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Abstract 

Background Systemic lupus erythematosus (SLE) is known to be clinically heterogeneous. Previous efforts to charac-
terize subsets of SLE patients based on gene expression analysis have not been reproduced because of small sample 
sizes or technical problems. The aim of this study was to develop a robust patient stratification system using gene 
expression profiling to characterize individual lupus patients.

Methods We employed gene set variation analysis (GSVA) of informative gene modules to identify molecular endo-
types of SLE patients, machine learning (ML) to classify individual patients into molecular subsets, and logistic regres-
sion to develop a composite metric estimating the scope of immunologic perturbations. SHapley Additive ExPlana-
tions (SHAP) revealed the impact of specific features on patient sub-setting.

Results Using five datasets comprising 2183 patients, eight SLE endotypes were identified. Expanded analysis 
of 3166 samples in 17 datasets revealed that each endotype had unique gene enrichment patterns, but not all 
endotypes were observed in all datasets. ML algorithms trained on 2183 patients and tested on 983 patients not used 
to develop the model demonstrated effective classification into one of eight endotypes. SHAP indicated a unique 
array of features influential in sorting individual samples into each of the endotypes. A composite molecular score 
was calculated for each patient and significantly correlated with standard laboratory measures. Significant differences 
in clinical characteristics were associated with different endotypes, with those with the least perturbed transcriptional 
profile manifesting lower disease severity. The more abnormal endotypes were significantly more likely to experience 
a severe flare over the subsequent 52 weeks while on standard-of-care medication and specific endotypes were more 
likely to be clinical responders to the investigational product tested in one clinical trial analyzed (tabalumab).

Conclusions Transcriptomic profiling and ML reproducibly separated lupus patients into molecular endotypes 
with significant differences in clinical features, outcomes, and responsiveness to therapy. Our classification approach 
using a composite scoring system based on underlying molecular abnormalities has both staging and prognostic 
relevance.
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Background
The absence of a typical disease pattern is a major lim-
iting feature in understanding the pathogenesis of and 
developing more effective therapies for systemic lupus 
erythematosus (SLE, lupus) [1, 2]. Therefore, efforts 
have been undertaken to identify molecular endotypes 
of SLE, that is, subsets of patients defined by distinct 
pathobiological functions, biomarkers, or other disease 
mechanisms.

Determination of endotypes has already been employed 
in the management of cancer and allergic disease and is 
just beginning to be conceptualized in other autoimmune 
conditions [3–8]. One goal of endotyping of lupus is to 
identify groups of patients expected to be more likely 
to respond to specific treatments, thereby increasing 
the likelihood of success of clinical care and clinical tri-
als [9, 10]. We and others have found that heterogeneity 
in lupus can manifest at the level of gene expression in 
peripheral blood [9, 11–14], suggesting that molecular 
profiling might serve as the basis of identifying specific 
lupus endotypes with clinical implications.

To date, several groups have reported subclassifications 
of SLE based on transcriptomics [9, 10, 12, 15–21], but, in 
general, these have been single-center studies of limited 
numbers of patients and a broad consensus of recognized 
subsets has not emerged. Moreover, these studies have 
not considered confounding variables on gene expres-
sion, such as ancestry or medication, nor have the find-
ings been translated into clinical care or clinical trial 
design [13, 22]. Here, we present an approach to identify 
molecular endotypes of lupus patients based on tran-
scriptomic profiling employing 32 immune and inflam-
matory-related features. We leverage transcriptomic 
data, machine learning (ML), and contemporary bioin-
formatics to subclassify 3166 lupus patients into eight 
endotypes and develop an accompanying clinical metric, 
the Lupus Cell and Immune Score (LuCIS), to estimate 
a patient’s lupus-related immunologic activity. To our 
knowledge, this is the first transcriptomic-based molecu-
lar endotyping approach that has staging and prognostic 
implications. Translation of these findings into the clinic 
may serve to facilitate personalized medicine.

Methods
Patient involvement
Patients were not directly recruited or involved in this 
study.

Datasets
A total of 17 transcriptomic lupus datasets were utilized 
in this study (Table 1, Additional file 1: Table S1). These 
datasets were derived from both clinical trials and regis-
tries, and in most, the American College of Rheumatol-
ogy (ACR) classification criteria for SLE were used with 
varying clinical data available. The datasets selected for 
initial validation and training had more extensive clinical 
metadata.

