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Abstract 

Background  Prioritizing genes that underlie complex brain disorders poses a considerable challenge. Despite previ‑
ous studies have found that they shared symptoms and heterogeneity, it remained difficult to systematically identify 
the risk genes associated with them.

Methods  By using the CAGE (Cap Analysis of Gene Expression) read alignment files for 439 human cell and tis‑
sue types (including primary cells, tissues and cell lines) from FANTOM5 project, we predicted enhancer-promoter 
interactions (EPIs) of 439 cell and tissue types in human, and examined their reliability. Then we evaluated the genetic 
heritability of 17 diverse brain disorders and behavioral-cognitive phenotypes in each neural cell type, brain region, 
and developmental stage. Furthermore, we prioritized genes associated with brain disorders and phenotypes 
by leveraging the EPIs in each neural cell and tissue type, and analyzed their pleiotropy and functionality for different 
categories of disorders and phenotypes. Finally, we characterized the spatiotemporal expression dynamics of these 
associated genes in cells and tissues.

Results  We found that identified EPIs showed activity specificity and network aggregation in cell and tissue types, 
and enriched TF binding in neural cells played key roles in synaptic plasticity and nerve cell development, i.e., EGR1 
and SOX family. We also discovered that most neurological disorders exhibit heritability enrichment in neural stem 
cells and astrocytes, while psychiatric disorders and behavioral-cognitive phenotypes exhibit enrichment in neu‑
rons. Furthermore, our identified genes recapitulated well-known risk genes, which exhibited widespread pleiotropy 
between psychiatric disorders and behavioral-cognitive phenotypes (i.e., FOXP2), and indicated expression specificity 
in neural cell types, brain regions, and developmental stages associated with disorders and phenotypes. Importantly, 
we showed the potential associations of brain disorders with brain regions and developmental stages that have 
not been well studied.

Conclusions  Overall, our study characterized the gene-enhancer regulatory networks and genetic mechanisms 
in the human neural cells and tissues, and illustrated the value of reanalysis of publicly available genomic datasets.
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Background
Cell-type-specific variations in the epigenetic regulation 
of gene expression are critical to the development and 
maintenance of a healthy human brain. It has been shown 
that, instead of protein-coding sequence, GWAS variants 
are enriched in the cis-regulatory elements (CREs; e.g., 
enhancers and promoters) of cell types that are relevant 
to the pathophysiological basis of a given trait [1]. The 
risk genes are assumed to have cell-type-specific effects 
for both neural and non-neural cell types [2, 3]. In addi-
tion, recent single-cell studies indicated transcriptomic 
and epigenomic changes at cell-type-specific level in 
several brain disorders [4–7]. Thus, studying the regula-
tory networks of CREs (i.e., enhancer-promoter interac-
tions (EPIs)) at the cell-type-specific level is an important 
means to further understand both fundamental brain 
biology and the genetic basis of brain disorders and 
behavioral-cognitive phenotypes.

Despite its importance, the association between CREs 
as well as EPIs in human brain and their dysregulation in 
brain disorders are still poorly understood. Even when 
available, most previous studies have generally focused 
on a few cell types (e.g., neurons, astrocytes and micro-
glia) or brain regions (e.g., dorsolateral prefrontal cortex 
and hippocampus) restricted in specific developmen-
tal stages (e.g., early fetal and adult period) [5, 8–14]. 
Most of these studies leveraged chromatin accessibility 
(DNase-seq and/or ATAC-seq) data and histone mark 
ChIP-seq data to define a collection of active CREs in 
human brain, followed by typically predicting the EPIs 
using statistical associations (i.e., activity correlation) 
[15–17] or more sophisticated computational approaches 
(e.g., machine learning-based methods) [18–21]. How-
ever, DNase-seq or ATAC-seq technologies can only 
detect open chromatin regions, a small fraction of which 
could function as active enhancers. Although ChIP-seq 
technologies can systematically profile histone modifica-
tions, it is still challenging to accurately distinguish active 
enhancers from poised ones from the histone modifica-
tion profiles. By contrast, the CAGE (Cap Analysis of 
Gene Expression) technology can accurately detect the 
5′ ends of capped RNAs, which represent transcriptional 
activity of genes. More importantly, the active enhancer 
regions can also generate capped RNAs (i.e., enhancer 
RNAs) [22, 23], which can be also detected by CAGE 
technology. This property has been successfully used in 
identifying active enhancers in different cell and tissue 
types [24, 25].

FANTOM5 project has generated CAGE profiles from 
hundreds of diverse human samples, including organs, 
primary cell types, and cancer cell lines [26]. Among 
them, we noticed that a wealth of samples from human 
brain have been profiled, covering major neural cell types 

and brain regions from different developmental stages. 
These datasets make it possible to systematically quan-
tify the activity of CREs and reconstruct EPIs in human 
brain. However, there are currently limited efforts to 
leverage the rich data in human brain from FANTOM5 
project to analyze the activity specificity of CREs and 
network architecture of EPIs in human brain, and further 
elucidate the risk genes of brain disorders.

To explore these ideas, here we first reconstruct active 
interactions between enhancers and their target promot-
ers in 439 different cell and tissue types from the FAN-
TOM5 project [27] (Fig.  1a). We then systematically 
analyze the tissue and regional specificity of the activity 
and their networks of enhancers and promoters from 
neural cell and tissue types (Fig.  1b). Furthermore, we 
prioritize a set of critical genes associated with brain dis-
orders and behavioral-cognitive phenotypes in a cell- and 
region-specific manner, expanding our understanding 
on the functionality of some brain regions that have not 
been well studied (Fig. 1c). Our analyses reveal how the 
unbiased data-driven analysis of publicly available data 
can be used to infer the EPIs in human brain and nomi-
nate the genes with substantial risk potential of brain dis-
orders in diverse neural cell types and brain regions in 
different developmental stages.

Methods
Collection of CAGE datasets and categorization of samples
We downloaded the CAGE read alignment files for 958 
human cell and tissue types (including primary cells, tis-
sues, and cell lines) from FANTOM5 project (see https://​
fantom.​gsc.​riken.​jp/5/​dataf​iles/​repro​cessed/​hg38_​v9/​
basic) [27]. The annotations of these samples (e.g., biosa-
mple type, age, life stage and sex) were also obtained 
from FANTOM5 project (Additional file 2: Table S1). All 
the 958 samples were annotated as 439 different cell and 
tissue types (i.e., states) by aggregating replicates, and 
then categorized into 34 cell and tissue groups (Addi-
tional file  2: Table  S1). Among all these samples, there 
are 93 samples covering 54 different cell and tissue types 
from brain.

All genomic coordinates in this study were based on 
the human reference genome hg38. The genomic coordi-
nates that were originally provided in hg19 by their pub-
lications or resource were converted to hg38 using the 
liftover tool of the UCSC Genome Browser [28].

Data processing and reconstruction of EPIs
For each sample from FANTOM5 project, we com-
puted the CAGE TPM value (reads coverage per mil-
lion mapped reads) at the flanking regions (from 500 bp 
upstream to 500  bp downstream) of the TSS of each 
protein-coding gene from GENCODEv38 [29]. We then 

https://fantom.gsc.riken.jp/5/datafiles/reprocessed/hg38_v9/basic
https://fantom.gsc.riken.jp/5/datafiles/reprocessed/hg38_v9/basic
https://fantom.gsc.riken.jp/5/datafiles/reprocessed/hg38_v9/basic
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removed the genes located in ChrY and ChrM. Finally, 
we obtained a list of 19,878 promoters. In each sample, 
we then determined a set of promoters that are active 
and in usage by thresholding the TPM value larger than 
1. We also downloaded the processed CAGE-derived 
enhancers and their activity signal in each sample from 
FANTOM5 website (see https://​fantom.​gsc.​riken.​jp/5/​
dataf​iles/​repro​cessed/​hg38_​v9/​extra/​enhan​cer/). In total, 
we obtained a list of 63,285 enhancers. The usage infor-
mation of the enhancers in each sample is also obtained 
from FANTOM5 website. As expected, the enhancers 
and promoters exhibit strong cell and tissue specificity 
(Gini index > 0.8) (Additional file 1: Fig. S1).

