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Abstract 

Background Changes in cell‑type composition of tissues are associated with a wide range of diseases and environ‑
mental risk factors and may be causally implicated in disease development and progression. However, these shifts 
in cell‑type fractions are often of a low magnitude, or involve similar cell subtypes, making their reliable identification 
challenging. DNA methylation profiling in a tissue like blood is a promising approach to discover shifts in cell‑type 
abundance, yet studies have only been performed at a relatively low cellular resolution and in isolation, limiting their 
power to detect shifts in tissue composition.

Methods Here we derive a DNA methylation reference matrix for 12 immune‑cell types in human blood and extensively 
validate it with flow‑cytometric count data and in whole‑genome bisulfite sequencing data of sorted cells. Using this ref‑
erence matrix, we perform a directional Stouffer and fixed effects meta‑analysis comprising 23,053 blood samples from 22 
different cohorts, to comprehensively map associations between the 12 immune‑cell fractions and common phenotypes. 
In a separate cohort of 4386 blood samples, we assess associations between immune‑cell fractions and health outcomes.

Results Our meta‑analysis reveals many associations of cell‑type fractions with age, sex, smoking and obesity, many 
of which we validate with single‑cell RNA sequencing. We discover that naïve and regulatory T‑cell subsets are higher 
in women compared to men, while the reverse is true for monocyte, natural killer, basophil, and eosinophil fractions. 
Decreased natural killer counts associated with smoking, obesity, and stress levels, while an increased count correlates 
with exercise and sleep. Analysis of health outcomes revealed that increased naïve CD4 + T‑cell and N‑cell fractions 
associated with a reduced risk of all‑cause mortality independently of all major epidemiological risk factors and base‑
line co‑morbidity. A machine learning predictor built only with immune‑cell fractions achieved a C‑index value 
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for all‑cause mortality of 0.69 (95%CI 0.67–0.72), which increased to 0.83 (0.80–0.86) upon inclusion of epidemiological 
risk factors and baseline co‑morbidity.

Conclusions This work contributes an extensively validated high‑resolution DNAm reference matrix for blood, which 
is made freely available, and uses it to generate a comprehensive map of associations between immune‑cell fractions 
and common phenotypes, including health outcomes.

Keywords Immune system, Disease risk factors, Aging, Sex, Obesity, Epigenetic clocks, Mortality, Covid‑19, Cancer

Background
Human tissues contain many different cell types in pro-
portions that vary between healthy individuals as well 
as in association with disease and exposure to disease 
risk factors [1, 2]. These shifts in cell-type propor-
tions may not only constitute important biomarkers of 
environmental exposures, disease risk, or early diag-
nosis, but may be causally implicated, as exemplified 
by immune-cell variations that impact cancer progres-
sion [3] and immunosenescence [4]. Although detect-
ing shifts in cell-type composition in easily accessible 
tissues like blood has been possible with moderately 
sized studies in the context of autoimmune diseases, 
cancer, or aging [5–8], detecting more subtle changes in 
cell-type proportions that may arise in relation to dis-
ease risk factors like sex, obesity, or smoking, has been 
more challenging. This is not only because underlying 
shifts in cell-type proportions may be of low magni-
tude, typically involving only a few percentage points, 
but also because there is already substantial variation in 
these proportions between healthy or unexposed indi-
viduals. Thus, measuring cell counts in large cohorts 
of samples is necessary in order to confidently identify 
disease-or-exposure-associated shifts in cell-type com-
position. However, experimental cell-counting methods 
are cumbersome and not easily scalable to thousands of 
samples.

DNA methylation (DNAm) has been abundantly pro-
filed in easily accessible and heterogeneous tissues like 
whole blood [9–15], saliva [16, 17], and buccal swabs 
[18]. The underlying cell-type heterogeneity (CTH) 
of these tissues thus offers the opportunity to detect 
phenotype-associated shifts in cell-type composition. 
Indeed, because DNAm is highly cell-type specific and 
can be measured with high accuracy [19], application 
of cell-type deconvolution algorithms [2, 20] to average 
DNAm profiles generated by epigenome-wide associa-
tion studies (EWAS) has proved to be an excellent means 
to accurately quantify the underlying cell-type fractions 
in a wide range of complex tissues [20–23]. Not until 
recently, the main limitation has been the availability of a 
high-resolution tissue-specific DNAm reference matrix, 
containing representative DNAm profiles for all cell 
types in the tissue of interest and which is required by 

reference-based cell-type deconvolution methods to infer 
the underlying cell-type fractions [2, 22–27].

Here we use the Illumina 850k DNAm profiles of cell-
sorted samples from Salas et al. [28] to build a novel 12 
immune-cell-type DNAm reference matrix for blood tis-
sue, using an improved procedure that exclusively uses 
cell-type-specific unmethylated markers [29]. We vali-
date this 12 immune-cell-type DNAm reference matrix 
on DNAm data with matched flow-cytometric counts, 
as well as in a large collection of immune-cell-sorted 
samples, including whole-genome-bisulfite sequencing 
(WGBS) samples from the International Human Epig-
enome Consortium (IHEC) [30]. Importantly, we collate 
genome-wide DNAm data for a total of 22 independent 
cohorts, encompassing over 23,000 blood samples, and 
use our DNAm reference matrix to perform a meta-
analysis of immune-cell-type fraction associations with 
common phenotypes, including age, sex, smoking, and 
obesity, validating or strengthening previous findings, 
while also revealing novel associations. In a large cohort 
with extensive epidemiological and health outcome 
annotation for approximately 4000 to 6000 whole blood 
samples, we identify additional associations of immune-
cell fractions with exercise, alcohol consumption, stress, 
and health outcomes, including all-cause mortality. In 
summary, we use a high-quality high-resolution DNAm 
reference matrix to comprehensively map associations of 
12 immune-cell-type fractions with common phenotypes 
and health outcomes.

Methods
Construction of the 12 immune‑cell‑type DNAm reference 
matrices
We obtained the EPIC DNAm dataset of 12 sorted 
immune-cell subsets from GEO under accession num-
ber GSE167988. The idat files were downloaded and pro-
cessed using minfi R-package [31]. We retained 756,625 
probes with significantly detected values across all 68 
samples. The resulting beta-valued data matrix was 
then adjusted for type-2 probe bias using BMIQ [32]. 
We next removed 12 artificial mixture samples, leav-
ing a total of 56 sorted samples: 6 basophils (Baso), 6 
memory B-cells (Bmem), 4 naïve B-cells (Bnv), 4 mem-
ory CD4 + T-cells (CD4Tmem), 5 naïve CD4 + T-cells 
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(CD4Tnv), 4 memory CD8 + T-cells (CD8Tmem), 5 naïve 
CD8 + T-cells (CD8Tnv), 4 eosinophils (Eos), 5 mono-
cytes (Mono), 6 neutrophils (Neu), 4 natural killer (NK), 
and 3 regulatory T-cells (Treg). We then performed 
SVD, estimating the number of significant components 
using RMT [33], followed by hierarchical clustering on 
the sample projection matrix, to check that sorted sam-
ples clustered by cell type. This revealed that one CD4T-
mem and one CD8Tnv sample did not cluster correctly. 
Hence, these two samples were removed leaving a nor-
malized beta-valued data matrix over 756,625 probes 
and 54 sorted samples. We then used limma [34, 35] to 
perform differential DNAm analysis for each of the 12 
cell types in turn, comparing that cell type to the other 
eleven. Next, for each cell type, we selected those probes 
passing a Benjamini–Hochberg adjusted FDR < 0.001 
and displaying hypomethylation in the given cell-type 
compared to the rest. We only consider hypomethylated 
probes because these are overwhelmingly more likely to 
be truly cell-type-specific markers [24, 29]. The above 
procedure can still result in probes attaining smaller 
DNAm values in another cell type because the limma 
analysis compares an average of the given cell type to the 
average over 11 other cell types. Hence, to ensure that 
our selected probes for a given cell type attain the small-
est DNAm values in that cell type, we also recorded for 
each cell type t and probe p the minimum DNAm differ-
ence value (called �pt) between the cell type of interest t 
and the other 11 cell types. We note that for the probes of 
interest, these values will be negative because the maxi-
mum value across the samples of the given cell type of 
interest should be lower than the minimum value across 
all other cell types. Then for all hypomethylated probes 
at FDR < 0.001 for a given cell type t, we ranked these 
in increasing order of the �pt values, to ensure that the 
top-ranked probes display the largest negative �pt val-
ues. This means that for these probes the maximum beta 
DNAm value across the samples of the given cell type of 
interest is much smaller than the minimum value across 
the samples from all other cell types, which ensures that 
we are selecting probes with the largest effect sizes. For 
each cell type, we then selected the top-ranked 50 probes 
as cell-type-specific markers, resulting in a total of 600 
(50 times 12) unique marker probes. We note that the 
number of hypomethylated probes at FDR < 0.001 per 
cell type was in general quite large: mean over the 12 cell 
types was 24,954, range was 1111 (CD4Tmem) to 88,992 
(Bmem). Hence, selecting the top-ranked 50 according to 
�pt values ensures that we are selecting not only highly 
significant hypomethylated probes but also those with 
the largest possible effect sizes. The final DNAm refer-
ence matrix over the 600 marker probes was then built 
by taking the median DNAm value over the samples of 

a given cell type. Note that we take the median, because 
this is a more robust estimator and because later we esti-
mate cell-type fractions using a robust partial correlation 
framework which does not require the assumption that 
the reference value should be an average (in contrast to 
constrained projection which does). In order not to bias 
performance in Illumina 450k datasets, we also generated 
a separate 12 cell-type DNAm reference using only 450k 
probes, using the exact same procedure as described 
above. Of note this 450k DNAm reference matrix is also 
defined for 600 unique marker probes.

