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Abstract 

Background The excessive inflammatory responses provoked by SARS-CoV-2 infection are critical factors affect-
ing the severity and mortality of COVID-19. Previous work found that two adjacent co-occurring mutations R203K 
and G204R (KR) on the nucleocapsid (N) protein correlate with increased disease severity in COVID-19 patients. How-
ever, links with the host immune response remain unclear.

Methods Here, we grouped nasopharyngeal swab samples of COVID-19 patients into two cohorts based 
on the presence and absence of SARS-CoV-2 nucleocapsid KR mutations. We performed nasopharyngeal transcrip-
tome analysis of age, gender, and ethnicity-matched COVID-19 patients infected with either SARS-CoV-2 with KR 
mutations in the N protein (KR patients n = 39) or with the wild-type N protein (RG patients n = 39) and compared 
to healthy controls (n = 34). The impact of KR mutation on immune response was further characterized experimentally 
by transcriptomic and proteomic profiling of virus-like-particle (VLP) incubated cells.

Results We observed markedly elevated expression of proinflammatory cytokines, chemokines, and interferon-
stimulated (ISGs) genes in the KR patients compared to RG patients. Using nasopharyngeal transcriptome data, we 
found significantly higher levels of neutrophils and neutrophil-to-lymphocyte (NLR) ratio in KR patients than in the 
RG patients. Furthermore, transcriptomic and proteomic profiling of VLP incubated cells confirmed a similar hyper-
inflammatory response mediated by the KR variant.

Conclusions Our data demonstrate an unforeseen connection between nucleocapsid KR mutations and augmented 
inflammatory immune response in severe COVID-19 patients. These findings provide insights into how mutations 
in SARS-CoV-2 modulate host immune output and pathogenesis and may contribute to more efficient therapeutics 
and vaccine development.
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Background
The COVID-19 pandemic is arguably the most impor-
tant global threat to humankind the world has seen in the 
twenty-first century. Since the emergence of the severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
in December 2019, COVID-19 has caused more than 
604 million confirmed cases, with more than 6.64 mil-
lion deaths to date [1]. The SARS-CoV-2 RNA genome is 
continuously mutating, and some mutations may enable 
the resulting novel variants to better adapt for infection 
and transmission [2]. Current research predominantly 
focuses on spike mutations as they may impact trans-
mission or evade the current vaccine’s immunity [3]. 
While spike protein changes are critical in transmission 
or immune evasion [4], the emerging viral variants also 
contain mutations outside the spike protein, which may 
affect COVID-19 pathogenesis by modulating virus-host 
interaction and host antiviral response. For example, 
SARS-CoV-2 accessory proteins [5–9] and non-structural 
protein Nsp1 [10] have been shown to affect antiviral 
host responses. The ORF8 accessory protein was recently 
reported to induce a hyper-inflammatory cytokine storm 
by binding to human dendritic cells [11]. Besides spike 
(S), other structural proteins such as envelope (E), mem-
brane (M), and nucleocapsid (N) contain mutations in 
the newly emerging virus variants [12].

We recently found that two consecutive amino acid 
mutations R203K and G204R (for simplicity the R203K/
G204R mutant is called KR and the wild-type nucleocap-
sid is termed RG) in the nucleocapsid (N) protein, are 
linked with increased viral load and severity in a diverse 
population of COVID-19 patients [13]. The exact mecha-
nism of COVID-19 disease severity remains unclear. How-
ever, studies have indicated that dysregulated host immune 
response and production of inflammatory cytokines, the 
so-called cytokine storms, is critical for disease sever-
ity and death in COVID-19 patients [14, 15]. Indeed, 
enhanced expression of interleukins, tumor necrosis fac-
tors, cytokines, and various chemokines was reported in 
patients with severe COVID-19 [15–17]. N protein from 
SARS-CoV-2 and SARS-CoV has been shown to elicit host 
immune response and contain high immunogenic proper-
ties [18, 19]. The KR mutation in N protein is also present 
in various SARS-CoV-2 variants of concern (VOC) such 
as Alpha, Gamma, Lambda, and Omicron in various pro-
portions [20]. It was recently reported to be linked with 
an enhanced subgenomic RNA expression [21]. Another 
study using the cell culture and animal model system 
showed that KR mutations enhance infectivity, fitness, 
and virulence [22]. SARS-CoV-2 virus-like particle (VLP) 
approach has also revealed enhanced infectivity of KR 
mutation in the presence and absence of omicron back-
ground mutations [23, 24]. The identified association of 

KR mutation with increased disease severity suggests a 
potential link with host immune response, which is so far 
unexplored.

In this work, by employing a combination of omics 
approaches using patient samples and cell culture mod-
els, we provide evidence for an unexpected connection of 
KR mutation with augmented host immune response in 
COVID-19 patients. We performed a comparative tran-
scriptomic analysis of COVID-19 patients infected with 
KR-mutant SARS-CoV-2 (KR-patients n = 39) or wild-
type SARS-CoV-2 (RG-patients n = 39) compared to 
healthy controls (Healthy n = 34). Our data demonstrate 
noticeable disparities in host transcriptional responses, 
especially the immune response genes, between the 
KR-patients and RG-patients. The KR-patients display 
high-level overexpression of immune response than 
RG-patients. The impact of KR mutation on immune 
response was further characterized experimentally in cell 
lines using the VLP approach. By transcriptomic and pro-
teomic profiling of VLP incubated cells, we identified and 
validated our observed association of enhanced immune 
response orchestrated by the KR variant. These findings 
reveal an unprecedented link between the nucleocapsid 
KR mutations in SARS-CoV-2 and a clinically significant 
hyper-immune phenotype of COVID-19, which, on the 
one hand, may explain disease severity during the early 
wave of the pandemic and, on the other hand, may aid in 
an effective therapeutic and broad vaccine development.