We developed a simple and multi-step pipeline to pre-
dict and quantify the EPIs in each sample and in each cell 
and tissue type. Here we briefly describe the procedures 
as follows:

(1) We applied a LASSO regression model that could 
predict its activity signal by using its all candidate reg-
ulating enhancers within 1 Mb of it, as in Cao et al. 
[21]. Based on the results of the LASSO regression 
model, the subset of enhancers of which the CAGE 

activity positively correlates with the CAGE activ-
ity of putative target promoters (i.e., based on the β 
coefficients in the LASSO regression) were retained, 
indicating that these enhancers might have potential 
regulating association with their target promoter.
(2) We filtered the candidate enhancers for each pro-
moter based on their pairwise activity correlation 
(Spearman correlation coefficient), asking that the 
observed activity correlation should be higher than 
the random enhancer-promoter pairs at an empiri-
cal false discovery rate (FDR) of 5%. For each pro-
moter, the random enhancer-promoter pairs were 
constructed by randomly selecting 10,000 enhanc-
ers located in all the other chromosomes where the 
promoter was from. This step can further minimize 
the false positive in the candidate enhancers from the 
first step (Additional file 1: Fig. S2).
(3) We then reconstructed EPIs for each sample based 
on the enhancer and promoter usage in the sample. 
For each candidate EPI retained from the last step, it 
could be defined as active and inactive in the sample 
based on whether both of its enhancer and promoter 
were determined as in usage in that sample.

Fig. 1  Outline of the study. a Schematic showing the method for reconstructing EPIs in each cell and tissue type. In total, we included 958 
human samples from FANTOM5 project (Table S1), which can be further grouped into 439 different cell and tissue types (Table S2). b Analysis 
of the reconstructed EPIs showing their tissue specificity (i.e., comparing between brain and non-brain samples) and developmental stage (i.e., 
comparing between fetal, newborn and adult samples) specificity. c The EPIs reconstructed in the neural cell and tissue types were used to prioritize 
the associated genes of 17 different neurological disorders, psychiatric disorders, and behavioral-cognitive phenotypes by integrating with their 
GWAS summary statistics data

https://fantom.gsc.riken.jp/5/datafiles/reprocessed/hg38_v9/extra/enhancer/
https://fantom.gsc.riken.jp/5/datafiles/reprocessed/hg38_v9/extra/enhancer/
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(4) For each sample, we applied the Activity-By-Con-
tact (ABC) model [30] to quantify the EPIs recon-
structed in the third step. Briefly, we computed the 
ABC scores for each EPI by combining the enhancer 
activity, the promoter activity, and the distance 
between the enhancer and promoter, as well as the 
background ABC scores for the promoter (Addi-
tional file 1: Fig. S3).
(5) The active EPIs from the replicate samples were 
aggregated to define a set of active EPIs for each cell 
and tissue type. For the EPIs that were determined as 
active in more than one replicate sample, we assigned 
the maximal ABC score to the corresponding EPI 
when aggregating for each cell and tissue type.

Validation of CAGE‑derived enhancers as active enhancers
We evaluated the enrichment of the CAGE-derived 
enhancers with the active and poised enhancers defined 
using histone mark ChIP-seq and ATAC-seq/scATAC-
seq technologies. Notably, we used both brain-specific 
datasets and whole-body datasets to estimate the enrich-
ment in the brain samples and all samples from FAN-
TOM5 project, respectively.

For the datasets generated by histone mark ChIP-seq 
technologies, the whole-body datasets were obtained 
from EpiMap (see https://​perso​nal.​broad​insti​tute.​org/​
cboix/​epimap/​Chrom​HMM/​obser​ved_​aux_​18_​hg38/​
CALLS/) [31], among which the brain samples were used 
in the brain-specific analysis. In the datasets from EpiMap 
[31], the annotations EnhG1 (state_7), EnhG2 (state_8), 
EnhA1 (state_9), EnhA2 (state_10), EnhWk (state_11), 
and EnhBiv (state_15) were regarded as the background, 
while the two annotations among them, EnhA1 (state_9) 
and EnhA2 (state_10) were regarded as active enhancers.

We intersected the genomic coordinates of the CAGE-
derived enhancers from FANTOM5 project with the 
enhancer regions defined by histone mark ChIP-seq, and 
then estimated the enrichment of CAGE-derived enhanc-
ers from FANTOM5 project and the active enhancers using 
hypergeometric test. We also calculated an OR score as.

where CAGEact is the number of active enhancers in 
a specific cell/tissue type from FANTOM5 project, 
CAGEbgd is the number of total enhancers from FAN-
TOM5 project, ChIPact is the number of active enhancers 
from EpiMap, and ChIPbgd is the number of total enhanc-
ers from EpiMap.

For the datasets generated by ATAC-seq/scATAC-seq 
technologies, the whole-body datasets were obtained 
from CATlas (see http://​yed.​ucsd.​edu:​8787) [32], 

OR =
CAGEact/CAGEbgd

ChIPact/ChIPbgd

while the brain-specific datasets were obtained from 
Markenscoff-Papadimitriou et  al. [33]. In the study by 
Markenscoff-Papadimitriou et  al. [33], the open chro-
matin regions were regarded as the background, while 
the predicted regulatory elements were regarded as 
active enhancers. In the datasets from CATlas [32], the 
total cCREs were regarded as the background, while the 
gene-linked cCREs were regarded as active enhancers in 
human body. We intersected the genomic coordinates of 
the CAGE-derived enhancers from FANTOM5 project 
with the cCREs or open chromatin regions defined by 
ATAC-seq/scATAC-seq, and then estimated the enrich-
ment of CAGE-derived enhancers from FANTOM5 pro-
ject and the active enhancers using hypergeometric test. 
We also calculated an odds ratio (OR) score as.

where CAGEact is the number of active enhancers in 
a specific cell/tissue type from FANTOM5 project, 
CAGEbgd is the number of total enhancers from FAN-
TOM5 project, ATAC​act is the number of active enhanc-
ers from ATAC-seq/scATAC-seq, and ATAC​bgd is the 
number of total cCREs or open chromatin regions from 
ATAC-seq/scATAC-seq.

cis‑QTL enrichment analysis
We estimated the cis-QTL (including cis-expression QTL 
and cis-splicing QTL) enrichment in the CREs by calcu-
lating an OR score using the numbers of real cis-QTL 
variants and control variants located in the CREs com-
pared to those in the baseline regions as.

where a is the number of cis-QTL variants in the CREs; 
b is the number of control variants in the CREs; c is the 
number of cis-QTL variants in the baseline region; and d 
is the number of control variants in the baseline region.

The cis-QTL variants were downloaded from GTEx 
v8 (see https://​gtexp​ortal.​org/​home/​datas​ets#​files​etFil​
esDiv​14) [34]. The baseline regions are the union of all 
the functional and putative functional regions in the 
human genome, including coding regions, untranslated 
regions, noncoding RNA genes, open chromatin regions, 
TF binding sites, active and repressed histone peaks 
from multiple tissue and cell types, and evolutionary 
conserved regions [35]. The set of control variants was 
generated with the same number and same MAF distri-
bution as the real QTL variants, and this procedure was 
repeated 30 times to calculate a standard deviation for 
the variant enrichment.

OR =
CAGEact/CAGEbgd

ATACact/ATACbgd

OR =
a/b

c/d

https://personal.broadinstitute.org/cboix/epimap/ChromHMM/observed_aux_18_hg38/CALLS/
https://personal.broadinstitute.org/cboix/epimap/ChromHMM/observed_aux_18_hg38/CALLS/
https://personal.broadinstitute.org/cboix/epimap/ChromHMM/observed_aux_18_hg38/CALLS/
http://yed.ucsd.edu:8787
https://gtexportal.org/home/datasets#filesetFilesDiv14
https://gtexportal.org/home/datasets#filesetFilesDiv14
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To minimize the bias effects from LD structure, we 
also estimated the enrichment using the fine-mapped cis-
eQTLs from GTEx v8 and observed a higher enrichment 
in the case of fine-mapped cis-eQTLs. We obtained fine-
mapped cis-eQTLs with a posterior probability > 0.8 from 
the three GTEx fine-mapping cis-eQTL catalogs (CAV-
IAR, CaVEMaN, and DAP-G; see https://​gtexp​ortal.​org/​
home/​datas​ets#​files​etFil​esDiv​15). Then, we applied the 
enrichment analysis pipeline as we did in the case of total 
cis-eQTLs on these fine-mapped cis-eQTLs.

