ferentially abundant species remained statistically 
significant (Additional file 1: Table S4).

Accurate classification of COVID‑19 severity using 
a microbiome‑based random forest learner
Given our findings of both community-wide and feature-
level alterations linked to severe COVID-19, we next 

Fig. 1 Study overview and overall community structure. a Study enrollment of hospitalized patients with confirmed COVID‑19 with weekly 
stool sampling until the time of discharge or death, whichever occurred first. b Marked reduction in species richness and evenness in severe 
COVID‑19 (inverse Simpson ɑ‑diversity metric, p‑value < 0.0001 from multivariable linear modeling adjusting for age, sex, prior antibiotic use, race, 
ethnicity, body mass index, Charlson Comorbidity Index, use of remdesivir or corticosteroids, days since admission, SARS‑CoV‑2 stool viral load, 
sequencing depth, and a participant‑level random effect). Boxes represent median and interquartile range, while whiskers represent 95%ile. c 
Community‑level disturbances in severe vs. moderate COVID‑19 as depicted by joint ordination and principal coordinates analysis (PCoA), not fully 
explained by characteristic trade‑offs in Bacteroidetes/Firmicutes or prior antibiotic use. d Ominibus testing of Bray–Curtis distances demonstrates 
that COVID‑19 severity had a modest and statistically significant impact on the overall community structure. Other demographic information, 
covariates, and hospital course information were not significantly associated (FDR p‑value > 0.05)
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used a machine learner to predict whether metagen-
omic features could serve as inputs to classify samples 
derived from patients with severe vs. moderate COVID-
19. To assess whether non-microbial metadata (i.e., par-
ticipant characteristics) should be jointly considered with 
microbial taxa in training our classifier, we generated an 
entropy heatmap to quantify the unique row-wise infor-
mation with respect to column-wise data (in which non-
informative variables would have a value of 0). As all the 
covariates used in our prior linear modeling (Methods) 
contributed unique information to label/disease severity 
prediction (Additional file 1: Fig. S4), each was included 
in our machine learning workflow.

Using both differentially abundant microbial features 
and clinical characteristics as our input with five-fold 
twice-repeated cross-validation (Fig. 3a), our random for-
est regressor achieved an area under the receiver operating 

characteristic (AUROC) of 0.925 when tasked with pre-
dicting whether stool was obtained from patients with 
severe vs. moderate COVID-19 (Fig.  3b). Our findings 
were only modestly attenuated when modeled without 
clinical metadata (AUROC 0.922) and stool SARS-CoV-2 
viral load (AUROC 0.923), respectively. To robustly assess 
this result, we trained our model using only the top 20 dif-
ferentially abundant microbial features, which only mod-
estly degraded task performance (AUROC 0.898). Finally, 
though we ensured samples from the same individual were 
confined to a single cross-fold, to minimize the possibility 
of overfitting data from personalized gut microbial com-
munities, we trained and assessed our model using only 
the first stool sample from each participant, which again 
performed with excellent accuracy (AUROC 0.871), fur-
ther supporting the role of metagenomic profiling as a 
diagnostic biomarker for disease severity.

*** *** ***
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Fig. 2 Taxonomic depletions linked to COVID‑19 severity. a Volcano plot of species‑level expansions and depletions linked to severe vs. moderate 
COVID‑19. Effect sizes (β‑coefficients) from multivariable linear modeling plotted against FDR‑corrected p‑value. Full results in Table S2. b 
Highlighted box and scatter plots of taxa abundance by COVID‑19 severity. For visualization purposes, technical/true 0s were imputed with a given 
taxa’s minimum non‑zero value. Boxes represent median and interquartile ranges, while whiskers represent 95%ile
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A comprehensive literature review identified one 
metagenomic cohort with publicly available information 
on COVID-19 disease severity [19]. After uniform pre-
processing of raw sequences (Methods), we tested our 