Normalization of raw data files
Microarray data (Affymetrix and Illumina)
Raw data of each transcriptomic dataset was downloaded 
from Gene Expression Omnibus (GEO). All statisti-
cal analysis was conducted using R v. 4.0.4 and relevant 
Bioconductor packages. To inspect raw data files for out-
liers, PCA plots were generated for each dataset. Data-
sets culled of outliers were cleaned of background noise 
and normalized using either Robust Multiarray Average 
(RMA), GCRMA, or normexp background correction 
(NEQC), based on the microarray platform resulting in 
log2-transformed expression values into R expression set 
objects (e-sets). Analysis was conducted using normal-
ized datasets prepared using both standard Affymetrix 
chip definition files (CDF), as well as custom made Brain-
Array CDFs. Illumina CDFs were used for the Illumina 
datasets.

RNA‑sequencing (RNA‑seq) data
Raw data files were downloaded from NCBI Sequence 
Read Archive (SRA) website using SRA toolkit (v. 2.10) 
and converted to FASTQ files using fastq dump. Quality 
of the FASTQ files was checked using FASTQC software 
(v. 0.11.9). Adapters and bad-quality reads were trimmed 
using Trimmomatic software (Unix-based tool v. 0.38). 
Good quality reads were aligned to the human reference 
genome (hg38) using STAR aligner (v. 2.7). STAR-aligned 
reads were saved as.sam files and were converted to.bam 
files using sambamba (v. 0.8). Read counts were summa-
rized using the featureCounts function of the Subread 
R package (v. 1.61). Count normalization and log trans-
formation were carried out using the DESeq2 (v. 1.32) R 
package.

Batch effects were examined in each individual dataset 
by PCA. No batch effects were detected and no correc-
tions were made.
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Gene set variation analysis (GSVA)
GSVA is a non-parametric, unsupervised statistical 
method for estimating the variation of pre-defined gene 
sets in samples of transcriptomic expression datasets [23] 
GSVA works by transforming a gene matrix (gene-by-
sample) into a gene set-by-sample matrix resulting in an 
enrichment score for each sample and pre-defined gene 
set. The inputs for the GSVA algorithm were a matrix of 
log2 expression values and a collection of pre-defined 
gene sets. Enrichment scores (GSVA scores) were calcu-
lated non-parametrically using a Kolmogorov-Smirnoff 
(KS)-like random walk statistic. The enrichment scores 
are the difference between the largest positive and nega-
tive random walk deviation from zero, respectively, for a 
given sample and gene set.

The enrichment scores take on values between − 1 and 
1, where 1 represents enrichment of every gene in a par-
ticular gene set among the samples analyzed compared to 
every other gene not included in the specified gene set, 
whereas − 1 represents a relative lack of enrichment. Each 
gene in a gene set is given a rank based on expression val-
ues and the KS-like random walk statistic is calculated.

Out of 134 previously published gene sets and unpub-
lished gene sets developed to represent immune cell 
signatures subsequently validated with flow cytometry 

[13, 24–27], 72 were used for GSVA after removing tis-
sue-specific and redundant gene sets.

Calculated GSVA enrichment scores for the 32 gene 
sets in each patient were used as input to k-means clus-
tering for determination of subsets. GSVA v. 1.38.2 was 
carried out in R v. 4.0.4.

K‑means clustering
Unsupervised algorithms like clustering were carried out 
to classify the lupus samples into subgroups/clusters of 
varying immunologic/inflammatory activity. Baseline 
GSVA enrichment scores of the 32 derived molecular sig-
natures in two combined datasets, GSE88884 (ILL-1 and 
ILL-2), were used as input into five clustering algorithms: 
k-means, hierarchical, self-organizing maps, spectral, 
and Gaussian mixture modeling. These datasets were 
chosen for preliminary proof-of-concept because of the 
large number of samples and extensive associated clini-
cal metadata. The resulting clusters from these methods 
were compared to one another by Adjusted Rand Index 
and silhouette scores were computed for each method 
(Additional file  1: Table  S2). K-means clustering with 
the most stable clusters identified after 5000 iterations 
and minimal loss function was selected as the algorithm 
of choice based on having the highest silhouette score. 