Validation DNA methylation datasets of sorted samples
We obtained independent immune-cell-sorted samples 
from the following sources, encompassing both Illumina 
450k and WGBS technologies: From Reynolds et al. [36], 
we obtained 1202 monocyte and 214 CD4 + T-cell 450k 
samples (GEO: GSE56581). From BLUEPRINT [37], we 
obtained 139 monocyte, 139 naïve CD4 + T-cell, and 139 
neutrophil 450k samples from the same 139 individu-
als. From Zilbauer et  al., we obtained 6 CD4 + T-cell, 6 
CD8 + T-cell, 6 B-cell, 6 neutrophil, and 6 monocyte 
450k samples (ArrayExpress: E-MTAB-2145). From 
Coit et al. [38], we obtained 15 neutrophil 450k samples 
(GEO: GSE65097). From Nestor et  al. [39], we obtained 
8 CD4 + T-cell 450k samples (GEO: GSE50222). From 
Shade et al. [40], we obtained 12 neutrophil 450k samples 
(GEO: GSE63499). From Limbach et al. [41], we obtained 
31 CD4 + T-cell and 31 CD8 + T-cell 450k samples (GEO: 
GSE71955). From Mamrut et  al. [42], we obtained 6 
CD4 + T-cell, 5 CD8 + T-cell, 4 B-cell, and 5 monocyte 
450k samples (GEO: GSE71244). From Absher et al. [43], 
we obtained 71 CD4 + T-cell, 56 B-cell, and 28 mono-
cyte 450 k samples (GEO: GSE59250). From Tserel et al. 
[44], we obtained 99 CD4 + T-cell and 100 CD8 + T-cell 
450k samples (GEO: GSE59065). From Paul et  al. [45], 
we obtained 49 CD4 + T-cell, 50 B-cell, and 52 monocyte 
450k samples (EGA: EGAS00001001598). From Reinius 
et al. [46], we obtained 6 CD4 + T-cell, 6 CD8 + T-cell, 6 
B-cell, 6 neutrophil, 6 monocyte, and 6 eosinophil 450k 
samples. From the IHEC data portal (https:// epige nomes 
portal. ca/ ihec/), we obtained WGBS hg38 immune-cell-
sorted samples from build version 2020–10. The down-
loaded files were in bigwig format. For each sample, there 
are 2 bigwig files, one for read coverage information 
and the other for beta value information. We first used 
bigWigToWig shell script provided by UCSC genome 
browser to convert them into wig files. Then for each 
sample, we combined the read coverage and beta value 
information into one file and stored them as an.rda file for 
further processing. For each WGBS sample, we found the 
CpGs present in the 850k DNAm beadarray. We dropped 
one sample (ERS568736) due to ultra-low coverage. For 
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the rest of samples, the minimum number of 850k probes 
covered by 20 reads or more was 336,812, the maximum 
was 834,149, with a mean of 689,451. In total, for this 
work, we used 4 memory CD4 + T-cell, 2  T-regulatory, 
4 naïve CD8 + T-cell, 2 memory CD8 + T-cell, 7 naïve 
B-cell, 5 memory B-cell, 12 neutrophil, 22 monocyte, 2 
eosinophil, and 4 natural killer cell WGBS samples, for 
validating our 850 DNAm reference matrix.

In silico mixture validation analysis with WGBS cell‑sorted 
samples
The overall coverage of common 850k probes across 
all WGBS samples was only 132,713, containing only 
72 probes from our 600 CpG 850k DNAm reference 
matrix. Hence, for the in silico mixture analysis, we 
did not impose any threshold on read coverage, which 
resulted in 487,795 probes, including 304 probes from 
our 850k DNAm reference matrix. This is sensible 
because reference-based cell-type deconvolution can 
tolerate even up to 30% errors in the DNAm refer-
ence matrix [47]. Hence, in silico mixtures were gener-
ated from the 4 memory CD4 + T-cell, 2  T-regulatory, 
4 naïve CD8 + T-cell, 2 memory CD8 + T-cell, 7 naïve 
B-cell, 5 memory B-cell, 12 neutrophil, 22 monocyte, 
2 eosinophil, and 4 natural killer cell WGBS samples, 
defined over the 304 probes. We generated 1000 in 
silico mixtures, randomly selecting one sample from 
each immune-cell type and using random weights 
drawn from a uniform distribution to generate the lin-
ear combination. Since there are a total of 4*2*4*2*7*5*
12*22*2*4 = 4,730,880 potential combinations, generat-
ing 1000 in silico mixtures is sensible as the number is 
large enough to reliably assess performance, while also 
reducing statistical dependency of the combinations 
as much as possible. Performance was assessed using 
Pearson R-values and RMSE.

Illumina DNA methylation datasets used 
in the meta‑analysis
Below we provide details of the data source and pro-
cessing of each dataset used in our meta-analyses. Each 
dataset profiled whole or peripheral blood samples with 
Illumina DNAm beadarrays (EPIC or 450k). Further 
details are available in Additional File 1: table  S3. In all 
cases where idat files were available, we processed the 
data with a uniform procedure that used minfi for pro-
cessing with Illumina normalization method [31], fol-
lowed by BMIQ normalization to correct for type-2 
probe bias [32]. This strategy to normalize the DNAm 
data with minfi followed by BMIQ normalization has 
been shown to work reasonably well [48–51].

LiuMS
The 450k dataset from Kular et al. [52] was obtained from 
the NCBI GEO website under the accession number 
GSE106648 (https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. 
cgi? acc= GSE10 6648). We downloaded the series matrix 
file which contained the data processed with detection 
P-values. We only retained probes with no missing values 
across all samples. This data was subsequently normalized 
with BMIQ [32], resulting in a normalized data matrix for 
483,567 probes and 279 peripheral blood samples (140 
multiple sclerosis patients + 139 controls).

Song
The EPIC dataset from Song et al. [53] profiled DNAm 
in blood from childhood cancer survivors and was 
obtained from the NCBI GEO website under the acces-
sion number GSE169156 (https:// www. ncbi. nlm. nih. 
gov/ geo/ query/ acc. cgi? acc= GSE16 9156). The file 
“GSE169156_RAW.tar” which contains the IDAT files 
was downloaded and processed with minfi package 
[31]. Probes with P-values < 0.05 across all samples were 
retained. The filtered data was subsequently normalized 
with BMIQ, resulting in a normalized data matrix for 
823,395 probes and 2052 samples.

HPT‑EPIC & HPT‑450k
These datasets derived DNAm profiles from the peripheral 
blood of African-Americans as part of The Genetic Epide-
miology Network of Arteriopathy (GENOA) study [54]. 
Data was obtained from the NCBI GEO websites under 
the accession numbers GSE210255 (https:// www. ncbi. 
nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE21 0255, Infin-
ium HumanMethylationEPIC BeadChip) and GSE210254 
(https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= 
GSE21 0254, Infinium HumanMethylation450k BeadChip). 
The files “GSE210255_RAW.tar” and “GSE210254_RAW.
tar” containing the IDAT files were downloaded and pro-
cessed with minfi package. Probes with P-values < 0.05 
across all samples were retained. The filtered data was sub-
sequently normalized with BMIQ, resulting in normalized 
data matrices containing 826,512 probes and 1394 samples 
(EPIC set), and 476,722 probes and 418 samples (450k set), 
respectively.

Barturen
The EPIC dataset from Barturen et  al. [55] profiled 
DNAm in blood from Covid-19 patients with three dif-
ferent levels of disease severity. Data was obtained 
from the NCBI GEO website under accession number 
GSE179325 (https:// www. ncbi. nlm. nih. gov/ geo/ query/ 
acc. cgi? acc= GSE17 9325). The file “GSE179325_RAW.tar” 
containing IDAT files was downloaded and processed 
with minfi package. Only probes with P-values < 0.05 
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across all samples were retained. The filtered data was 
subsequently normalized with BMIQ, resulting in a nor-
malized data matrix for 845,921 probes and 574 samples.

Airwave
The EPIC dataset from the Airwave study [56] was 
obtained from the NCBI GEO website under acces-
sion number GSE147740 (https:// www. ncbi. nlm. nih.  
gov/ geo/ query/ acc. cgi? acc= GSE14 7740). The file  
“GSE147740_RAW.tar” containing IDAT files was down-
loaded and processed with minfi. Only probes with 
P-values < 0.05 across all samples were retained. Filtered 
data was subsequently normalized with BMIQ, resulting 
in a normalized data matrix for 840,034 probes and 1129 
samples.