model on this external dataset of 38 patients with mild/
moderate vs. severe/critical COVID-19. Despite hetero-
geneity in case definition, collection methods, country 
of origin, and the lack of additional clinical metadata 
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Fig. 3 Stool‑based classifier for COVID‑19 disease severity. a Box and scatter plots of the top 50 microbial features and their differential abundance 
by COVID‑19 severity with barplots indicating univariate/nominal p‑value, fold change by study group, prevalence, and taxa‑level contribution 
to area‑under‑the curve for a random forest‑based machine learner. b Receiver operator characteristic (ROC) and precision‑recall curves 
demonstrating excellent performance in classifying stool samples by COVID‑19 severity. The removal of stool SARS‑CoV‑2 viral load and clinical 
metadata resulted in only modestly decreased task performance, as did limiting our input to only the top 20 differentially abundant microbes 
by disease class. A sensitivity analysis using only the first provided stool from each participant, which should minimize the possibility of overfitting 
data due to repeated measures and longitudinal sampling, still performed well. c External validation of the taxa‑only random forest model 
on an independent dataset of 24 patients with mild/moderate COVID‑19 and 14 with severe/critical COVID‑19 (Xu et al. 2022)



Page 8 of 14Nguyen et al. Genome Medicine           (2023) 15:49 

beyond disease severity, testing our taxa-only classifier 
achieved an AUROC of 0.741 on this external dataset, 
independently verifying a strong association between 
COVID-19 disease severity and alterations in gut micro-
bial communities (Fig. 3c).

Systems approaches to interrogate microbial assemblages
To explore the possible biological mechanisms underly-
ing our observations, we next sought to compare micro-
bial co-occurrence networks in moderate vs. severe 
COVID-19 disease (Methods). We hypothesized that the 
community-wide and feature-level alterations observed 
in moderate vs. severe COVID-19 would change micro-
bial network topology. First, we evaluated global micro-
bial network properties. The adjusted Rand Index (ARI) 
is a measure of similarities in clustering, quantifying 
the likelihood that pairs of microbial species would be 
assigned to the same cluster in both networks. An ARI 
value of 0 indicates random clustering across comparator 
groups, a value of 1 indicates identical clustering, and a 
value of -1 indicates perfect disagreement [41, 42]. When 
comparing moderate to severe COVID-19, the ARI was 
0.199 (p-value < 0.001), a modest but statistically signifi-
cant finding indicating somewhat similar clustering of 
microbial species between networks. Jaccard’s index (JI) 
evaluates differences among central nodes between our 
two severity-specific networks, where a value of 0 indi-
cates completely different sets of central nodes and a 
value of 1 indicates identical central nodes [43]. While 
there were no statistically significant differences in over-
all centrality measures when comparing moderate to 
severe cases, there were alterations in proportion of posi-
tive edges network-wide (92.9% vs 100%, p-value < 0.001), 
indicating a loss of moderate negative correlations in 
severe COVID-19. For example, C. albicans, which was 
relatively more abundant in severe compared to moder-
ate COVID-19, has 0 vs. 3 negative edges in each disease 
state, respectively, raising the possibility that the loss of 
negative selective pressure can promote the growth of 
certain microbial species in severe COVID-19.

We identified 16 taxa as network hubs, i.e., species 
with high putative importance given their centrality to 
the surrounding microbial networks (Fig. 4, Additional 
file  1: Fig. S5, and Additional file  1: Table  S5). Five 
species were identified as hubs in both moderate and 
severe disease (Blautia wexlerae, Eubacterium hallii, 
Gordonibacter pamelaeae, Odoribacter splanchnicus, 
and Alistipes shahii), while 11 were unique to one net-
work or the other (Fig. 4, Additional file 1: Table S5 and 
Additional file 1: Fig. S5). Critically, 9 of these 16 identi-
fied hubs, including Blautia wexlerae and Eubacterium 
hallii, were shown to be differentially abundant by dis-
ease severity (Fisher’s exact p-value = 0.03, Additional 

file 1: Table S2), and the relative abundance of two hubs, 
Eubacterium rectale and Alistipes putredenis, were 
associated with stool viral load. We further observed 
that highly connected clusters in moderate disease 
become fragmented in severe COVID-19, as evidenced 
by an increase in singletons (χ2 p-value < 0.001). We 
also observed a decrease in the number of hub taxa and 
dynamic taxa-level cluster reassignment (Fig. 4). Nota-
bly, all but one of the hubs shown to be differentially 
abundant by disease severity belonged to the same clus-
ter, suggesting that significant loss of these central taxa 
in severe disease may contribute to the observed net-
work instability.