Table 1 Condensed summary of transcriptional whole blood lupus datasets

ACR  American College of Rheumatology, SLEDAI Systemic Lupus Erythematosus Disease Activity Index, SLICC Systemic Lupus International Collaborating Clinics, RNA-
seq RNA sequencing, IFN interferon, ISM interferon signature metric, GFR glomerular filtration rate

Dataset Accession number Technology SLE 
Classification 
Criteria

Clinical metadata Clinical trial No. lupus samples analyzed

1 GSE88884 (ILL-1) Microarray ACR Extensive NCT01196091 813 baseline active female SLE

2 GSE88884 (ILL-2) Microarray ACR Extensive NCT01205438 807 baseline active female SLE

3 GSE45291 Microarray ACR or SLICC Extensive None 266 SLE

4 GSE65391 Microarray Not specified Extensive None 137 baseline pediatric SLE

5 GSE116006 RNA-seq ACR Age, gender, IFN status, drug 
exposure

NCT01405196 160 SLE

6 GSE22098 Microarray Not specified Age, gender, ancestry None 28 adult SLE

7 GSE29536 Microarray Not specified None None 27 SLE

8 GSE39088 Microarray ACR Age, gender, ancestry None 21 SLE

9 GSE49454 Microarray ACR Extensive NCT00920114 49 SLE

10 GSE61635 Microarray Not specified None None 64 SLE

11 GSE72509 RNA-seq Not specified Gender, ancestry, Anti-Ro60 
status, ISM status

None 99 SLE

12 GSE72747 Microarray ACR Age, gender, SLEDAI, GFR, 
dsDNA titer

NCT01058343 10 baseline SLE

13 GSE110174 Microarray Not specified Absolute neutrophils, steroid 
use

NCT00119678 144 SLE

14 GSE112087 RNA-seq ACR Age, gender, ancestry None 29 female SLE

15 GSE138458 Microarray ACR High/low SLEDAI None 307 SLE

16 GSE185047 Microarray ACR None NCT02665364 177 baseline SLE

17 SRX10438277 (PRJNA717024) RNA-seq Not specified Extensive None 28 SLE
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The number of k clusters for each dataset was deter-
mined by elbow and silhouette plots (Additional file  2: 
Figure S1). KElbow Visualizer from the yellowbrick mod-
ule in Python was used to determine the elbow of the 
plot. Briefly, the elbow is the cutoff point of diminishing 
returns and can be used to identify the optimal number 
of clusters. Silhouette analysis also informed how well-
defined and well-separated clusters were, with a score of 
1 representing perfect distinguishment (best) and -1 rep-
resenting poor distinguishment (worst). Comparison of 
clusters from different datasets were compared by cosine 
similarity using the “lsa” R package [28]. Cosine similar-
ity > 0.7 was considered highly similar.
K-means clustering was conducted using the scikit-

learn (v. 0.24.1) Python library. The chosen parameters 
for the k-means algorithm were as follows: number of k 
clusters determined by elbow and silhouette methods for 
each dataset/cohort, method of initialization was set as 
k-means +  + , maximum number of iterations = 300, and 
5000 runs of the algorithm with a different centroid seed 
were set. The final clustering results were determined by 
the best output of the 5000 consecutive runs by the sum 
of squared distances of samples to their closest cluster 
center.

Development of gene modules and derivation of 32 
molecular features
The process for deriving gene modules/signatures for 
the 134 starting molecular features (Additional file  2: 
Figure S2) was previously described [13]. Briefly, the 
gene modules were developed to identify cells and func-
tional processes involved in immune and inflammatory 
responses specifically. This was done using literature 
mining, numerous publicly available databases (e.g., the 
Human Protein Atlas, Interferome, and Gene Cards) 
and from experience with perturbations in lupus gene 
expression [13]. Importantly, only genes that unambigu-
ously were expressed by a specific cell type or utilized in a 
specific cellular function were incorporated into the final 
modules and a specific gene was only included in one 
module, with few exceptions. The interferon (IFN) gene 
module includes genes reflective of both the type I and 
type II interferon pathways. The low-density granulocyte 
(LDG), granulocyte, and neutrophil modules are distinct 
from each other; the granulocyte and neutrophil modules 
only share one gene, CD177. Briefly, the LDG signature 
was derived from the differential expression of LDGs to 
healthy control neutrophils and to SLE neutrophils, and 
consists largely of genes encoding neutrophil granule 
proteins [11, 13].

