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Spatially resolved transcriptomic profiles 
reveal unique defining molecular features 
of infiltrative 5ALA-metabolizing cells 
associated with glioblastoma recurrence
Geoffroy Andrieux1†, Tonmoy Das1,2†, Michaela Griffin3, Jakob Straehle4, Simon M. L. Paine3, Jürgen Beck4, 
Melanie Boerries1,5, Dieter H. Heiland5,6,4,7, Stuart J. Smith3, Ruman Rahman3* and Sajib Chakraborty1,2*   

Abstract 

Background Spatiotemporal heterogeneity originating from genomic and transcriptional variation was found 
to contribute to subtype switching in isocitrate dehydrogenase-1 wild-type glioblastoma (GBM) prior to and upon 
recurrence. Fluorescence-guided neurosurgical resection utilizing 5-aminolevulinic acid (5ALA) enables intraoperative 
visualization of infiltrative tumors outside the magnetic resonance imaging contrast-enhanced regions. The cell popu-
lation and functional status of tumor responsible for enhancing 5ALA-metabolism to fluorescence-active PpIX remain 
elusive. The close spatial proximity of 5ALA-metabolizing (5ALA +) cells to residual disease remaining post-surgery 
renders 5ALA + biology an early a priori proxy of GBM recurrence, which is poorly understood.

Methods We performed spatially resolved bulk RNA profiling (SPRP) analysis of unsorted Core, Rim, Invasive margin 
tissue, and FACS-isolated 5ALA + /5ALA − cells from the invasive margin across IDH-wt GBM patients (N = 10) coupled 
with histological, radiographic, and two-photon excitation fluorescence microscopic analyses. Deconvolution of SPRP 
followed by functional analyses was performed using CIBERSORTx and UCell enrichment algorithms, respectively. 
We further investigated the spatial architecture of 5ALA + enriched regions by analyzing spatial transcriptomics 
from an independent IDH-wt GBM cohort (N = 16). Lastly, we performed survival analysis using Cox Proportinal-Haz-
ards model on large GBM cohorts.

Results SPRP analysis integrated with single-cell and spatial transcriptomics uncovered that the GBM molecular sub-
type heterogeneity is likely to manifest regionally in a cell-type-specific manner. Infiltrative 5ALA + cell population(s) 
harboring transcriptionally concordant GBM and myeloid cells with mesenchymal subtype, -active wound response, 
and glycolytic metabolic signature, was shown to reside within the invasive margin spatially distinct from the tumor 
core. The spatial co-localization of the infiltrating MES GBM and myeloid cells within the 5ALA + region indicates 
PpIX fluorescence can effectively be utilized to resect the immune reactive zone beyond the tumor core. Finally, 
5ALA + gene signatures were associated with poor survival and recurrence in GBM, signifying that the transition 
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from primary to recurrent GBM is not discrete but rather a continuum whereby primary infiltrative 5ALA + remnant 
tumor cells more closely resemble the eventual recurrent GBM.

Conclusions Elucidating the unique molecular and cellular features of the 5ALA + population within tumor 
invasive margin opens up unique possibilities to develop more effective treatments to delay or block GBM recur-
rence, and warrants commencement of such treatments as early as possible post-surgical resection of the primary 
neoplasm.

Keywords Glioblastoma, 5ALA, Myeloid, Spatial transcriptomics, Mesenchymal subtype, Wound response, Glycolysis, 
Recurrence

Background
Isocitrate dehydrogenase-1 [IDH1]-wild-type glioblas-
toma (GBM) is a highly aggressive and heterogeneous 
tumor with poor survival outcomes. Despite radical 
multimodal treatment of aggressive surgery, radiation 
therapy, and chemotherapy with temozolomide, median 
survival has remained stagnant at 14.6 months from diag-
nosis [1]. A key contributing factor is the invasiveness 
of GBM deep into the neighboring brain parenchyma, 
which renders complete surgical resection impossible 
and efficacious brain penetration of chemotherapeutics a 
considerable challenge [2]. Furthermore, the ineffective-
ness of therapeutic agents may arise from the plasticity of 
GBM cells which manifests intra- and inter-tumor heter-
ogeneity; indeed, failed molecular targeted therapeutics 
have historically been focused on the GBM proliferative 
genotype predicated on tumor core alone [3]. Heteroge-
neity in GBM is well established and contributes to the 
differential expression of subclonal genes during the spa-
tiotemporal evolutionary lifespan of the disease [4].

In search of the potential origins of phenotypic diversity 
and plasticity of GBM cells, emerging evidence indicates 
the existence of a rare GBM stem cell (GSC) subpopula-
tion with self-renewing capacity [5, 6]. Major characteris-
tics of the GSC include hijacking the normal neural stem 
cell developmental programs to promote and maintain 
tumor growth, and the acquisition of mechanisms to resist 
chemotherapy [7]. A recent single-cell RNA sequencing 
(scRNA-seq) study revealed high inter- and intra-GSC 
heterogeneity characterized by a transcriptional gradi-
ent composed of distinct gene signatures of two cellular 
states—“neural development” and “inflammatory wound 
response”—whereby a transcriptional program resem-
bling a neural injury response in GSC may functionally 
contribute to GBM initiation [8]. To gain insight into the 
functional developmental and metabolic programs of 
GBM cells, Garofano et al. integrated scRNA-seq and bulk 
transcriptomics data by using a computational platform 
(single-cell biological pathway deconvolution (scBiPaD)) 
and showed that the distribution of GBM cells along neu-
rodevelopmental and metabolic axes could facilitate their 
classification as “proliferative/progenitor”, “neuronal”, 

“mitochondrial” (MTC), and “glycolytic/plurimetabolic” 
(GMP) subtypes [9].

Based on transcriptional attributes, GBM was originally 
classified into four subtypes: Classical (CL), Neural (NE), 
Proneural (PN), and Mesenchymal (MES) subtypes [10]. 
However, a more recent study based on GBM transcrip-
tomics, excluding non-malignant cell types, confirmed 
three subtypes of GBM—CL, PN, and MES [11], but 
where most patients exhibit intratumor plasticity of vary-
ing subtypes [4]. Moreover, longitudinal studies have dem-
onstrated the temporal plasticity of GBM subtypes upon 
recurrence [11, 12]. Recently, Minata et  al. showed that 
in response to the radiation-induced pro-inflammatory 
microenvironment, GBM cells at the tumor edge acquire 
an MES subtype defined by the expression of CD109 [13].

Tissue isolated from the invasive tumor margin region 
characterized by the MRI T2 high signal beyond the bulk 
tumor, where tumor blended into the brain in an inva-
sive fashion (non-enhancing on T1 with gadolinium) 
(herein referred to as “Invasive margin”), harbors dis-
tinct genomic and transcriptomic profiles in contrast 
to tissue removed from the tumor core defined by the 
T1 with gadolinium non-enhancing or heterogeneously 
enhancing central tumor (herein referred to as “Core”) 
and enhancing rim (corresponding to peripheral strongly 
gadolinium-enhanced areas on T1 MRI, herein referred 
to as “Rim”) regions [14]. As recurrence of GBM is initi-
ated within and beyond 2 cm of the Invasive margin post-
surgery [15], unique molecular features that characterize 
this region may offer new therapeutically amenable tar-
gets to impair tumor regrowth. Nevertheless, the highly 
heterogeneous tissue cellularity of the Invasive margin, 
including infiltrated immune and healthy neural cells, 
poses a substantial challenge to filter the tumor-specific 
genomic and transcriptomic profiles from an overwhelm-
ing background of non-neoplastic cells.

A viable solution emerged from the use of 5-aminole-
vulinic acid (5ALA) during GBM neurosurgery [16]. 
5ALA—a porphyrin—is metabolized to the fluorescent 
metabolite protoporphyrin IX (PpIX) by cells in which 
the heme biosynthetic pathway is activated, such as GBM 
cells, but not non-neoplastic cells [14]. The necrotic 
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tumor core does not emit fluorescence owing to its defi-
ciency of active heme metabolism; in contrast, Invasive 
margin fluoresces brightly and eventually fades with the 
decreasing number of tumor cells in the periphery [17]. 
We previously have shown that Invasive margin from 
freshly resected primary tissue harboring 5ALA + GBM 
cells can be purified from background non-neoplastic 
cells through fluorescence-activated cell sorting (FACS) 
[14]. We have demonstrated that transcriptomics analysis 
of spatially resolved tissues within this sampling frame-
work can identify non-canonical molecular factors asso-
ciated with GBM infiltration, such as SERPINE1 [14]. 
However, deep transcriptomic profiling in concert with 
spatially resolved transcriptomics is required to fully elu-
cidate the unique molecular signatures and spatial tran-
scriptional heterogeneity of 5ALA + cells relative to Core. 
Furthermore, the prognostic potential of 5ALA + cells 
remains unresolved, which can be achieved by explor-
ing the contribution of unique molecular features of 
5ALA + cells to survival outcomes and GBM recurrence.

To address these questions, we performed spa-
tially resolved bulk RNA profiling (SPRP) of unsorted 
Core, Rim, and Invasive margin tissue, in addition to 
FACS-isolated 5ALA + and 5ALA − cells across 10 
GBM patients. We interrogated the SPRP-derived tran-
scriptomic landscape to test the hypothesis that the 
5ALA + subpopulation(s) is defined by unique transcrip-
tional features. The deconvolution of SPRP followed 
by the integration of independent single-cell RNA-seq 
revealed unique cellular, metabolic, and transcriptional 
states. We further revealed the spatial architecture of the 
microenvironment harboring 5ALA + enriched regions 
by integrating spatially resolved transcriptomics (stRNA-
seq). Lastly, we explored the association of unique tran-
scriptional features of 5ALA + cells with GBM survival 
outcome and recurrence.

Methods
Patient enrollment and tissue sample collection
The GBM cohort used in this study was fully described 
in our previous study [14]. Briefly, Neuropathological and 
molecular analyses confirmed that all patients (N = 10) 
had de novo GBM with IDH1-wt and transcriptional 
regulator—ATRX-wt. Tissue samples were collected 
from the GBM patients at diagnosis (prior to Temozolo-
mide and radiotherapy). The details of the status of each 
patient with corresponding clinical and genomic features 
are reported in Additional file 2: Table S1. GBM patients 
were operated on by a single surgeon at a major regional 
Neuroscience center (Nottingham, UK) with specimens 
collected after informed consent was obtained from 
the patients and under ethics committee approval (11/
EM/0076). Tissue samples representing spatially distinct 

regions (Core, Rim, Invasive margin) of tumor samples 
from 10 GBM patients were retrieved (previously col-
lected as part of an earlier study [14]). Briefly, 5ALA 
(20  mg/kg dose) was administered orally to patients 
2–4  h prior to craniotomy and visualization of 5ALA-
induced PpIX fluorescence. Aided by image guidance, 
multi-region tissue samples were collected from non-
fluorescent or minimally fluorescent regions representing 
Core, while samples from the viable fluorescent region 
corresponded to Rim. The furthest region of 5ALA-
induced PpIX fluorescence beyond the bulk tumor, where 
the tumor penetrated adjacent healthy parenchyma, cor-
responded to the Invasive margin. Histological diagno-
sis and formal postoperative diagnosis (including IDH1 
mutations, ATRX mutation, and MGMT methylation 
status) were included (Additional file  2: Table  S1). Tis-
sue samples from the enrolled GBM patients (N = 10) 
were subjected to bulk transcriptome measurements fol-
lowed by subsequent Bioinformatics analyses. Out of 10 
patients, two patients were subjected to histological anal-
ysis of hematoxylin and eosin-stained images. One addi-
tional IDH-wt GBM patient who received 5ALA + before 
surgery at diagnosis (prior to Temozolomide and radio-
therapy) was enrolled and spatially distinct tissue samples 
were collected followed by radiographic and two-photon 
excitation fluorescence microscopic analyses.

Tissue sample processing and FACS analysis
Cells were dissociated from the invasive margin and sub-
jected to FACS based on 5ALA immunofluorescence as 
described by us previously [14]. Previously, we exten-
sively investigated the 5ALA-induced PpIX fluores-
cence method to establish a robust pipeline to identify 
5ALA + infiltrative GBM cells [14]. Briefly, during the 
processing of the primary cells from GBM patients, gating 
and separation of cells into 5ALA + and 5ALA − popula-
tions was performed using FACS via a two-stage process 
involving the enrichment of the 5ALA + population, fol-
lowed by purification of the enriched population. U251 
GBM cells incubated for 2  h with and without 5-ALA 
were used as controls to set gates for sorting. No sig-
nificant cell viability differences were observed between 
5ALA exposed and unexposed cells for any cell lines (all 
t-test p-values > 0.05). The cells were sorted using an exci-
tation spectrum at 405 nm and an emission spectrum at 
605–625 nm. The positive and negative sorted cells were 
subsequently centrifuged at 800 rpm (180 × g) for 5 min 
before being subjected to snap freezing.

Hematoxylin and eosin staining and two‑photon excitation 
fluorescence microscopy
Representative hematoxylin and eosin-stained image 
analysis of 5ALA + GBM infiltrative margin was 
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conducted and scanned using NanoZoomer, magnifica-
tion × 40, scale bar 100 μm. We analyzed the radiographic 
features of the Invasive margin (Inv) and investigated the 
distribution of 5ALA-induced PpIX fluorescence by the 
two-photon excitation fluorescence microscopy (TPEF) 
as described earlier [18]. Briefly, the segmentations of the 
GBM spatial regions such as enhancing tumor and non-
enhancing tumor on T1-weighted pre- and post-contrast, 
T2-weighted, and T2-FLAIR sequences were generated 
by using DeepMedic [19] followed by the application 
of TPEF imaging [18] to determine the distribution of 
5ALA-induced PpIX fluorescence.

Immunohistochemistry
Tissues from spatially distinct regions of GBM were col-
lected and immunohistochemistry was performed as 
described by us previously [2]. Samples were obtained 
from the Core (superficial and anterior medial), Rim 
(deep edge), and Invasive margin. Briefly, after the 
removal of paraffin wax, samples were treated with 
sodium citrate buffer (pH 6) for 40  min at 90  °C and 
washed with phosphate buffer solution (PBS) for 2 min. 
Then, 200 μL of peroxidase blocking solution was applied 
to cover the specimen for 5  min followed by washing 
with PBS. After the slides were dried, Ki-67 antibody 
(DAKO) and CD31 (DAKO) were applied at 1:50 dilu-
tion and incubated for 1 h at room temperature. Sections 
were washed with PBS before the addition of the second-
ary antibody (DAKO) and incubated at 37 °C for 30 min. 
Finally, substrate-chromogen solution (DAB) was applied 
to cover the specimen, incubated for 5  min, and rinsed 
gently with distilled water. An Olympus BX41 light 
microscope was used to visualize and capture the images 
of each GBM region.

Immunohistochemistry for NeuN was performed on 
four patient tissue microarrays (TMAs) containing three 
intratumor regions of nine patient tumors in triplicate. 
The histology of the tissues was confirmed as GBM by 
an experienced pathologist. Following deparaffiniza-
tion through a xylene and alcohol series, antigens were 
retrieved via boiling sections in Tris–EDTA (pH 9.0). 
Once cooled, sections were washed in PBS buffer and 
then blocked using 20% normal goat serum. The sec-
tions were then incubated for 1  h at room temperature 
with rabbit monoclonal neuronal marker NeuN (Abcam, 
ab177487) at a dilution of 1:3000. Following three washes 
with PBS, the sections were incubated with secondary 
antibody (Dako Chemate EnVision kit) for 1  h at room 
temperature. Sections were then incubated with DAB-
chromogen complex and incubated for 5  min. Coun-
terstaining was performed with hematoxylin before 
rehydrating the sections by passing through the previ-
ous alcohol to xylene series. Sections were scored and 

neuron numbers counted, and statistical analysis via Stu-
dent t test was performed using GraphPad Prism (9.0). 
Both Ki67 and NEUN staining was conducted on 4 tissue 
microarrays (TMAs) consisting of 9 patients per TMA 
with each region (Core, Rim, Invasive margin) in tripli-
cate (N = 36 patients).