VACS
The 450k dataset from Zhang X et al. [57] was obtained 
from the NCBI GEO website under accession number 
GSE117860 (https:// www. ncbi. nlm. nih. gov/ geo/ query/ 
acc. cgi? acc= GSE11 7860). The file “GSE117860_Meth-
ylatedSignal.txt.gz” containing the unmethylated sig-
nals, methylated signals, and detection P-values was 
downloaded. The beta values were obtained using the 
Illumina definition: methylated signal / (methylated sig-
nal + unmethylated signal + 100). Only probes with P-val-
ues < 0.05 across all samples were retained. The filtered 
beta value matrix was subsequently normalized with 
BMIQ, resulting in a normalized data matrix 396,327 
probes across 529 samples.

Ventham
The 450k dataset from Ventham et al. [58] was obtained 
from NCBI GEO website under accession number 
GSE87648 (https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. 
cgi? acc= GSE87 648). The file “GSE87648_RAW.tar” con-
taining the IDAT files was downloaded and processed 
with minfi package. Two samples in which the propor-
tion of probes with P-values < 0.05 is lower than 0.99 
were excluded, and probes with P-values < 0.05 across all 
remaining samples were kept. Filtered data was subse-
quently normalized with BMIQ, resulting in a normalized 
data matrix for 470,807 probes and 382 samples.

Hannon‑1 and 2
The 450k datasets from Hannon et  al. [59, 60] 
were obtained from NCBI GEO websites under 
accession numbers GSE80417 (https:// www. ncbi. 
nlm. nih. gov/ geo/ quer y/  acc .  cg i?  acc=  GSE80 417) 
and GSE84727 (https:// www. ncbi. nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= GSE84 727), which represent the 
phase-1 and phase-2 of their study. For the phase-1 

dataset, the file “GSE80417_rawBetas.csv.gz” contain-
ing the beta values for filtered probes was downloaded, 
and the beta values were then normalized with BMIQ 
algorithm. For the phase-2 dataset, the file “GSE84727_
rawBetas.csv.gz” and “GSE84727_detectionP.csv.gz” 
were downloaded. Only probes with P-values < 0.05 
across all samples were kept. The filtered beta value 
data was subsequently normalized with BMIQ. The 
final data matrices contain 477,818 probes across 675 
samples, and 478,630 probes across 847 samples, for 
phase-1 and phase-2, respectively.

Zannas
This 450k dataset is derived from whole blood of African-
American participants of the Grady Trauma Project [61]. 
Data was obtained from NCBI GEO website under acces-
sion number GSE72680 (https:// www. ncbi. nlm. nih. gov/ 
geo/ query/ acc. cgi? acc= GSE72 680). The file “GSE72680_
beta_values.txt.gz” containing the beta values and 
detection P-values was downloaded. Probes with P-val-
ues < 0.05 across all samples were kept. However, the beta-
value matrix of the retained probes still contained NAs 
and these were imputed with the function impute.knn 
(k = 5) from the impute R-package. Beta values were later 
normalized with BMIQ, resulting in a normalized data 
matrix containing 453,310 probes across 422 samples.

Flanagan/FBS
The 450k dataset Flanagan et al. is from the Breakthrough 
Generations Study [62] and was obtained from NCBI 
GEO website under the accession number GSE61151 
(https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= 
GSE61 151). The file “GSE61151_Matrix_raw_signal.txt.
gz” containing beta values and detection P-values was 
downloaded. Only probes with P-values < 0.05 and with 
no other QC-failures across all samples were kept. The 
filtered beta value data was subsequently normalized 
with BMIQ. The 2 duplicates of 4 pairs of samples were 
averaged, since duplicate pairs exhibited strongest corre-
lations with each other. The final normalized data matrix 
was defined for 426,430 probes and 184 samples.

Johansson
The 450k dataset from Johansson et al. [63] was obtained 
from NCBI GEO website under accession number 
GSE87571 (https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. 
cgi? acc = GSE87571). The file “GSE87571_RAW.tar” con-
taining the IDAT files was downloaded and processed with 
minfi R-package. Probes with P-values < 0.05 across all 
samples were kept. Filtered data was subsequently normal-
ized with BMIQ, resulting in a normalized data matrix for 
475,069 probes across 732 samples.
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TD7k
This EPIC DNAm dataset from TruDiagnostic Inc. was 
collected between 2020 and 2022. The dataset repre-
sents whole blood samples collected from a total of 
7719 individuals who had provided blood as part of 
either a routine check by physicians or by acquiring 
a kit directly from TruDiagnostic Inc. All individu-
als have provided consent to use the collected data 
for this project. Whole blood samples were collected 
and stored at − 80°C prior to DNA processing, which 
was conducted at the TruDiagnostic Inc. lab facil-
ity (Lexington, KY, USA). Five hundred nanograms of 
DNA was extracted and bisulfite converted using the 
EZ DNA Methylation kit (Zymo Research) using the 
manufacturer’s instruction. After bisulfite conver-
sion, converted DNA were hybridized to the Illumina 
HumanMethylation EPIC Beadchip, stained, washed, 
and imaged with the Illumina iScan SQ instrument to 
obtain raw image intensities. Raw data was processed 
using the minfi pipeline. Low-quality samples were 
identified using the ENmix qcfilter() function. Probes 
with P-values < 0.05 across all samples were identified 
and kept, with low-quality probesets removed. A com-
binatorial normalization processing using the minfi 
Funnorm procedure, followed by the RCP method 
available in ENmix(). The final normalized beta-valued 
matrix was defined for 864,627 probes across 7719 
samples.

Lehne
This 450k DNAm dataset consists of over 2700 periph-
eral blood samples [64], but we used the already QC-pro-
cessed and normalized version previously described by 
Voisin et al. [65] which included a total of 2639 samples.

UCLA
The UCLA dataset (N = 178) was collected at Physio-
Age LLC and sent to TruDiagnostic Inc. for processing. 
All processing and data normalization was performed 
exactly as for the TD7k dataset.

TZH, Hannum, LiuRA, Tsaprouni, MRC1946, and FCE
The TZH (EPIC) [66], Hannum (450k) [67], LiuRA (450k) 
[5], Tsaprouni (450k) [68], MRC1946 (450k) [18], and 
FCE (EPIC) datasets [69] were downloaded and normal-
ized as described by us previously [18, 66, 70].

Mass General Biobank data (MGB)
A total of 4386 whole blood samples were retrieved 
from the MGB Biobank to study associations of 
immune-cell fractions with health outcomes (not 
part of the meta-analysis). MGB-derived DNA sam-
ples were processed by TruDiagnostic Inc. lab facility 

(Lexington, KY, USA) in conjunction with the TD7k 
samples, as described for the TD7k cohort above. The 
same processing and normalization steps as used in 
the TD7k cohort were used here. The final processed 
dataset was used for subsequent association analyses 
with health outcomes.

Real DNAm datasets with matched FACS cell counts
UCLA
UCLA Immune Assessment Core performed the analysis 
of immunosenescent cells for 144 whole blood samples, 
as described previously [71]. Briefly, Total CD3 + T-cells, 
CD4 + T-cells, CD8 + T-cells, CD19 + B-cells, and 
CD56 + /CD16 + NK-cells were enumerated in EDTA 
whole blood with the BD Multitest 6-color TBNK rea-
gent and BD Trucount tubes following the manufac-
turer’s instructions, acquired on a BD FACSCanto 
II and analyzed with the BD FACSCanto Software. 
CD8 + T-cell sub setting was performed by staining 
50 μl of EDTA whole blood with CD3 FITC, CD8 PerCP, 
CD28 PE, and CD95 APC (BD) for 10 min, followed by 
BD FACS Lysing used according to the manufacturer’s 
instructions. At least 10,000 lymphocyte events per sam-
ple were acquired and analyzed using DIVA 8.0 software 
on BD FACSCanto II.

Koestler
We used the Illumina 450k dataset from Koestler et al. 
[26] consisting of 6 whole blood (WB) with matched 
flow-cytometric cell counts. This dataset is available 
from GEO under accession number GSE77797. DNAm 
data was normalized and processed as previously 
described [21].

Estimation of cell‑type fractions
In all cases, given the 12 cell-type DNAm reference 
matrix for either the Illumina 850k or 450k dataset, we 
estimated corresponding cell-type fractions using the 
EpiDISH Bioconductor R-package [21, 72]. Specifically, 
we ran the epidish function with “RPC” as the method 
and maxit = 500.

Meta‑analyses
In each cohort, associations between CTFs and pheno-
types were assessed using multivariate linear regression. 
Covariates generally included age, sex, smoking status, 
and batch if evidence for batch effects was present and 
if batch information was available. In general, however, 
we note that cell-type fractions are relatively robust to 
batch effects. For specific cohorts where additional 
covariates were available, multivariate regression mod-
els with these additional covariates were also per-
formed. Smoking status was generally treated as ordinal 
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with 0 = never-smoker, 1 = ex-smoker and 2 = current 
smoker. For each regression, we extracted the corre-
sponding effect size, standard error, Student’s t test, and 
P-value. Meta-analysis was first performed using the 
directional Stouffer method: for each study, we trans-
formed the P-value into a normal quantile z-value, using 
the sign of the statistic to assign the sign of the z-value. 
We then averaged the z-values over studies using the 
formula Z =

1
√
K

K
s=1

zs where K is the number of stud-
ies. From Stouffer’s z-value an overall P-value can then 
be derived using a standard normal distribution. In 
addition, we also performed a fixed effect inverse vari-
ance meta-analysis [73] using the metagen function 
implemented in the meta R-package [74].