Determination of lupus endotypes was based on 
enrichment of 32 features, each comprised of a gene 
module/signature (Additional file 2: Figure S2). Feature 

selection involved an initial step of culling a library 
of 134 gene modules for tissue-specific and repeated 
signatures, yielding 72 gene modules that were used 
as input for gene set variation analysis (GSVA) [23] 
of samples from datasets 1–3 and 8 (Additional file  1: 
Table  S1). GSVA was run on each dataset separately. 
Low-intensity genes were filtered and only those with 
interquartile range (IQR) > 0 across all the samples 
were retained for analysis. GSVA was also carried out 
separately for two feature selection cohorts within 
each dataset: (1) Lupus versus healthy controls, and 
(2) active (SLE Disease Activity Index (SLEDAI) ≥ 6) 
lupus versus inactive (SLEDAI < 6) lupus. For each of 
these two stratifications, GSVA enrichment scores from 
each dataset were concatenated; that is, a matrix of all 
72 features by all samples from each dataset were com-
bined, providing a sufficiently large cohort of patients 
for feature extraction and stratification.

Various feature selection techniques were employed 
to remove the noise and select features that contrib-
uted the most to the prediction variable. The concat-
enated GSVA score matrices included Feature Selection 
Cohort 1, comprised of 1907 SLE samples and 73 non-
SLE healthy controls, and Feature Selection Cohort 2, 
comprised of 1663 active SLE samples and 244 inac-
tive SLE samples from the four aforementioned data-
sets. See “Binary Classification to Derive 32 Molecular 
Features.”

Feature refinement was carried out independently in 
each Feature Selection cohort in Python v. 3.8.2 using 
scikit-learn (v. 0.24.1) [29]. First, the data were checked 
for missing values and low variance; neither were 
detected. Next, features were correlated by Pearson cor-
relation to identify and remove redundant features. Pairs 
of features with correlation coefficient r > 0.9 were iden-
tified as highly correlated and ten gene modules were 
excluded.

Feature importance was used to identify the top fea-
tures involved in classifying the two feature selection 
cohorts. Of nine ML algorithms, support vector machine 
(SVM) and random forest (RF) were most effective in 
each classification determined by sensitivity, specificity, 
Cohen kappa score, f1-score, and accuracy. Gini index 
(RF) and permutation importance (SVM) were employed 
to calculate the feature importance scores and the top 
20 in each feature selection cohort by both algorithms 
were identified and selected. Redundant features were 
removed for a final 32 features. The immunoglobulin (IG) 
chain module was re-added (included in the 32) because 
we previously demonstrated the importance of specific 
IG chains in an ML model classifying lupus in patients of 
African ancestry (AA) from those of European ancestry 
(EA) [13].
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Binary classification to derive 32 molecular features
Specifically, two independent binary classifications on 
the feature selection cohorts were carried out in Python 
v. 3.8.2 using scikit-learn (v. 0.24.1) [29]. Several linear, 
nonlinear, and ensemble ML algorithms were imple-
mented to distinguish lupus from healthy, non-lupus con-
trols, and active lupus from inactive lupus. Since there 
were data imbalances in both feature selection cohorts, 
subsampling without replacement was carried out by cre-
ating 20 different folds/subsets by randomly selecting 73 
lupus samples to match with the minority class in Feature 
Selection Cohort 1 and by creating 7 different folds/sub-
sets of 250 random active lupus samples to match with 
the minority class in Feature Selection Cohort 2. The 
data from each fold were split into 70% training and 30% 
validation, and ML classifiers were built on the training 
data and evaluated on the validation data. Feature impor-
tance scores were computed for RF and SVM classifiers. 
Average performance measures were calculated from all 
20 folds of Feature Selection Cohort 1 and 7 folds of Fea-
ture Selection Cohort 2. Average gene importance scores 
of the respective folds were computed. ROC curves and 
precision recall (PR) curves were plotted using the mat-
plotlib (version 3.3.4) Python library [30].

ML classification of final endotypes
In total, 3166 lupus patients from all 17 datasets were 
endotyped and used to train, validate, and test an ML 
classification tool. Five datasets (Table  1, Additional 
file  1: Table  S1, Datasets 1–5) were used to determine 
the optimal number of endotypes (Fig.  1, Additional 
file 2: Figure S1). GSVA enrichment scores of 26 of the 32 
molecular features that were measurable in all 17 datasets 
were input into the k-means clustering pipeline to arrive 
at eight endotypes—the class label for ML (Figs.  2 and 
3A). The initial five datasets were also used to train and 
validate ML classifiers before testing on 12 independent 
datasets (Figs.  2 and 3B, C, Additional file  2: Figure S3, 
Additional file 1: Table S1, Datasets 6–17).