RNA isolation and RNA‑seq library preparation
Dissociation of Core, Rim, and Invasive margin was per-
formed as previously described by us [20]. Total RNA 
extraction followed by quality control analysis was per-
formed as described by us [14]. Briefly, libraries were 
prepared using the NEBNext Poly(A) mRNA Magnetic 
Isolation Module (NEB: E7490), the NEBNext Ultra 
Directional Library Kit for Illumina (NEB: E7420), and 
the NEBNext Multiplex Oligos for Illumina (Index Prim-
ers Set 1) (NEB: E7335L). Samples with a total RNA 
concentration of > 10  ng/µl (0.5  µg total amount) were 
used for library preparation. To ensure library quality, 
adequate concentrations were obtained from each sam-
ple, followed by 14 cycles of amplification during the 
PCR-based library enrichment step. Finished libraries 
were quantified using the Qubit dsDNA HS kit (Invit-
rogen: Q32854). Library concentrations, as well as frag-
ment size distributions, were also analyzed by employing 
the Agilent Bioanalyzer High Sensitivity DNA Kit (Agi-
lent: 5067–4626). Libraries were normalized to 2 nM and 
pooled in equimolar amounts. The Kapa Library Quanti-
fication Kit (KAPA Biosystems: KK4824) was used for the 
precise quantification of the library pool. The library pool 
was denatured and diluted to 1.6  pM, spiked with 1% 
PhiX (1.8 pM), and sequenced on the Illumina NextSeq 
500, using the NextSeq 500/550 High Output v2 Kit (150 
cycles) (Illumina: FC-404–2005), to generate a minimum 
of 70 million pairs of 75-bp paired-end reads per sample. 
Raw RNA-seq data have been deposited at ArrayExpress 
with accession number E-MTAB-8743.

RNA‑seq data processing
We obtained RNA-seq raw data (FASTQ files) from spa-
tially distinct unsorted regions (Core, Rim, and Invasive 
margin) and 5ALA sorted cells from the Invasive mar-
gin across 10 GBM patients. RNA-seq raw data from 
spatially distinct regions were processed using Biocon-
ductor package QuasR (version 1.30.0) [21]. For pri-
mary alignment, we used the reference genome hg19 for 
human. The QuasR package employs the required tools 
to obtain expression tables from the raw RNA-seq reads 
and includes the aligners Rhisat2 [22] and SpliceMap 
[23]. We performed the alignment by using the following 
command:

“qAlign (‘sampleFile.txt’, ‘BSgenome.Hsapiens.UCSC.
hg19’, splicedAlignment = TRUE, aligner = ‘Rhisat2’)”.
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We then measured the count of each gene within any 
annotated exonic region using the function qCount. The 
count data obtained from the QuasR package was then 
converted to transcripts per million (TMP) followed by 
log transformation  (Log2) of TPM + 1 values. Initial qual-
ity control analysis was performed on the normalized 
RNA-seq counts including a comparison of differential 
expression across the samples. Genes with valid count 
values were additionally compared among the samples.

Differential gene expression analysis
To identify differentially expressed genes, we used the 
linear modeling-based approach limma R/Bioconductor 
package [24] on transcriptome dataset. Briefly, we com-
pared differential mRNA expression among unsorted tis-
sues (Core, Rim, and Invasive margin) and sorted cells 
(5ALA + and 5ALA −). We selected significantly regu-
lated genes with an adjusted p-value below 0.05 using 
the Benjamini–Hochberg correction method for multiple 
testing.

Hallmark gene set enrichment analysis (GSEA)
Enrichment analyses of the hallmark gene sets represent-
ing biological processes related to cancer were carried out 
by a GSEA algorithm [25]. Briefly, the hallmark gene sets 
were selected from MSigDB gene-set collections [26], and 
enrichment analysis was conducted among the differ-
ent regions (Core, Rim, and Invasive margin) and 5ALA 
sorted cells (5ALA + and 5ALA − cells) using GSEA. The 
ranked list of genes obtained from GSEA was further 
processed by Fast Gene Set Enrichment Analysis (fgsea) 
R-package [27]. Normalized enrichment score (NES), 
p-value, and adjusted p-values (calculated with a stand-
ard Benjamini-Hochberg—BH procedure) were retrieved 
for each of the hallmarks that were enriched in different 
regions and cell populations. The hallmarks with higher 
NES values and adjusted p-value < 0.05 were considered 
as enriched for a specific GBM region. For further analy-
sis of the enriched pathways, the leading edge genes rep-
resenting the subset of genes contributing significantly to 
the enrichment signal of a given gene set [25] in a spe-
cific GBM region, were identified and subjected to hier-
archical clustering analysis. We employed a combined R 
Wrapper function ComplexHeatmap::pheatmap() that 
uses two R-packages, “pheatmap” and “ComplexHeat-
map”, where the column and row clustering were per-
formed by using the Euclidean distance method.

Neural cell‑type gene signature enrichment
To characterize the different GBM regions, transcrip-
tome-based neural cell-type signatures described by 
Cahoy et  al. were retrieved [28] (Additional file  2: 
Table  S1). In brief, Cahoy et  al. employed Affymetrix 

GeneChip Arrays to identify gene signatures of different 
neural cell types including neurons, oligodendrocytes, 
astrocytes, and cultured astroglial cells [28]. NES and 
adjusted p-values were calculated using GSEA and fgsea 
algorithms as described above.

GBM subtype gene signature enrichment
Gene signatures of each GBM molecular subtype were 
obtained from Verhaak et al. describing an efficient gene 
expression-based molecular classification of GBM sam-
ples into four molecular subtypes: PN, NE, CL, and MES 
[10] (Additional file 2: Table S1). The signature gene set 
for each of the subtypes was retrieved from MSigDB. 
GSEA for the molecular subtypes was performed on the 
spatially distinct GBM regions. NES and adjusted p-val-
ues were calculated using the fgsea package as described 
previously.

Developmental, inflammatory wound response, 
and metabolic gene signature enrichment
Signature genes for developmental and inflamma-
tory wound healing/ injury response phenotypes 
were retrieved from Richards et  al.  (Additional file  2: 
Table  S1). In addition, two gene sets representing two 
divergent metabolic phenotypes—mitochondrial (MTC), 
glycolytic/plurimetabolic (GPM)—were retrieved from 
Garofano et al. [9] (Additional file 2: Table S1). GSEA was 
performed to identify the enrichment of these diverse 
gene sets in spatially distinct GBM regions.

Stemness gene signature enrichment
Diverse signature gene sets representing stem cells [29], 
cancer stemness [30], embryonic stem cells (ES1 and 
ES2) [31], human embryonic stem cells (hESC) [32], 
induced pluripotent stem cells (iPSC) [33], Nonog/Sox2 
induced stem cell gene set [31], Myc induced ES gene 
set [34], and human epithelial adult stem cells [35] were 
retrieved (Additional file  2: Table  S1). GSEA was per-
formed to identify the enrichment of these diverse gene 
sets in spatially distinct GBM regions as described earlier.

Deconvolution of GBM bulk RNA‑seq data 
through CIBERSORTx
CIBERSORTx algorithm [36] was utilized to process spa-
tially resolved bulk RNA-seq data from GBM 10 patients 
encompassing a bulk admixture of different cell types. 
First, signature matrix files representing the genes defin-
ing the expression profile for each cell type of interest 
were generated using previously published single-cell 
RNA-seq data. TPM-normalized scRNA-seq datasets 
were used for generating corresponding signature matri-
ces. For this purpose, we used the scRNA-seq data rep-
resenting six transcriptionally distinct GBM malignant 
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cell types (AC-like, OPC-like, NPC1-like, NPC2-like, 
MES1-like, and MES2-like) in 28 IDH-wt GBM patients 
from Neftel et al. [37]. Secondly, scRNA-seq data, gener-
ated from 69,000 GBM stem cells (GSCs) cultured from 
the tumors of 26 patients, representing two distinct cel-
lular transcriptomic states (Developmental and Inflam-
matory wound response) as reported by Richards et al. , 
was used to generate the signature matrix. For Richards 
et al., the GSCs were divided into three categories (High, 
Intermediate, and Low) based on the area under the 
curve (AUC) score [38] for Developmental (DEV) and 
Inflammatory wound response transcriptomic states. The 
corresponding signature matrices were then used to esti-
mate the proportions of distinct cell types and transcrip-
tional programs in bulk spatially resolved bulk RNA-seq 
data. Next, we used the “High-Resolution” expression 
analysis to impute sample-level gene expression varia-
tion in Mesenchymal, Inflammatory wound response, 
and 5ALA + signature genes of different cell types and 
transcriptional states across bulk RNA-seq profiles of 10 
GBM patients.

Single‑cell wise gene signature scoring based 
on scRNA‑seq data
UCell R-package [39] was utilized for determining the 
gene signature enrichment scores in the single-cell data-
sets. Briefly, based on the Mann–Whitney U statistic, 
UCell R-package allows to estimate single-cell wise sig-
nature scores called UCell scores for a given gene set by 
using the count matrix scRNA-seq dataset. In addition, 
to Neftel [37] and Richards  et al. datasets, scRNA data-
set from developing normal fetal brain as reported by 
Couturier et al. [40] was used. Briefly, the cells were iso-
lated from the telencephalon of human fetuses (N = 4) of 
13–21 gestational weeks. Microglia (CD45-positive) and 
endothelial cells (CD31-positive) were depleted by FACS 
sorting to enrich the CD133-positive cells (N = 10,093 
cells) which were subjected to scRNA-seq. For scRNA-
seq dataset from Neftel et al., gene signatures represent-
ing six distinct cell types (AC-like, OPC-like, NPC1-like, 
NPC2-like, MES1-like, and MES2-like) were used to esti-
mate the UCell scores for each cell type. In addition, Nef-
tel scRNA-seq data was re-analyzed to estimate the UCell 
scores by using four gene signatures (NEU, PPR, GPM, 
and MTC) as reported by Garfano et al. [9]. In the case of 
Richards et al. scRNA-seq data, gene signature from two 
transcriptional programs (Developmental and Inflamma-
tory wound response). scRNA-seq dataset from Coutu-
rier et al. was employed to calculate the UCell scores for 
three gene signatures (DS1: Mixed population including 
truncated radial glial cells and cancer mesenchymal cells, 
DS2: Oligo-lineage cells/OLCs, and DS3: Glial progenitor 
cells/GPCs).

Non‑linear dimensional reduction by using tSNE followed 
by Louvain clustering
Seurat R-package [41] was used for the non-linear 
dimensional reduction of the scRNA-seq datasets (Nef-
tel, Richards, and Couturier et  al.). Briefly, we used the 
scRNA-seq count matrix to create a Seurat object fol-
lowed up by the execution of the standard pre-processing 
workflow for scRNA-seq data in Seurat. These represent 
the selection and filtration of cells based on QC met-
rics, data normalization, and scaling, and the detec-
tion of highly variable features. After QC analyses, we 
normalized the data by employing a global-scaling nor-
malization method “LogNormalize” that normalizes the 
feature expression measurements for each cell by the 
total expression. Then we utilized tSNE followed by the 
Louvain clustering algorithm to visualize and explore 
these datasets.

Estimation of mRNA expression‑based stemness index 
(mRNAsi)
Estimation of mRNA expression-based stemness index 
(mRNAsi) was performed by the method described by 
Malta et al. [42]. Briefly, to calculate mRNAsi, a machine 
learning approach was used to develop a predictive 
model by employing one-class logistic regression (OCLR) 
as described previously by Sokolov et al. [43]. The OCLR 
was based on the hESC and iPSC from the Progenitor 
Cell Biology Consortium (PCBC) dataset [44, 45]. The 
mRNAsi score ranges between 0 and 1, where 0 indicates 
less stemness with a more differentiated tissue state and 
1 represents more stemness with a less differentiated 
state. To generate a stemness score based on the spa-
tial RNA-seq data from 10 patients, and in comparison 
to The Cancer Genome Atlas (TCGA) GBM samples, a 
gene expression matrix (samples in columns and genes in 
rows) was prepared and employed on R-package “TCGA-
biolinks” using the function TCGAanalyze_Stemness().

Construction of the transcriptional network
Firstly, transcription factors in the leading gene sets 
representing inflammatory pathway, tumor necrosis 
factor-α (TNF-α) signaling via nuclear factor-кB (NFкB) 
pathway, MES subtype, inflammatory wound response, 
MTC, and GPM subtypes were manually curated using 
the ENCODE database [46]. We used the mutual infor-
mation-based algorithm ARACNE [47] to construct the 
regulatory network between transcription factors and 
target genes based on mRNA expression values of the 
leading edge genes. The previously described bootstrap 
algorithm [48] was used to assess statistical confidence. 
We inferred 1000 networks based on bootstrap data-
sets, setting the most stringent value for Data Process-
ing Inequality (DPI = 0) tolerance. Finally, we estimated 
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the significance of the edges by testing their probabil-
ity against a null distribution obtained by random per-
mutation of predicted edges. The consensus network 
conserves edges with a p-value <  10−4. Based on the 
ARACNE output, we retrieved only the mutual informa-
tion (MI) values for a given transcription factor and tar-
get genes for which the p-value was significant (< 0.05), 
and constructed and visualized the transcription factor—
target gene network using Cytoscape [49].

Exon–intron split analysis (EISA)
Exon–intron split analysis (EISA) was employed as 
described by Gaidatzis et  al. [50] to investigate the 
changes in pre-mRNA (introns) and mature-mRNA 
(exons) counts across different regions of GBM, which 
leads to the quantification of transcriptional and post-
transcriptional control of gene expression. R-package 
“eisaR” was used for the EISA. Briefly, after mapping the 
transcripts to a unique position in the genome, counts 
of annotated exonic reads representing mature mRNAs 
were quantified, in addition, to read counts that did 
not match any annotated exons (intronic). Normaliza-
tion was performed for exons and introns separately by 
dividing each sample by the total number of reads and 
multiplying by the average library size. Based on these 
expression levels, only the genes with reasonable counts 
(average  log2 expression level of at least 5) were selected 
for downstream analysis. Genes with overlapping reads 
were discarded due to difficulty assigning intronic reads 
to the respective genes. A differential exonic and intronic 
change among different regions was been performed 
with EdgeR, as described by Gaidatzis et  al. where a 
p-value < 0.05 was considered significant. GSEA of Hall-
mark, 5ALA + cell-derived signatures and transcription 
factors were conducted as described before, with genes 
ranked based on the  log2 difference of exon or intron 
normalized intensity between two regions used as input.

qPCR validation
For qPCR validation, the expression profile of the CD44 
gene across spatially distinct GBM regions was used. 
Briefly, the gene expression profiling was performed 
using Human Stem Cell PCR Array (PAHS-405Z; 
RT2ProfilerPCR; Qiagen) to assess gene expression levels 
[2].

Spatial transcriptomics (stRNA‑seq) analyses
Tissue samples were collected from the pathologically 
diagnosed IDH-wt GBM patients (N = 16) after 5ALA-
guided surgery, and subsequent spatial transcriptomics 
experiments were performed as part of a previous study 
described by Ravi et al. [51]. Briefly, the spatial transcrip-
tomics measurements were conducted by utilizing the 

10X Spatial transcriptomics kit (https:// spati altra nscri 
ptomi cs. com/). The downstream analysis of the spatial 
transcriptomics data was performed as described by Hei-
land et al. [52]. Briefly, the application of the st-pipeline 
(github.com/SpatialTranscriptomics-Research/st_pipe-
line) resulted in a gene count matrix and a spatial infor-
mation file containing the x and y position and the H&E 
image. Seurat v3.0 package was used to normalize gene 
expression values. After the removal of the batch effects, 
data was scaled by a regression model. For spatial expres-
sion plots, we used SPATA 2.0 package [53]. Briefly, 
the scaled gene expression values to plot single genes 
or 5ALA + specific gene signature scores, using the 0.5 
quantiles of a probability distribution fitting. The x-axis 
and y-axis coordinates are given by the input file based 
on the localization at the H&E staining. We computed a 
matrix based on the maximum and minimum extension 
of the spots used (32 × 33) containing the gene expression 
or combined scores. Spots without tissue covering were 
set to zero. The data are illustrated as surface plots by 
SPATA 2.0 package [53].

To minimize noise and technical artifacts, autoen-
coder network [54] based denoising approach was imple-
mented. To infer copy number variation (CNV), we took 
advantage of the function InferCNV as implemented in 
SPATA 2.0. InferCNV was used to identify gains or loss 
of chromosomes. Surface plotting allowing the visu-
alization of the gene expression of the barcode-spot’s 
with a spatial dimension was used where the x-esthetic 
and y-esthetic of the plot are mapped onto the respec-
tive coordinate variable. Distinct categorical features 
(5ALA + enrichment scores) signify a group of barcoded 
spots into experimental groups (5ALA-INV and 5ALA-
CT). Differential expression analysis (DEA) was per-
formed among the automatically generated or manually 
segmented experimental groups followed by the gene set 
enrichment analysis by implementing the hypeR package 
which uses hypergeometric testing for enriched gene sets 
in SPATA 2.0.