Heteroscedasticity between immune-cell fractions and 
age was assessed using the Breusch-Pagan test, as imple-
mented with the bptest function in the lmtest R-package 
[75]. A robust linear estimator was used as implemented 
in the rlm function of the MASS R-package.

scRNA‑Seq dataset of peripheral blood mononuclear cells 
(PBMCs) from 900 donors
scRNA-Seq data from Yazar et  al. [76] was downloaded 
from https:// cellx gene. czisc ience. com/ colle ctions/ dde06 
e0f- ab3b- 46be- 96a2- a8082 383c4 a1. Specifically, we down-
loaded a Seurat object including the cell-by-gene expres-
sion matrix as well as associated metadata containing 
cell type annotation, matched sample IDs, age, sex and 
UMAP coordinates for 1,248,980 PBMCs from a total of 
981 donors. Of the 31 cell types, some were merged as 
required for comparison with DNAm: CD4 + TCM and 
CD4 + TEM were regarded as CD4 + T memory cells; 
CD8 + TCM and CD8 + TEM as CD8 + T memory cells; 
cells labeled as “NK_CD56bright,” “NK Proliferating,” and 
“NK” were regarded as NK-cells; CD14 + monocytes and 
CD16 + monocytes were treated as monocytes; cell types 
not included in our DNAm reference were regarded as 
“other.” After this merging, we were left with 9 cell types 
(not including “other”): approximately 320k CD4 + T mem-
ory cells, 259k naïve CD4 + T-cells, 177k CD8 + T memory 
cells, 52k naïve CD8 + T-cells, 171k NK, 65k naïve B-cells, 
30k memory B-cells, 51k monocytes, and 26k T-regulatory 
cells. Cell type proportions and differential abundance of 
these in relation to age and sex were calculated with the 
propeller method [77] from speckle R-package.

scRNA‑Seq dataset of mild and severe Covid‑19 cases
scRNA-Seq expression data of bronchoalveolar lav-
age fluid (BALF) from Liao et  al. [78] encompassing 
3 COVID-19 mild samples, 6 COVID-19 severe sam-
ples, and 4 healthy controls was obtained from https:// 
cells. ucsc. edu/ covid 19- balf/ exprM atrix. tsv. gz. We also 
downloaded the corresponding metadata containing 

annotation for cell types and samples from https:// cells. 
ucsc. edu/ covid 19- balf/ meta. tsv. QC for scRNA-Seq data 
has been done by Liao et  al. by only keeping cells with 
gene number between 200 and 6000, UMI count > 1000, 
and mitochondrial gene percentage < 0.1. Cells were 
annotated after batch effect removal with FindIntegra-
tionAnchors and IntegrateData functions and clustering 
with FindNeighbors and FindClusters functions from 
Seurat package [79]. There were clusters mapping to 
49417 macrophages, 7716 T-cells, 220 B-cells, 1607 neu-
trophils, 3531 epithelial cells, 70 mast cells, 978 mDCs, 
1081 NKs, 152 pDCs, and 1041 plasma cells, each cluster 
annotated with signature genes. We used the scRNA-Seq 
data defined over 23,916 genes and T-cells, B-cells, neu-
trophils, and NKs from 11 samples (3 healthy, 3 mild, 5 
severe) for the following analysis, normalizing the data 
with NormalizeData(normalization.method = “LogNor-
malize,” scale.factor =  104) from Seurat package. Note 
that among the original 13 samples, one healthy sample 
(labeled as “HC2” in metadata provided by Liao et  al.) 
and one severe sample (labeled as “S3” in metadata pro-
vided by Liao et  al.) were removed due to small num-
bers of T-cells in these two samples (< 70 cells). T-cells 
were classified as “naïve T-cells” if the expression values 
of LEF1 are non-zero (948 naïve cells), otherwise classi-
fied as “memory/effector T-cells” (6653 memory/effector 
cells). We used the function propeller(robust = FALSE, 
trend = FALSE, transform = "asin") from speckle R-pack-
age to calculate for each cell-type their proportions, to 
perform a variance stabilizing transformation on the pro-
portions and to determine whether the differential abun-
dance is statistically significant between non-severe and 
severe samples.

Health outcome cox‑regression analysis in the MGBB 
cohort
We queried the demographic information (i.e., date 
of birth, sex and ethnicity), health history (i.e., smok-
ing status, alcohol consumption and BMI), and clinical 
records (i.e., patient diagnosis) of 4386 human subjects 
from Mass General Brigham (MGB) Biobank [80] and 
The Research Patient Data Repository (RPDR) data-
bases [81]. Age at the time of sample collection was 
then calculated accordingly. The vital status (i.e., liv-
ing/deceased) and date of death were also obtained 
from MGB Biobank. However, 147 subjects who were 
recorded as deceased had missing date of death, and 
they were excluded from the survival analysis of all-
cause mortality. We identified other diseases, includ-
ing type 2 diabetes, chronic obstructive pulmonary 
disease (COPD), cardiovascular disease (CVD), cancer, 
and depression, by using relevant ICD-9/10 diagnosis 
codes (referred to supplement codebook). We defined 

https://cellxgene.cziscience.com/collections/dde06e0f-ab3b-46be-96a2-a8082383c4a1
https://cellxgene.cziscience.com/collections/dde06e0f-ab3b-46be-96a2-a8082383c4a1
https://cells.ucsc.edu/covid19-balf/exprMatrix.tsv.gz
https://cells.ucsc.edu/covid19-balf/exprMatrix.tsv.gz
https://cells.ucsc.edu/covid19-balf/meta.tsv
https://cells.ucsc.edu/covid19-balf/meta.tsv
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an incident case as the first diagnosis of a specific 
health outcome that occurred on the patient’s medical 
record after the sample collection date. Subjects with 
a diagnosis code of diseases prior to sample collection 
were excluded from the survival analysis of that par-
ticular disease. We imputed missing data for smoking 
status, alcohol consumption, and BMI by utilizing the 
longitudinal records of these variables. Specifically, we 
used the record closest to the sample collection date 
for smoking status and alcohol consumption. For BMI, 
we imputed the missingness as the median value of all 
BMI records within 6  months around the collection 
date to balance off the measurement error and tempo-
ral variation. Despite imputation, 605 subjects still had 
missing BMI data and were excluded from the survival 
analysis when further adjusting for additional risk fac-
tors, including BMI. We estimated the hazard ratio of 
each immune cell type against the health outcomes 
using Cox-proportional hazard regression models with 
coxph function in survival R-package. The models were 
adjusted for age, sex, ethnicity, and baseline comorbidi-
ties (which included cancer, CVD, COPD, depression, 
and T2D), and separately again adjusting for age, sex, 
ethnicity, smoking status, alcohol consumption, BMI, 
and the same baseline comorbidities.

Lasso penalized Cox‑regression model predictor 
of all‑cause mortality
Using the same MGBB cohort, we built predictors of 
all-cause mortality using all 12 immune-cell fractions, 
and separately again using in addition also age, ethnic-
ity, sex, BMI, smoking status, alcohol consumption, and 
all underlying comorbidities. We used a penalized (lasso 
penalty) Cox-proportional hazard regression model as 
implemented in the glmnet R-package. Briefly, we divided 
the dataset up into a 70% training (3591 samples + 302 
events) and 30% test (1110 samples + 122 events) set. 
On the 70% training set, we applied an internal tenfold 
cross-validation procedure [82], to obtain a risk score for 
each left-out bag in turn and for each choice of penalty 

parameter value. The risk scores were then combined 
across all left-out bags, and the association with all-cause 
mortality assessed using the C-index. This yielded a curve 
of how the C-index varies as a function of penalty param-
eter. In the case of the model that only includes immune-
cell fractions, we obtained one clear optimal model. In 
the case of the model that included all factors, we consid-
ered the top 2 model with overlapping 95%C CIs. These 
models were then tested on the 30% test-test. In all cases, 
we recorded the hazard ratio, C-index, and their 95% 
confidence intervals. P-values of association between 
the risk scores and all-cause mortality were derived from 
the one-tailed Chi-square test (1 degree of freedom) as 
applied to the Cox-score statistic.