Predicted stool metabolites linked to disease severity
We next sought to evaluate whether changes in micro-
bial communities affected capacity for local metabo-
lite production. Using a validated computational 
workflow to generate putative metabolic profiles from 
stool metagenomes [33] (Methods), we found 57 of 80 
well-predicted known stool metabolites to be differen-
tially perturbed based on COVID-19 disease severity 
(all FDR-corrected p-value < 0.05; Fig. 5a and Additional 
file  1: Table  S6). We identified disrupted bile acid 
metabolism in severe COVID-19, with relative enrich-
ment of primary bile acids (chenodeoxycholate, cholate, 
and ketodeoxycholate) alongside depletion of second-
ary bile acids (lithocholate, lithocholic acid, and deoxy-
cholic acid) (Fig. 5b). Similar to our microbial pathway 
analysis which revealed reductions in MetaCyc path-
ways related to SCFA production, predicted levels of 
butyrate, isobutyrate, and propionate were also reduced 
in severe COVID-19 (Additional file  1: Table  S6). Fur-
thermore, we confirmed prior data showing relative 
enrichment of bilirubin [44], creatine and polyamines 
(e.g., acetyl-spermidine [45]), and pantothenic acid [46] 
in severe COVID-19, as well as a relative depletion of 
deoxyinosine [46] (Additional file 1: Table S6).

Discussion
In a comparatively large US hospital-based cohort of 
diverse patients admitted with confirmed COVID-19 
during the initial year of the pandemic, we found com-
munity- and species-level alterations linked to disease 
severity. Using a random forest machine learner, these 
microbial features could accurately classify patients 
based on disease severity, indicating that specific gut 
microbial configurations may be linked to a more severe 
disease course, a finding we validated in a separate inde-
pendent cohort. Network analyses identified significant 
disruptions to gut ecologic topology in severe COVID-
19. Differential abundance testing of microbial pathways 
and separate predicted stool metabolite-based analyses 
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suggest that these disruptions may change the balance of 
bile acids and SCFAs in the gut, identifying novel treat-
ment opportunities that may ameliorate the severity of 
COVID-19. We also found significant depletions of two 
microbes previously associated with long COVID, sug-
gesting early gut microbial disturbances may precede the 
development of a long-term complication.

Determining who will require a higher level of care 
remains one of the most challenging questions facing cli-
nicians caring for patients with COVID-19. Our machine 
learning algorithm demonstrated excellent discrimina-
tion between moderate and severe COVID-19 using only 
gut microbial features. Notably, the inclusion of clinical 
data did not significantly improve the classification accu-
racy of our model. Prior work has incorporated such 
information from the initial presentation [47], multi-
cytokine panels [48], and previously validated illness 
severity scores [49] to forecast whether a given patient 
will suffer from a more severe COVID-19 course. How-
ever, based on their performance characteristics, these 
approaches appear to be less accurate than our microbi-
ome-centered approach.

Our findings expand on prior research linking changes 
in gut microbial ecology to COVID-19. However, it 

should be noted that much of the initial work has been 
done on a smaller scale [7, 9–11, 14] and typically outside 
of North America [7–15], limiting their generalizability. 
Further, these comparative analyses may have focused 
on specialized populations, such as the very young, the 
asymptomatic, or patients in recovery [12, 16–18], and 
may not have been well-suited to consider clinical factors 
that may confound the relationship between gut micro-
bial communities and COVID-19 using more robust 
multivariable approaches [7, 8, 10–17]. Prior studies 
also predominantly relied on 16S rRNA sequencing to 
demonstrate community- or genus-level shifts related to 
COVID-19 [7, 14–17], falling short of the species-level 
resolution and biochemical insights gained by employ-
ing next-generation sequencing of gut metagenomes and 
other functional multi-omic technologies. In contrast, 
we assembled a large, representative North American 
patient population admitted with symptomatic COVID-
19 whose gut microbial communities were interrogated 
using metagenomic techniques, allowing us to identify 
novel microbial features to more comprehensively char-
acterize disease severity with high predictive accuracy.