Weighted spatial correlation
We performed spatially weighed correlation analysis 
of the preexisting established cluster signatures (from 
Neftel, Richards, and Garofano et  al.) along with the 
5ALA + gene signature individually for each sample by 
following the method described by Ravi et al. [51]. Briefly, 
a semi-parametric mixed geographic weighted regression 
model as implemented in GWmodel [55] was utilized. 
A non-adaptive approach under the assumption that 
the distances within spots are constant was used. The 
weighted matrix was then calculated by either a Gaussian 
or bi-square kernel distribution.

https://spatialtranscriptomics.com/
https://spatialtranscriptomics.com/
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Deconvolution of the bulk transcriptomics data 
from the TCGA‑GBM cohort
To deconvolute the transcriptome data, bulk RNA-
seq data from IDH1-wt primary (N = 154) and recur-
rent (N = 13) GBM tumors was retrieved from TCGA 
(https:// tcga- data. nci. nih. gov/ tcga/). For deconvolution, 
we used the scRNA-seq data representing six transcrip-
tionally distinct GBM cellular states from Netfel et  al. 
(AC-like, OPC-like, NPC1-like, NPC2-like, MES1-like, 
and MES2-like) [37], two distinct transcriptomic states 
from Richards et  al. (Developmental and Inflammatory 
wound response) , and two metabolic states and two cel-
lular states from Garofano et al. (GPM, MTC, NEU, and 
PPR) [9], to generate the signature matrix. CIBERSORTx 
algorithm [36] was utilized to process TCGA bulk RNA-
seq data encompassing a bulk admixture of different cell 
types.

Recurrent vs. primary GBM survival analysis
To compare the gene signature enrichments, in addi-
tion to TCGA IDH-wt GBM cohort, RNA-seq data was 
retrieved from Chinese Glioma Genome Atlas (CCGA) 
(N = 190; Primary = 109 and Recurrent = 81) (http:// www. 
cgga. org. cn/) [56] and The Glioma Longitudinal Analy-
SiS (GLASS) (N = 60; primary = 30 and recurrent = 30) 
[57] cohorts. Gene signatures comprised representing 
TNF-α signaling, inflammatory response, MES subtype, 
inflammatory wound response, MTC subtype, and GPM 
subtype that were upregulated in 5ALA + cells, were used 
for GSEA as described earlier. In order to investigate 
the correlation between the unique 5ALA + gene signa-
tures and the survival of GBM patients, a single-sample 
GSEA [58] was performed to identify the enrichment of 
the 5ALA + associated gene signatures for each primary 

and recurrent tumor sample from TCGA, CCGA, and 
GLASS cohorts. NES for each of the gene sets were accu-
mulated to calculate the 5ALA + gene signature score for 
each primary and recurrent GBM patient. The Spear-
man correlation coefficient was calculated between the 
5ALA + gene signature scores of GBM patients and sur-
vival data for primary and recurrent GBM separately.

We then performed Cox regression on the matched-
recurrent (N = 30) and -primary (N = 30) samples from 
GLASS cohort. Apart from 5ALA + -specific gene sig-
natures, we included confounding factors such as the 
Age and Gender of the patients. Firstly, a univariate Cox 
regression analysis including 5ALA + gene signature, Inf. 
wound response, MES, and Inf. Response was performed 
followed by multivariate regression analysis by using the 
survminer package.

Results
Differential regulation of cancer‑specific and metabolic 
signatures in spatially distinct GBM regions
SPRP-derived RNA-seq data from tissue samples rep-
resenting spatially distinct regions (Core, Rim, Invasive 
margin) across 10 GBM patients undergoing 5ALA-
guided surgery were analyzed (Fig.  1A). Histological 
analysis of hematoxylin and eosin-stained images from 
representative patients (N = 2) revealed the cellular 
and anatomical features of the 5ALA + Invasive margin 
(Fig.  1B). For patient 28 (Fig.  1B, top), the dashed line 
boundary demarcates the boundary between the Core 
and Inv margin. Individual tumor cells are observed 
within the cerebral neocortex (black circles), with neu-
rons normally distributed (normally formed cerebral 
neocortex) (green circles). Microvascular proliferation 
(blue arrow) beyond the margin of the cellular tumor, 

(See figure on next page.)
Fig. 1 Differential gene expression analysis in spatially distinct GBM regions. Schematic figure delineating the steps for tissue collection 
from distinct GBM regions (Core, Rim, and Invasive margin) followed by 5ALA-based FACS isolation of Invasive margin cells into 5ALA + and 
5ALA − subpopulations (A). The spatially resolved RNA profile (SPRP) from each unsorted region and sorted cells were interrogated by gene set 
enrichment analysis (GSEA), Deconvolution algorithm, single-cell gene signature scoring (SC sig-scoring), Exon–intron split analysis (EISA), network 
inference, and complemented by spatially resolved transcriptomics (stRNA-seq) (A). Representative hematoxylin and eosin-stained images 
of 5ALA + GBM infiltrative margin, scanned using NanoZoomer, magnification × 40, scale bar 200 μm for patient 28 and 100 μm for patient 37. 
Top (patient 28): Dashed line boundary demarcates cellular tumor-filling white matter. Individual tumor cells are observed within the cerebral 
neocortex (black circles), with neurons normally distributed (normally formed cerebral neocortex) (green circles). Microvascular proliferation (dark 
blue arrow) beyond the margin of the cellular tumor. Representative normal blood vessel (red arrow). Bottom (patient 37): Individual tumor cells 
are observed within the cerebral neocortex (black circles), with a normal distribution of white matter blood vessels (red circles). Deep white matter 
diffusely infiltrated by tumor cells at low density (green arrows). Other cells observed within this deep white matter region are oligodendrocytes 
with macrophages and astrocytes (B). The Inv margin representing the non-enhancing on T1 with gadolinium region located outside the MRI 
contrast region (C). The two-photon excitation fluorescence image demonstrates a distribution of PpIX across radiologically defined spatially 
distinct tumor core (Core) (D, Upper panel) and Invasive margin (Inv) (D, Lower panel) regions. Volcano plot representing differential gene 
expression between 5ALA + and Tumor Core (E), Rim (F), Invasive margin (G), and 5ALA − cells (H). Heatmap showing the normalized enrichment 
scores (NES) representing significantly enriched hallmarks (padj < 0.05) in a specific GBM region (I). GSEA was performed between a particular region 
and all other regions. The color represents the value of NES where yellow and black indicate the highest (NES = 3.5) and lowest (NES = 0) NES values, 
respectively. Only significant NES values are shown (adj. p-values < 0.05). Ki67 immunohistochemistry (IHC) of tumor core—superficial medial (J), 
anterior medial (K), tumor rim (L), and Invasive margin (M) to estimate the fraction of proliferating cells in spatially distinct regions of GBM. The scale 
bar indicates 25 µm. CD31-IHC represents the tumor vascularity identifying the number of vascular structures in the Core (N), Rim (O), and Invasive 
margin (P)

https://tcga-data.nci.nih.gov/tcga/
http://www.cgga.org.cn/
http://www.cgga.org.cn/
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reflects trophic factors that are released by the tumor 
and permeate beyond the tumor margin. For patient 37 
(Fig. 1B, bottom), individual tumor cells within the Inva-
sive margin were observed within the cerebral neocortex 
(black circles), with a normal distribution of white matter 
blood vessels (red circles). Deep white matter diffusely 
infiltrated by tumor cells at low density (green arrows). In 
addition, oligodendrocytes, macrophages, and astrocytes 
were observed within this deep white matter region.

Moreover, results obtained by radiographic and two-
photon excitation fluorescence microscopic analyses 
showed the spatially distinct nature of the Core and Inva-
sive margin (Inv) from one additional GBM patient who 
received 5ALA + before surgery. The Inv margin repre-
sents the non-enhancing on T1 with gadolinium region 
located outside the MRI contrast region (Fig.  1C). The 
5ALA-induced PpIX fluorescence was predominant in 
the Core (Fig. 1D, upper panel) compared to the Inv mar-
gin (Fig. 1D, lower panel). In the Inv margin, the intermit-
tent PpIX fluorescence is visible within the background 
of normal brain cells (Fig. 1D, lower panel). These results 
demonstrated the spatially distinct nature of Inv from the 
previously reported enhancing region (ER) and enhanced 
margin (EM) [59].

Neuropathological and molecular analyses confirmed 
that all patients had GBM with IDH1-wt and transcrip-
tional regulator—ATRX-wt (Additional file  2: Table  S1). 
All samples were de novo IDH-wt GBM tumors, collected 
at diagnosis (prior to Temozolomide and radiotherapy). 
The details of the status of each patient with correspond-
ing clinical and genomic features are reported in Addi-
tional file  2: Table  S1. Cells from the Invasive margin 
were dissociated and subjected to FACS isolation based 
on 5ALA-induced PpIX fluorescence. Due to the distinct 
nature of the unsorted tissue and sorted cells (i.e., FACS 
process in the latter), we performed quality control anal-
ysis to compare the transcriptomes between unsorted 
tissues—Core, Rim, and Invasive margin—and sorted 
cells (5ALA + and 5ALA −). The  Log2 normalized RNA-
seq counts (TPM + 1) were uniform where inter-region 
variability did not supersede the intra-region patient 
variability in terms of gene expression in the unsorted 
regions (Additional file 1: Fig. S1A). However, variations 
were observed between the 5ALA-sorted cells and the 
unsorted tumor regions (Additional file 1: Fig. S1A). PCA 
results revealed consistent results and showed more tran-
scriptome variability in the 5ALA-sorted cell populations 
(Additional file 1: Fig. S1B). The underlying cause of these 
differences could be attributable to both biological and 
technical factors. The percentage of 5ALA + cells of the 
total cell population in the Invasive margin samples gated 
based on 5ALA-induced PpIX fluorescence showed vari-
ation ranging from 0.90 to 2.90% with an average of 1.59% 

(Additional file 2: Table S1). The three patients (patients 
30, 31, and 34) with lower 5ALA + transcriptome lev-
els had a slightly lower average 5ALA + cell percentage 
(1.50%) compared to all other samples (1.63%). The lower 
read counts could possibly be due to the lower number of 
5ALA + cells in these samples.

To evaluate gene expression comparability further, we 
calculated the Pearson correlation coefficients on the 
normalized mRNA expression data without housekeep-
ing genes among the different regions and 5ALA sorted 
cells (Additional file  1: Fig. S1C). Correlation values 
across different tumor regions and cells were uniform, 
ranging from 0.88 to 1.00. When the expression levels of 
shared genes were compared between unsorted regions 
and sorted cells, a reasonable correlation was observed 
(Core vs. 5ALA − : 0.92, Rim vs. 5ALA − : 0.93, Inva-
sive margin vs. 5ALA − : 0.91, Core vs. 5ALA + : 0.88, 
Rim vs. 5ALA + : 0.89, and Invasive margin vs. 5ALA + : 
0.88) (Additional file  1: Fig. S1C). A higher correlation 
was also observed between 5ALA − and 5ALA + cells 
(R = 0.95). All p-values for the correlation coefficient 
are highly significant (p-value < 2.0 ×  10−16). Overall, 
the highly correlated transcriptome of the unsorted tis-
sue and sorted cells were indicative of their comparabil-
ity in terms of reliable identification of gene signatures 
from the patient-specific background variability. We next 
aimed to identify molecular features of Invasive mar-
gin harboring the 5ALA + cells relative to Core, using 
comprehensive computational analyses (Fig.  1A). First, 
we employed DEA (differential expression analysis, 
Limma) to explore differentially regulated genes between 
5ALA + cells and Core (Fig.  1E), Rim (Fig.  1F), Invasive 
margin (Fig. 1G), and 5ALA − cells (Fig. 1H), followed by 
pathway enrichment analysis where the upregulation of 
TNF-α signaling via NFкB and Inflammatory response 
pathways in 5ALA + cells was observed (Additional 
file 1: Fig. S2A and Additional file 2: Table S1). To deter-
mine cancer-related and metabolic pathways, a paired 
designed gene set enrichment analysis (GSEA) between 
a particular region/sorted cell and all other regions/
sorted cell(s) was performed (Fig.  1I and Additional 
file  3: Table  S2) where only the significant NES values 
(adj. p-values < 0.05) were considered as enriched. The 
Core exhibited the highest number of enriched pathways 
including epithelial-mesenchymal transition (EMT) and 
hypoxia (Fig. 1I and Additional file 3: Table S2). Akin to 
the Core, EMT, and hypoxia were highly enriched in the 
Rim (Fig.  1I and Additional file  3: Table  S2). The Core 
was also enriched with pro-proliferative pathways such 
as mitotic-spindle, G2M checkpoint, mTOCR1 signal-
ing, and E2F targets, whereas only mitotic-spindle was 
enriched in Inv (Fig. 1I). To investigate the distribution of 
proliferative cells across spatially distinct GBM regions, 
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Ki-67 immunohistochemistry (IHC) was performed on 
tissue sections from GBM patients (N = 36), revealing 
a high number of proliferative cells in the Core superfi-
cial medial region (Fig.  1J) followed by anterior medial 
(Fig.  1K) and Rim regions (Fig.  1L). In contrast to the 
Core, the Invasive margin exhibited a lower number 
of proliferative cells (Fig.  1M and Additional file  1: Fig. 
S2B). The higher number of enriched pro-proliferative 
pathways in the Core was consistent with the increased 
number of proliferative cells observed in this region. The 
enrichment of the glycolytic pathway (Fig. 1I and Addi-
tional file  1: Fig. S2C, S2D) in addition to the absence 
of oxidative phosphorylation in the Core and Rim, was 
likely induced by the hypoxic conditions in these regions 
(Fig. 1I and Additional file 1: Fig. S2E and S2F). In con-
trast, hypoxia was neither enriched in the unsorted Inva-
sive margin nor in 5ALA + and 5ALA-sorted cells. 
Enrichment of oxidative phosphorylation in Invasive 
margin and 5ALA − cells further corroborated the evi-
dence suggesting the GBM infiltrative margin represents 
a normoxic microenvironment (Fig. 1I). CD31 IHC also 
reinforced this finding by showing that the Core and Rim 
were highly vascularized (Fig.  1N, O), whereas low vas-
cularization was observed in Invasive margin (Fig.  1P). 
Interestingly, consistent with previous DEA results, 
TNF-α signaling via NFкB and Inflammatory response 
pathways were highly enriched in 5ALA + cells as well as 
in the Core and Rim (Fig. 1I, Additional file 1: Fig. S2A, 
S2G, and S2H and Additional file 3: Table S2).

To further investigate the gene expression in the 
enriched pathways, a hierarchical clustering algo-
rithm was applied to the significantly regulated (Limma 
padj < 0.05) leading edge genes associated with glycolysis 
(Additional file 1: Fig. S2I), hypoxia (Additional file 1: Fig. 
S2J), and inflammatory response/TNF-α signaling via 
NFкB pathways (Additional file 1: Fig. S2K). Inter-tumor 
Core and Rim regions showed significantly higher relative 
expression of hypoxia response genes, including LDHA, 
VEGFA, LOX, PLAUR , SERPINE1, and IGFBP3 (Addi-
tional file  1: Fig. S2J and S2L). Similarly, genes associ-
ated with glycolysis were significantly upregulated in the 
Core and Rim relative to the Invasive margin, 5ALA + , 
and 5ALA − cells (Additional file  1: Fig. S2I and S2M). 
In contrast, TNF-α signaling via NFкB, and Inflamma-
tory response genes including NFKB1, KLF6, IL6, CCL20, 
CCL2, CXCL3, SOCS3, and CXCL2, exhibited signifi-
cantly higher expression in 5ALA + and 5ALA − cells rel-
ative to all unsorted tumor regions (Additional file 1: Fig. 
S2K and Additional file 1: Fig. S2N).

Next, to identify the neural cell type that defines 
5ALA + cells, we performed an enrichment analysis of 
gene signatures representing four neural cell types—
oligodendrocytes, neurons, astrocytes, and cultured 

astroglia (Additional file 4: Table S3). Core and Rim were 
enriched with all four cell types representing a hetero-
geneous cell population, whereas Invasive margin and 
5ALA − cells were mostly enriched with the neuronal 
cell type (Additional file  1: Fig. S2O). Intriguingly, no 
enriched neural cell type was identified for 5ALA + cells, 
indicating a likely evolution to a unique or mosaic cell-
type signature that cannot be defined using canonical 
classifiers.

In summary, GSEA followed by hierarchical cluster-
ing revealed differential regulation of cancer-related and 
metabolic pathways in Invasive margin relative to Core, 
suggesting adaptation to different microenvironmental 
selection pressures.

5ALA + GBM population is enriched with a mesenchymal 
subtype, inflammatory wound response transcriptional 
program, and glycolytic metabolic state
To test the hypothesis that the 5ALA + cell population 
resembles a particular GBM subtype, we utilized enrich-
ment analysis to identify GBM molecular subtypes 
(classical (CL), neural (NE), proneural (PN), and mesen-
chymal (MES) previously described by Verhaak et al. [10] 
(Additional file 5: Table S4). Core and Rim regions were 
mostly enriched with CL and PN subtypes compared to 
other regions (Fig.  2A) and in particular 5ALA + cells 
(Additional file 1: Fig. S3A and S3B), whereas the recently 
revised non-neoplastic NE subtype was highly enriched 
in the Invasive margin region (Fig.  2A and Additional 
file  1: Fig. S3C). 5ALA − cells were mostly associated 
with the NE and PN subtypes (Fig.  2A and Additional 
file  1: Fig. S3D); in contrast, 5ALA + cells were highly 
and uniquely enriched with the MES subtype in com-
parison to all other regions (Fig.  2A) and especially to 
5ALA − cells (Fig. 2B).