Evaluation of the reconstructed EPIs
We assessed the reconstructed EPIs using two independ-
ent datasets, i.e., GTEx cis-eQTLs and pcHi-C data from 
the matched and related cell and tissue types (Additional 
file 2: Table S3). For the cis-eQTLs, we obtained the data-
sets from GTEx V8 (see https://​gtexp​ortal.​org/​home/​datas​
ets#​files​etFil​esDiv​14) [34]. We first intersected the genomic 
coordinates of the cis-eQTLs with the enhancer regions, 
and therefore the enhancers can be associated to their tar-
get promoters based on the target genes of cis-eQTLs pro-
vided by GTEx. Notably, for some tissue types in GTEx, 
their cis-eQTLs were inferred using very limited number 
of samples, which could result in significant incomplete-
ness for the predicted cis-eQTLs. Thus, we only included 
the tissue types with sample size larger than 500 in this 
analysis. For the pcHi-C datasets, we first downloaded the 
significant P-O interactions (i.e., interactions between pro-
moters and “other regions”) from GSE86189 [36]. In the 
pcHi-C dataset, the majority of the “other regions” linked 
to promoters are assumed to be putative enhancer regions. 
We then intersected the genomic coordinates of the “other 
regions” with the enhancer regions from FANTOM5 pro-
ject to associate the enhancers to their target promoters.

For each FANTOM5 cell/tissue type for which cis-
eQTLs or pcHi-C data were available, we then computed 
the area under the precision-recall (AUPR) of our pre-
dicted EPIs using the two independent validation sets 
as true labels. Notably, only the enhancers within 1 Mb 
from the promoters and that were available in the valida-
tion sets for at least once were considered in this analysis. 
As comparison, we also computed the AUPRs for another 
three alternative approaches: (1) linking enhancers to the 
closest promoter; (2) linking enhancers to the promoter 
with the maximum activity correlation (Spearman corre-
lation coefficient); (3) randomly linking enhancers to the 
promoter within 1 Mb from it.

Hierarchical clustering of EPIs among cell and tissue types
We evaluated the similarity of the EPIs between the cell 
and tissue types by calculating the extended Jaccard 
index [37] of the two sets of edges (i.e., EPIs) from the 
two cell and tissue types as.

where a and b are the ABC-score-defined edge-weight 
vectors of the two sets of edges. We then used the dis-
tance matrix (i.e., 1 − f) to perform hierarchical clustering 
for all the cell and tissue types.

Estimation of expression specificity of genes
We estimated the expression specificity score of each gene 
by calculating the Shannon entropy based on the activity 
values of the promoter across all the samples, as in Cao et al. 
[21]. For a promoter i with expression level yij in sample j, 
the overall expression specificity score was calculated as.

where m is the total number of samples.

Identification of CAGE activity elevated and specific CREs 
in human brain
We applied DESeq2 [38] to detect enhancers and pro-
moters with elevated activity in brain versus other tis-
sues, and in a specific developmental stage versus the 
other developmental stages. Notably, we performed 
this analysis based on the CAGE count number of the 
enhancers and promoters. The enhancers and promoters 
which have an FDR < 0.05 and a fold change > 2 were con-
sidered as elevated ones. The enhancers regulating genes, 
promoters regulated by enhancers, and EPIs that are 
identified as active in > 50% samples in the corresponding 
cell and tissue type and in < 50% samples in all other cell 
and tissue types were regarded as tissue-specific ones.

Visualization of tissue‑specific EPIs
We first aggregated the EPIs from individual cell and tis-
sue types into a global network, consisting of enhancers 
(nodes), promoters (nodes), and interactions between 
them (edges). For better visualization, we then created a 
virtual node for each cell and tissue type, and connected 
the virtual nodes to all the real nodes (i.e., enhancers and 
promoters) that are specifically active in the correspond-
ing cell and tissue type using virtual edges (not shown in 
figure). Finally, the networks were arranged with perfuse 
force-directed layout. In the figure, we only presented the 
enhancer-promoter networks on Chr1. We visualized the 
networks using Cytoscape [39].

TF motif enrichment analysis
We used findMotifsGenome in HOMER [40] with 
default parameters to identify significantly (FDR < 0.05) 

f (a, b) =
ab

|a|2 + |b|2 − ab

S(i) = log2m+

m

j=1

[
yij
m
l=1 yil

log2
yij
m
l=1 yil

]

https://gtexportal.org/home/datasets#filesetFilesDiv15
https://gtexportal.org/home/datasets#filesetFilesDiv15
https://gtexportal.org/home/datasets#filesetFilesDiv14
https://gtexportal.org/home/datasets#filesetFilesDiv14
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enriched TF motif occurrence in the enhancer regions 
with specific activity patterns in human brain. Both pre-
viously known (JASPAR2020_CORE_vertebrates [41]) 
and de novo enriched TF motifs were considered in the 
prediction.

GWAS summary datasets of brain disorders 
and behavioral‑cognitive phenotypes
We collected a comprehensive set of GWAS summary 
statistics for 17 brain disorders and behavioral-cognitive 
phenotypes (Additional file  2: Table  S7). Most of these 
GWAS were available recently and based on meta-anal-
yses with large sample sizes; the average sample size is 
over 300,000 individuals.

Here we show the sample size for each of the GWAS 
summary datasets as follows:

•	 Neurological disorders. (1) Alzheimer’s disease (AD) 
[42]: 7428 cases and 429,961 controls; (2) amyo-
trophic lateral sclerosis (ALS) [43]: 12,577 cases and 
23,475 controls; (3) epilepsy [44]: 15,212 cases and 
29,677 controls; (4) multiple sclerosis (MS) [45]: 
47,429 cases and 68,374 controls; (5) Parkinson’s dis-
ease (PD) [46]: 37,700 cases and 1,400,000 controls.

•	 Psychiatric disorders. (1) Attention deficit hyperac-
tivity disorder (ADHD) [47]: 19,099 cases and 34,194 
controls; (2) anxiety [48]: 7016 cases and 14,754 
controls; (3) autism spectrum disorder (ASD) [49]: 
18,381 cases and 27,969 controls; (4) alcohol use dis-
order (AUD) [50]: 5408 cases and 121,604 controls; 
(5) bipolar disorder (BIP) [51]: 20,352 cases and 
31,538 controls; (6) obsessive–compulsive disorder 
(OCD) [52]: 2688 cases and 7037 controls; (7) schizo-
phrenia (SCZ) [53]: 54,418 cases and 78,818 controls; 
(8) Tourette’s syndrome (TS) [54]: 4819 cases and 
9488 controls.

•	 Behavioral-cognitive phenotypes. (1) Insomnia [55]: 
386,533 individuals; (2) intelligence [56]: 269,867 
individuals; (3) neuroticism [57]: 390,278 individuals; 
(4) risk behavior [58]: 975,353 individuals.

Heritability enrichment in the CREs in human brain
We applied partitioned LDSC [35] to estimate the herit-
ability enrichment in the CREs (i.e., enhancers and pro-
moters) that are active in each brain cell and tissue type. 
Briefly, LDSC regresses GWAS χ2 statistics on SNPs’ LD 
scores, which can reflect the degree to which each SNP is 
correlated with its surrounding SNPs [35, 59]. The parti-
tioned LDSC approach can estimate the relative enrich-
ment of heritability in specific genomic regions compared 
to the genomic background. The pre-calculated genome-
wide LD scores were obtained from LDSC (https://​data.​
broad​insti​tute.​org/​alkes​group/​LDSCO​RE/). The LD 

scores were calculated based on data from individuals of 
European ancestry from the 1000 Genomes Project [60]. 
We also removed the SNPs that were not annotated in 
HapMap3 [61] and those located in the major histocom-
patibility complex regions.