More specifically, with the input GSVA data and 
labels (Additional file  1: Table  S3) from k-means clus-
tering of 3166 lupus samples into eight endotypes, the 
samples were then split into training and validation 
(Additional file 1: Table S1, Datasets 1–5, n = 2183) and 
test (Additional file  1: Table  S1, remaining datasets, 
n = 983) sets. One-vs.-one and one-vs.-rest multi-class 
classifications with leave-one-out cross-validation were 
employed to predict sample membership into one of 
eight lupus endotypes. Training data (n = 2183) were 
further split into 80% training and 20% validation data. 
Synthetic Minority Oversampling Technique (SMOTE) 
was applied on the training data to handle class imbal-
ances [31]. RF, SVM, LR, and GB were employed in 
one-vs.-one and one-vs.-rest multi-class classification 
and XGB was additionally employed in one-vs.-rest 
multi-class classification. The ML models were built on 
training data, optimized, if necessary, using validation 
data by fine-tuning parameters, and their performances 
evaluated on the test sets based on sensitivity, specific-
ity, Cohen’s kappa, f1-score, and accuracy. Non-lupus 
healthy controls were excluded from these analyses. ML 
was carried out in Python v. 3.8.8 using the scikit-learn 
(v. 0.24.1) library. ROC curves and PR curves were plot-
ted using the matplotlib (v. 3.3.4) Python library.

Precise contributions by important features for each 
molecular endotype were identified using SHapley Addi-
tive ExPlanations (SHAP) [32]. Feature contribution and 
SHAP value plots, dependence plots, and waterfall plots 
were carried out and visualized in Python v. 3.8.8 using 
the shap module v. 0.39.0.

Centroid‑based ML validation to classify patients into final 
endotypes
As one validation of the ability of ML to classify lupus 
patients into one of the eight final endotypes, an alter-
nate ML pipeline was developed with different class 
labels. The 3166 patients from 17 datasets were similarly 
split into train/validation and test datasets. K-means 

Fig. 1 Identification of the optimal number of lupus endotypes using five datasets

K-means clustering of GSVA scores of the 32 features in A 1620 adult female lupus patients from GSE88884 (ILL-1 & ILL-2) yielded six clusters using 
baseline gene expression, B 266 adult lupus patients from GSE45291 yielded six clusters, C 137 pediatric lupus patients from GSE65391 yielded 
five clusters, and D 160 adult lupus patients from GSE116006 yielded four clusters using baseline gene expression. Of note, only 28 features were 
used in GSE65391 because of the microarray chip restrictions. E Cosine similarity analysis and F hierarchical clustering of the endotypes identified 
in these five datasets led to a final designation of eight transcriptionally distinct endotypes. Endotypes were considered similar if their cosine 
similarity was > 0.7. Endotypes underlined in red in E indicate the unique endotypes between datasets. Hierarchical clustering using complete 
agglomeration and a cut height of 1.8 is displayed in F. If available, ancestry, disease activity (where active indicates SLEDAI ≥ 6), lymphopenia (< 1 
billion lymphocytes/L), and leukopenia (< 3.8 billion leukocytes/L) are annotated with color bars below each heatmap. Heatmaps were generated 
in GraphPad Prism v. 9.4.0 (673). In E, heatmaps were generated in R using the plot.matrix package and edited in Adobe Illustrator. Dendrogram in F 
was generated in R using the ggplot2 package

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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Fig. 2 Experimental design of ML models to classify patients into final eight endotypes

K-means clustering (k = 8), division of data into training, validation, and testing cohorts, and machine learning workflow to generate classifiers 
to predict final eight endotype membership of lupus patients. Flow diagram created in Adobe Illustrator
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clustering (k = 8) was carried out on the training data 
(i.e., GSVA scores of 2183 samples comprised from 5 
datasets). The cluster centers or centroids of these data 
were saved as a pickle file using the “pickle” Python 
module. The labels of the test data were determined by 
using these centroid definitions. That is, test data labels 
were assigned by calculating the distance to the training 
set-defined centroids of the GSVA scores and labeling 
the data point to the nearest centroid accordingly. These 
labels were then compared to the clusters A–H generated 
from the entire 3166 patient cohort by cosine similarity.

Unsupervised ML validation to classify patients into final 
endotypes
As a second validation of the ability of ML to classify 
lupus patients into one of the eight final endotypes, a 
third ML pipeline was developed with different class 
labels. The 3166 patients from 17 datasets were similarly 
split into train/validation and test datasets. K-means 
clustering (k = 8) was carried out on the training/valida-
tion data (i.e., GSVA scores of 2183 samples comprised 
from 5 datasets). Five different ML models (LR, SVM, RF, 
GB, XGB) were trained using input GSVA data k-means 
labels and model weights were generated. The model 
weights were then used to predict the class of the patients 
from the 12 independent testing datasets (n = 983), for 
which we did not have true labels. The ML model-gener-
ated labels of the 983 test cohort patients were compared 
to the k-means generated labels of the 2183 training/vali-
dation cohort by cosine similarity.