To validate the cellular composition, IHC was per-
formed on tissues from GBM patients (N = 36) to 
determine the expression of NeuN, representing the pro-
portion of Invasive margin neuronal cells relative to Core 
and Rim. Core followed by Rim exhibited the lowest pro-
portion of neuronal cells, compared to Invasive margin 
(Fig. 2C, D, and Additional file 1: Fig. S3E). The highest 
proportion of neurons was observed in Invasive mar-
gin, further corroborating spatial molecular signatures 
(Fig. 2E and Additional file 1: Fig. S3E).

Hierarchical clustering analysis of the significantly 
regulated (Limma padj < 0.05) leading edge genes showed 
that CL- and PN-specific genes were highly expressed in 
Core, Rim, and Invasive margin, relative to 5ALA + cells 
(Additional file 1: Fig. S3F, S3G, S3H, and S3J), whereas 
Invasive margin uniquely showed the highest expression 
of NE-specific genes (Fig.  2F, and Additional file  1: Fig. 
S3I). MES-specific genes exhibited a relatively higher 
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expression in 5ALA + cells (Fig. 2G and Additional file 1: 
Fig. S3K). However, three patients showed relatively 
lower expression of MES genes while seven patients 
exhibited relatively higher MES expression. This result 
indicates that patient-specific MES gene expression vari-
ability exists in the 5ALA + population.

These results suggest that GBM molecular subtypes 
do not manifest uniformly throughout spatially distinct 
regions, but rather vary in a region-specific manner. The 
5ALA + population localized within the invasive margin 
outside the MRI contrast-enhanced Core regions was 
enriched with the MES subtype.

Apart from molecular subtypes, Garofano et al. recently 
introduced two metabolism-associated GBM subtypes—
mitochondrial (MTC) and glycolytic/plurimetabolic 
(GPM) [9]. Furthermore, it has been proposed that GBM 
transformation is initiated by a neural wound response 
transcriptional program activated in GBM stem cells 
(GSCs) . We, therefore, asked whether the transcriptional 
programs of GSCs and metabolic subtype(s) are active 
in 5ALA + cells, by processing gene signatures charac-
terizing two GSC-derived transcriptional programs—
Developmental and Inflammatory wound response 
(herein referred to as “Inf. wound response”) (Richards 
et al.)  and two metabolic states—MTC and GPM (Garo-
fano et  al.) [9] by performing GSEA (Additional file  6: 
Table  S5). The GPM genes (Additional file  2: Table  S1) 
showed a minimal overlap (N = 2) with the classical gly-
colysis hallmark category (Additional file  3: Table  S2). 
The GPM metabolic state has been defined by a diverse 
array of metabolic activities including glycolysis/hypoxia, 
lipids, amino acids, steroids, and iron/sulfur metabolism 
excluding mitochondrial/oxidative phosphorylation [9]. 
GSEA revealed differential enrichment of these tran-
scriptional and metabolic states where Developmental 

and GPM states were enriched in Core and Rim, with 
only the Developmental program enriched in Invasive 
margin in comparison to all other regions (Fig.  2H). 
The MTC state was enriched in 5ALA − cells; however, 
unlike 5ALA − cells, GPM was enriched in 5ALA + cells 
compared to all other regions, indicating disparate meta-
bolic states of 5ALA + and 5ALA − cells despite a shared 
infiltrative margin microenvironment and shared experi-
mental processing via FACS (Fig. 2H). Interestingly, Inf. 
wound response was uniquely enriched in 5ALA + cells 
(Fig. 2H). For 5ALA + cells, the highest enrichment score 
was observed for GPM (Fig. 2I), followed by Inf. wound 
response (Fig. 2J) compared to 5ALA − cells and Inv mar-
gin, respectively.

Clustering analysis based on the significantly regulated 
(Limma padj < 0.05) leading edge genes (Additional file 6: 
Table  S5) revealed a higher expression of GPM-associ-
ated genes in the 5ALA + cells for 7/10 patients (Fig. 2K 
and Additional file 1: Fig. S4A). Most of the genes asso-
ciated with Inf. wound response were highly upregulated 
in the 5ALA + cells relative to other regions (5ALA + vs. 
Core: p-value = 0.0085 and 5ALA + vs. Invasive margin: 
p-value = 0.0006) (Fig. 2L, and Additional file 1: Fig. S4B).

Next, we performed deconvolution of the bulk SPRP 
data based on the Inf. wound response and Devel-
opmental gene signatures from Richards et  al. [18] 
using CIBERSORTx. The single-cell wise area under 
the curve scores (AUCscores) for Developmental and 
Inf. wound response transcriptional programs were 
retrieved from Richards et  al. [18] and categorized 
into three expression categories (High, Intermediate, 
and Low). Single cells were annotated into expres-
sion categories based on the AUCscores representing 
Developmental and Inf. wound response transcrip-
tional programs. Signature matrices representing the 

Fig. 2 Enrichment of GBM subtypes, molecular and metabolic gene signatures in distinct GBM regions. The normalized enrichment scores 
(NES) of the significantly enriched (padj < 0.05) GBM subtypes are shown in distinct GBM regions and 5ALA sorted cells (A). Retrieval of gene sets 
specifying different GBM subtypes (Verhaak et al.) was followed by gene set enrichment analysis (GSEA). The color code indicates the differential 
NES values (yellow and black represent higher and lower NES, respectively). GSEA plot shows that the GBM mesenchymal subtype is significantly 
enriched (NES: 2.1, padj = 2.3 ×  10−6) in 5ALA + cells (B). NeuN immunohistochemistry (IHC) of Core—(C), Rim (D), and Invasive margin (E) to estimate 
the proportion of NeuN positive (neuronal) cells (arrows). The scale bar indicates 25 µm. Differential z-scored normalized expression  Log2(TPM + 1) 
of the significantly regulated (Limma, padj < 0.05) leading edge genes of GBM subtypes (Verhaak et al.)—Neural (F), and Mesenchymal (G)—are 
shown as a heatmap. Heatmap illustrating the normalized enrichment scores (NES) representing enriched cellular and metabolic states (padj < 0.05) 
in distinct GBM intratumor regions and 5ALA sorted cells (H). The gene signatures of cellular states (Developmental and Inflammatory wound 
response) and metabolic states (Glycolytic—GPM, and Mitochondrial—MTC) were retrieved and subjected to GSEA. GSEA plots represent 
the enrichment of GPM (I), and Inflammatory wound response (J) in 5ALA + cells compared to 5ALA − cells and Invasive margin, respectively. 
Heatmaps showing the differential expression of significantly regulated (Limma, padj < 0.05) leading edge genes of GPM (K) and Inflammatory 
wound response (L) in Core, Rim, Invasive margin, 5ALA − and 5ALA + cells. Stacked bar plot representing the transcriptional program estimates 
across 10 GBM samples (M). Each transcriptional program (Developmental and Inflammatory wound response) was divided into three 
expression-based categories based on their gene expression pattern (High, Intermediate, and Low). Each color indicates a specific expression-based 
category of a transcriptional program. The  log10 ratios of High Inflammatory wound response and High Developmental transcriptional program 
in the unsorted Core region and 5ALA + cells across 10 GBM patients are shown (N). Box plots represent the median expression in Developmental 
and Inflammatory wound response genes enriched in cells with the high expression of different transcriptional programs (Developmental-High 
and Invasive margin-High) across Core and 5ALA + cell populations (O). P-values calculated from Student’s t tests are shown

(See figure on next page.)
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High, Intermediate, and Low expression of Develop-
mental (Additional file  1: Fig. S4C) and Inf. wound 
response (Additional file  1: Fig. S4D) were generated 
(Additional file 6: Table S5). The higher expression of 
the corresponding Developmental (e.g., CCND2) and 
Inf. wound response (e.g., NFKBIA) markers validated 
the signature matrices of the  DevelopmentalHigh and 
Inf. wound  responseHigh groups, respectively. By uti-
lizing the signature matrices, the cells with different 
expression categories (High, Intermediate, and Low) 
were estimated across 10 GBM patients for Devel-
opmental (Additional file  1: Fig. S4E) and Inf. wound 
response (Additional file  1: Fig. S4F) transcriptional 
programs (Additional file  6: Table  S5). The abun-
dance of cells with the  DevelopmentalHigh program was 
higher in unsorted regions compared to sorted cells 
(p-value = 0.001) (Fig. 2M). The fraction of Inf. wound 
 responseHigh was significantly higher in 5ALA + cells 
compared to Core (adj. p-value = 0.048), Rim (adj. 
p-value = 0.045), and Inv (adj. p-value = 0.03) (Fig. 2M 
and Additional file 6: Table S5).

Interestingly, an increased fraction of cells harboring 
Inf. wound  responseHigh transcriptional program was 
observed in sorted cells, with the highest abundance 
in 5ALA + cells. Particularly, the differential propor-
tions of cells with  DevelopmentalHigh and Inf. wound 
 responseHigh programs between Core and 5ALA + cells 
were prominent (Additional file  1: Fig. S4G). To fur-
ther explore, a  Log10 ratio between cells with Inf. 
wound  responseHigh and  DevelopmentalHigh programs 
showed a positive value in the 5ALA + population 
across all 10 GBM patients, while the Core exhibited 
a near-zero or negative ratios (Fig. 2N), implying that 
the 5ALA + cell population is characterized by the 
activation of Inf. wound response program. For further 
validation, the expression of the Developmental and 
Inf. wound response genes (Additional file 6: Table S5) 
were compared between cells with  DevelopmentalHigh 
and Inf. wound  responseHigh transcriptional programs, 
respectively within the Core and 5ALA + cell popula-
tion. Developmental program expression was signifi-
cantly higher (p = 2.2 ×  10−6) in the Core while Inf. 
wound response expression was significantly upregu-
lated (p = 3.86 ×  10−6) in the 5ALA + cell population 
(Fig. 2O).

In summary, these results highlighted the activa-
tion of differential transcriptional and metabolic states 
throughout spatially distinct GBM regions and 5ALA-
sorted cells. The activation of the Inf. wound response 
program was unique to the 5ALA + subpopulation 
relative to Core. Conversely, 5ALA + cells are likely to 
retain their GPM state analogous to the Core.

5ALA + population represents transcriptionally concordant 
invasive malignant and myeloid cells with active 
mesenchymal subtype and Inflammatory wound response 
program
MES, Inf. wound response, GPM, and TNF-α signaling/
inf. response signatures were enriched in all 5ALA + cell 
populations across 10 GBM patients except Patient 31 
(Additional file  1: Fig. S5A). We additionally performed 
a Generally Applicable Gene-set Enrichment for Pathway 
Analysis (GAGE) between 5ALA + cells and unsorted 
regions (Core, Rim, and Inv) and 5ALA − cells. GAGE 
confirmed that the proposed gene signature (N = 251) is 
highly enriched in 5ALA + cells compared to intratumor 
regions and 5ALA − cells (Additional file  6: Table  S5). 
By taking advantage of the different gene signatures that 
were enriched in 5ALA + cells, a combined gene set was 
prepared by taking the non-redundant genes (N = 251) 
termed as “5ALA + gene signature”.

To test whether the proposed 5ALA + genes exhibit 
different expression levels in 5ALA + and 5ALA − cells, 
we further investigated the differential gene expressions 
of 5ALA + and 5ALA − cells with respect to Core. In 
brief, we took the 5ALA + gene signature (N = 251) and 
plotted the log2 fold change (FC) of each gene between 
5ALA + vs. Core and 5ALA − vs. Core. Although a high 
correlation was observed (R = 0.75), the values were 
skewed indicating a higher amplitude of regulation in 
5ALA + cells (Additional file  1: Fig. S5B). We then per-
formed a t-test between the FCs, and the result clearly 
indicated that genes expressed by 5ALA + cells were sig-
nificantly upregulated compared to 5ALA − cells (Addi-
tional file 1: Fig. S5C). P-value (p-value = 0.001) is shown.

To investigate a plausible confounding factor of whether 
the 5ALA + gene signature includes genes directly associated 
with FACS-induced stress, we analyzed bulk RNA-seq data 
representing 5ALA-based FACS sorted cells and unsorted 
tissue from the Core, Rim, and Inv regions from one addi-
tional GBM patient. Firstly, we performed a Limma analysis 
to identify differentially expressed genes (DEGs) between 
sorted (5ALA + and 5ALA −) cells and unsorted tissue (Core, 
Rim, and Inv). Three hundred and seventy six upregulated 
and 284 downregulated DEGs were identified (adjusted 
p-value > 0.05). When we compared the 5ALA + gene sig-
nature (N = 251) with the DEGs, only 8 genes were found 
overlapping with the upregulated DEGs indicating a minimal 
impact of FACS sorting on the 5ALA + gene signature. The 
GSEA enrichment analysis showed the intersecting 8 genes 
(IL10, CD83, CSF2, MAP3K8, GADD45B, KLF6, IL10RA, 
and MAFF) as gene members of the IL2-STAT5 pathway 
(adjusted p-value = 1.33 × 10 − 17). Overall, this new analysis 
highlighted the minimum impact of the FACS process on the 
sorted cells.
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To characterize the cellular states of the unsorted 
regions (Core, Rim, and Inv) and sorted cells (5ALA + and 
5ALA −), we performed deconvolution of the bulk SPRP 
dataset using the CIBERSORTx algorithm to estimate 
cell-type abundances. Briefly, scRNA-seq data was pro-
cessed by CIBERSORTx to build a signature matrix 
defining the genes that are specific for a particular cell 
state. The signature matrix was then utilized to estimate 
the cell-type proportion across distinct GBM regions and 
sorted cells (Additional file  1: Fig. S5D and Additional 
file 5: Table S4).

Surprisingly, we observed that a fraction of the myeloid 
cellular state (MG pro-inflammatory type II) was sig-
nificantly higher in 5ALA + populations compared to all 
other intratumor regions (Core: adj. p-value = 0.02, Rim: 
adj. p-value = 0.02, Inv: adj. p-value = 0.02) (Additional 
file 1: Fig. S5D and Additional file 5: Table S4).

The presence of the myeloid signature in the 
5ALA + population may signify a heterogenous cellular 
state in the 5ALA + population including myeloid cells. 
Nevertheless, the malignant nature of the 5ALA + popu-
lation was shown in our previous study where we con-
firmed that the 5ALA + cells isolated from the resected 
Inv region by FACS, harbors tumor cells [1]. Briefly, mul-
tiple subcutaneous xenograft implants were performed 
using different regions from the resected primary tumor 
(N = 10). No tumor uptake was evident in any animal 
injected with 5ALA − cells after approximately 144 days, 
whereas animals (N = 2) injected with 5ALA + cells grew 
tumors requiring sacrifice at 138- and 145-day postim-
plant, respectively. In contrast, 5ALA − injections did not 
generate a subcutaneous tumor representing a minimal 
cubic volume.