Predicting the genes associated with brain disorders 
and behavioral‑cognitive phenotypes based on EPIs
We applied our post-GWAS method nMAGMA [62] 
to aggregate the genetic signal from the related SNPs to 
their target genes. The SNPs located in the gene body 
and flanking (from 2  kb upstream to 2  kb downstream) 
regions were directly assigned to the corresponding gene. 
The SNPs located in the distal enhancers were assigned 
to their target genes based on the reconstructed EPIs. We 
performed these analyses separately for each of the 55 
cell and tissue types from human brain. Finally, we pre-
dicted a set of candidate significant genes (FDR < 0.05) 
associated with brain disorders and behavioral-cognitive 
phenotypes in each brain cell and tissue type.

The candidate associated genes were further filtered 
based on their expression specificity. Briefly, we first 
defined a set of relatively highly expressed genes for each 
sample requiring that their TPM > 1 and higher than 50% 
of the remaining genes in each sample. These relatively 
highly expressed genes from the replicate samples were 
aggregated to form a set of relatively highly expressed 
genes for each brain cell and tissue type. Finally, the 
associated genes for each brain cell and tissue type were 
defined by intersecting the candidate associated genes 
with these relatively highly expressed genes from the cor-
responding cell and tissue type.

Collection of risk genes of brain disorders
The known risk genes for the brain disorders were col-
lected from diverse resources as follows: (1) the risk genes 
of ADHD were collected from ADHDgene database 
(http://​adhd.​psych.​ac.​cn), followed by selecting those hav-
ing support by at least 60% of all the studies included in 
the database [63]; (2) the risk genes of ASD were down-
loaded from AutDB database (http://​autism.​minds​pec.​
org/​autdb) and combined with the risk genes from recent 
studies [64, 65]; (3) the risk genes of SCZ were obtained 
from SZGene database (http://​www.​szgene.​org/) and 
Wang et al. [6, 66]; (4) the risk genes of BIP were obtained 
from DisGeNet [67]; (5) the risk genes of MDD were 
downloaded from Polygenic pathways database (http://​
www.​polyg​enicp​athwa​ys.​co.​uk/​depre​ssion.​htm); (6) the 
risk genes of AD were obtained from ALzGene database 
(http://​www.​alzge​ne.​org) [68]; (7) the risk genes of PD 
were downloaded from PDGene database (http://​www.​
pdgene.​org) [69]. The complete list of these known risk 
genes can be found in Additional file 2: Table S9.

https://data.broadinstitute.org/alkesgroup/LDSCORE/
https://data.broadinstitute.org/alkesgroup/LDSCORE/
http://adhd.psych.ac.cn
http://autism.mindspec.org/autdb
http://autism.mindspec.org/autdb
http://www.szgene.org/
http://www.polygenicpathways.co.uk/depression.htm
http://www.polygenicpathways.co.uk/depression.htm
http://www.alzgene.org
http://www.pdgene.org
http://www.pdgene.org


Page 7 of 20Zhao et al. Genome Medicine           (2023) 15:56 	

Expression analysis of the associated genes
We assessed the expression levels of the genes associ-
ated with the brain disorders and behavioral-cognitive 
phenotypes. We leveraged both bulk and single-cell tran-
scriptomic data. For the single-cell data, we used the 
single-cell gene expression data in human brain from 
our STAB database [70]. Considering the sample num-
ber available in the database, we used datasets from 
two developmental time windows (i.e., 19–24 PCW, 
40–60  years) and three cell types (i.e., Astro, Neuron, 
OPC). In addition, we obtained the bulk gene expression 
data during human brain development from Zhu et  al. 
[71]. We defined a set of developmental time windows 
by merging the similar developmental periods as in Zhu 
et al. (Additional file 2: Table S12).

Results
Reconstruction of EPIs in diverse human cell and tissue 
types
Assigning enhancers to their target genes on a genome-
wide scale remains a difficult task. Although quite a few 
computational methods have been developed for predict-
ing EPIs [15–21], most of them need a wealth of func-
tional genomics data such as DNase-seq data, ATAC-seq, 
and/or histone mark ChIP-seq data. Here, we aim to use 
only CAGE activity of enhancers and promoters from 
the FANTOM5 datasets [27] (Additional file 1: Fig. S1). 
Notably, the enhancer regions used in this study were 
defined by the CAGE data and obtained from ref. [24]. 
We confirmed that these CAGE-derived enhancers were 
significantly enriched with the active enhancers defined 
based on histone mark ChIP-seq (P < 2.2e − 16, hyper-
geometric test; Additional file 1: Fig. S2) and ATAC-seq 
(P < 2.2e − 16, hypergeometric test; Additional file 1: Fig. 
S3) datasets from human body. Many of the existing 
methods for predicting EPIs were built on sophisticated 
machine learning-based models, which cannot be simply 
applied on the hundreds of samples from the FANTOM5 
project [27]. Therefore, we set up a deliberately simple 
pipeline for determining the target promoters of enhanc-
ers in each of the 958 FANTOM5 samples.

Our reconstruction pipeline was generally built based 
on previous studies showing that real EPIs presented sig-
nificantly higher activity correlations between enhanc-
ers and their target promoters, and also, a gene can be 
regulated by multiple enhancers [15, 72]. Briefly, we 
designed the pipeline by integrating the advantages from 
both correlation- and regression-based approaches, 
which involves four main steps (Fig. 1a, Additional file 2: 
Table  S1 and Methods). In the first step, it predicts the 
subset of enhancers of which the activity positively cor-
relates with the activity of putative target promoters 
using multiple regression of all enhancers in the genomic 

neighborhood of a promoter [21]. In the second step, it 
computes the activity correlation for each potential EPI 
across all samples and discards the EPIs with relatively 
lower activity correlation (Additional file  1: Fig. S4). In 
the third step, it identifies active EPI for each sample by 
pruning the potential EPIs that are with inactive enhanc-
ers and/or promoters in a specific sample. In the fourth 
step, we used the Activity-By-Contact (ABC) framework 
[30] to quantify the interaction strength for each active 
EPI in each sample. Finally, the active EPIs from the rep-
licate or similar samples were aggregated to define the set 
of active EPIs for each of the 439 different cell and tis-
sue types (provided on our supplementary website; URL: 
https://​souln​ature.​github.​io/​brain​epl).

Overall, we identified 36,807 EPIs, involving 16,872 
unique enhancers and 8077 unique promoters. Every recon-
structed enhancer-promoter network has up to 11,610 
active enhancers (on average 3292 enhancers), 6275 active 
promoters (on average 3937 promoters), and 24,921 EPIs 
(on average 9145 interactions) (Additional file 2: Table S2).

Global architecture and reliability of the reconstructed EPIs
Over 82% of all linked promoters were linked to multi-
ple enhancers with a median of 4 of the number of linked 
enhancers, and a large proportion of promoters are 
linked to single enhancer (Fig. 2a). This finding is consist-
ent with the data from promoter capture Hi-C (pcHi-C) 
experiments [73]. Of the promoter-linked enhancers, 
about 34% are linked to a flanking promoter (within a 
100-kb window, Fig. 2b), which is consistent with previ-
ous analyses [74], highlighting the importance of chro-
matin structure in determining the regulatory targets of 
enhancers. Next step, we evaluated the degree to which 
the cis-expression QTL (cis-eQTL) or cis-splicing QTL 
(cis-sQTL) variants from GTEx [34] are enriched in the 
linked enhancers and promoters (Fig.  2c, Additional 
file 1: Fig. S5 and “Methods”). The enrichment was con-
siderably stronger in the linked promoters than in the 
linked enhancers, especially, as expected, for cis-sQTL 
variants. We also confirmed that the active EPIs recon-
structed in each cell and tissue type exhibited signifi-
cantly higher interaction strength than the inactive EPIs 
in the corresponding cell and tissue type (Additional 
file 1: Fig. S6), suggesting that our pipeline could not only 
assign enhancers to their target genes but also quantify 
their interaction strength.