Binary classification to characterize individual endotypes 
from the least abnormal endotype using SHAP and Gini 
Index
Seven individual binary ML classifications with RF were 
performed comparing the seven more transcriptionally 
abnormal molecular endotypes with the least abnormal 
endotype (endotype A) in Python v. 3.8.2 using scikit-
learn (v. 0.24.1). Similar to the multi-class classification 
methodology, training data (Additional file  1: Table  S1, 
Datasets 1–5) were divided into training (80%) and vali-
dation (20%) sets for which classifiers were optimized if 
necessary and performance metrics evaluated on unseen 

test data (Additional file 1: Table S1, remaining 12 data-
sets). For each classification, the top 15 contributors of 
each abnormal endotype were determined using SHAP 
(in Python v. 3.8.8 using the shap module v. 0.39.0). SHAP 
dependence plots were generated to illustrate the impact 
of each feature on the final model outcome and its interac-
tion with another feature. SHAP waterfall plots were also 
generated for individual samples to visualize and decon-
volute the mathematical contribution of each feature to 
the overall SHAP value. SHAP bar plots were additionally 
generated to summarize the information from the water-
fall plots across all samples. SHAP values for each of the 
classifiers were also visualized using the dot plot function 
from ggplot2 (v 3.3.3) Bioconductor package in R. Gini 
index analysis of the classifiers was also performed using 
the sklearn Python module and the Gini indices were 
visualized using dot plot function from ggplot2 (v 3.4.0) 
Bioconductor package in R. Example scripts for GSVA, 
k-means clustering, ML, data normalization, and SHAP 
analysis can be found at: https:// github. com/ pbach ali16/ 
ML- revea ls- endot ypes- in- lupus- sampl es- using- trans cript 
omic- featu res. git [33].

Lupus Cell and Immune Score (LuCIS)
To summarize the data generated by k-means clustering 
of the 32 GSVA enrichment scores, a composite score, 
LuCIS, was developed using ridge-penalized logistic 
regression (RPLR). The GSVA enrichment scores of the 
32 molecular features calculated for each lupus patient 
in the bookend clusters of GSE88884 ILLUMINATE-1 
(ILL-1) & ILL-2 (i.e., the least abnormal endotype, Z1, 
and the most abnormal endotype, Z6) were input into 
a ridge regression algorithm with penalty. The resulting 
model provided the coefficients for LuCIS. To calculate 
a LuCIS value for each lupus patient, the GSVA enrich-
ment scores for each module were binarized into zero or 
one based upon whether the GSVA score was less than 
zero or greater than zero, respectively. The binarized 
GSVA scores for each module were multiplied by the 
LuCIS coefficient in each patient and summed to create a 
raw LuCIS, which was normalized to a positive value. The 
ridge regression model was generated using glmnet from 
the “caret” R package v. 6.0–92 [34].

Fig. 3 Machine learning algorithms can predict lupus endotype membership with high accuracy

A Eight final endotypes of lupus were determined by k-means clustering of the 3166 patients’ concatenated GSVA enrichment scores of 26/32 
features. Multi-class classification by ML categorized 3166 lupus patients from 17 datasets into eight patient endotypes. Area under the ROC 
curve (AUC), performance metrics, and confusion matrices for each of 4 classifiers on the testing cohort data (983 samples) are summarized: B 
random forest and C support vector machine. Each model was trained on 1746 lupus samples, validated with 437 lupus samples, and tested 
on the remaining 983 samples for a total n = 3166 from 17 datasets. D RF classification of the 983 samples into the eight endotypes. Heatmaps 
in A and D were generated in R with the ComplexHeatmap package. Plots in B, C were generated in Python using the scikit-learn and matplotlib 
libraries

(See figure on next page.)

https://github.com/pbachali16/ML-reveals-endotypes-in-lupus-samples-using-transcriptomic-features.git
https://github.com/pbachali16/ML-reveals-endotypes-in-lupus-samples-using-transcriptomic-features.git
https://github.com/pbachali16/ML-reveals-endotypes-in-lupus-samples-using-transcriptomic-features.git
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Fig. 3 (See legend on previous page.)
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The relationships between LuCIS, SLEDAI, anti-
dsDNA titers and complement levels were determined 
by Pearson correlations calculated in GraphPad Prism v. 
9.4.0 (673).