Methods
Cohorts
As described previously [13], nasopharyngeal swab sam-
ples were collected (during March to August 2020) from 
78 COVID-19 patients and 34 healthy controls in 1 ml of 
TRIzol (Ambion, USA) in Saudi Arabia. The anonymized 
samples were obtained from 7 hospitals and one quar-
antine hotel in Makkah region. Two COVID-19 patient 
cohorts based on the nucleocapsid (N) protein muta-
tion profiling (R203K/G204R), reported previously [13], 
were used in this study. The demographic details of the 
patient cohorts are provided in Additional file 2: Table S1 
and Additional file  1: Fig. S1. COVID-19 samples from 
patients infected with SARS-CoV-2 having two consecu-
tive amino acid mutations in the N protein (203 K/204R) 
called KR patients (n = 39). The patients infected with 
SARS-CoV-2 having wild-type N protein sequence 
(R203/G204) called RG patients (n = 39). The healthy 
control samples (n = 34) were collected from unidentified 
individuals without any known respiratory symptoms.

RNA from nasopharyngeal swab samples was extracted 
using the optimized [13] Direct-Zol RNA Miniprep kit 
(Zymo Research, USA) following the manufacturer’s 
instructions. All samples were analyzed by real-time PCR 
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for SARS-CoV-2 detection using primers for viral nucle-
ocapsid gene (N1 and N2) and primer for human RNase 
P gene (CDC 2019 nCoV Real-Time RT-PCR Diagnostic 
Panel).

Metatranscriptome sequencing
RNA-seq libraries were prepared using TruSeq Stranded 
Total RNA with Ribo-Zero Plus (Illumina, USA) accord-
ing to the manufacturer’s instructions. Libraries were 
pooled and processed for metatranscriptome sequenc-
ing using the Illumina Novaseq 6000 platform on the SP4 
(2 × 150 bp) flow cell (Illumina, USA).

Data processing and differential analysis
The raw sequencing reads were processed for quality con-
trol analysis. The adaptor trimming and low-quality reads 
removal from fastq files was performed by using trim-
momatic [25]. The clean reads were mapped to human 
genome (hg19) [26, 27] annotated ENSEMBL transcripts 
using kallisto [28] with default parameters. The generated 
mapped bam files were sorted using Samtools [29]. The 
gene counts were normalized using the log 2 normaliza-
tion method (90). Differential gene expression analysis 
was performed using the R package EdgeR integrated 
in the NetworkAnalyst [30]. Functional enrichment and 
pathway enrichment analyses of differentially expressed 
genes were carried out using NetworkAnalyst [30].

For distance clustering, the raw read counts were 
TMM normalized using the R package edgeR [31], and 
distances between samples based on a selection of ISGs 
and cytokine genes were calculated using the R function 
“dist” with the “canberra” method. From these distances, 
samples were clustered using the R function hclust with 
the “complete” method. The resulting tree was converted 
to newick format using the ’as.phylo’ function from the 
R package “ape” (v5.6–2) [32]. All analyses were carried 
out in Rstudio (RStudio Team 2020; R Core Team 2020). 
Finally, the tree was formatted in FigTree (v1.4.2).

Prediction of immune cells from transcriptome data
To predict and estimate the proportion of immune cell 
types, the raw nasopharyngeal transcriptome count data 
were processed by using the CIBERSORT algorithm (ver-
sion v1.06) [33]. The analysis was performed using the 
original gene signature file LM22 of CIBERSORT and 
100 permutations. The proportion of predicted immune 
cell types was represented in bar graph.

Custom virus‑like particles (VLPs)
We obtained four customized strains of hybrid alphavi-
rus-SARS-CoV-2 (Ha-CoV-2, Luc) virus-like particles 
(VLP) [34] from Virongy Biosciences Inc. These include 
(1) wild-type VLP (VLP-WT) containing reference 

sequences of all four structural proteins (S, M, N, and 
E), (2) KR-mutant (KR-VLP) with two mutations R203K/
G204R in the nucleocapsid protein, (3) D614G-KR VLP 
containing both R203K/G204R and spike D614G muta-
tions, and (4) D614G VLP contains only spike D614G 
mutation.

Cell culture, transfection, and VLP incubation
HEK293T (ACE2 + TMPRSS2) (Catalog# RCSNAK-01) 
and HEK293T (ATCC; CRL-3216).cell lines were main-
tained in DMEM supplemented with 10% fetal bovine 
serum (FBS; Cell-Box) and 1% penicillin–streptomycin 
(Thermo Fisher Scientific). Cells were grown according to 
standard protocols at 37°C and 5% CO2. Transfection of 
one million cells per well in 6-well plate with 2 × Strep-
tagged N plasmid (2ug/transfection) was performed 
using lipofectamine-2000 according standard protocol.