Having shown that the global architecture of the recon-
structed EPIs are reliable, we next sought to examine 
their accuracy using the chromatin loops derived from 
the pcHi-C data in 24 matching and related cell and tis-
sues [75] (Additional file 2: Table S3, Table S4 and “Meth-
ods”). Overall, about 27% of the reconstructed EPIs were 
confirmed by the pcHi-C data, showing an improvement 

https://soulnature.github.io/brainepl
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on results obtained by alternative approaches such as 
assigning enhancers to the closest, most strongly corre-
lated target promoter or the random pairs (Fig.  2d and 
“Methods”). Using the same approach as for pcHi-C data, 
we also assessed our reconstructed EPIs in 37 matching 
and related tissues for which cis-eQTL data were avail-
able from GTEx [34] (Additional file 1: Fig. S7, Additional 
file  2: Table  S3, Table  S4 and Methods). Overall, about 
one-fourth of the EPIs were supported by a cis-eQTL var-
iant, which is slightly better than the results from alter-
native approaches. Collectively, these results indicated 
that the reconstructed EPIs could reliably represent the 
physical interactions between enhancers and their target 
promoters in the specific samples.

Next, we asked whether the activity level from the 
CAGE activity data could support the reliability of the 
reconstructed EPIs. We found that the promoters with 
linked enhancers exhibited significantly elevated activ-
ity than those without linked enhancers (P < 2.22e − 16, 
Wilcoxon test) (Fig.  2e). We further observed that the 
promoters with more linked enhancers showed stronger 
activity level than those with fewer linked enhancers 
(Fig.  2f ), which is consistent with previous studies [21]. 
Likewise, the promoters with more linked enhancers 
exhibited elevated activity specificity than those with 
fewer linked enhancers (Fig. 2e, f ), indicating the strong 
lineage specificity of enhancers in EPIs [37, 76–78].

Lineage specificity of the reconstructed EPIs
We then compared the reconstructed EPIs across the 439 
cell and tissue types (Fig. 3a and “Methods”). To this end, 
we hierarchically clustered the reconstructed EPIs based 
on the overlap of their linkages (i.e., edges in the net-
works) between each sample. As expected, functionally 
related and/or biologically similar lineages were consist-
ently grouped together at both the bulk tissue and the cel-
lular level (Additional file 1: Fig. S8 and S9). For instance, 
the neural cell and tissue types, particularly those from 
the developmentally similar stages (i.e., fetal, newborn 
and adult stages), could be generally grouped together 
(Fig. 3b). By contrast, the clustering of the cell and tissue 
types based on the promoter activity revealed a higher 
degree of noise, suggesting that the reconstructed EPIs 
can better represent the lineage specificity than the pro-
moter activity (Additional file 1: Fig. S10). Furthermore, 
we identified enhancers and their target promoters that 
are specifically active in a single group of related samples. 
We found that the reconstructed interactions between 
enhancers and promoters exhibited a high degree of 
specificity within the groups consisting of related samples 
(Fig. 3c). For instance, the EPIs in the brain were distinct 
from those in immune cells. Taken together, these results 
suggested that the reconstructed EPIs are biologically 
meaningful and could represent their intrinsic regulatory 
components in specific samples.

Fig. 2  Reliability of the reconstructed EPIs. a Histogram showing the number of genes that were predicted as linked with a range number 
of enhancers. b Histogram showing the distribution of distance between the enhancers to their target promoters for the reconstructed EPIs. c 
Odds ratio enrichment of cis-eQTL and cis-sQTL variants [34] in the promoter-linked enhancers and enhancer-linked promoters, respectively. *** 
P < 0.001; Wilcoxon test. d The accuracy of different EPI prediction approaches. We estimated the accuracy of the reconstructed EPIs using Area 
Under the Precision-Recall (AUPR) based on the pcHi-C data from 24 matching and related cell and tissues from the FANTOM5 project (Table S3). 
e Boxplots showing the CAGE activity and specificity of the promoters linked or not linked to enhancers. f Boxplots showing the CAGE activity 
and specificity of the promoters linked to a range number of enhancers. *** P < 0.001; Wilcoxon test in e and f 
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CRE activity captures cell/tissue‑type‑specific enhancer 
function in human brain
Given that the FANTOM5 samples cover a large num-
ber of cell and tissue types from human brain as well as 
a wide range of whole-body lineages, the data analyzed 
here have made it possible to systematically compare the 
brain enrichment of CREs and their interactions with 
the whole-body tissue specificity (Methods). In total, 54 
different neural cell and tissue types (6 neural cell types 
and 48 brain tissue types) were included, most of which 
are from specific brain regions. Notably, we have sam-
ples from diverse brain regions in different developmen-
tal stages, i.e., fetal (n = 4), newborn (n = 14), and adult 

(n = 30) brains. We partitioned the enhancers and pro-
moters into different categories based on their relative 
activity between brain and non-brain cell/tissue types, as 
well as different developmental stages (i.e., comparison 
across fetal, newborn and adult from the brain) (Addi-
tional file 2: Table S5 and Table S6).

We found that there are more promoters than enhanc-
ers with elevated activity in the brain samples, and brain-
specific enhancers exhibit higher activity compared to 
other tissues (Additional file 1: Fig. S11 and S12). While 
for the stage specificity, there are much more enhancers 
and promoters with elevated activity in the fetal and new-
born brain than in the adult brain, highlighting actively 

Fig. 3  Specificity and functions of CREs and reconstructed EPIs in human brain. Clustering of the 439 cell and tissue types (a) and the 54 neural 
cell and tissue types (b) based on the similarities of their reconstructed EPIs. We used Jaccard index to quantify the overlap of the reconstructed 
EPIs bwteen each pair of cell and tissue types. c Visualization of the EPIs that were active in only one single group of cell and tissue types. Here we 
only presented the subnetworks on Chromosome1. d Evolutionary conservation of the enhancers with distinct tissue- (left) and stage-specific 
(right) activity patterns. *** P < 0.001; ** P < 0.01; * P < 0.05; Wilcoxon test. e The enrichment of TF binding in the enhancers with distinct tissue- (up) 
and stage-specific activity patterns (bottom). We showed the most enriched 15 TFs for each group of enhancers. f The most enriched biological 
processes for the genes with distinct tissue- (left) and stage-specific activity patterns (middle and right)
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gene expression regulation in the early stage of brain 
development, which is consistent with the regulatory peak 
in perinatal stage that involved in morphine addiction, 
cell proliferation, growth, and migration pathways [79].

We then investigated whether the enhancers with 
distinct tissue and stage specificity were likely to be 
of functional significance using measure of conser-
vation (Fig.  3d). We observed that both the sets of 
enhancers with elevated activity in the brain samples 
(P < 2.22e − 16, Wilcoxon test) and broad activity in the 
samples (P < 2.22e − 16, Wilcoxon test) are more con-
served than those with elevated activity in non-brain 
samples, suggesting that these enhancers might play 
key roles in the functionality across the whole body, 
particularly in human brain. In addition, the enhanc-
ers with elevated activity in the fetal brain show higher 
degree of conservation than those with elevated activity 
in the adult (P = 0.04, Wilcoxon test) and newborn brain 
(P = 4.40e − 7, Wilcoxon test), which is in line with our 
previous finding showing that active enhancer regulation 
is particularly important in the early developmental stage 
of human brain.

To identify the transcription factors (TFs) that poten-
tially mediate tissue- and stage-specific gene regulation, 
we calculated the overlap of footprinted transcription 
factor binding sites with the enhancers of distinct tis-
sue- and stage-specific activity patterns. It should be 
noted that there is extensive sharing of binding prefer-
ence between the TFs within TF families [80], so it is 
often not possible to determine which TF(s) from a TF 
family binds to a given region. Still, we found that many 
TFs exhibited distinct enrichment patterns for different 
sets of enhancers. The enhancers with elevated activity in 
newborn brains contain the most bound TFs (213 TFs) 
compared to those in fetal (128 TFs) and adult (46 TFs) 
brains (Additional file 1: Fig. S13). Here, we highlighted 
some TF genes with top binding potential on the enhanc-
ers with different tissue and stage specificity (Fig.  3e). 
There is previous evidence to support some of the pre-
dicted TF associations to brain development. In particu-
lar, we noted that TFs RFX1, RFX2, RFX5, and CTCF that 
function in brain development [81, 82] show significant 
enrichment in fetal and newborn specific enhancers; 
TF EGR1 is a major mediator and regulator of synaptic 
plasticity and neuronal activity [83]; SOX gene family 
(e.g., SOX2, SOX3, SOX4, SOX6, SOX15, and SOX17) 
is involved in the regulation of embryonic development, 
especially in the developing nerve cells of CNS and the 
transition of cerebellar epithelial granule cells to a migra-
tory state [84, 85]; TFs FRA1, FOSL2, and ATF3 which 
are key regulators for inflammatory and immune path-
ways [81], exhibiting a significant enrichment in enhanc-
ers of whole stages.