Prior investigations have observed similar commu-
nity- and taxa-level alterations in microbial composition 
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in COVID-19. In the earliest phase of the pandemic, a 
study from Hong Kong (n = 36) also demonstrated rela-
tive reductions in the group Eubacterium among the gut 
metagenomes of COVID-19-infected patients compared 
to referent populations, and like our work, found wide-
spread depletion of typical gut colonizers such as Fae-
calibacterium and Roseburia spp. in severe COVID-19 
[9]. In an expanded population of 100 patients, the same 
group reaffirmed a reduction in diversity and a loss of 
health-associated gut commensals in severe COVID-19 
[13]. Finally, a study of 30 SARS-CoV-2 infected patients 
in mainland China using 16S rRNA-based sequencing 
similarly demonstrated a change in gut community struc-
ture with reductions in ɑ-diversity compared to referent 
counterparts [14]. Notably, they also achieved success in 
classifying stool samples from patients with COVID-19 
compared to those from healthy controls or those infected 
with influenza, indicating the relatively distinct gut ecol-
ogy of COVID-19. However, their classification tasks were 
conducted in a smaller population using supervised fea-
ture selection (i.e., the top results from their linear discri-
minant analysis) of genus-level taxa, and arguably, the role 
of a gut microbial biomarker in discriminating COVID-
19 from non-infected individuals is uncertain now that 
SARS-CoV-2 testing is more widely available [50].

Our work offers insights beyond these broad charac-
terizations of the gut microbiome in COVID-19. Among 
the eight taxa that were positively associated with stool 
SARS-CoV-2 viral load, several contribute to pro-inflam-
matory sulfur metabolism, such as Methanobrevibacter 
smithii and Bilophila wadsworthia [51–53]. Our finding of 
enriched R. hominis with increased stool viral load despite 
a corresponding decrease among patients with severe 
COVID-19 may suggest an interaction between stool 
SARS-CoV-2 viral load, R. hominis, and severe COVID-
19. It is appreciated that gut microbial ecology influences 
the host immune response to viral respiratory infections 
[3–6]. Our identification of Blautia wexlerae and Eubacte-
rium hallii as network hubs depleted in severe COVID-19 
(both Lachnospiraceae implicated in other immune-medi-
ated diseases [54]) suggests these bacteria may engage in 
important roles in the regulation of immunity to SARS-
CoV-2. Predicted alteration of secondary bile acid metab-
olism in severe disease provides another mechanism by 
which changes in gut microbial communities may influ-
ence the immune response to SARS-CoV-2. Bile acids 
regulate mucosal and systemic immunity in several ways 
[55]. Prior work has suggested that secondary bile acids are 
the primary ligand for TGR5 [56] through which they may 
suppress pro-inflammatory signaling [55, 57], resulting in 
impaired immunity to viral infections [58, 59]. The pre-
dicted shift in bile acid pools may also result in increased 
regulation of bile acid-sensitive transcription factors, as 

increased primary bile acids will preferentially activate 
farsenoid X Receptor, while depletions in secondary bile 
acids will reduce activation of vitamin D receptor (VDR) 
[60, 61] and pregnane X receptor (PXR) [62]. Decreased 
VDR/PXR signaling during active infection is associated 
with increased systemic inflammation and increased mor-
bidity and mortality [63, 64], possibly contributing to the 
clinical milieu observed in severe COVID-19. This is a 
particularly noteworthy hypothesis given emerging epide-
miologic data on the link between diet [65], vitamin D sta-
tus [66], and COVID-19 disease risk and severity, as well 
as early work linking depletion of secondary bile acids to 
COVID-19-related mortality [67].