Previously Gangoso et al. [60] showed that GBM cells 
acquire the MES signature module upon immune attack 
followed by alterations of the transcriptional landscape 
driven by an epigenetic mechanism that aids GBM cells 
to mimic the transcriptional landscape of myeloid cells 
including microglia. Therefore, we cannot rule out the 
possibility that the 5ALA + population may harbor malig-
nant cells that can acquire myeloid-like transcriptional 

programs. This may reflect the capacity of 5ALA + malig-
nant cells with the MES subtype mimicking myeloid tran-
scriptional features. To test the hypothesis that malignant 
GBM cells can acquire a transcriptional state analogous 
to myeloid cells, we first analyzed the malignant and 
myeloid cells from GBmap by tSNE followed by Louvain 
clustering (Fig.  3A). Subsequently, we mapped the cell-
specific CNV (representing Chr 7 gain and Chr 10 loss 
for each cell) categories onto the malignant and myeloid 
cells (Fig. 3B). Intriguingly, the CNV analysis identified a 
distinct cluster of aneuploid cells (marked by a black cir-
cle) that were annotated as myeloid cells based on tran-
scriptional features only (Fig. 3B). The remaining myeloid 
cluster was predominantly diploid. From these results, 
it is evident that transcriptome-based cellular annota-
tion strategies may not have sufficient resolving power to 
differentiate two cell populations with similar transcrip-
tomic but distinct genomic features. To investigate this 
further, we performed tSNE with Louvain clustering on 
the aneuploid- and diploid myeloid cells (N = 132,654) 
resulting in 18 clusters (Fig. 3C). We performed Fisher’s 
exact test to observe the distribution of aneuploid and 
diploid cells across the clusters and to identify any over-
representation of aneuploid cells in a particular clus-
ter. Results revealed that aneuploid cells were highly 
enriched in Cluster 8 (odds ratio = 80.52, CI = 75.07–
86.36, p-value < 0.001). We then assessed the enrichment 
of the 5ALA + gene signature by calculating the Ucell 
score and subsequently mapped 5ALA + UCell scores on 
two myeloid-like populations of cells: myeloid-like ane-
uploid (MLA) cells (N = 5171) and diploid myeloid (DM) 
(N = 127,483) cells (Fig. 3D). The 5ALA + gene signature 
was highly enriched in MLA cells (Cluster 8) which may 
represent the malignant cells that are transcriptionally 
analogous to myeloid cells. Further investigation revealed 
that DM cells (predominantly cells belonging to Clus-
ter 6) are also enriched with the 5ALA + gene signature. 
Next, we investigated the enrichment of 5ALA + -spe-
cific gene signatures (5ALA + , GPM, Inf. wound, Inf. 
response, MES, and TNFα) in each of these cellular cat-
egories (MLA, DM, and non-myeloid-like malignant 

(See figure on next page.)
Fig. 3 Enrichment of 5ALA + gene signatures in myeloid-like aneuploid, diploid myeloid, and non-myeloid malignant cells. tSNE plot representation 
of the sing cells (N = 261,092) annotated by GBmap as malignant and myeloid cell types (A). The color code represents the proposed cell 
annotation from GBmap. Copy number variation (CNV) categories (aneuploid and diploid) based on were mapped as different colors (aneuploid: 
Orange and diploid: Green) (B). tSNE plot with Louvain clustering of myeloid cells from GBmap dataset (N = 134,405, as annotated by Gbmap) 
(C). tSNE representation of the myeloid-like aneuploid (N = 5171) (left) and diploid myeloid (N = 127,483) (right) cells. The color code represents 
the 5ALA + UCell enrichment score calculated based on the expression of the 5ALA + -specific genes (N = 251) (D). UCell scores of different gene 
signatures (5ALA + , GPM, Inf. wound, Inf. response, MES, and TNFα) across aneuploid myeloid (AM), diploid myeloid (DM), and non-myeloid-like 
malignant (malignant) cells (E). CIBERSORTx-derived signature matrix based on three cell annotations (DM, MLA, and Malignant) (F). Color code 
represents the z-scored expression. Selected differentially expressed genes are shown. Estimated fractions of different cellular states (MLA, DM, 
and Malignant) across unsorted Core and sorted 5ALA + and 5ALA − cells (G). Louvain clustering based on the single-cell RNA-seq data from GBmap 
(H). The color code represents 18 different clusters (cluster 0 to cluster 11). tSNE plots of GBmapdataset are shown where the color code represents 
the single-cell wise UCell scores for different gene signatures—MES1-like (I), MES2-like (J), Inf. wound response (K), GPM (L), MTC (M), and 5ALA + (N)
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cells) by calculating the UCell scores (Fig.  3E). MLA 
cells were highly enriched with 5ALA + signature com-
pared to DM and non-myeloid-like malignant cells (adj. 
p-value < 0.001) (Fig.  3E, Additional file  5: Table  S4). 
In addition, MLA cells showed higher UCell scores for 
GPM, Inf. wound, MES, and TNFα gene signatures 
(Additional file 5: Table S4). For Inf. wound, both MLA 
and DM cells showed high UCell scores compared to 
non-myeloid-like malignant cells. High enrichment of 
5ALA + and associated gene signatures in MLA cells 
indicate that this aneuploid population, although tran-
scriptionally similar to myeloid cells, may contribute to 
the malignant potency of the 5ALA + cell population.

Based on this newly defined ploidy-based annota-
tion (MLA, DM, and non-myeloid-like malignant cells), 
we established a signature matrix (Fig. 3F) from GBmap 
dataset and subsequently deconvolute the transcrip-
tomes from spatially resolved Core, and 5ALA-based 
sorted samples (5ALA + and 5ALA −) by employing 
the CIBERSORTx algorithm. We excluded the Inv mar-
gin as the signature matrix includes only the malignant 
and myeloid cellular states, whereas the normal cellular 
states (Astrocytes, Oligodendrocytes, etc.) relevant to 
the Inv margin are excluded. However, we included the 
5ALA − population in order to compare myeloid frac-
tions with 5ALA + cells. Estimation of fractions by CIB-
ERSORTx revealed that indeed the MLA fraction was 
higher in the 5ALA + population compared to the Core 
and 5ALA − population (Fig.  3G and Additional file  5: 
Table  S4), thus rendering approximately 50% of the 
5ALA + population malignant (non-myeloid-like malig-
nant and MLA cells) whereas the remaining fraction may 
belong to DM cells. In contrast, the 5ALA − population 
predominantly consisted of a DM population (~ 75%). 
These new analyses hinted towards the possibility that 
5ALA + cells may represent a heterogenous population 
encompassing transcriptionally similar aneuploid malig-
nant cells and myeloid cells. However, the high enrich-
ment of the 5ALA + -specific gene signatures in MLA 
cells renders this population the major contributor to 
the malignant nature of the 5ALA + population. This 
posits an interesting scenario whereby myeloid cells are 
either capable of uptaking and metabolizing 5ALA and/
or uptaking the 5ALA-derived PpIX. This very notion has 
been shown by recent studies [18, 61, 62]. In conclusion, 
these results underscore the possibility of heterogeneous 
cellular states in the 5ALA + population predominantly 
consisting of transcriptionally concordant malignant and 
myeloid cells.

Next, we turned our attention to the malignant charac-
teristics of the 5ALA + population.

Using the established 5ALA + gene signature, we 
next aimed to further explore GBM-associated cellular, 

metabolic, and transcriptional signatures of 5ALA + cells 
by analyzing the latest publicly available single-cell data-
sets. To achieve this, we investigated the enrichment of 
5ALA + gene signature in single cells with distinct cellu-
lar states (OPC-like, NPC-like, AC-like, and MES-like) 
from Neftel et  al. [37] and transcriptional programs 
(Developmental and Inf. wound response) from Rich-
ards et  al. [63] (Additional file  2: Table  S1). Single-cell 
wise UCell scores of 5ALA + gene signature were mapped 
onto a two-dimensional scatter plot of cellular states 
based on the meta-module score. The meta-module score 
is defined by the gene sets for which the expression var-
ies between cells across the tumor samples [37]. Results 
showed that MES-like and AC-like cells are enriched 
with the 5ALA + gene signature, further confirming that 
the 5ALA + cell population predominantly harbors MES-
like states (Additional file 1: Fig. S5E and Additional file 7: 
Table S6). To distinguish between MES-like and AC-like 
cells, we first defined the MES-like (setting the cut-off: + 1 
on the x-axis and − 1 on the y-axis) and AC-like (− 1 on 
the x-axis and − 1 on the y-axis) cell (Additional file 1: Fig. 
S5E) states based on the meta-module scores. In total, 
549 MES-like and 787 AC-like cells were selected. MES-
like cells are significantly enriched with the 5ALA + gene 
signature compared to AC-like cells (Additional file  1: 
Fig. S5F, Wilcox test, p-value = 2.2 ×  10−10).

Next, we mapped the single-cell wise UCell scores 
of the 5ALA + gene signature onto a PCA plot of cells 
with two transcriptional programs—Developmental 
and Inf. wound response—revealing that the Inf. wound 
response cell cluster is enriched with the 5ALA + gene 
signature (Additional file  1: Fig. S5G), thus corroborat-
ing the previous findings that the 5ALA + cell popula-
tion harbors active Inf. wound response transcriptional 
programs. Furthermore, we selected the Developmen-
tal and Inf. wound response-positive cells based on the 
respective AUCscores as reported by Richards et  al. 
[63]. Cells were sorted according to Developmental and 
Inf. wound response AUCscores and cells with the top 
AUCscore (N = 10,000) were retained. The 5ALA + UCell 
scores were then compared between Developmental 
(N = 10,000) and Inf. wound response (N = 10,000) posi-
tive cells. Inf. wound response cells exhibited a signifi-
cantly higher 5ALA + score compared to Developmental 
cells (Wilcox test, p-value = 2.2 ×  10−16) (Additional file 1: 
Fig. S5H).

To validate the association of a GPM metabolic state 
with MES-like and Inf. wound response, the GPM 
enrichment scores (UCell Score) were compared 
between MES-like and AC-like cells by a bootstrapping 
method (as previously discussed). Results revealed that 
MES-like cells are significantly enriched with the GPM 
gene signature, compared to AC-like cells (The mean 
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p-value = 1.01 ×  10−05, range 1.01 ×  10−16–9.37 ×  10−04) 
(Additional file  1: Fig. S5I and S5J). Similarly, a com-
parison of GPM UCell scores between Developmental 
(N = 10,000) and Inf. wound response (N = 10,000) posi-
tive cells showed that the GPM score was significantly 
higher in Inf. wound response cells (p-value = 2.2 ×  10−16) 
(Additional file  1: Fig. S5K and S5L). These analyses 
showed that MES-like and Inf. wound response-positive 
cells were also enriched with the GPM metabolic state.

Garofano et  al. [9] provided extensive metabolic vali-
dation of GBM cells enriched with glycolysis-dependent 
(GPM) and oxidative phosphorylation-dependent (MTC) 
gene signatures where a cohort of patient-derived cellular 
(PDC) models of GBM was utilized. By using a random 
forest machine learning classifier, the authors defined 
PDCs (based on bulk RNA-seq data) into either GPM 
(N = 21) or MTC (N = 26) subtypes to validate the meta-
bolic states of these cells using multiple metabolic param-
eters, including extracellular acidification rate (ECAR). 
We took advantage of the transcriptomics dataset repre-
senting the pre-defined GPM and MTC PDCs and per-
formed a GSEA of the 5ALA + gene signature. Results 
indicated that PDCs with GPM state were also signifi-
cantly enriched with the 5ALA + signature (Additional 
file 1: Fig. S5M), suggesting that PDCs enriched with the 
5ALA + gene signature exhibit glycolysis-dependent met-
abolic features characterized by a higher rate of ECAR 
and glucose uptake. Collectively, the results reveal that 
the 5ALA + gene signature is strongly enriched in MES-
like cells with active Inf. wound response program and 
GPM metabolic state. Based on these results, we hypoth-
esized that GBM single cells with a 5ALA + signature are 
concomitantly enriched with MES, Inf. wound response, 
and GPM metabolic states. To explore the possibility, we 
performed a correlation analysis of UCell scores between 
the 5ALA + gene signature and different cellular states 
from Neftel et  al. [37] (AC-like, MES1-like, MES2-like, 
NPC1-like, NPC2-like, and OPC-like), transcriptional 
programs from Richards et al. [63] (Inf. Wound response 
and Developmental), and metabolic gene signatures 
from Garofano et  al. [9] (GPM, MTC, NEU, and PPR) 
(Additional file 7: Table S6). The UCell-based correlation 
analysis revealed a significantly higher positive correla-
tion between the 5ALA + gene signature and MES1-like 
(r = 0.52; p-value < 2.2 ×  10−16) (Additional file  1: Fig. 
S6A), MES2-like (r = 0.50; p-value < 2.2 ×  10−16) (Addi-
tional file  1: Fig. S6B), Inf. wound response (r = 0.686; 
p-value < 2.2 ×  10−16) (Additional file  1: Fig. S6C), and 
GPM (r = 0.405; p-value < 2.2 ×  10−16) (Additional file  1: 
Fig. S6D). In contrast, UCell scores for OPC-like (Addi-
tional file  1: Fig. S6E) and MTC (Additional file  1: Fig. 
S6F) showed a negative correlation with the 5ALA + gene 
signature. Furthermore, a weak positive correlation 

(r = 0.11) was observed between the 5ALA + signa-
ture and AC (Additional file  1: Fig. S6G) whereas the 
5ALA + gene signature was negatively correlated with 
NPC1 (Additional file  1: Fig. S6H), NPC2 (Additional 
file  1: Fig. S6I), Developmental (Additional file  1: Fig. 
S6J), PPR (Additional file  1: Fig. S6K), and NEU (Addi-
tional file 1: Fig. S6L).

To further uncover the malignant nature of the 
5ALA + population, we first performed tSNE analysis 
based on the neoplastic cells from the GBmap dataset 
(Additional file 2: Table S1) followed by Louvain cluster-
ing and identified 18 clusters designated as cluster 0 to 
17 (Fig. 3H). We subsequently mapped the UCell scores 
of MES1-like (Fig.  3I), MES2-like (Fig.  3J), Inf. wound 
response (Fig.  3K), GPM (Fig.  3L), MTC (Fig.  3M), and 
5ALA + gene signature (Fig.  3N). Clustering analysis 
revealed a small cluster of rare 5ALA + cells (Cluster-12) 
overlapping with Inf. wound response and GPM clusters, 
but exhibited a clear distinction from clusters represent-
ing metabolic states (MTC). In addition, a diffuse dis-
tribution of the 5ALA gene signature was also observed 
in cluster 4. To quantify the overrepresentation of the 
5ALA + signature in distinct clusters, we plotted the 
average 5ALA + UCell score per cluster (Additional file 1: 
Fig. S6M) and performed a Wilcox test. The average 
5ALA + UCell score was significantly higher in cluster-12 
followed by cluster-4 (Wilcox, p-value < 2.2 ×  10−16), com-
pared to all other clusters (Additional file 1: Fig. S6M). To 
identify the cellular state of the 5ALA + enriched clusters, 
we mapped the cell annotation on the tSNE plot (Addi-
tional file  1: Fig. S6N). Cluster-4 was predominantly 
MES-like while a mixed annotation (OPC-like, AC-like, 
and MES-like) was observed for cluster-12.

Collectively, this data substantiates MES cellular states, 
active Inf. wound response transcriptional program, and 
GPM metabolic state, as predominant in 5ALA + cells. 
Furthermore, 5ALA + cells may retain a hypoxia-depend-
ent GPM state within discreet foci despite a normoxic 
Invasive margin microenvironment where the MTC met-
abolic state is predominant.

Identification of transcriptional and post‑transcriptional 
control in 5ALA + cells
Concomitant activation of multiple transcriptional pro-
grams in 5ALA + cells is likely to be controlled by shared 
transcriptional circuits governed by specific transcrip-
tion factors (TFs). To address this, we constructed a 
transcriptional network controlling differentially regu-
lated 5ALA + enriched genes associated with Inflam-
matory response, TNF-α signaling, MES, MTC, GPM, 
and Inf. wound response. Upon identification of the 
TFs in the 5ALA + enriched gene sets (KLF4, NFкB1, 
NFKBIA, EGR2, REL, and FOSL2), the TFs along with 
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the 5ALA + enriched genes, were used as hubs and tar-
get genes respectively in the ARACNE algorithm, to 
identify the TF-target gene association significance 
(p-value < 0.05). Subsequently, a TF-target gene network 
was constructed (Additional file 8: Table S7) and visual-
ized by the Cytoscape tool. All TFs except FOSL2 showed 
a positive  log2 fold change (FC) in 5ALA + compared 
to Core (Additional file  1: Fig. S7A) and 5ALA − cells 
(Additional file  1: Fig. S7B, Additional file  8: Table  S7), 
and most target genes (nodes) were upregulated in 
5ALA + cells (Additional file 1: Fig. S7A and S7B).

REL showed the highest number (N = 108) of inter-
action (edges) with nodes, closely followed by KLF4 
(N = 106) and NFкB 1 (N = 98). The lowest number of tar-
get gene interactions was identified for FOSL2 (N = 13), 
while all other TFs exhibited higher (> 70) target gene 
interactions (Additional file  8: Table  S7). The TFs con-
trolling the highest number of Inf. wound response genes 
were KLF4 (N = 67), NFкB1 (N = 65), and REL (N = 52). 
The highest number of MES signature genes were likely 
to be controlled by REL (N = 16), and NFкB1 (N = 14) 
(Additional file 1: Fig. S7C).

Overall, these results uncovered the shared transcrip-
tional network associated with enriched cellular and 
metabolic states in 5ALA + cells, whereby the Inf. wound 
response and MES subtype are primarily controlled by 
NFкB and REL.

Exon–intron split analysis (EISA) was performed 
to determine the changes in pre-mRNA (intron) and 
mature-mRNA (exon) counts across distinct GBM 
regions and 5ALA-sorted cells. Compared to Core, Rim, 
and Invasive margin, a higher number of genes with 
significant intronic changes (∆intron) was observed in 
5ALA + cells, than genes with significant changes in exon 
counts (∆exon) (Additional file  1: Fig. S8A-C) indicat-
ing a relatively strong transcriptional control regulating 
the genomic landscape of 5ALA + cells. In contrast, a 
lower number of genes with significant ∆exon (N = 140) 
and ∆intron (N = 93) counts were identified between 
5ALA + vs. 5ALA − cells (Additional file  1: Fig. S8D) 
underscoring a similar global transcriptomic landscape of 
these cells, which is likely to be induced by a shared infil-
trative margin microenvironment.