VLP particles (WT-VLP, KR-VLP, D614G/KR-VLP, 
and D614G-VLP) were used to incubate HEK293T 
(ACE2 + TMPRSS2). Cells were first plated in 6-well plate 
(0.3 ×  106 cells per well) and culture overnight. The next 
day, media was removed from the cells and incubated with 
VLP by adding 100 ul VLP particles in 400  µl of growth 
media. The cells were incubated in VLP containing media 
overnight and then collected for downstream processes.

Luciferase assay
Following the incubation with VLP media overnight, 
cells were lysed in 200 μl of 1 × cell lysis buffer (Luciferase 
Assay, Promega) and used 50 μl for luciferase assays on 
GloMax Discover Microplate Reader (Promega) accord-
ing to the manufacturer’s instructions.

RNA‑sequencing (RNA‑seq) from transfected and VLP 
incubated cells
Cells were lysed in 1  ml of TRIzol (Ambion, USA) and 
total RNA was extracted as mentioned above. Librar-
ies were prepared using TruSeq Stranded Total RNA 
with Ribo-Zero Plus (Illumina, USA) and sequenced on 
Novaseq 6000 platform on the SP4 (2 × 150 bp) flow cell 
(Illumina, USA). Data processing and differential analysis 
was performed as described above.

Protein extraction and digestion
HEK293T cell lines stably expressing ACE2/TMPRSS2 
were incubated with different VLPs (WT, KR, D614G-
KR, and D614G). Briefly, after incubation (24  h), the 
cells were collected with 10  mM EDTA in 1 × PBS and 
washed twice with cold PBS (1 ×) in the presence of pro-
tease inhibitor. The cell pellets were stored at − 80°C. The 
cells were lysed in lysis buffer 50 mM Tris–HCl (pH 7.4), 
150  mM NaCl, 1  mM EDTA, 1% NP-40, 1% Na-deoxy-
cholate, 0.1% SDS, supplemented with protease and 
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phosphatase inhibitor cocktails for 30  min while rotat-
ing at 4°C and then sonicated and centrifuged at high 
speed to collect the supernatant. Protein concentration 
was determined using BCA protein assay kit (Pierce™, 
Catalog: 23225). The protein extract was purified using 
methanol/chloroform precipitation and dried under vac-
uum. The dried pellets were resuspended into the extrac-
tion buffer (50  mM triethylammonium bicarbonate and 
5% SDS in Water). The protein content was determined 
using a nanodrop (Thermo Scientific) and then digested 
using STrap as described [35].

Mass spectrometery analysis and data processing
Approximately 200 ng of peptide mixture per sample was 
analyzed using a timsTOF Pro 2 QTOF mass spectrom-
eter coupled with a nanoElute liquid chromatography 
system (Bruker Daltonik GmbH, Germany).

The sample was injected directly into a RP-C18 Aurora 
emitter column (75  µm i.d. × 250  mm, 1.6  μm, 120  Å 
pore size) (Ion Opticks, Australia) using a one-column 
separation method. An 80-min gradient was established 
using mobile phase A (0.1% formic acid in H2O) and 
mobile phase B (0.1% formic acid in Acetonitrile): 2–25% 
B for 60  min, 25–37% for 10  min, ramping 37% to 95% 
in 5 min, and maintaining 95% B for 5 min. The column 
temperature was set at 50°C and the flow rate at 250 nl/
min. The sample eluting from the separation column 
was introduced into the mass spectrometer via a Cap-
tiveSpray nano-electrospray ion source (Bruker Daltonik 
GmbH) with an electrospray voltage of 1.6  kV. The ion 
source temperature set to 180 °C and a dry gas of 3 l/min.

The samples were analyzed using diaPASEF scheme 
[36] consisting of 24 cycles including a total of 48 mass 
width windows (13 Da (m/z) from m/z 400 to 1000 and 
TIMS scan range from 0.63 to 1.35 Vs cm − 2 (1/K0). 
The collisional energy increased linearly from 20.01  eV 
at 0.6 (1/K0) to 52.00  eV at 1.35 Vs cm − 2 (1/K0). The 
scan range for MS and MS/MS spectra was set to 100–
1700  m/z. TIMS ramping time and accumulation time 
were set to 100 ms. The diaPASEF data were analyzed by 
directDIA approach using Spectronaut software (version 
15.5.211111, Biognosys, Switzerland) as described [37].

Cytokines analysis by flow cytometry
Control and VLP (WT and KR) incubated cell lysates 
were harvested after 24-h post-infection. The level of 
cytokines was measured using flowcytometry-based 
cytokine storm multiplex kit (AssayGenie, cytokine 
storm multiplex panel 9-plex, cat# HUAMCOV05) 
according to the manufacturer’s instructions. Sample 
readout was measured by acquiring > 100 events for each 
bead population in the 585  nm and 695  nm emission 
channels on an Attune NXT cytometer (ThermoFisher) 

equipped with 561  nm laser. Data was analyzed with 
FlowJo v10.1 software (FlowJo).

Quantification and statistical analysis
RNA-seq and mass spectrometry data were analyzed using 
specific pipelines with statistical setting described in the 
methods. The significance of statistical analyses was com-
puted with t-test using GraphPad Prism 9. The quantifica-
tion and statistical details (p-value and the value of n) of 
each analysis can be found in the respective figure legends.