Results
Construction and validation of a 12 immune‑cell‑type 
DNAm reference matrix
We constructed a novel DNAm reference matrix encom-
passing 12 blood cell subtypes (monocytes, neutrophils, 
eosinophils, basophils, naïve and memory CD4 + T-cells, 
naïve and memory CD8 + T-cells, naïve and memory 
B-cells, natural killer (NK) and T-regulatory (Tregs) 
cells) using the EPIC DNAm profiles of FACS-sorted 
cells from Salas et al. [28]. Since cell-type-specific marker 
genes display a very strong preference for unmethyl-
ated promoters and enhancers in the corresponding cell 
types [24, 29], we decided to construct a DNAm refer-
ence matrix focusing on CpGs specifically unmethyl-
ated in each cell type (Methods). For each of the 12 cell 
types, we selected CpGs significantly hypomethylated 
(FDR < 0.001) in the given cell-type relative to all the rest, 
subsequently ranking them according to the difference 
in average DNAm, so as to ensure maximum separabil-
ity (Fig. 1a, “Methods”). We verified that by selecting the 
50 top-ranked CpGs for each cell type (i.e., a total of 600 
CpGs), that these displayed very significant hypometh-
ylation and relatively big differences in average DNAm, as 
required (Fig. 1a, Additional File 1: table.S1). About half 
of the 600 CpGs mapped to gene bodies, while the other 

(See figure on next page.)
Fig. 1 Construction and validation of the 12 blood cell‑type hypoDNAm reference matrix. a Left panel: Example of a CpG’s DNAm profile 
in the DNAm reference matrix, marking T‑regulatory (Treg) cells. The y‑axis labels the cell types, x‑axis labels the DNAm value, and the number 
of samples of each cell type (i.e., in each boxplot) is shown on the y‑axis. Right panel: The DNAm reference matrix for 12 blood cell subtypes 
encompassing 600 CpGs (i.e., 50 markers per cell type). b Scatterplots of true fractions vs estimated fractions for 10 blood cell subtypes using 
the EPIC DNAm data from 10 artificial mixtures where the underlying mixing proportions were known. For each estimated cell type, we display 
the R‑value (Pearson correlation coefficient) and root mean square error (RMSE). c Heatmap displays the estimated fractions of cell‑sorted samples 
for each of the 12 immune‑cell subtypes in our Illumina 450k/850k DNAm reference matrices, as well as the total CD4 + T‑cell, total CD8 + T‑cell, 
and total B‑cell fractions. The immune‑cell type of the sorted sample is indicated by the color bar on top of the heatmap. The study from which 
the sorted sample derives from is indicated by the color bar below the heatmap. The technology used to generate the DNAm data of the sorted 
sample is also indicated. For the 450k and WGBS samples, we used the 450k and 850k DNAm reference matrices, respectively, to obtain 
the fractions. The estimated fractions in the heatmap are median values taken over biological replicates of the cell‑sorted samples, with the number 
of corresponding biological replicate samples indicated at the bottom
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Fig. 1 (See legend on previous page.)
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half mapped predominantly to inter-genic regions and 
shores/shelves upstream of the TSS (Fig. 1a).

To validate the 12 blood cell-subtype DNAm reference 
matrix, we applied it in conjunction with the robust 
partial correlation (RPC) framework implemented in 
EpiDISH [21] to estimate cell-type fractions in 12 arti-
ficial mixtures where the proportions of 10 underlying 
blood cell subtypes used in these mixtures are known 
[28]. Pearson correlations and root mean square error 
(RMSE) were excellent (R ~ 0.99, RMSE < 0.05) for all 
tested cell types, except for CD8 + T-cells which dis-
played marginally worse values (R ~ 0.98, RMSE = 0.09) 
(Fig. 1b). To further validate it, we compared estimated 
cell-type fractions with matched flow-cytometric counts 
in two independent datasets, one encompassing 6 blood 
samples with matched counts for 7 blood cell subtypes 
[25], and another encompassing 144 peripheral blood 
samples with matched counts for 3 types of lympho-
cytes (Methods). For both datasets, Pearson correla-
tion R-values and RMSE were reasonably good (R > 0.84 
& RMSE < 0.05 and R > 0.7 & RMSE < 0.1, respectively), 
further attesting to the quality of our DNAm reference 
matrix (Additional File 2: fig.S1a-b). For completeness, 
we repeated the construction of a 12 cell-type DNAm 
reference matrix, but this time restricting to Illumina 
450  k probes, resulting in a separate 600 CpG × 12 
cell-type DNAm reference matrix (Additional File 1: 
table  S2). We successfully validated this DNAm refer-
ence matrix in artificial blood mixtures and in blood 
samples with matched flow-cytometric counts (Addi-
tional File 2: fig.S2). Of note, estimated cell-type frac-
tions for 7 pooled immune cell types, as derived from 
each of the two 12 immune-cell-type DNAm reference 
matrices, displayed good agreement with those derived 
from our previous 7 immune-cell-type DNAm refer-
ence [21], as assessed in the two largest cohorts (TD7k 
& Lehne) (Additional File 2: fig.S3). In a few cases where 
correlations were weaker (e.g., R = 0.55 for eosinophil 
fraction in Lehne et al., see Additional File 2: fig.S3), this 
was driven by a significant number of unrealistic zero 
eosinophil fractions as derived with the lower resolu-
tion 7 cell-type DNAm reference matrix. This attests to 
the improved inference possible with a higher-resolu-
tion DNAm reference matrix. Further supporting this, 
both 12 immune-cell-type DNAm reference matrices 
displayed stronger correlations than the 7 cell-type one, 
with known experimental cell fractions of artificially 
generated mixtures, as well as with flow-cytometric 
counts of whole blood samples (Additional File 2: fig.
S4). Finally, we further validated both 850k and 450k 
versions of the DNAm reference matrix in a large col-
lection of sorted immune-cell subsets, including whole-
genome bisulfite sequencing (WGBS) samples from 

IHEC [83] (Fig.  1c). Of note, our 850k DNAm refer-
ence matrix achieved remarkably high accuracy (mean 
R-value > 0.95) on in silico mixtures generated from 
these WGBS immune-cell-sorted samples (SI fig.S1c, 
Methods), thus demonstrating that our DNAm refer-
ence matrix built with Illumina DNAm data is applica-
ble to WGBS data.

A meta‑analysis of immune‑cell fractions reveals novel 
associations with age
We next applied the 12 immune-cell type DNAm ref-
erence matrix to perform a large meta-analysis of 
immune-cell fractions with common phenotypes. This 
meta-analysis serves two purposes. First, because large 
DNAm datasets with matched flow-cytometric counts 
for as many as 12 immune cell types are not available, 
it is paramount to seek additional means to validate 
our high-resolution DNAm reference matrix on real 
data. By estimating immune-cell fractions in a large 
number of independent cohorts and correlating these 
to specific phenotypes, we can ascertain the quality of 
our novel DNAm reference matrix. For instance, our 
DNAm reference matrix should be able to correctly 
capture a well-known age-associated immunosenes-
cence signature characterized by a decreased naïve to 
mature T-cell fraction ratio [6, 84–89]. Second, a meta-
analysis can reveal subtle, novel, and highly statistically 
significant associations, not evident from individual 
studies. To perform the meta-analysis, we estimated 
fractions for all 12 immune-cell subtypes in 22 inde-
pendent whole blood cohorts, encompassing 23,053 
samples and two versions of the Illumina DNAm array 
(EPIC & 450k) (Additional File 1: tables S3-S4). In each 
cohort, we correlated these fractions to common phe-
notypes using multivariate linear regression models 
that adjust for study-specific confounders (“Methods,” 
Additional File 1: table  S5). We used the directional 
Stouffer method to derive an overall z-statistic and 
P-value of association across all studies with available 
phenotype information (“Methods”).

We first considered the case of age. The chrono-
logical age distribution was reasonably wide (age 
range > 30 years) for all 22 studies, except for one where 
all individuals were of the same age and which was 
henceforth excluded from age-association analyses 
(Additional File 2: fig.S5, Additional File 1: table  S3). 
Validating our DNAm reference matrix, we observed a 
strong consistent reduction in the naïve CD8 + T-cell 
population with age across all 21 studies (Fig.  2a, 
Stouffer Z =  − 53, P <  10−200). For CD4T + cells, the 
reduction of the naïve subset was also evident in 17 
out of 21 studies (Fig. 2a, Stouffer Z =  − 25, P <  10−100). 
Correspondingly, there was a trend for the memory 
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T-cell subsets to increase with age (Fig.  2a, Stouffer 
Z = 14, P <  10−40 for CD4Tmem and Z = 9, P <  10−20 for 
CD8Tmem). A fixed effect inverse variance meta-anal-
ysis model showed that effect sizes were small, typically 
involving at most only a few percentage points over a 
50-year interval (Fig.  2b,c, “Methods,” Additional File 
2: fig.S6). A formal test for heterogeneity of effect size 
(I2) revealed substantial heterogeneity between cohorts 
(Fig. 2b), which is unsurprising given the diverse nature 
of the cohorts included in the meta-analysis. Overall, 
we observed an excellent agreement between the direc-
tional Stouffer and fixed effect meta-analysis model 
(Fig.  2d). Although deviations from homoscedasticity 
were evident (Additional File 2: fig.S7), for instance, the 
naïve CD8 + T-cell fraction displayed decreased vari-
ance with age in most of the cohorts examined, t-sta-
tistics were effectively unchanged when rerunning the 
multivariate linear regressions with a robust Huber 
M-estimator (Additional File 2: fig.S8).

A meta-analysis over many datasets can also reveal 
novel associations or strengthen previous preliminary 
findings. For instance, our meta-analysis revealed a clear 
trend for basophil and NK-cell fractions to increase with 
age (Fig. 2a, Stouffer Z = 11, P <  10−20 for NK and Z = 10, 
P <  10−20 for basophils), strengthening preliminary find-
ings from others [90–93]. To further validate the observed 
associations for lymphocytes and monocytes, we collated 
a large scRNA-Seq dataset of over 1.27 million peripheral 
blood mononuclear cells (PBMCs) from over 900 donors 
spanning a wide age range (Fig. 2e, “Methods”) [76], and 
used the propeller DA-testing method [77] to derive sta-
tistics of association of relative immune-cell fractions 
with age. This revealed an excellent agreement between 
the predictions from DNAm data and scRNA sequenc-
ing (Fig.  2f,g). Our meta-analysis also revealed that the 
eosinophil fraction did not change significantly with 
age (Fig. 2a, Stouffer P = 0.03), the marginal significance 
being driven entirely by one study (Song et  al. [53]). Of 
note, this study had profiled DNAm in childhood cancer 

survivors, and the observed increased eosinophil count 
in Song et al. was independent of cancer treatment type 
(Additional File 2: fig.S9). Our eosinophil meta-analysis 
result validates a major eosinophil count study in over 
11,000 subjects, which concluded that eosinophil counts 
do not change with age beyond the age of puberty [94]. 
Consistent with this, all cohorts analyzed here did not 
include samples pre-puberty except for the large TD7k 
cohort which however only included 3 samples younger 
than 15 years (Additional File 2: fig.S5b).