Furthermore, to investigate the transcriptional and 
post-transcriptional control of 5ALA + cell-specific 
cellular/metabolic gene signatures, we performed pre-
ranked GSEA (Additional file  9: Table  S8). The results 
showed significant enrichment of the MES subtype, 
Inflammatory response, and TNF-α signaling path-
ways, and GPM genes with upregulated ∆exon counts 
in 5ALA + cells (Additional file  1: Fig. S8E) rela-
tive to 5ALA − cells. Interestingly, a comparison of 
5ALA + cells with unsorted regions (Core, Rim, and 

Invasive margin) mostly resulted in the enrichment of 
Inf. wound response, Inflammatory response, TNF-α 
signaling, and MES subtype, with increased ∆intron 
counts (Additional file 1: Fig. S8E) signifying transcrip-
tional regulation controlling these genes.

Next, we identified significant DEGs with higher exon 
and intron counts in 5ALA + cells (Additional file 1: Fig. 
S8F-W). The highest number of DEGs were identified for 
Inf. wound response (N = 11) (Additional file 1: Fig. S8F, 
S8J-S, S8U). Only one DEG (SIGLEC9) was identified for 
the MES subtype (Additional file 1: Fig. S8H, S8W). For 
Inflammatory wound response, six genes (IER2, PLS1, 
MOV10L1, CCL2, MMP25, and ADAMTSL5) exhib-
ited increased ∆exon counts and five genes (MMP19, 
DMD, PLCXD3, MGLL, and BTBD11) showed increased 
∆intron counts in 5ALA + cells (Additional file 1: Fig. S8F, 
S8J-S, S8U). CCL2 was associated with multiple gene sig-
natures—(Inflammatory wound response, Inflammatory 
response, and TNF-α signaling) and showed significantly 
higher (p-value < 0.001) ∆exon counts in 5ALA + cells 
(Additional file 1: Fig. S8H, S8M).

Collectively, these results decipher the transcriptional 
and post-transcriptional regulation of enriched cel-
lular and metabolic gene signatures in the 5ALA + cell 
population.

5ALA + cell population resembles CD44 expressing cancer 
mesenchymal cells
The activation of a GSC-derived Inf. wound response 
program in 5ALA + cells raises the possibility of reten-
tion of a stem-cell-like transcriptomic landscape. Thus, 
we aimed to interrogate the stem cell transcriptomic sig-
nature in 5ALA + cells by estimating a patient-specific 
stemness index (mRNAsi) [42] based on bulk mRNA 
expression (SPRP) data across 5ALA + , 5ALA − cells, 
and spatially distinct GBM regions. With the highest 
stemness index, 5ALA + cells showed a distinct profile 
relative to all unsorted tumor regions (Fig. 4A, B) where 
5ALA + cells exhibited a significantly higher stemness 
profile compared to Core and Rim regions (Fig.  4B). 
Interestingly, stratification of TCGA-GBM samples (rep-
resenting tumor Core) into molecular subtypes revealed 
a lower mRNAsi of GBM subtypes compared to both 
5ALA + and 5ALA − cells (Fig.  4B). We took advantage 
of mRNAsi data from TCGA adjacent non-tumor tis-
sue (NAT) representing 5ALA − cells, and compared 
this with TCGA-GBM tissue representing the tumor 
core. Bootstrap followed by the Wilcox test revealed that 
the NAT region has significantly higher mRNAsi values 
(median p-value = 0.015) compared to the GBM core, 
thus corroborating our results that 5ALA − cells showed 
higher mRNAsi values in comparison to Core (Addi-
tional file 1: Fig. S9A). Previously, an astrocyte precursor 
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cell (APC) population with high proliferative capacity has 
been reported in GBM [8] which may explain the higher 
stemness of the 5ALA − cells and NAT region of GBM.

We retrieved the stemness-associated genes (KLF4, 
MYC, CTNNB1, EPAS1, EZH2, KDM5B, NES, TWIST1, 
ABCG2, CD34, CD44, NANOG, PROM1, ZFP42, and 
ZSCAN4) as reported by Malta et  al. [42] and analyzed 
the correlation between mRNAsi and expression of 
these genes across the 10 patients (Additional file 1: Fig. 
S9B). Only two genes—CD44 and ZSCAN4—showed 
a positive correlation between mRNA expression and 
mRNAsi (Additional file 1: Fig. S9B). Next, we obtained 
13 known brain cancer and 13 stem cell markers from 
the cell marker database (http:// biocc. hrbmu. edu. cn/ 
CellM arker/ help. jsp) [64] and investigated the correla-
tion between mRNAsi and mRNA expression. Three 
genes—ITGA6, SLITRK6, and SOX9—showed a posi-
tive correlation (Additional file  1: Fig. S9C); however, 
when the expression levels of these genes were analyzed, 
ZSCAN4, SLITRK6, and SOX9 showed low expression in 
5ALA + cells (Additional file 1: Fig. S9D and S9E).

To further characterize the stemness-associated 
gene signature, eight previously published stemness-
associated gene sets representing Consensus Stemness 
[33], Human embryonic stem cell—HuESC [32], Stem 
cell [29], Myc induced genes [34], Embryonic stem cell—
ES1 Sox2 induced genes [31], NANOG induced genes 
[31], and Epithelial Atypical squamous cells (ASC) [35] 
were retrieved. GSEA showed that most of the gene 
sets were highly enriched in the Core, followed by Rim 
and Invasive margin regions, whereas 5ALA − cells 
were enriched in Consensus Stemness, HuESC, and 
Myc gene sets. Interestingly, none of these gene sets 
were enriched in 5ALA + cells (Additional file  1: Fig. 
S9F and Additional file  10: Table  S9). Moreover, Sox2, 
an important gene for the stemness phenotype showed 
a very low expression across the 5ALA + populations. 
However, the stemness gene sets were predicated on 
classical stem cell niches, whereas the role of stem cell 

biology associated with the phenotype of infiltration 
is poorly understood. Therefore, the distinct mRNAsi 
index identified in the 5ALA + population may offer an 
avenue to elucidate whether stem cell plasticity may be 
associated with GBM infiltration.

Realizing the uniqueness of the 5ALA + cells, we 
performed a correlation analysis between stemness 
and 5ALA + signature genes. Only 23 genes showed 
a significant (p-value < 0.05) positive correlation with 
mRNAsi whereas all other genes (N = 228) showed 
predominantly negative correlations. The highest cor-
relation was observed for the gene—Transglutami-
nase 4 (TGM4; R = 0.95). Although not significant 
(p-value = 0.08), CD44—a previously reported marker 
for Inf. wound response—showed a strong posi-
tive correlation (R = 0.57) with mRNAsi (Fig.  4C and 
Additional file  11: Table  S10). This result indicates 
that although the 5ALA + population showed a rela-
tively higher Stemness index, the lack of significant 
correlations between stemness-associated genes and 
5ALA + gene signature renders the stemness character 
of 5ALA + cells unresolved.

To characterize the 5ALA + cells in terms of neurode-
velopmental hierarchy, we utilized a scRNA dataset 
from normal fetal brain as reported by Couturier et  al. 
[40] where cells were isolated from the telencephalon 
of human fetuses (N = 4) at 13–21 gestational weeks. 
Microglia (CD45-positive) and endothelial cells (CD31-
positive) were depleted by FACS sorting to enrich the 
CD133-positive cells (N = 10,093 cells), which were sub-
jected to scRNA-seq prior to characterization of glial pro-
genitor cells (GP), oligo-lineage cells (OLC), and a mixed 
population including truncated radial glial cells and can-
cer mesenchymal cells. Single-cell wise UCell score of the 
5ALA + gene signature was weakly correlated with GP 
(r = 0.040; p-value = 1.385 ×  10−09), negatively correlated 
with OLC (r =  − 0.049; p-value = 9.959 ×  10−14) (Addi-
tional file 1: Fig. S9G and S9H), but positively correlated 
with mixed population (r = 0.253; p-value < 2.2 ×  10−16) 

Fig. 4 5ALA + cells represent CD44 expressing mesenchymal cells. mRNA-based stemness index (mRNAsi) values across distinct GBM regions 
(Core, Rim, Invasive margin, 5ALA − and 5ALA +) for each patient are represented in a heatmap (A). Row (samples) and columns (GBM regions) are 
clustered by using a correlation algorithm. Comparison of the mRNAsi values according to brain regions (left) and TCGA-GBM samples (right) are 
shown as bar diagrams (B). The TCGA-GBM samples were pre-stratified according to GBM subtypes as described by Verhaak et al. [10]. Kruskal–
Wallis tests showed a significantly higher mRNAsi in 5ALA + cells compared to Core and Rim, with p-values shown. Pearson correlation coefficient 
values between the mRNAsi and mRNA expression of selected genes are shown (C). The genes that showed a significant (p-value < 0.05) positive 
correlation with mRNAsi in 5ALA + cells for each patient were selected. tSNE clustering plots based on scRNA-seq dataset (Couturier et al.) are 
shown (D–G). The color code represents the single-cell wise UCell scores for different cell-signatures—glial progenitor cells (GP) (D), oligo-lineage 
cells (OLC) (E), mixed population including truncated radial glial cells, and cancer mesenchymal cells (F), and 5ALA + cells (G). tSNE clustering 
plots (Couturier et al.) with the color code representing the single-cell wise gene expression values for different marker genes—CD44 (H), AQP4 
(I), FAM107A (J), and SOX9 (K), GLI3 (L), and TIMP1 (M) are shown. Heatmap showing the z-scored log2 TPM expression of selected marker genes 
(GIL3, TIMP1, FAM107A, SOX9, AQP4, and CD44) based on scRNA-seq dataset (Couturier et al.) across different cell types (5ALA + , GP, OLC, and mixed 
population) (N). qPCR validation results showing  Log2 gene relative gene expression of CD44 gene in spatially resolved RNA profiles across Core, 
Invasive margin, and 5ALA + cells (O). P-values are shown as calculated by paired T-test

(See figure on next page.)

http://biocc.hrbmu.edu.cn/CellMarker/help.jsp
http://biocc.hrbmu.edu.cn/CellMarker/help.jsp
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Fig. 4 (See legend on previous page.)
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(Additional file 1: Fig. S9I).tSNE plots based on the Cou-
turier et al. scRNA-seq dataset followed by the mapping 
of single-cell wise UCell scores for different cell states—
GP (Fig.  4D), OLC (Fig.  4E), mixed population includ-
ing truncated radial glial cells, and mixed population 
(cancer mesenchymal cells) (Fig.  4F), and 5ALA + cells 
(Fig.  4G) were generated. tSNE analysis revealed that 
cells with an enriched 5ALA + gene signature localized 
distinctly (Fig. 4G) from GP and OLC but showed a sig-
nificant overlap with the mixed population including 
truncated radial glial cells and cancer mesenchymal cells 
(Fig. 4F). To distinguish between these two populations, 
the expression levels of positive marker genes for trun-
cated radial glial (AQP4, FAM107A, SOX9, and GLI3) 
and cancer mesenchymal (CD44 and TIMP1) were inves-
tigated. Cells expressing CD44 (Fig. 4H), AQP4 (Fig. 4I), 
FAM107A (Fig.  4J), SOX9 (Fig.  4K), GLI3 (Fig.  4L), and 
TIMP1 (Fig.  4M) overlapped with the 5ALA + cell clus-
ter. To gain a better understanding, expression levels of 
truncated radial glial and cancer mesenchymal maker 
genes were compared across the cells with the high-
est enrichment of 5ALA + , GP, OLC, and mixed signa-
tures (based on UCell scores) (Fig.  4N). Interestingly, 
the analysis revealed that cells (N = 104) with a high 
5ALA + signature also expressed a high level of the can-
cer mesenchymal marker CD44, while almost half the 
CD44 expressing cells (N = 64) also expressed the trun-
cated radial glial marker AQP4. We further validated 
CD44 gene expression across patient-matched spatially 
distinct GBM regions and 5ALA + cells, revealing high 
expression in 5ALA + cells relative to Core and Invasive 
margin (Fig.  4O). The experiment was performed on 
5ALA + , Core, and Inv margin as the difference between 
5ALA + and tumor regions (Core/Inv) would be most 
informative.

These findings provide evidence that 5ALA + may 
resemble cancer mesenchymal rather than truncated 
radial glial cells, yet suggest cellular heterogeneity within 
the 5ALA + cell population.

Spatially resolved transcriptomics reveals 
the microenvironment harboring rare infiltrative 
5ALA + cells
Having uncovered unique defining transcriptional fea-
tures an important question regarding whether the 
5ALA + cell population is confined to a particular spa-
tial location or localized in multiple spatially distinct 
regions, remained elusive. Moreover, the localization of 
the 5ALA + population within the Inv margin has been 
determined by MRI and defined by 5ALA-induced PpIX 
fluorescence detected furthest into the area of MRI T2 
high signal localized distantly from the Core (Fig. 1B–D), 
which is ethically safe to collect surgical biopsies from, 

and where the 5ALA + signal fades into the background 
of non-neoplastic cells and GBM penetrates into the 
brain in an invasive fashion (non-enhancing on T1 with 
gadolinium). The region that we are defining as “Invasive 
margin” is therefore spatially distinct from the enhanc-
ing region (ER) and enhanced margin (EM) as reported 
previously by Jin et  al. [59]. To further gain insight, we 
investigated the distribution of 5ALA + signature across 
the spatially distinct anatomical regions characterized in 
the IVY glioblastoma dataset [65]. 5ALA + gene signa-
ture was predominantly expressed in hyperplastic blood 
vessels (HBV) and microvascular proliferation (MVP) 
regions but also diffusely distributed in other anatomic 
regions including pseudopalisading cells (PAN) and peri-
nectoritc zone (PNZ) (Additional file 1: Fig. S10A) (Addi-
tional file 12: Table S11). The lack of a clear distribution 
pattern is most likely attributable to the distinct anatomi-
cal microenvironment of the 5ALA-based Inv margin 
representing a predominantly normal brain as histologi-
cally defined.

We, further, interrogated the spatial-localizations and 
surrounding microenvironments that harbor these cells 
using spatially resolved transcriptomics (stRNA-seq) 
analysis of tissue sections from an independent IDH-wt 
GBM patient cohort (N = 16) [51]. UKF#334 was cho-
sen as a representative tissue sample illustrating the co-
localization of 5ALA + transcriptional features (Fig. 5A), 
with MES (Fig.  5B) and Inf. wound response (Fig.  5C) 
gene signatures. In addition, 5ALA + enriched cells 
exhibited spatial proximity to regions with an enriched 
GPM metabolic state (Additional file  1: Fig. S10B), and 
to regions of hypoxic activation (Additional file  1: Fig. 
S10C). The concordant spatial co-localization of GPM in 
close relation to hypoxia provided a plausible explanation 
for the active GPM state of 5ALA + cells as a compen-
satory mechanism in response to metabolically altered 
environments. Corroborating our previous findings, 
5ALA + cells were further characterized by high expres-
sion of CD44 (Additional file 1: Fig. S10D). Interrogation 
of transcriptional heterogeneity through spatial cluster-
ing revealed the presence of distinct clusters (N = 11) 
(Additional file 1: Fig. S10E). Among the clusters, cluster 
9 and cluster 7 predominantly showed a spatial overlap 
with the 5ALA + enriched region, implying the hetero-
geneous transcriptome landscape manifests within the 
5ALA + cell population.

Next, we uncovered the spatial localization of the Inva-
sive margin, through inference of copy number vari-
ations (CNVs), where the cellular tumor (CT) region 
was characterized by a gain of chromosome 7 (Addi-
tional file  1: Fig. S10F) and adjacent non-tumor (NT) 
region was delineated by high expression of RBFOX3 
(NeuN) (Additional file 1: Fig. S10G). 5ALA + spots were 



Page 23 of 34Andrieux et al. Genome Medicine           (2023) 15:48  

predominantly localized in close proximity to the Invasive 
margin (5ALA-INV) separating the CT and NT regions 
(Fig.  5A and Additional file  1: Fig. S10H). However, a 
5ALA + signal was also detected within the CT region 
(5ALA-CT) (Fig.  5A and Additional file  1: Fig. S10H). 
These distinct spatial locations of the 5ALA + spots raise 
the question as to what unique characteristics define 
5ALA-INV from 5ALA-CT. To test the hypothesis that 
5ALA-INV possesses unique defining transcriptional fea-
tures, we segmented the spatially distinct 5ALA regions 
(5ALA-INV from 5ALA-CT) (Additional file  1: Fig. 
S10H). DEG analysis followed by GSEA revealed that 
5ALA-INV activates transcriptional programs including 
reorganization of collagen assembly, extracellular matrix, 
and epithelial to mesenchymal transition, necessary for 
cell migration/invasion (Additional file 1: Fig. S10I). Both 
5ALA-INV and 5ALA-CT were enriched in 5ALA + and 
Inf. wound response gene signatures (Fig.  5D), whereas 
5ALA-INV was enriched in MES (Fig. 5D), further pro-
viding evidence that 5ALA + invasive margin cells may 
undergo a transition to the MES subtype.