Results
Transcriptome analysis of COVID‑19 patients infected 
with SARS‑CoV‑2 variants
Recently, we highlighted the important link between 
the KR mutation in the SARS-CoV-2 N protein and dis-
ease severity [13]. However, any possible connection 
of KR mutation with host molecular immune response 
remains unknown. Therefore, we sought to investi-
gate the transcriptome response of COVID-19 patients 
infected with SARS-CoV-2 KR-mutant (KR-Patients) 
and wild-type SARS-CoV-2 (RG-Patients) compared 
to healthy controls without infection (Additional file  2: 
Table  S1 and Additional file  1: Fig. S1). As reported 
[13], the KR-patients displayed significantly higher viral 
load and more severe cases (defined by ICU admission) 
than RG-patients (Fig.  1A, B). By using RNA extracted 
from nasopharyngeal swabs, more than 30 million reads 
were generated for each sample from KR-patients, 
RG-patients, and Healthy controls by transcriptome 
sequencing. Among them, more than 85% of reads 
mapped to the human genome were thus used for tran-
scriptome profiling.

The differential gene expression analysis (adjusted 
p-value (q-value < 0.05) and log2-fold change (log2 
FC > 1.5)) was then performed comparing KR-patients with 
healthy controls (KR versus Healthy KR-v-H) RG-patients 
with healthy controls (RG versus Healthy RG-v-H), and 
KR-patients with RG-patients (KR versus RG KR-v-RG) 
(see Additional file 2: Tables S2-4 for all significant differen-
tially expressed (DE) genes). The principal component anal-
ysis (PCA) revealed that compared to RG-patients, most 
KR-patients tended to form a separate cluster (Fig.  1C), 
indicating the different attributes of DE genes in KR-
patients. The distance clustering based on the expression 
level of cytokine and interferon-stimulated (ISG) genes, the 
majority of the KR-patients grouped in a cluster while the 
RG-patient and healthy control samples were more scat-
tered (Fig. 1D). We identified a markedly higher number of 
DE genes (DE genes = 2082) in KR-patients (KR-vs-H) than 
that in RG-patients (DE genes = 370, RG-vs-H), suggesting 
that KR-mutant SARS-CoV-2 infection profoundly per-
turbed transcriptome of COVID-19 patients (Fig.  1E and 
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Additional file 2: Table S2-4). Noteworthy, the COVID-19 
patient cohorts used in this study are from the first wave 
of the pandemic before vaccination and hence free from 
any interference due to vaccine response. By direct com-
parison of KR-patients with RG-patients (KR versus RG), 
we also found a higher number of up-regulated DE genes 
(up = 2338) that overlapped with DE genes from compari-
son of KR-patients with healthy controls (Additional file 1: 
Fig. S2A, B). We found a robust overexpression of numer-
ous genes including interferons, cytokine, and immune-
related genes in KR-patients (Fig. 1F).

Pathway analysis reveals hyper‑immune response 
in KR‑patients
Next, we compared all significantly up-regulated genes in 
KR-patients and RG-patients (Fig.  2A). The majority of 
up-regulated genes (181 out of 257) in RG-patients (RG-
vs-H) overlapped with the gene set from KR-patients 
(KR-vs-H). After co-normalization between samples, 
up-regulated genes showed significantly higher  log2 
fold change values in KR-patients than in RG-patients 
(Fig. 2B).

We then performed gene ontology (GO) and func-
tional pathway enrichment analysis on all significantly 
up-regulated genes in the KR-patients using ShinyGO 
[38]. A graphical representation of enriched biological 
process pathways for significantly up-regulated genes 
in the KR-patients group is shown in Fig.  2C. Pathway 
enrichment analysis showed an overrepresentation of 
biological processes associated with immune responses 
(Fig. 2C, Additional file 1: Fig. S2C, and Additional file 2: 
Table  S5). Indeed, the most enriched biological process 
pathways (based on FDR) are defense response, inflam-
matory response, response to external stimulus, immune 
response, immune system process, and different immune 
cell activation and migration (Fig. 2C). Furthermore, we 
performed a comparative gene ontology (GO) enrich-
ment analysis using all significant DE genes (up- and 
down-regulated) in KR-patients (KR-vs-H), RG-patients 

(RG-vs-H), and KR versus RG patients. We observed that 
all enriched biological processes related to inflamma-
tory response and cytokines production/secretion were 
strongly up-regulated in KR-patients compared to the 
RG-patients group (Additional file 1: Fig S2C and Fig. S3), 
indicating a highly robust immune response in COVID-
19 patients infected with KR-mutant SARS-CoV-2.

By comparing the significant DE genes of KR-patients 
nasopharyngeal transcriptome with previously reported 
bronchoalveolar fluid (BALF) transcriptome from severe 
COVID-19 patients [16], we found 149 common DE 
genes (Additional file  1: Fig. S4A). Pathway enrichment 
analysis of these common DE genes (Additional file  1: 
Fig. S4B) exhibited overrepresentation of biological pro-
cesses related to chemokine signaling, immune response, 
and other cytokine mediated responses (Additional file 1: 
Fig. S4B).