Decrease of naïve CD8 + T‑cell fraction with age 
is strongest before the age of 40
A large collection of DNAm datasets in blood can also 
help address the question if age-associated changes in 
immune-cell fractions are a linear process. We focused 
on the naïve T-cell fractions because these displayed the 
most consistent and significant changes with age. To 
address the question, we merged the estimated fractions 
of samples in the age range 20 to 85 from all cohorts 
where the given cell-type fraction was significantly 
associated with age (with same directionality), exclud-
ing the Song et al. cohort since this was a PBMC dataset 
displaying significantly different levels of cell-type frac-
tions (Additional File 2: fig.S10). In the case of the naïve 
CD8 + T-cell fraction, we observed that the decrease 
was more accentuated for younger individuals in the 
age range 25–40, with a shift in the gradient at approxi-
mately age 40, followed by a more moderate decrease in 
the age range 40 to 60, with no clear further decrease 
beyond the age of 60 (Fig. 3a). We verified that this pat-
tern was present in both sexes separately (Fig. 3a) and in 
each of the largest cohorts with sufficient and balanced 
representation across age groups, demonstrating that 
the more rapid decrease before age 40 is not a techni-
cal artefact of the merging procedure (Additional File 
2: fig.S11). In contrast, the naïve CD4 + T-cell fraction 
displayed a more constant rate of decrease throughout 
life (Fig. 3b).

Fig. 2 Association and validation of immune‑cell‑type fractions with age. a Heatmap of associations between blood cell‑type fractions and age 
in each of 21 cohorts. Cohort sizes are shown above heatmap. Colors indicate both directionality of change and statistical significance, as indicated, 
with the P‑values derived from a multivariate regression that included sex, smoking status, BMI, and other confounders as described in “Methods.” 
Meta(Stouffer) indicates the directional Stouffer meta‑analysis z‑statistic and statistical significance. Associations marked with an * are significant 
after Bonferroni correction at 0.05 level (i.e., P < 0.05/11). b Barplot displaying the effect size estimates and 95% confidence intervals from a fixed 
effect inverse variance meta‑analysis model. Estimates have been multiplied by 50 to reflect the percentage change over a 50‑year period. 
Color bar to the right labels the I2 values of heteroscedasticity. c Smoothed scatterplots displaying the naïve CD8 + and CD4 + T‑cell fractions 
with age in the TZH cohort. Black dashed line and P‑value is from a linear regression. d Scatterplot of z‑statistics from the directional Stouffer 
method, against the corresponding statistics from the fixed effect meta‑analysis model. R‑value of agreement is shown. Gray dashed lines 
indicate the line P = 0.05. e UMAP plots of the scRNA‑Seq data of Yazar et al. profiling > 1 million PBMCs from over 900 donors of different ages. f 
Scatterplot of Stouffer z‑statistics for each cell type derived from DNAm data, against the corresponding t‑statistic from Propeller method based 
on the scRNA‑Seq data. Linear regression P‑value of agreement is given. g Examples of immune‑cell fractions displaying significant associations 
with chronological age as inferred from scRNA‑Seq data. P‑values derive from Propeller

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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Meta‑analysis reveals novel associations of immune‑cell 
counts with sex
A total of 18 studies profiled blood in both males and 
females (Additional File 2: fig.S12a). A meta-analysis 
using directional Stouffer revealed increased monocyte, 
eosinophil, basophil. and NK-cell fractions in males, and 
increased T-regulatory and naïve T-cell subset fractions 
in females (Fig.  4a, Stouffer P <  10−10 for all cell types). 
Very similar findings were obtained using a fixed effect 
meta-analysis model (Fig. 4b,c, Additional File 2: fig.S13). 
Once again, we were able to validate most of the asso-
ciations using the large scRNA-Seq dataset of PBMCs 
from Yazar et al. [76] (Fig. 4d–f). The observed increased 
eosinophil fraction in males is also consistent with a 
similar finding from a major eosinophil count study [94]. 
Of particular importance is the observed increased regu-
latory and naïve T-cell fractions in women (Fig.  4a), an 
observation that, surprisingly, has not been noted before, 
except for a sporadic mention in one recent study by 
Bergstedt et  al. [95]. Of note, these particular sex asso-
ciations were validated using an orthogonal technology 

(scRNA-Seq data) (Fig.  4d–f), in clear support of their 
significance and biological relevance, highlighting a novel 
insight which could be important for understanding sex-
specific differences in cancer and autoimmune disease 
risk [96]. Interestingly, in the only cohort where the asso-
ciation of naïve CD4 + T-cells with sex was not seen (the 
Han Chinese TZH cohort, Fig. 4a), we verified that this 
was due to residual confounding between alcohol con-
sumption and sex (Chinese women consume little alco-
hol), as indeed the association became significant when 
adjusting additionally for alcohol consumption (Addi-
tional File 1: table S6).

Associations of immune‑cell fractions with smoking, 
obesity, exercise, and stress
Smoking status information was available for 10 stud-
ies (Additional File 2: fig.S12b). Compared to age and 
sex, the number of associations with smoking was much 
lower (Fig. 5a). The most significant and consistent asso-
ciations were displayed by the CD4 + T-cell memory frac-
tion, which was significantly higher in smokers in at least 

Fig. 3 Non‑linear rate of change of immune‑cell‑type fractions with age. a Left panel: Smoothed density scatterplot of the estimated naïve 
CD8 + T‑cell fraction against chronological age for all samples aged between 20 and 85 from 20 cohorts, with the loess regression curve (span = 0.3) 
displayed in magenta. Excluded cohorts are MRC1946, which only contains samples of the same age (age = 53) and Song, which profiled PBMCs 
and not whole blood. Middle and Right panels: as left but plotting males and females separately. b As a but for the estimated naïve CD4 + T‑cell 
fraction. Only samples aged between 20 and 85 from 16 cohorts where the association of naïve CD4 + fraction with age was significant (multivariate 
linear regression P < 0.05) and with same directionality were used. Excluded cohorts are MRC1946, Hannum, Tsaprouni, HPT‑450 k, Song, and VACS
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Fig. 4 Association and validation of immune‑cell fractions with sex. a Heatmap of associations between blood cell‑type fractions and sex in each 
of 18 cohorts with sex information. Cohort sizes are shown above heatmap. Red (blue) tones indicate fractions that increase in females (males). 
P‑values derived from a multivariate regression that included age, smoking status, BMI (whenever available), and other study‑specific confounders 
as described in “Methods.” Meta(Stouffer) indicates the directional Stouffer meta‑analysis z‑statistic and statistical significance. Associations 
marked with an * are significant after Bonferroni correction at 0.05 level (i.e., P < 0.05/11). b Barplot displaying the effect size estimates and 95% 
confidence intervals from a fixed effect inverse variance meta‑analysis model. Color bar to the right labels the I2 values of heteroscedasticity. c 
Scatterplot of z‑statistics from the directional Stouffer method, against the corresponding statistics from the fixed effect meta‑analysis model. 
R‑value of agreement is shown. Gray dashed lines indicate the line P = 0.05. d UMAP plots of the scRNA‑Seq data of Yazar et al. profiling > 1 million 
PBMCs from over 900 donors encompassing both sexes as shown. e Scatterplot of Stouffer z‑statistics for each cell type derived from DNAm 
data, against the corresponding t‑statistic from Propeller method based on the scRNA‑Seq data. Linear regression P‑value of agreement is given. f 
Examples of immune‑cell fractions displaying significant associations with sex as inferred from scRNA‑Seq data. P‑values derive from Propeller
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6 of the 10 studies (Fig. 5a, Stouffer Z = 6, P = 4 ×  10−9) . In 
5 of 10 studies, we also observed a consistent decrease of 
the NK-cell fraction in smokers (Fig. 5a, Stouffer Z =  − 5, 
P = 2 ×  10−6) . These two associations were also observed 
under a fixed effect meta-analysis model (Fig. 5b,c, Addi-
tional File 2: fig.S14). Although smoking information was 

not available for the scRNA-Seq study of Yazar et al., the 
findings are nevertheless consistent with previous blood 
cell-count studies reporting increased CD4 + T-cell mem-
ory and decreased NK counts in smokers [90, 97–99].