Previously, it was reported that GBM cells with MES 
subtype reside within the tumor core, near the necrotic 
zone, and in the presence of blood vessels [59, 65–67]. 
Our results also highlighted that the bulk-derived MES 
signature was not solely restricted to the Inv margin 
but was also present within the tumor core across dif-
ferent tumor tissue samples (Additional file  1: Fig. S10J 
and S10K). In addition, high enrichment of the hypoxia-
dependent MES2 subtype was identified within the 
tumor core (Additional file 1: Fig. S10L) and peri-necrotic 
region (Additional file 1: Fig. S10M), corroborating previ-
ously reported results. In contrast, MES1 enriched spots 
were identified in the Inv margins (Additional file 1: Fig. 
S10N). Furthermore, the minimal or no overlap of genes 
among the mesenchymal gene sets (MES, MES1, and 

MES2) (Additional file 1: Fig. S10O) also contributed to 
the varied spatial localization across the GBM tissues.

To gain a deeper understanding of how distinct 
the localization and spatial microenvironment of 
5ALA + cells are, relative to the necrotic tumor core, 
we further utilized the stRNA-seq data to identify 
5ALA + gene signature enriched regions within specific 
tissue samples. We selected sample UKF#313 represent-
ing a necrotic tumor core, surrounded by pseudopali-
sading cells, followed by a CT region (Fig. 5E). Inference 
of CNV provided further evidence signifying the gain 
of chromosome 7 (Fig.  5F) and loss of chromosome 10 
(Fig.  5G) in the CT. GSEA analysis revealed that spots 
enriched with the 5ALA + gene signature in the cellu-
lar regions were spatially distant from the necrotic core 
(Fig. 5H).

In sample UKF#269, histology analysis showed a dis-
tinction between CT and spatially adjacent NT regions 
(Fig. 5I). The spatial boundary between CT and NT was 
also underpinned by CNV analysis, where CT was char-
acterized by the gain of chromosome 7 (Fig.  5J) and 
loss of chromosome 10 (Fig.  5K). The spatial distinc-
tion between CT and NT was further confirmed by the 
high expression of MKI67 (Ki67) (Additional file  1: Fig. 
S10P) and RBFOX3 (NeuN) (Additional file 1: Fig. S10Q) 
in CT and NT regions, respectively. In this tissue sam-
ple, 5ALA + enrichment was identified within a local-
ized small CT cluster (Fig. 5L). Interestingly, a relatively 
weak enrichment of 5ALA + gene signature was also 
observed in the NT region where a few intermittent 
5ALA + enriched spots exhibited a more diffused pattern 
(Fig. 5L). This result presented clear evidence of infiltra-
tive 5ALA + cells present within the adjacent NT brain 
region that is spatially distinct from CT.

A further spatially distinct niche for 5ALA + spots was 
revealed in sample UKF#275, where 5ALA + cells were 

(See figure on next page.)
Fig. 5 Identification of rare infiltrative 5ALA + cell cluster within GBM invasive margin. GSEA score of 5ALA + gene signature (A), MES (B), and Inf. 
wound response (C) are shown for patient sample UKF#334, with enriched (red) and random (blue) spots. Spatial localization of the 5ALA + gene 
signature is marked (dashed box), where red (5ALA-INV) and green (5ALA-CT) boxes represent 5ALA + enriched spots. GSEA between 5ALA-CT 
and 5ALA-INV is shown as a bubble plot (D). Enrichment scores (−  log10 FDR) are color-coded (yellow—high enrichment; black—low enrichment). 
H&E-stained tissue section of patient UKF#313 showing the necrotic core, pseudopalisading cells, and cellular tumor (CT) regions (E). Inferred 
CNV analysis of chromosomes 7 (F) and 10 (G) presented by a spatial surface plot where gain and loss of chromosomes 7 and 10 respectively are 
color-coded. GSEA of 5ALA + gene signature illustrated by a surface plot where GSEA score is depicted by color code and 5ALA + enriched spots 
marked (dashed box) (H). H&E-stained tissue section of patient UKF#269 showing CT and adjacent non-tumor (NT) regions (I). Inferred CNV analysis 
of chromosomes 7 (J) and 10 (K) is shown by a surface plot. GSEA of 5ALA + gene signature is shown by a surface plot where 5ALA + enriched 
spots are marked (dashed box) (M). H&E-stained tissue section of patient UKF#275 showing CT with surrounding pseudopalisading cells (M). 
The scaled spatial program score indicates the expression of the reactive immune program (N). GSEA score representing spatial arrangements 
of 5ALA + gene signature (O) and GPM (P) enriched spots (dashed box). Spatial locations of 5ALA + enriched spots are represented by the GSEA 
score where red indicates high enrichment of 5ALA + gene signature (Q). The 5ALA-INV and 5ALA-CT spots are indicated by red and green boxes, 
respectively. GSEA scores representing GPM (R), MTC (S), and hypoxia (T). Spatially weighted correlation analysis and spatial overlap of 5ALA + gene 
signature with established transcriptional signatures (U). Gene sets with high cross-correlation with 5ALA + gene signature are marked (dashed 
box) (U). CNV analysis of Chr7 (left) and Chr10 (right), across four samples (UKF#275, UKF#243, UKF#251, and UKF#334) (V). The color code indicates 
the gain or loss of chromosomes. Each box represents the average CNV value from 50 selected spots across 5ALA and NT regions. The stars indicate 
the significance of the p-value < 0.001
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co-localized with immune cells. Histology (Fig.  5M) 
coupled with CNV analyses—gain of chromosome 7 
(Additional file  1: Fig. S11A) and loss of chromosome 
10 (Additional file  1: Fig. S11B), aided spatial loca-
tion determination of the CT region within the tissue. 
Within the reactive immune zone (Fig.  5N), the pres-
ence of 5ALA + enriched spots (Fig.  5O) was identified, 
indicating co-occurrence of infiltrative 5ALA + cells with 
immune cells (Additional file  1: Fig. S11C) further cor-
roborating our previous findings that the 5ALA + popu-
lation may harbor myeloid cells. Reactive immune was 
previously characterized by the inflammation-associ-
ated genes (e.g., HLA-DRA, C3, CCL4, and CCL3) [51]. 
This result underscores the unique potential utility of 
5ALA + fluorescence-guided surgery to demarcate an 
immune reactive microniche consisting of both tumor 
and myeloid cells beyond the Core.

To better understand the spatial architecture of the 
distinct metabolic programs, localization of the GSEA 
scores was calculated for GPM, hypoxia, MTC, and 
5ALA + cells. The 5ALA + spots (Fig.  5O) were found 
to be enriched with the GPM metabolic state (Fig.  5P). 
Interestingly, unlike, UKF#334, this tissue sample 
revealed that although the 5ALA + region exhibited a 
relatively lower enrichment of the hypoxia response tran-
scriptional program, the major hypoxia enriched region 
was spatially distinct from 5ALA + cells (Additional file 1: 
Fig. S11D), implying that 5ALA + cells retain a GPM 
state even in the presence of weak hypoxic strain. In 
contrast, the MTC metabolic state was distantly located 
from both the 5ALA + and hypoxic regions (Additional 
file  1: Fig. S11E). Akin to sample UKF#275, co-localiza-
tion of 5ALA + spots with reactive immune cells was 
also observed within the CT region for sample UKF#251 
(Additional file  1: Fig. S11F-I). These results indicated 
that irrespective of the strong or weak hypoxic strain, 
5ALA + cells have the ability to activate a glycolysis-
dependent GPM metabolic state.

Sample UKF#243 was further analyzed where 
inferred CNVs (gain of chromosome 7 (Additional 
file  1: Fig. S11J) and loss of chromosome 10 (Addi-
tional file  1: Fig. S11K) clearly defined CT and NT 
regions. Notably, in this sample, reactive immune was 
localized both in the NT and infiltrative margin (Addi-
tional file  1: Fig. S11L). 5ALA + enriched spots were 
identified in both the Invasive margin and spatially 
distant locations deep within the CT region (Fig. 5Q). 
Enrichment analysis of metabolic programs showed 
that 5ALA + cells harbored active GPM (Fig.  5R), but 
not MTC (Fig.  5S) signatures, corroborating our pre-
vious findings. Rather, MTC was enriched in the NT 
region (Fig.  5S) characterized by low hypoxic strain 
(Fig. 5T). Seurat clustering of UKF#243 resulted in nine 

distinct clusters where 5ALA + enriched regions exclu-
sively co-localized with Cluster-5 (Additional file  1: 
Fig. S11M). DEG analysis revealed that the top differ-
entially expressed genes included Inf. wound response 
genes (CXCL8, CXCL3, RGS1, and RNASET2) in Clus-
ter-5 (Additional file 1: Fig. S11N). Enrichment analysis 
showed that Cluster-6, representing the cells aligned 
with Invasive margin was enriched in MHC protein 
complex-associated pathways, whereas innate immune 
systems and negative regulation of cell population pro-
liferation pathways, were enriched in Cluster-5 encom-
passing the 5ALA + spots (Additional file 1: Fig. S11O).

To explore the spatial proximity of 5ALA + gene signa-
ture with established transcriptional programs, we per-
formed a quantitative analysis based on the patient-wise 
spatially weighted correlations which were horizontally 
integrated for robust prediction of adjacent transcrip-
tional activation (Fig. 5U). 5ALA + spots (55 μm) shared 
co-localizations with radial glia (RG), mesenchymal 
(MES and MES1-like), Inf. wound response, GPM, and 
reactive immune transcriptional programs (Fig.  5U). 
The Cartesian co-occurrence of the reactive immune 
and 5ALA + transcriptional program suggests that 
5ALA + cells may reside in the same microenvironment 
shared with myeloid cells. Interestingly, these results 
highlighted the potential use of 5ALA-induced PpIX 
fluorescence-guided surgical procedure to identify the 
immune reactive microniche beyond the Core, where 
tumor cells can potentially interact with myeloid cells.

To demonstrate the malignant nature of 5ALA + cells, 
we quantified the chromosomal gain and loss of 
5ALA + enriched spots compared to adjacent NT 
regions. A subset of samples (N = 4, UKF#275, UKF#243, 
UKF#251, and UKF#334) were used for which there 
was a clear spatial distinction between 5ALA + and 
NT regions. The spots within the 5ALA + region were 
sorted according to the 5ALA + GSEA score. The num-
ber of 5ALA + spots showed a high degree of variability 
in a patient-specific manner. Among the tissue samples, 
we identified a minimum of 50 ALA + enriched spots 
across all the tissues, and therefore the top 50 spots were 
selected. An equal number of NT spots (N = 50) were 
selected for which the 5ALA + gene signature was not 
enriched. The comparison revealed that 5ALA + spots 
showed a gain of Chr7 (p-value < 0.001) and a loss of 
Chr10 (p-value < 0.001) compared to NT spots (Fig. 5V). 
Corroborating our previous analysis (Fig.  3E), spatial 
CNV analysis clearly demonstrated that the 5ALA + spots 
harbored malignant cells with CNVs, although non-
malignant myeloid cells can co-localize in 5ALA + spots.

In conclusion, stRNA-seq analyses unveiled the exist-
ence of the CD44 expressing rare population of infil-
trative 5ALA + cells residing in the Invasive margin 
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surrounding a hypoxic microniche, distant from the 
necrotic core and which co-localizes with myeloid cells.

Enriched cellular, transcriptional, and metabolic states 
of 5ALA + cells are associated with tumor recurrence
To identify the patients with a higher fraction of 
5ALA + cellular and metabolic states (MES, Inf. wound 
response, and GPM) from the TCGA-GBM cohort, we 
performed deconvolution of the TCGA-derived bulk 
transcriptome dataset using CIBERSORTx algorithm. 
Cell-type fractions were estimated based on scRNA-
seq datasets from Neftel et al. [37], Richards et al. , and 
Garofano et al. [9]. The cellular and metabolic states were 
estimated for each of the primary (N = 154) and recur-
rent (N = 13) GBM patients from the TCGA cohort by 
using signature matrices generated from Neftel (Addi-
tional file  1: Fig. S12A), Richards (Additional file  1: Fig. 
S12B), and Garofano et al. (Additional file 1: Fig. S12C). 
For unequal sample numbers, a bootstrap method fol-
lowed by the Wilcox test was carried out between recur-
rent and primary samples. Interestingly, recurrent tumor 
samples showed a higher fraction of GPM metabolic 
state (p-value = 0.014), Inf. wound response transcrip-
tional program (p-value = 0.048), and MES1-like cellular 
state (p-value = 0.0533), compared to primary tumors 
(Fig. 6A).

To further explore the impact of the 5ALA + enriched 
gene signatures on the recurrence of GBM, GSEA was 
performed on RNA-seq data obtained from primary and 
recurrent IDH-wt patients of TCGA, CGGA, and GLASS 
cohorts (Additional file  13: Table  S12). Primary tumors 
only exhibited marginal enrichment of pathways such as 
hypoxia, DNA repair, and E2F targets, whereas a diverse 
array of pathways including oxidative phosphorylation, 
MYC targets, fatty acid metabolism, IL6/JAK/STAT sign-
aling, epithelial-mesenchymal transition, TNF-α signal-
ing via NFкB, and inflammatory response were enriched 
at recurrence, and where the two latter pathways were 
also enriched in 5ALA + cells (Additional file  1: Fig. 
S12D). TCGA harbors an unequal sample distribution 
between primary (N = 154) and recurrent (N = 13) tumor 

samples. Among the thirteen recurrent GBM samples, six 
were paired with primary tumor data. Therefore, paired 
and unpaired analyses were performed for TCGA (Addi-
tional file 1: Fig. S12D). For CGGA and GLASS cohorts, 
primary and recurrent tumor samples are unpaired and 
paired, respectively. Enrichment analysis revealed an 
intriguing phenomenon where 5ALA + gene signature 
enrichment was observed in recurrent but not in pri-
mary tumors. For instance, MES was enriched in recur-
rent tumors across TCGA, CCGA, and GLASS cohorts, 
and Inf. wound response was enriched in recurrent 
GBM of TCGA and GLASS cohorts but not in CGGA 
(Fig.  6B). Compared to recurrent tumors, no gene sig-
natures were enriched in the primary tumors of TCGA 
(Fig.  6B). To further investigate the impact of unique 
5ALA + gene signatures on the survival of recurrent and 
primary GBM patients, a single-sample GSEA (ssGSEA) 
was performed on recurrent and primary tumors sepa-
rately for the 5ALA + gene signatures. By combining 
the NES, a combined 5ALA + gene signature score was 
calculated for each tumor sample, followed by correla-
tion analysis with survival data of recurrent and pri-
mary patients. For recurrent tumors of GLASS (Fig. 6C) 
cohorts, 5ALA + gene signature scores exhibited a signifi-
cant negative correlation with survival, whereas primary 
tumors did not (Fig.  6D). Analysis with TCGA cohort 
corroborated this result signifying that 5ALA + gene sig-
nature is highly correlated with the survival of recurrent 
GBM patients (Additional file  1: Fig. S12E and S12F). 
We then performed Cox regression on the matched-
recurrent (N = 30) and -primary (N = 30) samples from 
GLASS cohort (Additional file 13: Table S12). Apart from 
5ALA + -specific gene signatures, we included confound-
ing factors such as the age and gender of the patients. 
Firstly, a univariate Cox regression analysis revealed 
that 5ALA + gene signature, Inf. wound response, MES, 
and Inf. response were significantly associated with 
poor survival in the recurrent cohort (Additional file 13: 
Table S12). The age and gender of the patients were not 
associated with survival (Additional file  13: Table  S12). 
In contrast, no significant association was identified in 

Fig. 6 Association of 5ALA + gene signatures with recurrence in GBM patients. Stacked bar plots representing the CIBERSORTx-derived 
average cell-type estimates from Netfel, Richards, and Garofano et al. datasets across primary and recurrent GBM patients from TCGA (A). 
Heatmap showing the − log10 adjusted p-value of the enriched gene signatures across recurrent and primary GBM tumors (B). The conditions 
representing the comparisons between recurrent and primary GBM tumors from TCGA and CCGA are given in columns (TCGA—Recurrent vs. 
Primary and CCGA—Recurrent vs. Primary). GBM data from TCGA has been analyzed in a paired and unpaired manner. Columns are divided 
into upregulated (Red) or downregulated (Blue) segments based on the regulation of genes between Recurrent vs. Primary samples. Each row 
represents the different gene signatures. Scatter plots representing the correlation between 5ALA + gene signature scores and overall survival 
(months) in recurrent and primary patients from GLASS (C and D) cohort. Spearman correlation coefficient (R) and p-values are shown. Forest plot 
representing the hazard ratio of different factors in recurrent GBM patients (E). tSNE coupled with Louvain clustering of the primary and recurrent 
GBM cells from two patients (F). 5ALA + UCell score mapping onto the tSNE (G). Comparison of 5ALA + UCell score between primary and recurrent 
cells (H). (Bar represents the mean). Schematic diagram showing the 5ALA + cells with MES subtype and distinct transcriptional programs such 
as wound response signatures are associated with recurrence of GBM tumor (I)

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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primary GBM patients (Additional file  13: Table  S12). 
Next, a multivariate regression analysis revealed that the 
combined 5ALA + gene signature was significantly asso-
ciated with poorer survival of the recurrent GBM patients 
(Fig.  6E). In contrast, no significant association was 
observed for primary GBM patients. Due to the highly 
unequal number of TCGA recurrent (N = 154, Additional 
file  1: Fig. S12E) and primary (N = 13, Additional file  1: 
Fig. S12F) samples, the interpretation of the Cox regres-
sion analysis is challenging and hence was not performed 
on TCGA cohort. In an ideal setting, the experimental 
validation of the role of 5ALA + cells in the recurrence 
of GBM may include patient-matched longitudinal sam-
ples from primary and recurrent patients. The process of 
collecting patient-matched primary and recurrent sam-
ples is challenging and time-consuming; moreover, only 
a small percentage of GBM patients receive recurrence 
surgery [68]. In addition, resectable recurrent tumors 
tend to exhibit a higher rate of necrosis rendering molec-
ular analysis challenging [69]. However, patient-derived 
explants (PDEs) provide a reliable model for molecular 
analysis of recurrent tumors [70]. To test the hypothesis 
that the 5ALA + gene signature is associated with recur-
rent GBM at single-cell resolution, we took advantage of 
the scRNA-seq dataset from matched primary and recur-
rent tissues from two GBM patients where the resected 
tissue samples were used to generate the patient-derived 
explants (PDEs) [70]. We retrieved the scRNA-seq 
data representing primary (N = 10,905) and recurrent 
(N = 8833) cells from PDEs. tSNE analysis coupled with 
Louvain clustering (Fig. 6F) followed by the mapping of 
5ALA + UCell score onto the tSNE plot showed that a 
5ALA + gene signature was markedly visible in a distinct 
cluster consisting of primary and recurrent tumor cells 
from the GBM patients (Fig. 6G). The comparative analy-
sis confirmed our hypothesis that, recurrent GBM cells 
have significantly higher 5ALA + UCell scores compared 
to primary ones (p-value < 2.2 ×  10−16) further underscor-
ing the association between 5ALA + gene signature and 
GBM recurrence (Fig. 6H).