Cytokines and interferon‑stimulated genes (ISGs) display 
heightened expression in KR‑patients
To understand the difference in cytokine profile between 
the KR-patients and the RG-patients, we listed signifi-
cant differentially expressed cytokine-related genes in 
both conditions. Expression levels of multiple cytokine-
related genes were more significantly up-regulated in the 
KR-patients than in the RG-patients groups (Fig.  2D). 
Among these up-regulated cytokine-related genes in KR-
patients, we predominantly found chemokines (CCL7, 
PPBP, CXCL11, CCL2, CCL3, CCL4, CCL20, CXCL3, 
CCL4L2, and CCL19), chemokine receptors (CCRL2, 
CXCR4, CCR1, and CCR3), interleukin (IL36G, IL1A, 
IL36A, IL17C, IL1F10, and IL12B), interleukin recep-
tors (IL36RN, IL18R1, IL1R1, IL1R2, IL22RA2, IL7R, 
and IL2RG), tumor necrosis factor (TNFSF8, TNFSF14, 
TNFSF15, and TNF), and colony-stimulating factor 
(CSF1) (Fig.  2D). Some of these cytokine-related genes 
were also previously reported in patients with severe 
COVID-19 [16, 39, 40] (Additional file 1: Fig. S4C). Fur-
thermore, we observed high-level up-regulation of CCL2 

(See figure on next page.)
Fig. 1 Transcriptome analysis of COVID-19 patients infected with KR-mutant and wild-type SARS-CoV-2. A Boxplot showing viral copy numbers 
(log10 transformed) of RG-patients and KR-patients (two-tailed t-test, KR-patients versus RG-patients, p-value < 0.0001 (****)). The copy numbers 
were calculated using standard curve from Ct values (RT-qPCR) of the N1 primer pairs after normalization with RNase P Ct values. Extracted 
RNA (by Direct-Zol kit, Zymo Research) was subjected to RT-qPCR using one-step TaqPath kit (Applied Biosystems) and nucleocapsid gene (N1) 
and RNAseP primers. B Plot showing the number of mild and severe cases in the RG and KR COVID-19 patient cohorts (severe = ICU/deceased 
and mild = not admitted to ICU). C PCA on transcriptome of nasopharyngeal samples from Healthy control, KR-Patients, and RG-Patients. PCA 
plot is based on all differentially expressed (DE) genes and autoscaling of data was used. D Tree shows hierarchical clustering between samples 
(Healthy control, KR-Patients, and RG-Patients) based on the expression level of cytokine and interferon stimulated (ISG) genes. The sample 
names are colored according to the group. The majority of KR-patients samples clustered together as shown in shaded. E Volcano plot showing 
significant (adj p-value < 0.05 and log2 fold-change cutoff ≥ 1.5) differentially expressed (DE) genes comparing KR-Patients versus Healthy controls 
(KR-vs-H) and RG-Patients versus Healthy controls (RG-vs-H) as determined by the method EdgeR. Genes with significant up-regulation are shown 
in red and down-regulated are shown in blue. All other non-significant genes are shown in gray. F Heatmap shows normalized expression of top 
significantly differentially expressed genes in KR-patient versus Healthy controls (KR-vs-H) (adj p-value < 0.05 and log2 fold-change ≥ 1.5). KR-Patients 
(n = 39), RG-Patients (n = 39), and Healthy controls (n = 34). The sample names represent COVID-19 disease status (severe, mild, and healthy) as in B. 
The heatmap was generated by the visualization module in the ExpressAnalyst
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and CCL7 chemokines in KR-patients, which play a criti-
cal role in monocyte recruitment [41] and have shown to 
be linked with higher viral load [16].

We then compared interferon (IFN) responses between 
KR-patients and RG-patients. By overlapping significantly 
up-regulated genes in the KR-patients with a previously 
reported list of 628 ISGs [42], we found 44 ISGs in the 
up-regulated KR-patients list (Additional file 1: Fig. S4D). 
Notably, the majority of these ISGs belong to a previously 
recognized [42] cluster of inflammation regulators (Addi-
tional file 1: Fig. S4E), which is consistent with a report 
of highly expressed ISGs in BALF samples from severe 
COVID-19 patients [16] (Additional file 1: Fig. S4F). We 
observed significantly elevated expression of these ISGs 
in KR-patients than in RG-patients (Additional file 1: Fig. 
S4G), indicating a potent IFN response. This robust IFN 
response of inflammation-related ISGs may be linked to 
immunopathogenesis in the KR-patients.

KR‑mutant alone is capable of enhancing the expression 
of immune response genes
To understand whether KR-mutation is directly linked 
with the observed hyper-immune response, we utilized 
a hybrid alphavirus-SARS-CoV-2 (Ha-CoV-2) virus-like 
particle (VLP) approach [34]. We performed comparative 
analysis using wild-type (WT) VLP containing reference 
sequences of all four structural proteins (S, M, N, and E) 
and KR-mutant (KR) VLP with two mutations R203K/
G204R in the nucleocapsid protein. Two additional con-
trols, D614G-KR (containing both R203K/G204R and 
spike D614G mutations) and D614G (only spike D614G 
mutation), were also included (Additional file 1: Fig. S5). 
The spike mutation D614G was used as a control because 
it was shown to be linked with high infectivity and viral 
load [43, 44]. These VLPs were incubated with HEK293T 
cell lines (stably expressing ACE2 and TMPRSS2) to 
test their infectivity through the expression level of a 
luciferase reporter gene (Additional file  1: Fig. S5 and 
Fig.  3A). We observed that KR VLP alone or combined 
with D614G (D614G-KR) displayed enhanced infectivity 
compared to WT VLP (Fig. 3A).