LuCIS-defined subsets were also used to evaluate 
the relationship between LuCIS and flare or clinical 
response. Patients in GSE88884 ILL-2 were categorized 
into sextiles based on their LuCIS value. Each LuCIS sex-
tile accounted for 1/6 of the total possible LuCIS space 
(maximum LuCIS = 14.39). Specifically, the LuCIS ranges 
for each sextile were as follows: Sextile 1: 0–2.4, Sextile 
2: > 2.4–4.8, Sextile 3: > 4.8–7.2, Sextile 4: > 7.2–9.6, Sex-
tile 5: > 9.6–12, Sextile 6: > 12–14.4. Significant differences 
in responses among sextiles were determined by the chi-
square test for trend for multiple groups and, otherwise, 
the chi-square test for independence in GraphPad Prism 
v. 9.5.0 (730) or using the prop.trend.test function from 
the stats package [35] in R. Each test was performed 
independently on each sextile.

Clinical evaluation and response measurement
Clinical metadata from both GSE88884 ILL-1 & ILL-2 
and GSE65391 were used to characterize the transcrip-
tomic-determined endotypes. Additional metadata for 
GSE88884 ILL-1 & ILL-2 included severe flare, defined 
by the SELENA-SLEDAI Flare Index [36]. Significant 
associations of clinical traits and endotypes were deter-
mined by the Kruskal–Wallis and Dunn’s multiple com-
parisons test in GraphPad Prism v. 9.1.0 (221) or the 
chi-square test for independence.

SLE responder index (SRI)-4 and SRI-5 from the ILL-2 
trial (GSE88884) were used to assess clinical responders 
to tabalumab in the molecular endotypes [37]. Significant 
differences in responses among treatment groups were 
determined by the chi-square test for trend for multiple 
groups and, otherwise, the chi-square test for independ-
ence in GraphPad Prism v. 9.5.0 (730) or using the prop.
trend.test function from the stats package [35] in R.

Gaussian mixture variational autoencoder (GMVAE)
GMVAEs are powerful generative models which feature 
a pair of connected networks: an encoder, which con-
verts high-dimensional input data into a smaller and 
denser representation by introducing latent variables, 
and a decoder, which outputs the probability distribu-
tion of the data [38]. Twenty clinical variables including 
ancestry (binary variables for having European, Afri-
can, or Hispanic ancestry), SLEDAI components (binary 
variables for having arthritis, proteinuria, low comple-
ment, leukopenia, mucosal ulcers, rash, pleurisy, and 
vasculitis), five autoantibody titers (anti-dsDNA, anti-
RNP, anti-Sm, anti-SSA, anti-SSB), and medication use 
(binary variables for taking antimalarials, corticosteroids, 

immunosuppressants, and non-steroidal anti-inflamma-
tory drugs) from the lupus patients enrolled in ILLU-
MINATE-2 (GSE88884) were used as input for deep, 
unsupervised clustering by the GMVAE algorithm. The 
categorical clinical variables were binarized. GMVAE 
with back-propagation optimization identified six 
clusters.

GSVA Enrichment Score Imputation
Because of inter-platform differences (i.e., microar-
ray chips are restricted by their specific libraries), some 
GSVA gene sets were not represented across all datasets. 
To overcome this limitation, GSVA enrichment scores 
were imputed for each patient based upon their known 
relationship to other represented gene sets.

Some GSVA scores were imputed on a dataset-by-
dataset basis. In these cases, the gene set with the highest 
Pearson correlation was used to first estimate a coef-
ficient describing the relationship between the gene set 
of interest (i.e., the one that requires score imputation) 
and the correlated gene set. For each of these gene sets 
of interest (i.e., IG chains, TCRA, TCRAJ, TCRB, TCRD, 
and Treg), the most correlated gene set was found by 
computing Pearson correlations between GSVA enrich-
ment scores of all 32 features in GSE88884 ILL-1 and 
ILL-2. These datasets were used as a reference (their 
GSVA scores were computed separately, then concat-
enated) due to the large number of samples and because 
all 32 gene sets were represented on the corresponding 
microarray chip. Next, a value of one was added to the 
GSVA scores of the “highest correlated modules” and 
the “modules of interest” so that there would not be any 
negative GSVA scores. Then, for each sample, the trans-
formed score of the “module of interest” was divided by 
the transformed score of the “highest correlated module.” 
The mean of these calculations across the patients is the 
coefficient describing the relationship between the two 
modules.