Finally, we implemented the gene function enrich-
ment analysis to examine the overlap of their promoters 
in different tissue- and stage-specific activity patterns 
with previously annotated genes involved in biological 
processes (Fig.  3f ). We found that the genes with spe-
cific brain-associated activity or regulatory patterns are 
significantly enriched in relevant biological functions. 
For example, the genes that are specifically elevated 
and regulated in brain instead of in non-brain are sig-
nificantly enriched in axon development, axongene-
sis, and neurotransmitter secretion; the target genes of 
enhancers elevated in fetal brain are enriched in mito-
chondrial translation and expression, while the elevated 
genes in fetal brain are enriched in cellular response to 
chemokine; the genes elevated in newborn brain are 
enriched in protein localization to endoplasmic reticu-
lum; the genes elevated in adult brain are enriched in 
ensheathment of axon and neurons. Associating cell types 
and developmental stages to brain disorders using herit-
ability enrichment of CREs.

Given that most disorder- and behavior/cognition-
associated common genetic variants affect the gene reg-
ulation of gene expression rather than protein–protein 
interaction and/or protein structure [1, 37, 86], we then 
used an LD score partitioned heritability approach [35] 
to explore the overlap of active CREs from the diverse 
brain cell types and regions with genetic variants asso-
ciated with traits, while correcting for the genomic 
background (Methods). In total, we included 17 brain 
disorders and behavioral-cognitive phenotypes, consist-
ing of 5 neurological disorders (including Alzheimer’s 
disease (AD), amyotrophic lateral sclerosis (ALS), epi-
lepsy, multiple sclerosis (MS), and Parkinson’s disease 
(PD)), 8 psychiatric disorders (including attention deficit 
hyperactivity disorder (ADHD), anxiety, autism spectrum 
disorder (ASD), alcohol use disorder (AUD), bipolar 
disorder (BIP), obsessive–compulsive disorder (OCD), 
schizophrenia (SCZ), and Tourette’s syndrome (TS)), and 
4 behavioral-cognitive phenotypes (including insomnia, 
intelligence, neuroticism, and risk behavior) (Additional 
file 2: Table S7).

First, we analyzed the partitioned heritability enrich-
ment of CREs in six different neural cell types (Fig.  4a 
and Additional file  2: Table  S8). Notably, FANTOM5 
dataset had limited representation of important neural 
cell types such as microglia, oligodendrocytes, and radial 
glia, which may hinder the interpretation of the results. 
Despite the well-established roles of glia in AD pathogen-
esis, we were unable to show these enrichment patterns 
in our results due to the absence of glia in the dataset 
[87–89]. Interestingly, our findings suggested that AD 
exhibits strong enrichment in neural stem cells, which 
give rise to various neuronal and glial cell types in the 
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brain. This enrichment could be attributed to the line-
age and functional connections between neural stem cells 
and glia [90]. In addition to AD, we found that ALS and 
epilepsy exhibited enrichment in the neural stem cells 
and astrocytes [91, 92], indicating that, likewise, glia cells 
such as astrocytes and their progenitor lineage, neural 
stem cells, might be critical for the pathogenesis of these 
two neurological disorders. We also found that PD exhib-
ited strongest enrichment in the neurons, consistent with 
the pathogenesis of dopamine-producing neurons in PD 
[93, 94].

For most psychiatric disorders and behavioral-cogni-
tive phenotypes, as expected, we observed significant 
enrichment in neurons, while we also found pervasive 

enrichment in astrocytes, highlighting the potential func-
tionality of astrocytes in the regulation of behavior and 
cognitive ability [95–97]. For example, insomnia could 
be influenced by the dysregulation of Ca2+ level in astro-
cytes, and insomnia-related genetic variants are signifi-
cantly enriched in the claustrophobic neurons [55, 98]. 
Interestingly, our results also suggested that meningeal 
cells may have crucial roles in the pathogenesis of anxiety 
and OCD. However, we have very limited knowledge on 
the functions of meningeal cells in human brain, thus the 
underlying mechanism of meningeal cells in these spe-
cific types of anxiety disorders is still unclear.

We then investigated the heritability enrichment of 
CREs from diverse newborn and adult brain regions 

Fig. 4  Partitioned heritability enrichment of CREs from different brain cell and tissue types across diverse brain disorders and behavioral-cognitive 
phenotypes. a Heatmap showing the partitioned heritability enrichment of genetic variants overlapping CREs from brain cell types across different 
brain disorders and behavioral-cognitive phenotypes. The normalized partitioned heritability enrichment scores under the significance level of 5% 
were labeled with “ × ”. b Histogram showing the partitioned heritability enrichment of genetic variants overlapping CREs from adult and newborn 
brain tissues across different brain disorders and behavioral-cognitive phenotypes. The red dashes line indicates the FDR at the significance 
level of 5%. AD, Alzheimer’s disease; ADHD, attention deficit hyperactivity disorder; ALS, amyotrophic lateral sclerosis; ASD, autism spectrum 
disorder; AUD, alcohol use disorder; BIP, bipolar disorder; MS, multiple sclerosis; OCD, obsessive–compulsive disorder; PD, Parkinson’s disease; SCZ, 
Schizophrenia; TS, Tourette’s syndrome
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across the brain disorders and behavioral-cognitive phe-
notypes (Fig. 4b, Additional file 1: Fig. S14 and Additional 
file 2: Table S8). Psychiatric disorders (e.g., ADHD, anxi-
ety, ASD, AUD, BIP, and SCZ) showed higher heritability 
enrichment in the newborn brain compared to the adult 
brain; while for most neurological disorders (e.g., AD, 
epilepsy and PD), we did not observe these patterns. This 
is consistent with previous studies showing that psychi-
atric disorders exhibit epigenomic and transcriptomic 
dysregulations in the early developmental stages, regions, 
and cell types and thus have been considered as a group 
of neurodevelopmental disorders [99, 100]. Interest-
ingly, as what we observed for psychiatric disorders, the 
behavioral-cognitive phenotypes (e.g., insomnia, neu-
roticism and risk behavior) also exhibit higher heritabil-
ity enrichment in the newborn brain, suggesting putative 
significant genetic risk correlation between psychiatric 
disorders and behavioral-cognitive phenotypes [101].

Jointly, these results highlight the importance of study-
ing the cell-type- and stage-specific gene regulation to 
properly dissect the genetic architecture of brain disor-
ders and behavioral-cognitive phenotypes. More impor-
tantly, our results reveal novel heritability enrichment 
patterns for some cell types (e.g., meningeal cells) and 
developmental stages (e.g., newborn) that have not been 
well characterized before.

Prioritizing genes associated with brain disorders 
and behavioral‑cognitive phenotypes in diverse cell types 
and regions based on EPIs
Next, we aim to prioritize the genes associated with 
brain disorders and behavioral-cognitive phenotypes 
by using the reconstructed EPIs in the diverse brain cell 
types and regions. To this end, we applied our nMAGMA 
algorithm [62] that can better infer risk genes by assign-
ing the distal noncoding SNPs [6] to their target genes 
based on the predicted EPIs (Methods); thus, we prior-
itized the genes associated with the brain disorders and 
behavioral-cognitive phenotypes for each cell and tissue 
type from human brain (provided on our supplemen-
tary website; URL: https://​souln​ature.​github.​io/​brain​
epl). Here, we highlighted that the associated genes pre-
dicted by our approach exhibit significant overlap with 
the previously known risk genes for SCZ (P = 5.30e − 3, 
Fisher’s exact test), BIP (P = 9.53e − 3, Fisher’s exact test), 
and AD (P = 1.69e − 10, Fisher’s exact test) (Fig.  5a and 
Additional file 2: Table S9), confirming the utility of our 
reconstructed EPIs. Also, a large proportion of previously 
known risk genes cannot be rediscovered by our analysis, 
partially due to that here we only considered the cis-reg-
ulatory mechanism in prioritizing the risk genes; how-
ever, the pathogenesis of these complex brain disorders 
are involved in multiple layers of gene regulation such 

as post-transcriptional regulation and post-translational 
regulation [102–105].