By transcriptome analysis of these VLPs incubated 
cells, we identified 884, 802, 668, and 739 significant dif-
ferentially expressed (DE) genes (adjusted p-value < 0.05 

and log2 fold-change ≥ 1.5) in the KR, D614G, D614G-
KR, and WT SARS-CoV-2 VLP incubated cells, respec-
tively, (Additional file  2: Table  S6-9). The transcriptome 
profiles of SARS-CoV-2 VLPs incubated cells display 
a distinct pattern from the control (not infected cells) 
(Fig. 3B). Like the KR-patient samples, we found a robust 
overexpression of defense and immune response-related 
genes, including cytokines and ISGs, in the KR VLP 
incubated cells (Fig.  3C–D) that overlapped with DE 
genes from KR-patients (Additional file  1: Fig. S6A). By 
comparing all significant DE genes between KR, D614G, 
D614G-KR, and WT, we found 44 common DE genes 
between KR, D614G-KR, and WT conditions (Additional 
file 1: Fig. S6B). The majority of these showed high-level 
up-regulation in KR VLP incubated cells (Additional 
file 1: Fig. S6C). Pathway enrichment analysis of the up-
regulated genes in KR (Additional file 1: Fig. S6C) exhib-
ited an overrepresentation of biological processes such as 
interferon signaling, defense response, and response to 
the virus (Additional file 1: Fig. S6D and Additional file 2: 
Table S10). These results suggest that KR mutant is asso-
ciated with enhanced expression of immune and inflam-
matory response genes.

We also tested the impact on host cell transcriptome 
by only overexpressing the N gene (with and without 
203K/204R mutations). We identified 83 and 67 dif-
ferentially expressed genes (adjusted p-value < 0.05 and 
fold-change cutoff ≥ 1) in the N-KR mutant and N-wild-
type transfected HEK293T cells, respectively (Additional 
file  1: Fig. S7A-B). Consistent with our previous report 
[13], we observed a high-level expression of immune 
response and interferon-related genes in the N-KR trans-
fected cells (Additional file  1: Fig. S7C). Most of these 
up-regulated genes overlapped with KR VLP transcrip-
tome data (Additional file 1: Fig. S7D). Similar to KR VLP 
cells, all up-regulated genes in the N-KR transfected cells 
were enriched in pathways related to antiviral immune 
response (Additional file 1: Fig. S7E).

Proteomic profiling shows enhanced expression 
of immune response proteins in KR‑VLP incubated cells
We next investigated the impact of KR at the protein 
level by comparative proteomic profiling of SARS-CoV-2 
VLP incubated cells containing KR, D614G, D614G-KR 

Fig. 2 Hyper-expression of immune response genes including cytokines in KR-Patients. A Venn diagram shows the number of all up-regulated 
genes (adj p-value < 0.05) between KR-patients and RG-patients. B Violin plot shows log2 fold-change values of all significantly (adj p-value < 0.05) 
up-regulated genes in KR-patients. DE genes are highly up-regulated in KR-patients compared to RG-patients. p-values were calculated using 
unpaired two-tailed t-test, ****P =  < 0.0001. C Dot plot showing GO-enrichment analysis (top 30 GO-Biological Processes BP enriched pathways 
are shown) for significantly up-regulated genes in KR-patients (adj p-value < 0.05 and log2 fold-change ≥ 2). The FDR is based on nominal p-value 
from the hypergeometric test. Fold Enrichment corresponds to the percentage of genes in the pathway list, divided by the corresponding 
percentage in the background. GO term analysis was performed by ShinyGO (version 0.074). D Heatmap of significantly differentially expressed 
cytokine-related genes. KR-Patients (n = 39), RG-Patients (n = 39), and Healthy controls (n = 34). The sample names show COVID-19 disease status 
(Severe = ICU/Deceased, Mild = Not admitted to ICU, and Healthy)

(See figure on next page.)
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mutations, and WT (Wuhan genotype). We identified 
around 6000 total proteins across all replicates (n = 4) in 
all samples (Additional file 1: Fig. S8). Principal compo-
nent analysis showed that biological replicates clustered 

together in all samples, and VLP incubated samples were 
clearly separated from the control (not treated) samples 
(Fig. 4A). Notably, the KR and D614G-KR incubated sam-
ples clustered more closely than WT and D614G samples 
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(Fig. 4A), indicating similarity between KR and D614G-
KR based on common KR mutations. The proteome 
changes in KR, D614G-KR, and D614G were quanti-
fied by comparing them with cells incubated with WT 
VLP (see Additional file 2: Table S11 for all differentially 
expressed proteins in all conditions). The KR and D614G-
KR samples displayed a comparable pattern of proteome 
changes (Fig. 4B, C). The common up-regulated proteins 
related to immune response are highlighted in Fig. 4B, C. 
We catalogued significantly (adj p-value < 0.05 and log2 
ratio >  = 1) up-regulated (KR = 106, D614G-KR = 124, 
and D614G = 29) and down-regulated proteins (KR = 12, 
D614G-KR = 21, and D614G = 8) (Fig.  4D, E and Addi-
tional file 2: Table S11).