Our study has several key strengths. First, we assembled 
a large representative cohort of patients at a U.S.-based 
tertiary care center for whom we collected relevant clini-
cal metadata to complement serial stool sampling. Sec-
ond, our computational workflow allowed us to not only 
link community-level changes in gut microbial ecology but 
species-resolved signatures of severe COVID-19, which we 
were able to validate in an external cohort of patients. Third, 
complementary MetaCyc pathway and predicted metabolite 
analyses further link these changes to alterations in bile acid 
pool and SCFA levels. Taken together, these observations 
serve as proof of principle that using NGS to interrogate 
gut microbial ecology may generate tractable hypotheses to 
be explored in follow-up investigations. Finally, our results 
fit well in the context of independent works from other 
groups—ending credence to our findings—and using a 
machine learning classifier, we demonstrate excellent accu-
racy in discriminating samples from moderate vs. severe 
COVID-19. These findings hint at the possibility that mod-
ulating gut microbial communities may be a viable disease 
prevention or therapeutic strategy in COVID-19.

We acknowledge several limitations. We were not posi-
tioned to assess whether findings differed on the basis of 
SARS-CoV-2 strain or variants. Our study enrolled patients 
from April 2020 to May 2021 during which genomic surveil-
lance infrastructure in the USA was not equipped to com-
prehensively explore this question. Prior to the Delta variant 
wave beginning in June 2021, the majority of COVID-19 
cases were either Alpha or other less consequential vari-
ants of interest [68]. As our study enrolled hospitalized 
patients with moderate COVID-19 to minimize differences 
between those hospitalized with severe disease, we are not 
positioned to explore what differences—if any—may exist 
between each group and their non-SARS-CoV-2 infected 
counterparts and the degree to which between-group differ-
ences are attributable solely to critical illness or prolonged 
hospitalization. However, we either adjusted for participant 
factors that differed between groups in our multivariable 
modeling (e.g., BMI, comorbid disease, hospital length of 
stay, and antiviral therapy) or were limited by the fact that 
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distinguishing features such as advanced oxygen delivery 
and other ICU-level interventions were, by definition, estab-
lished markers of severe COVID-19. Several sensitivity anal-
yses including restricting our cohort to those unexposed 
to antibiotics, using just the first stool sample provided, or 
those provided prior to the median length of stay were each 
consistent with our main findings. Since most patients with 
severe disease were admitted to the ICU shortly after pres-
entation, we were unable to prospectively collect a substan-
tial number of pre-ICU samples in these patients, limiting 
our ability to classify or predict the development of severe 
COVID-19. Given the observational nature of our study, 
we cannot exclude the possibility of residual confounding. 
However, we adjusted for multiple potential confounders. 
All enrolled patients were hospitalized, which may mini-
mize study heterogeneity at the expense of overall generaliz-
ability. We also assessed the gut microbiome at the earliest 
feasible time point on admission. This resulted in variation 
in the timing of collection, which limits our ability to infer 
causality. Absolute microbial abundance measurements 
could not be obtained. Finally, our collection protocol did 
not allow for the measurement of stool metabolites to vali-
date our computational approach, without which it may 
be more accurate to consider these results as suggestive of 
altered capacity for metabolite class production rather than 
actual differences in quantifiable metabolite pools. Relat-
edly, diet and other unmeasured determinants of stool 
metabolite production are unlikely to be stable in a hospital-
ized population. Despite these limitations, our findings are 
intended to be hypothesis-generating to inform the contin-
uum of research that may logically follow.

Conclusions
Leveraging the gut microbiome as a potential biomarker 
for disease severity and modulating this fragile ecology 
to improve COVID-19 outcomes each hold significant 
appeal in the fight to end this pandemic. Multidiscipli-
nary approaches will be needed to confirm our early find-
ings. Prospective validation of a non-invasive indicator 
predictive of disease severity could readily identify and 
target at-risk individuals for more aggressive therapy.
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