We then systematically predicted the associated genes 
for all the 17 brain disorders and behavioral-cognitive 
phenotypes, among which intelligence (2466 genes) and 
SCZ (1908 genes) show the most associated genes, which 
is in line with their high heritability [106]. Some previ-
ously known risk genes of brain disorders could be suc-
cessfully prioritized by nMAGMA [62], such as NKAPL 
and PBX2 for SCZ [107, 108], and MAPT for PD [109]. 
Notably, among the 17 different brain disorders and 
behavioral-cognitive phenotypes assessed here, we did 
not find any significant associated genes for three disor-
ders including anxiety, OCD, and TS, which might result 
from a lack of power in the current GWAS data, or the 
limited number of EPIs in the brain cell and tissue types 
for disorders.

Widespread pleiotropy of the associated genes 
between psychiatric disorders and behavioral‑cognitive 
phenotypes
Given shared heritability across different brain disorders 
and behavioral-cognitive phenotypes [101], we examined 
shared associated genes of different brain disorders and/
or behavioral-cognitive phenotypes to identify their com-
mon molecular mechanisms. In total, we found 50, 259, 
and 770 associated genes that are shared by at least two 
traits within each category of neurological disorders, psy-
chiatric disorders, and behavioral-cognitive phenotypes, 
respectively (Fig.  5b and Additional file  2: Table  S10). 
Furthermore, we found that these shared associated 
genes exhibit significant overlap between different cat-
egories of brain disorders and behavioral-cognitive phe-
notypes, indicating strong pleiotropy of these associated 
genes and their putative common mechanisms (Fig. 5b). 
Interestingly, FOXP2, a crucial gene for speech evolu-
tion and language disorders [110, 111], was identified as a 
pleiotropic gene of psychiatric disorders and behavioral-
cognitive phenotypes including ADHD, insomnia, intel-
ligence, neuroticism, and risk behavior.

The shared associated genes of different categories of 
brain disorders and behavioral-cognitive phenotypes 
exhibit distinct enriched biological functions (Additional 
file  2: Table  S11). The shared associated genes of neu-
rological disorders are involved in immune-associated 
functions (Fig. 5c), such as antigen processing and pres-
entation of endogenous antigen, supporting the hypoth-
esis that neuroinflammation could be crucial for the 
pathophysiology of multiple neurological disorders [112, 
113]. While those shared associated genes of psychiat-
ric disorders and behavioral-cognitive phenotypes show 
enriched biological functions of gene regulation, synaptic 

https://soulnature.github.io/brainepl
https://soulnature.github.io/brainepl
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function, neuronal development (Fig. 5c), which is in line 
with the biological functions of synapses in the regulation 
of memory, perception, attention, and learning [114–117] 
and their established associations with complex psychiat-
ric disorders [118, 119]. Furthermore, we confirmed that 
the psychiatric disorders and behavioral-cognitive phe-
notypes showed more enrichment in synapse-associated 
processes than neurological disorders by using the SynGO 
annotations [120] (Additional file 1: Fig. S15).

Expression signatures of the genes associated with brain 
disorders and behavioral‑cognitive phenotypes
To systematically evaluate the spatiotemporal expres-
sion patterns of the genes that associate with brain disor-
ders and behavioral-cognitive phenotypes, we leveraged 
large brain transcriptomic datasets to assess in which 
brain regions or cell types and developmental stages, 
these associated genes show higher expression level. 
First, we examined the CAGE activity level of the associ-
ated genes at different developmental stages. Consistent 
with our previous results from the heritability enrich-
ment, we found that the genes associated with neurologi-
cal disorders generally exhibited higher activity in adult 
brain than in newborn brain, while the associated genes 
of psychiatric disorders and behavioral-cognitive phe-
notypes exhibited higher activity in newborn brain. For 
instance, the genes associated with AD exhibited signifi-
cantly higher activity in the adult brain regions such as 
hippocampus (P = 4.30e − 5, Wilcoxon test) and medial 

temporal gyrus (P = 1.70e − 3, Wilcoxon test), which have 
been well characterized in the pathogenesis of AD [121–
123] (Fig.  6a). Similarly, for PD, the associated genes 
exhibited significantly higher activity in the adult brain 
regions such as globus pallidus (P = 3.23e − 3, Wilcoxon 
test) and medial temporal gyrus (P = 0.02, Wilcoxon 
test) (Additional file  1: Fig. S16). In the case of ADHD, 
the associated genes showed higher activity in the fetal 
locus coeruleus (Additional file 1: Fig. S17). Although it 
has been clear that locus coeruleus is the primary source 
of norepinephrine, for which the dysfunction has been 
implicated in the development of ADHD [124, 125], our 
results suggest that the fetal stage of locus coeruleus may 
be more critical than the adult stage in the pathogen-
esis of ADHD. Additionally, we noticed that for SCZ and 
BIP, their associated genes showed higher activity in the 
adult stage of occipital cortex compared to the fetal stage. 
Notably, we did not observe higher activity of the associ-
ated genes in substantia nigra in adult brain, possibly due 
to the limited sample size of substantia nigra from the 
FANTOM5 dataset. Taken together, our results not only 
confirmed the well-established developmental stages 
and brain regions most specifically affected by the brain 
disorders, but also highlight the putative associations 
between these brain disorders and some brain regions 
that have not been well characterized (e.g., globus palli-
dus and medial temporal gyrus).

In addition to the disorder-centric analysis, we also per-
formed analysis in region-centric manner to determine 

Fig. 5  Prioritized genes associated with brain disorders and behavioral-cognitive phenotypes. a Overlap between the prioritized 
disorder-associated genes based on EPIs and known risk genes for three brain disorders. The P-values were estimated using Fisher’s exact test. 
AD, Alzheimer’s disease; BIP, bipolar disorder; SCZ, schizophrenia. b Bar plot showing the number of associated genes that are shared within each 
category of brain disorders and behavioral-cognitive phenotypes (left), as well as the number of shared associated genes between different 
categories (right). The P-values were estimated using Fisher’s exact test. c The most enriched biological processes (top five) of the shared associated 
genes for each category of brain disorders and behavioral-cognitive phenotypes
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their most relevant brain disorders and/or behavioral-
cognitive phenotypes, as well as developmental stages, 
in which the associated genes have higher expression 
levels. We showed the results from four different brain 
regions including cerebral cortex, hippocampus, occipital 
lobe, and temporal lobe (Additional file  1: Fig. S18). As 
expected, for psychiatric disorders and behavioral-cogni-
tive phenotypes, their associated genes generally exhibit 
higher expression levels in the fetal brain than in the 
newborn and adult brain, which is consistent with pre-
vious studies showing that altered gene regulation in the 
early prenatal brain could be more susceptible to various 
psychiatric disorders [65, 126, 127].

Furthermore, we explored the expression of the asso-
ciated genes in astrocytes, neurons, and oligodendrocyte 
progenitor cells (OPCs) from prenatal (period 6, i.e., 19 
PCW-22 PCW) and adult (period 14, i.e., 40–60  years) 
stage using single-cell transcriptomic data from our 
STAB database [70]. The associated genes show distinct 

expression patterns in different cell types and develop-
mental stages (Fig.  6b, c). Notably, the associated genes 
generally show higher expression in neurons than in 
astrocytes in adult stage instead of in fetal stage. We 
also investigated the expression of the associated gene 
in three cell types during lifespan, and found that most 
brain disorders and behavioral-cognitive phenotypes 
have similar patterns of developmental trajectories in 
OPCs and astrocytes, with an activity peak in the mid-
infancy (Additional file 1: Fig. S19).