Among the group of significantly up-regulated pro-
teins, 84 are shared between KR and D614G-KR samples 
(Fig. 4E). Similar to transcriptomic data, the majority of 
these significantly up-regulated proteins (Fig. 4E) include 
most typical ISGs such as ISG15/20, IFIT1/2/3/5/M3, 
IFI16/44, OAS3, and MX1, as well as interferon regulated 
transcription factors STAT1/2, IRF6, and IRF7 (Fig.  4E 
and Additional file 1: Fig. S9). Gene ontology enrichment 
analysis of the common significantly up-regulated pro-
teins revealed highly enriched biological processes (bp) 
related to immune response (Fig. 4F and Additional file 2: 
Table  S12). The top enriched terms include “response 
to virus,” “defense response,” “type 1 interferon signal-
ing”, “cellular response to type 1 interferon”, and “innate 
immune response” (Fig.  4F). All enriched immune 
response-related pathways clustered together, indicat-
ing many shared proteins (Additional file  1: Fig. S10). 
Further, GO term analysis of the shared genes between 
KR transcriptome and proteome data (Additional file  1: 
Fig. S11A) revealed activation of interconnected biologi-
cal processes that are predominantly enriched in innate 
immune response, defense response, interferon signal-
ing, and cytokine response (Additional file 1: Fig. S11B). 
By comparing the enriched (GO terms) pathways from 
KR transcriptome and KR proteome, we observed that 

majority of the KR transcriptome pathways overlapped 
with proteome data (Additional file 1: Fig. S11C).

KR mutation leads to enhance cytokines response in VLP 
incubated cells
Next, we investigated and compared the level of proinflam-
matory cytokines between KR-VLP and WT-VLP incubated 
cell lysates. We found that KR-VLP cells display significantly 
higher concentrations of proinflammatory cytokines (IFN 
Gamma, IL-8, IL-6, and IL-1) than control and the WT-
VLP incubated cells (Additional file 1: Fig. S12). These find-
ings further confirmed the activation of similar pathways 
and cellular events at both the gene and protein levels upon 
incubation with KR-mutant SARS-CoV-2 VLP.

KR‑patients display elevated neutrophil‑to‑lymphocyte 
ratio (NLR) predicted by transcriptome data
Given the enhanced level of cytokines in both KR-patients 
and KR-VLP incubated cells, we sought to estimate the com-
position of immune cells in the patient’s nasopharyngeal tran-
scriptome data by CIBERSORT (a computational pipeline 
able to predict and quantify immune cell composition from 
bulk transcriptomic data) [33]. Using transcriptome data, 
we predicted the proportion of different immune cell types 
in healthy controls, RG-patients, and KR-patients (Fig.  5A 
and Additional file  1: Fig. S13). We found that KR-patients 
showed significantly higher levels of neutrophils than the 
RG-patients (Fig. 5B and Additional file 1: Fig. S13). Recent 
reports highlighted the association of neutrophil-to-lympho-
cyte (NLR) ratio with COVID-19 disease severity and mor-
tality [45, 46]. In our analysis, we observed notably higher 
NLR in KR-patients than RG-patients (Fig. 5C and Additional 
file  1: Fig. S13), further indicating the link of KR-mutation 
with hyper-inflammatory responses.

These findings are consistent with the reported higher 
neutrophils and NLR in BALF samples from severe 
COVID-19 patients [16], thus supporting the usefulness 
of our nasopharyngeal transcriptome data in assessing the 
host immune response and cell composition.

Fig. 4 KR-incubated cells display enhanced expression of interferon-stimulated and immune processes related proteins. A PCA on proteomic 
data (obtained by data independent acquisition (DIA) mass spectrometry) of control HEK293T cell lines and incubated with four SARS-CoV-2 VLP 
variants (WT, KR, D614G, and D614G-KR). PCA plot is generated by Spectronaut software version 15) and is based on all differentially expressed 
(DE) proteins (n = 4 independent experiments). B–C Volcano plot displaying differentially expressed proteins. B Comparing KR VLP incubated 
cells with WT (KR versus WT). C Comparing D614G-KR VLP incubated cells with WT (D614G-KR versus WT). Proteins with statistically significant 
(adjusted p-value ≤ 0.05) differences between KR/D614G-KR mutant and WT conditions are shown in red (candidates) and all other non-significant 
proteins (non-candidates) are shown in gray. The names of top differentially expressed proteins common between KR and D614G-KR conditions 
are shown and highlighted in blue (selected). D Venn diagram shows the overlap of all significantly (adj p-value < 0.05 and Log2 ratio ≥ 1) 
down-regulated proteins between KR, D614G-KR, and D614G SARS-CoV-2 VLP incubated cells. E Venn diagram shows the overlap of all significantly 
(adj p-value < 0.05 and Log2 ratio ≥ 1) up-regulated proteins between KR, D614G-KR, and D614G SARS-CoV-2 VLP-infected cells. F Plot showing 
GO-enrichment analysis (top 30 GO-Biological Processes (BP) enriched pathways are shown) for significantly up-regulated proteins common 
between KR and D614G-KR conditions (adj p-value < 0.05 and log2 fold-change ≥ 1). GO term analysis was performed by ShinyGO (version 0.074)

(See figure on next page.)
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Discussion
Despite the considerable increase in genomic monitoring 
of global COVID-19 cases, it remains challenging to link 
new SARS-CoV-2 mutations with its pathogenesis and 
other clinical implications due to the scarcity of COVID-
19 patient metadata in public databases. Recently, we 
found that two consecutive amino acid substitutions 
(R203K/G204R) in the nucleocapsid (N) protein are 
linked with increased viral load and severity in COVID-
19 patients in Saudi Arabia during the early wave of the 
pandemic [13]. The current study performed a com-
parative transcriptomic analysis of COVID-19 patients 
infected with KR-mutant (KR-patients) and wild-type 
SARS-CoV-2 (RG-patients). We observed enhanced 
expression of immune response genes in KR-patients. By 
further experimental characterization in VLP incubated 
cells, we verified the link of KR mutation with enhanced 
inflammatory responses.