BMI information was available for 5 studies (Addi-
tional File 2: fig.S12c), but the only highly significant 

Fig. 5 Association of immune‑cell fractions with smoking, BMI, exercise, and stress. a Heatmap of associations between blood cell‑type fractions 
and smoking in each of 10 cohorts with smoking status information. Cohort sizes are shown above heatmap. Red (blue) tones indicate fractions 
that increase in smokers (never‑smokers). P‑values derived from a multivariate regression that included age, sex, and BMI (whenever available) 
and study‑specific confounders as described in “Methods.” Meta(Stouffer) indicates directional Stouffer z‑statistic and significance. Associations 
marked with a * are significant after Bonferroni correction at 0.05 level (i.e., P < 0.05/11). b Barplot displaying the effect size estimates and 95% 
confidence intervals from a fixed effect inverse variance meta‑analysis model. Color bar to the right labels the I2 values of heteroscedasticity. c 
Scatterplot of z‑statistics from the directional Stouffer method, against the corresponding statistics from the fixed effect meta‑analysis model. 
R‑value of agreement is shown. Gray dashed lines indicate the line P = 0.05. d Heatmap of multivariate associations of immune‑cell fractions 
with epidemiological factors in the TD7k cohort, encompassing over 6545 samples. Red tones indicate fractions that increase with increasing values 
of the epidemiological factors, blue tones indicate decreases. P‑values were derived from a multivariate linear regression including all phenotypic 
factors as shown
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associations with BMI were seen in the largest of these 
cohorts (TD7k), encompassing 6545 samples (Additional 
File 2: fig.S15). For the TD7k cohort, additional covariate 
information was available for most of these 6545 samples; 
hence for this cohort, we performed a more extensive 
multivariate linear regression analysis including not only 
age, sex, and smoking status as covariates, but also sleep, 
physical exercise, caffeine and alcohol consumption, and 
maternal smoking exposure. Interestingly, as with smok-
ing, we observed an increased CD4 + T-cell memory 
fraction in obese individuals (Fig.  5d, linear regression 
P = 1 ×  10−8), which was also seen in the second largest 
cohort with BMI information (TZH cohort) (Additional 
File 2: fig.S15). Of note, in the TD7k cohort, naïve T-cell 
and NK-cell fractions were reduced in obese individu-
als independently of all other covariates (Fig.  5d, linear 
regression P = 0.0004 (CD8Tnv), P = 0.016 (CD4Tnv), and 
P = 0.0004 (NK)). The multivariate analysis in TD7k also 
revealed a significant increase of NK (linear regression 
P = 6 ×  10−5) and monocyte fractions (linear regression 
P = 0.0008) in individuals undergoing frequent exercise, 
while the naïve B-cell fraction decreased (linear regres-
sion P = 0.0001) (Fig. 5d). The NK fraction also increased 
in individuals sleeping longer hours although this asso-
ciation was more marginal (linear regression P = 0.003, 
Fig.  5d). In contrast, the NK fraction decreased signifi-
cantly in individuals reporting higher stress levels (lin-
ear regression P = 0.0006, Fig. 5d). Although associations 
with alcohol consumption were only of marginal signifi-
cance, it is worth noting that the specific increases of 
CD4T cells (both naïve and memory subsets) and baso-
phils in frequent drinkers were replicated at a similar sig-
nificance level in the TZH cohort (Additional File 2: fig.
S16). Overall, these patterns reveal associations of spe-
cific cell types (e.g., memory and naïve T-cells, NK) with 
multiple independent factors (smoking, obesity, stress, 
exercise, and spirit drinking).

Associations of immune‑cell fractions with health 
outcomes
To explore associations of immune-cell fractions with 
health outcomes, we focused on a cohort derived from 
the Mass General Brigham Biobank (MGBB) (Methods). 
This cohort has extensively annotated epidemiological 
and prospective health outcome information, includ-
ing all-cause mortality, type-2 diabetes (T2D), cancer, 
chronic obstructive pulmonary disease (COPD), stroke, 
cardiovascular disease (CVD), and depression (Methods) 
for 4386 subjects. The demographics of this cohort and 
their underlying comorbidities at baseline (blood sam-
ple draw) is shown in Additional File 1: table S7. In the 
first instance, we used Cox-proportional hazard regres-
sions to evaluate associations between each of the 12 

immune-cell fractions with each of the various outcomes, 
adjusting for intrinsic factors that included age, sex, and 
ethnicity (Methods). In the case of all-cause mortality, we 
also adjusted for co-morbidity at baseline. This was done 
by including separate covariates for depression, COPD, 
type 2 diabetes, CVD, and cancer defined at baseline 
or before sample draw (Methods). We observed many 
associations (Fig. 6a, Additional File 1: tables S8-S9) that 
remained significant upon further adjustment for addi-
tional disease risk factor exposures including smoking, 
obesity, and alcohol consumption (Fig.  6b, Additional 
File 1: tables S10-S11). Notably, naïve CD4 + T-cell, naïve 
B-cell, and NK-cell fractions were all associated with a 
reduced risk of all-cause mortality, even after adjustment 
for all major disease risk factors and baseline co-morbid-
ity. Interestingly, while the naïve CD4 + T-cell fraction 
also displayed negative associations with many health 
outcomes, notably with COPD and T2D, the memory 
CD4 + T-cell fraction was only negatively associated 
with all-cause mortality. Some of the other associations 
were strongly dependent on the specific health outcome. 
For instance, an increased memory B-cell fraction was 
specifically associated with an increased risk of cancer 
but a reduced risk for T2D, while no associations were 
observed for the other outcomes. These results highlight 
the potential biological importance of immune-cell frac-
tions in disease risk.

To understand how well immune-cell fractions can 
predict all-cause mortality, we computed corresponding 
C-index values, revealing that individual fractions can 
only modestly predict outcome (Additional File 1: table.
S12). For instance, the naïve CD4T-cell fraction displayed 
a C-index of 0.65 (95%CI 0.62–0.68). Next, we asked how 
well a multivariate model that only includes immune-
cell fractions would fare. To this end, we split the dataset 
into a 70% training (2591 samples, 302 events) and 30% 
test set (1110 samples, 122 events) and trained a lasso 
Cox-proportional hazards regression model on the train-
ing set using a tenfold internal cross-validation strategy 
(Methods). Using the C-index as the performance metric, 
we identified an optimal model in the training set which 
achieved a C-index value of 0.69 (95% CI 0.67–0.72) in 
the blinded test set (Additional File 1: table.S12). Upon 
further inclusion of age, sex, ethnicity, smoking, BMI, 
alcohol consumption, and all co-morbid conditions, 
we identified two optimal models with overlapping 
95% confidence intervals: one included only age and 
naïve CD4 + T-cell fraction as covariates, while another 
included additional variables, notably sex and co-mor-
bidity for all conditions (Additional File 1: table  S13). 
These models achieved hazard ratio (HR) and C-index 
values of HR = 2.96 (95%CI 2.54–3.44) & C = 0.75 (95%CI 
0.72–0.77) and HR = 3.86 (95%CI 3.32–4.48) & C = 0.81 
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Fig. 6 Association of immune‑cell fractions with health outcomes in MGB cohort. a Forest plots of association between immune‑cell fractions 
with various health outcomes, as shown. In each panel, the x‑axis labels the hazard ratio (HR) as evaluated using a Cox‑regression model 
that included age, sex, and ethnicity as covariates. In the case of all‑cause‑mortality, we also adjusted for co‑morbidity at baseline. P‑values derive 
from a two‑tailed Wald‑test. Vertical dashed line indicates the line HR = 1. For each HR datapoint, we display the 95% confidence interval. For each 
health outcome, we display the total number of samples and events. b As a, but adjusting in the Cox‑regression model also for smoking, BMI, 
and alcohol consumption
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(0.79–0.83), respectively (Additional File 1: table  S14). 
Evaluation of these two models in the 30% blind test set 
revealed similar HR and C-index values of HR = 3.49 
(95%CI 2.73–4.47) & C = 0.77 (95%CI 0.73–0.81) and 
HR = 4.54 (95%CI 3.53–5.85) & C = 0.83 (95%CI 0.80–
0.86), respectively (Additional File 1: table  S14). As a 
benchmark, chronological age alone achieved C-index 
values of 0.73 (0.71–0.76) and 0.76 (0.71–0.80) in training 
and test sets, respectively (Additional File 1: table  S14). 
Thus, although the association with all-cause mortality 
is dominated by age, the naïve CD4 + T-cell fraction does 
contribute to an improved predictive model, even when 
adjusted for co-morbidity (Additional File 1: table S15).

Decreased memory T‑cell fractions in severe Covid‑19 
patients
Finally, we explored associations of immune-cell fractions 
with Covid-19 disease severity. Barturen et  al. profiled 
DNAm in whole blood from 574 Covid-cases (positive at 
blood sample draw) and controls (negative at blood sample 
draw) [55]. Multivariate regression analysis adjusting for age 
and sex revealed multiple associations, with CD4 and CD8 
memory T-cells, NK-cells, monocytes, and eosinophils all 
displaying reduced fractions with disease severity, while the 
neutrophil fraction increased (Additional File 2: fig.S17a). 
While the increased neutrophil fraction in severe Covid-
19 cases is well-known [55, 100–102], the specific reduc-
tion in memory T-cell subsets was not previously noted 
by Barturen et  al. We thus sought independent validation 
using a scRNA-Seq dataset that profiled immune cells from 
severe and mild Covid-19 cases as well as healthy controls 
(Methods) [78]. Once again we used the propeller method 
[77] to detect differential abundance of immune-cell subsets 
between severe and mild/healthy cases (Additional File 1: 
table S16). This confirmed the decrease in the T-cell mem-
ory fraction in severe cases (Additional File 2: fig.S17b-d). 
Of note, an increased T-cell memory fraction is a hallmark 
of recovery from severe Covid-19 disease [102]. Thus, these 
data demonstrate the ability of our DNAm reference matrix 
to find subtle immune-cell shifts with Covid-19 severity.