Finally, we analyzed the expression trajectories of the 
associated genes of psychiatric disorders and behavioral-
cognitive phenotypes across the whole lifespan (Fig.  6d 
and Additional file  2: Table  S12). We found that genes 
associated with SCZ and BIP show similar expression 
dynamic pattern, with a gradual increase during the pre-
natal period and a relative stable trend after birth, con-
sistent with previous studies showing the shared genetic 
basis of these two complex brain disorders [101, 128, 

Fig. 6  Expression dynamics of the associated genes of brain disorders and behavioral-cognitive phenotypes. a The CAGE activity profiles 
of the AD-associated genes in diverse brain regions. For each brain region, we showed the expression levels of the associated genes at the newborn 
and adult tissues, respectively. *** P < 0.001; ** P < 0.01; * P < 0.05; Wilcoxon test. AD, Alzheimer’s disease. b,c Expression profiles of the genes 
associated with diverse disorders and behavioral-cognitive phenotypes from different brain single-cell types at the fetal (b) and adult (c) stage. The 
gene expression data of brain single cells were collected from STAB database [70]. We used single-cell datasets from 19–26 PCW and 40–60 years 
in the analysis at the fetal and adult stage, respectively. *** P < 0.001; ** P < 0.01; * P < 0.05; ANOVA test. PCW, postconceptional weeks. OPC, 
oligodendrocyte progenitor cell. d Developmental expression trajectories of the genes associated with disorders and behavioral-cognitive 
phenotypes. The gene expression data were collected from Zhu et. al [8]. The LOESS plots show smooth curves with 95% confidence bands. 
P2, 8 ≤ Age < 10 PCW; P3, 10 PCW ≤ Age < 13 PCW; P4, 13 PCW ≤ Age < 16 PCW; P5, 16 PCW ≤ Age < 19 PCW; P6, 19 PCW ≤ Age < 24 PCW; P7, 24 
PCW ≤ Age < Birth; P8, Birth ≤ Age < 6 months; P9, 6 months ≤ Age < 1 year; P10, 1 ≤ Age < 6 years; P11, 6 ≤ Age < 12 years; P12, 12 ≤ Age < 20 years; 
P13, 20 ≤ Age < 60 years. PCW, postconceptional weeks
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129]. While the genes associated with neuroticism, intel-
ligence, and risk behavior share the same pattern, which 
exhibits two peaks at period 6 (i.e., 19 PCW-22 PCW) 
and period 11 (i.e., 8–11 years). Previous studies suggest 
that both periods are important for brain reconstitution 
and fast development: period 6 (in mid-gestation stage) 
is important for axonogenesis and dendritic arboriza-
tion [71], and period 11 (in adolescence stage) represents 
a key stage for the rapid development of brain corti-
cal regions that are responsible for higher cognitive and 
emotional functions [130]. Overall, we systematically 
characterized the spatiotemporal expression dynamics of 
the associated genes, and highlighted the putative crucial 
brain regions and developmental stages for the diverse 
brain disorders and behavioral-cognitive phenotypes.

Discussion
In this study, we used large-scale enhancer and promoter 
activity (CAGE) data to reconstruct EPIs in a wide range 
of cell and tissue types, and systematically examined the 
activity and architecture in diverse neural cell and tissue 
types. By using the active CREs and their EPIs in each 
neural cell and tissue type, we explored the heritability 
enrichment of different brain disorders and behavioral-
cognitive phenotypes, expanding the neural cell types, 
brain regions, and developmental stages assessed. We 
found that psychiatric disorders and neurological dis-
orders generally show enriched heritability in fetal and 
adult brains, respectively. For each brain disorder and 
behavioral-cognitive phenotype, a set of associated genes 
were prioritized based on the EPIs from neural cell and 
tissue types. We show that the pleiotropic associated 
genes of psychiatric disorders and behavioral-cognitive 
phenotypes are enriched in synapse-associated functions, 
while the pleiotropic associated genes of neurological 
disorders are enriched in immune-related functions. A 
key benefit of our analysis is its ability to utilize the power 
from the distal SNPs with weak GWAS significance. This 
allows researchers to predict the associated genes in a cell 
and tissue-specific manner and gain novel insights into 
the genetic risk factors of these complex disorders.

In contrast to actively expressed genes, CREs are more 
numerous and exhibit activity in specific cell and tissue 
type, and their sequences can provide clues about the 
regulatory programs that drive cell state specification 
[131, 132]. By combining the activity information of the 
enhancers with the activity measurements of the promot-
ers based on CAGE technology, we are able to systemati-
cally reconstruct EPIs for a wide range of cell and tissue 
types, including numerous ones from human brain. We 
anticipate that future studies could leverage our data 
to experimentally demonstrate the detailed regulatory 
mechanisms that govern the development of human 

brain, the specification of neurons and glial cells, and 
pathogenesis of brain disorders. Notably, in our analy-
sis, we cannot separate the active enhancers and poised 
enhancers [133, 134] by using only the CAGE data from 
FANTOM5 project. Thus, our current results failed to 
reveal the state transition of enhancers during brain 
development and its impact on the expression of their 
target promoters.

Most existing efforts to link brain disorder risk to tran-
scriptomic or epigenomic dysregulation have primarily 
used dissected brain tissues (e.g., cerebral cortex and hip-
pocampus) or isolated cells (e.g., neurons and astrocytes) 
restricted in specific developmental stages (e.g., early 
fetal or adult period), providing insufficient insights into 
gene regulation at a cell-type-specific and spatiotemporal 
resolution. Broader insights into cis-regulatory mecha-
nisms in the human brain could be gained by studying 
more brain regions and different developmental stages. 
By reusing the public FANTOM5 data [27], we have ena-
bled comprehensive identification of the genes associated 
with brain disorders and behavioral-cognitive pheno-
types in diverse brain regions, as well as across the fetal, 
newborn, and adult stages. Moreover, we show that the 
associated genes identified using our approach show sig-
nificant overlap with known risk genes of brain disorders. 
With single-cell epigenomic and transcriptomic data 
recently become tractable and scalable, it will be espe-
cially suited to expand the cell landscape in our study to 
achieve higher cellular and regional resolution when dis-
secting the genetic architecture of brain disorders and 
behavioral-cognitive phenotypes.

The clinical phenomena, such as behavioral change, 
alterations of consciousness, or loss of motor func-
tion, lead to great complications about the classification 
of brain disorders. One such example includes ASD, 
which is a highly heterogeneous disorder; its clinical 
presentations can vary in multiple axes of severity, cre-
ating a wide spectrum of symptoms [135]. Understand-
ing the genetic underpinnings for a particular subset 
of ASD and related phenotypes may inform the search 
for their biological mechanisms and clinically relevant 
genetic therapies. Elucidating the extent of heterogene-
ity for the brain disorders allows for a better-informed 
picture of functional consequences associated with 
genetic influences. In such cases, characterizing the 
specific brain regions and/or developmental stages that 
exhibit high risk for a particular subtype of the disor-
ders may help identify targets for diagnostics and ther-
apeutics. Expanding the brain regions, developmental 
stages, and cell types examined in the analysis is critical 
for the achievement of this aim.

Although we have taken advantage of the rich FAN-
TOM5 and GWAS data, these datasets have their own 
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limitations, which will impart some restrictions on our 
predictions. For example, the FANTOM5 data are in 
some instances limited to a few replicates for cell and 
tissue types and there is possible heterogeneity in some 
samples. The enhancers identified by the FANTOM5 
data show limited overlap with those identified by using 
large-scale ChIP-seq and ATAC-seq datasets [24]. For 
the partitioned heritability approach, the GWAS data-
sets analyzed must have a very large sample size and large 
SNP heritability, and the brain disorders and traits ana-
lyzed must be polygenic. It should be also noted that we 
did not consider other players such as noncoding RNAs, 
alternative splicing, and protein interactions, which have 
been shown to have a role in the pathogenesis of brain 
disorders [9, 136–139]. These limitations may result in 
less faithful predictions on the genes associated with the 
brain disorders and behavioral-cognitive phenotypes.

Conclusions
In conclusion, we leverage the reconstructed EPIs in 
diverse neural cell and tissue types to prioritize the genes 
associated with different brain disorders and behavioral-
cognitive phenotypes. We highlight the cell and tissue 
specificity of the EPIs in human brain, and their power 
in furthering our understanding of genetic heritability of 
the brain disorders in different brain cell types, regions, 
and developmental stages. We analyze the pleiotropy 
of the associated genes by comparing the sets of prior-
itized genes for different categories of brain disorders 
and behavioral-cognitive phenotypes. We additionally 
show the spatiotemporal activity of the associated genes 
by integrating with large-scale bulk and single-cell tran-
scriptomic datasets from human brain.
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