The molecular mechanism underlying the ability of 
the KR mutation to contribute to exacerbated host 
immune responses remains unclear. The KR mutation 
is present within a conserved serine–arginine (SR) rich 
linker region (LKR). This SR domain is critical for phos-
phorylation-dependent regulation of N protein func-
tional activities during SARS-CoV-2 infection cycle [47, 
48]. The changes of the original “RGT” to the “KRT” 
motif and the specific enhancement of phosphoryla-
tion at the adjacent serine 206 site [13] in the mutant 
N protein might play a role. Overexpression of only the 
N gene KR mutant in cell culture was able to enhance 
the expression level of interferons and other immune 
response genes. The high dose of N protein has been 
shown to promote type I interferon (IFN-I) and inflam-
matory cytokines expression [49]. In this context, the 
reported higher viral load [13] and higher infectivity 
[22] of KR mutant could result in an increased quan-
tity of phosphorylated N protein that may be linked 
with heightened immune responses. The KR substitu-
tions within N could be linked with enhanced replica-
tion or transcription, which may result in higher viral 
load and hyper-inflammatory responses. Notably, few of 
the RG patients display similar profiles to KR patients, 
which could be due to underlying severe disease con-
ditions. Moreover, the increased interaction of N KR-
mutant with different host proteins that are associated 
with signaling pathways and viral processes might be 

involved [13]. Another study reported NLRP3 inflam-
masome activation and induction of hyper-inflamma-
tory response mediated by N protein [50]. The potential 
link of N protein KR mutations with inflammasome 
activation needs further investigation. Recently, SARS-
CoV-2 N protein was shown to bind cell surface and 
modulates innate and adaptive immune responses. The 
ability of SARS-CoV-2 nucleocapsid protein to trans-
fer to neighboring non-infected cell surfaces [51] could 
potentially augment KR mutant activity.

While multiple reports have provided an ample 
understanding of the immune transcriptomics in 
COVID-19 patients [52–59], little is known about the 
potential differences in host immune responses to vari-
ant forms of SARS-CoV-2 due to the lack of variant 
information in those studies. Transcriptomic studies 
reported dissimilar immune phenotypes of COVID-19 
patient cohorts. Some indicated impaired interferon 
(IFN) response with decreased IFN-α/β expression 
[60–62] while others showed enhanced type I IFN 
and pro-inflammatory reactions in severe COVID-19 
patients [16, 63, 64]. Among other factors, distinct viral 
genotypes could also contribute to the discrepancies in 
immune responses of COVID-19 patient cohorts. The 
host immune response in viral infection is like a two-
edged sword; on the one hand, the healthy immune 
response is essential for fighting pathogens but height-
ened responses can cause detrimental outcomes [65] 
such as respiratory failure, tissue injury, and death due 
to excessive discharge of pro-inflammatory cytokines 
[39, 66, 67] known as “cytokine storm”. We found sig-
nificantly elevated levels of pro-inflammatory cytokines 
and hyper-expression of various interferon-stimulated 
and cytokine genes in KR mutant background (Fig. 5D). 
However, the non-availability of blood leukocytes or 
BALF samples is the main limitation because the naso-
pharyngeal swabs transcriptome may not precisely rep-
resent the complete immune response.

Conclusions
Together, the higher NLR and hyper-expression of pro-
inflammatory cytokines and ISGs in KR patients pos-
sibly explain the connection of cytokine storms with 
observed disease severity and excessive deaths (in this 
patient cohorts) during the early peak of the pandemic 
in the absence of herd immunity. The identified link of N 

(See figure on next page.)
Fig. 5 Immune cell composition predicted from transcriptome data and schematic summary. A The average proportion of immune cell types 
predicted from transcriptome data. B The proportion of neutrophils predicted from transcriptome data. Asterisks show significant difference 
(****p-values < 0.0001, paired two-sided t-test KR-vs-RG). C The neutrophil to lymphocyte ratio (NLR) predicted from transcriptome data. The 
proportion of lymphocyte corresponds to the sum of proportions of T cells, B cells, and NK cells. The p-values (** < 0.0062), calculated by paired 
two-sided t-test, show significant difference between KR and RG samples. D Schematic representation summarizing the main findings. The KR 
mutant SARS-CoV-2 infected patients display high magnitude of immune response
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protein KR mutation with heightened host inflammatory 
and cytokine responses may contribute to understanding 
SARS-CoV-2 pathogenesis and developing efficient ther-
apeutics and vaccines with broader protection against 
new emerging SARS-CoV-2 variants and other future 
human coronaviruses.
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