Discussion
This work contributes a novel DNAm reference matrix 
defined over 12 immune-cell types, which is valid for 
both Illumina and whole-genome-bisulfite sequencing 
DNAm data. Using this DNAm reference matrix, we 
performed a large meta-analysis of cell-type fractions 
in blood, in order to comprehensively map associations 
between these 12 immune-cell fractions and common 
phenotypes. The meta-analysis served two purposes. 
First, as a means of further validating our DNAm refer-
ence matrix by testing for known associations between 

immune-cell fractions and a broad range of phenotypes. 
For instance, further validating the derived fractions for 
naïve T-cell subsets, we confirmed the reduced naïve to 
mature CD8 + and CD4 + T-cell ratio with age [6, 84–87]. 
The increased neutrophil fraction in severe Covid-19 
patients is another well-known observation [55, 100–
102], which we correctly retrieved, thus further validat-
ing the neutrophil component of our DNAm reference 
matrix. Our meta-analysis also established that the eosin-
ophil count does not change with age but that it is higher 
in males compared with females, consistent with a previ-
ous large eosinophil count study [94]. The higher NK-cell 
fraction in males compared to females is validated by sev-
eral reports [50, 65] and a study that used single-cell RNA 
sequencing to compare immune-cell fractions between 
males and females [66]. There is also strong prior evi-
dence for an increased NK fraction with age [38–40], and 
in individuals undergoing frequent physical exercise [103, 
104], further validating the NK component of our refer-
ence matrix. The increased monocyte fraction in males 
compared to females has also been previously observed 
[105]. In the case of age, sex, and Covid-19 disease sever-
ity, associations inferred from the DNAm data were 
strongly validated using independent scRNA-Seq data.

The meta-analysis also revealed a number of bio-
logically and clinically significant insights and connec-
tions, which were not previously known, or for which 
prior evidence was scarce or controversial. For instance, 
there was little prior evidence for an increased naïve 
CD4 + and T-regulatory cell fractions in women com-
pared to men, except for one study by Bergstedt et  al. 
[95]. A recent review reported contradictory findings 
for regulatory T-cells in mice [50], and two small-sized 
studies reported increased T-regulatory counts [65] and 
naïve T-cell fractions [38] in males. In light of this con-
troversy, our meta-analysis serves to unequivocally dem-
onstrate that the naïve and regulatory T-cell fractions 
are higher in women, a result that we further validated 
using independent scRNA sequencing data. Of note, 
in females, naïve CD4 + T-cells preferentially produce 
IFNγ upon stimulation, whereas in males they produce 
more IL-17 [106]. Correspondingly, IFNγ production has 
been found to be higher in females [107]. Given IFNγ’s 
major role in activating anticancer immunity, it is there-
fore not implausible that this subtle increase in the naïve 
CD4 + T-cell fraction could contribute to the well-known 
overall lower cancer-incidence in women [108].

Another insight, which was seen in 3 cohorts with 
available BMI information (TZH, FCE, and TD7k), is 
the increased memory CD4 + T-cell fraction in obese 
individuals, consistent with a previous study [109] and 
another reporting an increased circulating CD4 + T-cell 
frequency with increased BMI [110]. The increased 
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CD4 + T-cell memory fraction in obese individuals could 
reflect increased activation due to adipocyte antigen-pre-
senting cells [110] and inflammation [111] within adipose 
tissue. Another interesting connection was centered on 
the NK fraction, a key component of anticancer immu-
nity, which displayed decreases with cancer risk fac-
tors such as smoking, obesity, and stress levels, while it 
increased with cancer-preventive factors such as exercise 
and hours of sleep, all these associations being derived 
from multivariate models that included age and sex. On 
the other hand, the NK fraction increased with age and 
was higher in males compared to females. These data 
clearly indicate the importance of recording all epidemi-
ological factors in individual studies, as multiple factors 
can impinge on measured cell-type fractions.

Another noteworthy insight was the observation of an 
increased eosinophil count with age in the blood of child-
hood cancer survivors, when this increase was not evident 
in any of the other 20 cohorts. This observation could be 
significant as childhood cancer survivors are known to be 
at a much higher risk of developing heart disease [53, 112], 
and one particular rare condition that can lead to a range of  
cardiovascular disease manifestations is eosinophilic 
myocarditis [113], a condition associated with elevated 
eosinophil counts. Thus, although the elevated risk of 
heart disease is more likely related to long-term effects of 
cancer treatment, it is nevertheless also plausible that the 
increased cardiovascular disease risk could be driven in 
part by an age-associated increase in eosinophils. On the 
other hand, we also express caution because the child-
hood cancer study profiled PBMCs, which is depleted for 
granulocytes, and so the observed association between 
eosinophil counts and age could also be due to differences 
in mononuclear cell isolation efficiency.

Of note, the meta-analyses were performed using 
directional Stouffer, and separately also with a fixed 
effects inverse variance model, both methods yielding 
highly congruent and significant P-values. Heterogeneity, 
as measured by the I2 measure, was high for effectively 
all immune-cell types, highlighting the diverse nature of 
the underlying cohorts. Although we did adjust for study 
and cohort-specific biases wherever possible, unknown 
factors that influence cell counts such as cytomegalovirus 
infection [95] may well contribute to such heterogene-
ity, posing obvious limitations to our analysis. Although 
a high level of heterogeneity would appear to justify a 
random effects (RE) model, our data indicates significant 
deviations from the Gaussian assumption underlying the 
RE model. Indeed, a RE model almost failed to predict 
the decrease of naïve CD8T-cell fraction with age, when 
this immunosenescence signature is a well-known bio-
logical fact, which we observed in all of the 21 cohorts 
that entered the meta-analysis for age. Overall, our data 

highlights the importance of performing meta-analyses, 
not only to increase power, but to identify recurrent 
associations despite the underlying heterogeneity and 
unknown confounders.

By merging cell-type fractions from different cohorts 
together, we were also able to establish that the naïve 
CD8 + T-cell fraction decreases non-linearly with age, 
displaying a more pronounced decrease in the age range 
20 to 40 compared to mid-life (40–60  years), with the 
decrease being much less noticeable beyond 65  years 
of age. In contrast, the naïve CD4 + T-cell fraction dis-
played a linear decrease throughout life. Elucidating the 
biological basis of these differences could have impor-
tant ramifications for our understanding of the aging 
immune system. Interestingly, of all immune-cell frac-
tions, the naïve and memory CD4 + T-cell fractions dis-
played the strongest association with all-cause mortality, 
with increased fractions associated with a significantly 
reduced risk. These associations were not only inde-
pendent of all major disease risk factors (age, sex, eth-
nicity, smoking, BMI, and alcohol consumption) but 
also independent of baseline co-morbidity. Correspond-
ingly, the naïve CD4 + T-cell fraction also displayed sig-
nificant associations with the risk of developing specific 
conditions, including T2D, COPD, and CVD. This is 
consistent with reports of a reduced naïve CD4 + T-cell 
count in T2D patients [114]. Of note, the association of 
a reduced naïve C4T-cell count with increased risk for 
all-cause mortality was also seen in the Lothian Birth 
Cohorts [115] and has been explicitly demonstrated with 
measured cell counts in specific clinical subgroups (e.g., 
hemodialysis patients [116]). The NK fraction was asso-
ciated with a reduced risk of all-cause mortality as well 
as COPD and T2D. The reduced NK fraction with T2D 
risk is consistent with a study comparing cell counts of 
T2D patients to controls [117]. An increased neutrophil 
fraction was associated with all-cause mortality and risk 
for T2D and COPD. This is consistent with a recent cell 
count study in type 2 diabetes [118] and a study dem-
onstrating an increased neutrophil-to-lymphocyte ratio 
(NLR) in COPD [119]. An increased NLR has also been 
recently associated with an increased all-cause mortal-
ity [120], with HRs similar to those reported here. Con-
sidering individual health outcomes was important: for 
instance, while the memory B-cell fraction did not cor-
relate with all-cause mortality, an increase in this frac-
tion was associated with an increased risk of cancer and 
simultaneously with a reduced risk of T2D. Although 
these specific associations do not seem to have been 
previously reported, it is noteworthy that an increased 
memory B-cell fraction could be associated with reduced 
anti-tumor immunity through increased release of pro-
tumorigenic factors such as IL-10 or TGF-beta [121].
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Conclusions
In summary, this study has comprehensively mapped 
associations between immune-cell fractions and com-
mon phenotypes at an unprecedented high resolution 
of 12 immune-cell subtypes in blood, revealing many 
important associations with factors such as age, sex, 
smoking, obesity, and health outcomes. The DNAm ref-
erence matrix encompassing 12 immune-cell subtypes 
that we present here has been extensively validated, 
including WGBS data, and is made freely available as part 
of our EpiDISH Bioconductor R-package. We envisage 
that similar high-resolution meta-analyses performed in 
tissues other than blood using tools such as EpiSCORE 
[22, 24] could help discern changes in cell-type composi-
tion that are important predictors or contributors of dis-
ease and disease risk.
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R‑package [142] which includes tools for cell‑type fraction estimation.
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