In conclusion, the enriched gene signatures of 
5ALA + cells were associated with poor survival and 
recurrence in GBM, signifying the probable functional 
impact of these signatures in tumor progression and 
interval to disease recurrence (Fig. 6I).

Discussion
We have unlocked cellular, transcriptional, and meta-
bolic signatures of the 5ALA + population residing 
within the GBM Invasive margin that are distinct from 
the tumor Core. SPRP complemented by scRNA-seq and 
spatially resolved stRNA-seq revealed that the infiltra-
tive 5ALA + cell population consisting of MES GBM and 

myeloid cells with mesenchymal subtype, active wound 
response pathway, and glycolytic metabolic states resides 
within a microenvironment characterized by patient-spe-
cific strong or weak hypoxic strain. The transcriptional 
signatures that define the infiltrative 5ALA + cell popula-
tion are associated with poor survival and tumor recur-
rence, implicating 5ALA + cells as an accurate a priori 
proxy of GBM residual disease post-surgery.

Previously, it has been hypothesized that 5ALA-
induced PpIX fluorescence beyond the T1 enhancing 
region on magnetic resonance imaging (MRI) represents 
a unique microenvironment contributing to molecular 
signatures distinct to tumor Core and Rim [2]. Extending 
this hypothesis, we showed that pro-proliferative path-
ways (e.g., G2M checkpoint, mTOCR1 signaling, and E2F 
targets) were highly enriched in the Core but absent in 
the infiltrative margin (Fig. 1I).

Enrichment of the NeuN cell type in both unsorted 
Invasive margin and 5ALA − cells indicates that normal 
neural cells constitute the majority of the infiltrative mar-
gin (Fig. 2E), consistent with previous findings [71]. One 
of the striking features of 5ALA + cells was the lack of 
molecular identity to canonical neural cell types, under-
scoring the unique transcriptional landscape of infiltra-
tive GBM. Using a microarray-based study, Bonnin et al. 
also showed that 5ALA + enriched tumor tissue failed 
to exhibit molecular signatures of any known neural cell 
types [72].

Emerging evidence supports GBM molecular subtype 
heterogeneity and indicates that subtype switching to 
MES in particular is associated with recurrence and poor 
survival outcomes [11, 13]. To extend this hypothesis, we 
showed that the heterogeneity of GBM molecular sub-
types is not restricted to recurrence, but can manifest in 
a region and cell-type-specific manner. Enrichment of 
the 5ALA + population with the MES subtype (Fig.  2A, 
B) supports a hypothesis that an infiltrative MES sub-
type may drive GBM recurrence. Indeed, as determined 
by stRNA-seq analysis, the 5ALA + invasive subpopu-
lation (5ALA + enriched spots outside the tumor core: 
5ALA-INV) was enriched in MES subtype (Fig.  5D). 
Interestingly, a link between an MES gene signature and 
decreased tumor purity has been established as a com-
mon theme across different cancers [73, 74]. One of the 
prominent features of the MES subtype is the associa-
tion with immune-related pathways and the lower purity 
score in comparison to PM and CL, highlighting the pos-
sible infiltration of non-neoplastic and immune cells into 
MES GBM [11, 75].

Previously, Jin et al. [59] showed that tumor cells from 
the enhancing region (ER), characterized by the disrup-
tion of the blood–brain barrier at areas of angiogenesis, 
exhibit high expression of proneural genes, whereas the 
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necrotic region (NR; hypoxic) exhibits a high expression 
of MES genes. However, this study lacked 5ALA-induced 
PpIX fluorescence guidance to define the invasive margin 
characterized by MRI T2 high signal distantly localized 
from the Core (non-enhancing on T1 with gadolinium), 
representing the furthest region from the tumor core 
where the 5ALA + signal fades into the background of 
non-neoplastic cells (Fig.  1B–D). The “Invasive mar-
gin” identified by the 5ALA-induced PpIX fluorescence 
method is therefore spatially distinct from the radiologi-
cally determined enhancing region (ER) and enhanced 
margin (EM). Since the Inv margin defined by our study 
is localized in a spatially distinct region, the presence of 
an infiltrative 5ALA + population with MES subtype pre-
sents an interesting insight into the biology of the Inv 
margin. However, our results do not contradict the previ-
ous report that MES GBM cells can be found within the 
Core region. Indeed, our spatial analysis revealed that 
MES subtype GBM cells are localized in diverse micron-
iches including Core, peri-necrotic region, and Inv mar-
gin (beyond the Core) (Additional file  1: Fig. S10I-M). 
This proposes an interesting scenario regarding the ori-
gin of MES subtype infiltrative GBM cells. Whether they 
originate from the tumor core by cells with infiltrating 
capacity escaping hypoxic stress and migrating towards 
the invasive margin (where a strong hypoxic environ-
ment is absent [76]) remains to be explored. Interest-
ingly, 5ALA + cells within the Inv margin activate other 
transcriptional features such as glycolysis-dependent 
GPM metabolic pathway and Infl. wound response. The 
local microenvironment of the 5ALA + region is likely to 
be conducive to the interactions between malignant and 
myeloid cells and may aid malignant cells to acquire a 
unique combination of transcriptional features [67].

The ability of the 5ALA + population to retain a gly-
colytic metabolic state within Invasive margin (Fig.  2H 
and Additional file  1: Fig. S10A) raises another impor-
tant question regarding hypoxic stress within this 
microenvironment. Despite the absence of hypoxia as 
inferred by CD31 immunostaining (Fig.  1P) and GSEA 
(Fig.  1I), the enrichment of glycolysis-dependent GPM 
in 5ALA + cells appears contradictory. However, the spa-
tial analysis provided a plausible explanation by revealing 
that 5ALA + cells reside within a localized microniche 
within Invasive margin which is under strong hypoxic 
strain (Additional file 1: Fig. S10B). The retaining of anal-
ogous glycolytic metabolic states from the tumor Core 
may also render a survival advantage to the infiltrative 
5ALA + cells. Metabolic reprogramming may allow the 
5ALA + cells to cope with the energy demands required 
for invasion and colonization of the surrounding brain 
tissue. Moreover, enrichment of a glycolysis-depend-
ent GPM metabolic signature was only observed in the 

5ALA + population but not in 5ALA − cells (Fig.  2H, I). 
This refutes the notion that transcriptional signatures are 
artifactually established due to the process of FACS and 
supports the claim that these signatures reflect the biol-
ogy of infiltrative margin residual disease. It is important 
to note that the unsorted invasive margin tissue is not the 
exact same tissue fragment that was processed by FACS 
(i.e., one invasive margin fragment was snap frozen, and 
a second fragment was immediately enzymatically dis-
sociated and FACS processed). This spatial difference 
between the Inv margin and the proximate tissue from 
where the 5ALA + / − cells were isolated could contribute 
to some transcriptome differences.

Spatial transcriptomics did not provide single-cell 
resolution as multiple cells are typically present in each 
spot (55  μm in size). Therefore, it is possible that spots 
enriched with the 5ALA + signature may also harbor cell 
types other than malignant cells such as myeloid cells. 
Moreover, the co-localization of the reactive immune and 
5ALA + gene signature (Fig. 5N, O) raises the possibility 
that the 5ALA + population encompasses MES GBM cells 
that may reside in the same microniche shared with mye-
loid cells corroborating CIBERSORTx findings (Fig. 3G). 
A previous study showed that apart from tumor cells, the 
infiltrating immune cells of myeloid lineage (especially 
macrophages and microglia) have the capacity to uptake 
and metabolize 5ALA by activating iron metabolism 
pathways [62]. This new finding underscores the possibil-
ity that the 5ALA + population localized distantly from 
the tumor core is heterogeneous in nature consisting of 
both infiltrative MES tumor and myeloid cells. The tumo-
rigenic potential of the 5ALA + population as shown by 
our earlier in vivo study through subcutaneous xenograft 
implants [14] may stem from the malignant fraction of 
the 5ALA + population. Interestingly, the co-localization 
of the tumor and myeloid cells within the 5ALA + region 
also highlights the possibility of ligand-receptor-medi-
ated cellular interactions which may be functionally 
associated with the capability of tumor cells to acquire 
the MES subtype as reported previously [67]. The inter-
actions between distinct tumor subpopulations and the 
surrounding normal brain govern the tumor microen-
vironment, which is likely to facilitate the adaptation of 
different subpopulations to external selection pressures 
including treatment-induced stress. It has been reported 
that GBM cells deploy an epigenetic immunoediting 
process allowing these cells to mimic the myeloid cell-
specific transcriptional program [60]. Furthermore, Hara 
et  al. showed that macrophages have the potential to 
induce a transition of GBM cells into the MES state [67]. 
The induction is mediated by the interaction between 
the macrophage-derived oncostatin M (OSM) and OSM 
receptors in complex with GP130 on GBM cells [67]. In 
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light of these findings, the myeloid cells are more likely to 
play a crucial role in the transition of the malignant cells 
into the MES subtype within the 5ALA + Inv region.

In contrast to the classification of GSC subtypes into 
proneural and mesenchymal states [11] or based on 
similarity to neural subtypes in normal or fetal brain 
development [77], Richards et al. proposed that GSC het-
erogeneity may originate from the transcriptional gradi-
ent composed of neural Developmental and Inf. wound 
response programs. Our study offers an important insight 
by revealing that infiltrative GBM cells with the MES sub-
type have an active Inf. wound response transcriptional 
program, whereas the remainder of the Invasive margin 
was devoid of Inf. wound response pathway activation. 
stRNA-seq analyses showed that Inf. wound response 
activation was more confined to the 5ALA + micro-niche 
indicating the unique ability of these rare infiltrative 
GBM cells to activate the neural wound healing path-
way to promote and maintain growth. Upregulation of 
exonic levels for MES and Inf. wound response genes in 
5ALA + relative to 5ALA − cells implied that these genes 
were under active post-transcriptional control.

The shared transcriptional regulatory network that 
governs GBM transition to MES and recurrence has not 
been previously elucidated, partly due to an inability to 
identify and characterize infiltrative GBM subpopula-
tions exhibiting MES. Previous studies [59, 65–67] report 
that GBM cells with MES subtype reside within the 
tumor core, near the necrotic zone, and in blood vessels. 
However, none of these studies utilized 5ALA-induced 
PpIX fluorescence to determine the invasive margin that 
is ethically safe to collect surgical biopsies from, and 
where the 5ALA + signal fades into the background of 
non-neoplastic cells. As described previously, our results 
suggest the presence of an infiltrative 5ALA + population 
with MES signature outside the MRI contrast-enhanced 
Core (referred to as Inv margin in the current manu-
script) that may represent a distinct localization with 
respect to prior studies.

The transition of GSCs to MES was reported to be 
dependent on TNF-α signaling via NFкB pathway 
[13], which was also upregulated in the infiltrative 
5ALA + population (Fig.  1I). Interestingly, among the 
TFs, two NFкB family members—NFkB1 and REL—
in addition to the inhibitor of NFкB-REL complex 
NFкBIA, were upregulated in 5ALA + cells (Additional 
file 1: Fig. S7C). These seemingly opposing factors may 
establish a delicate balance between inflammatory 
and anti-inflammatory pathways that are required to 
maintain a chronic and persistent low level of inflam-
mation, further boosted by the infiltration of anti-
inflammatory and regulatory immune cells [78]. The 

shared transcriptional control of the MES and Inf. 
wound response genes by REL and NFкB1 in infiltrative 
5ALA + cells suggest an association between inflamma-
tory pathways and MES gene signatures.

Previously, the transcriptional similarity between 
mesenchymal-like tumor cells and myeloid cells has 
been shown [67]. The current study, aiming to charac-
terize the invasive 5ALA + population localized out-
side the MRI contrast-enhanced tumor Core region, 
revealed malignant and myeloid cells sharing similar 
transcriptomic landscapes within a shared microenvi-
ronment, corroborating the emerging evidence. This 
heterogeneous nature of the 5ALA + population encom-
passing MES malignant and myeloid cells is also corrob-
orated by the recent evidence based upon scRNA-seq 
of the 5ALA + population [61] and two-photon excita-
tion fluorescence microscopy [18], showing that 5ALA 
treatment is efficient to label the tumor tissue from 
surrounding normal brain but may not be exclusively 
specific for tumor cells [18, 61]. By combining scRNA-
seq and live cell imaging with SCOPE-seq2, it has been 
proposed that non-malignant myeloid cells within the 
glioma microenvironment can also be labeled by PpIX 
(a fluorescent metabolite of 5ALA) in resected tissues 
from GBM patients who received 5ALA [61].

It is important to understand that the non-exclu-
sivity of 5ALA signal to malignant cells is not limit-
ing the utility of 5ALA-guided surgery; rather the 
5ALA + region representing the co-occurrence of MES 
GBM and myeloid cells outside the tumor core ush-
ers a new window of opportunity to identify a distinct 
microniche where the interactions between MES GBM 
and myeloid cells can be studied in relation to tumor 
recurrence a priori. Moreover, the utility of the 5ALA-
guided surgery leading to a greater resection extent 
with a survival benefit has been determined by clinical 
trials [79]. Irrespective of the 5ALA-signal not being 
exclusive to tumor cells in the infiltrative margin, there 
is clearly a prominent 5ALA + tumor population, the 
removal of which is associated with a survival benefit.

We show that 5ALA + -specific gene signatures rep-
resenting MES and Inf. wound response were enriched 
in recurrent GBM tumors relative to primary tumors 
and associated with poor survival outcomes (Fig.  6B, 
E). The close resemblance of the 5ALA + cell popula-
tion to recurrent tumors in terms of acquisition of the 
MES subtype (Fig.  6B–E) offers a unique opportunity 
to explore 5ALA + transcriptional networks further, 
elucidate biomarkers predictive of recurrence interval, 
and identify putative molecular therapeutic targets a 
priori, to initiate treatment in advance of radiologically 
defined macroscopic recurrence.
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Conclusions
Overall, our study has comprehensively characterized 
the unique cellular, transcriptional, and metabolic fea-
tures of the 5ALA + population within the GBM infil-
trative margin and underscored the possibility that 
infiltration of MES malignant and myeloid cells into 
adjacent brain tissue may be a critical determinant of 
GBM recurrence. Our findings encourage the neuro-
oncology research community to prioritize this infil-
trative 5ALA + subpopulation(s) for both mechanistic 
pre-clinical modeling and to expedite next-generation 
molecular targeted drug screening. Characterization of 
the 5ALA + infiltrative subpopulation offers an oppor-
tunity to develop more effective GBM treatments and 
urges focus away from the GBM proliferative core, 
upon which failed targeted therapies have been predi-
cated to date.
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