In the dataset requiring imputation, a value of one 
was added to the GSVA scores of the “highest correlated 
module,” multiplied by the appropriate coefficient, and 
then a value of one was subtracted to arrive at the GSVA 
enrichment score of the gene set of interest.

Results
Identification of molecular endotypes in five 
representative lupus datasets
Six molecular subsets (endotypes) within 1620 active, 
female lupus patients in the combined datasets from the 
ILL clinical trials (GSE88884 ILL-1 & ILL-2) were iden-
tified by k-means clustering of GSVA enrichment scores 
of 32 immune cell/inflammatory pathway gene modules 
(Fig. 1A, Additional file 2: Figure S1). Endotypes labeled 
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as Z1-Z6 were distinguished by patterns of enriched 
(red) and unenriched (blue) gene modules. To assign SLE 
endotypes as normally or abnormally enriched, lupus 
patient and control samples were re-clustered together 
(Additional file  2: Figure S4). Most non-lupus control 
samples clustered with the least abnormal SLE samples 
(11/17 in Z1’), indicating that these SLE patients had 
minimal to no gene expression differences from controls; 
analysis by cosine similarity indicated their module iden-
tity. Features were considered as abnormally enriched 
or expressed based on their GSVA enrichment score as 
compared to controls. For example, in non-lupus con-
trols, modules such as IFN, plasma cell, IG chains, mye-
loid cell, and tumor necrosis factor (TNF) tended to have 
GSVA scores less than zero, whereas modules such as 
B cell, T cell, and T cell chains (TCRA, TCRAJ, TCRB, 
TCRD) tended to have GSVA scores greater than zero. 
Within the lupus patient samples, the endotype desig-
nated Z1 manifested the least number of abnormally 
enriched gene modules (features), whereas the endotype 
designated Z6 had the greatest number of abnormally 
enriched features, with other endotypes arrayed between.

Next, we extended this endotyping approach to include 
other unrelated datasets, two with both active and inac-
tive patients, and a large RNA-seq dataset, to deter-
mine whether the same or additional endotypes could 
be detected (Additional file  1: Table  S1, Datasets 3–5). 
Within these three other datasets, six endotypes were 
identified in a cohort of 266 adult lupus patients, five 
endotypes were identified in a cohort of 137 pediatric 
lupus patients, and four endotypes were identified in 160 
other adult lupus patients (Fig.  1B–D, Additional file  2: 
Figure S1). As with GSE88884, non-lupus controls tended 
to cluster in the “least perturbed” endotype with similar 
enrichment patterns as Z1 (Additional file 2: Figure S5).

Cosine similarity analysis indicated that several of 
these SLE endotypes were reproducible among all data-
sets, whereas others were found in only some datasets 
(Fig.  1E). Of note, when compared to a large cohort of 
adult lupus patients, three shared subsets and two tran-
scriptionally distinct subsets emerged in the pediatric 
patients using a cosine similarity cutoff of 0.7. Combin-
ing all unique endotypes across datasets indicated that a 
total of 11 endotypes can be identified by cosine similar-
ity. However, hierarchical clustering of the mean GSVA 
scores of the individual endotypes suggested that after 
eight subsets, the next three subsets emerged within a 
very small statistical space (Fig. 1F), namely, that with a 
slightly lower cut height, eight endotypes were identified, 
which indicated that these three additional subsets were 
similar to other subsets even though they missed being 
captured by cosine similarity. Furthermore, the addi-
tional subsets contained very few members compared 

to the eight endotypes. In summary, these analyses con-
servatively identified eight as the optimal number of 
SLE endotypes. K-means clustering of the eight identi-
fied endotypes from the five datasets demonstrated dis-
tinct molecular patterns (Additional file  2: Figure S6A). 
Principal component analysis (PCA) and t-Distributed 
Stochastic Neighbor Embedding (t-SNE) demonstrated 
good separation of the subsets (Additional file 2: Figure 
S6B-C).

ML to classify SLE samples into endotypes
To identify the eight endotypes of lupus among a com-
plete cohort of 3166 SLE patients, we concatenated the 
GSVA enrichment scores of 26/32 measurable features 
across 17 datasets and employing the k-means (k = 8) 
pipeline, subsetted all samples into eight endotypes 
labeled A-H (Figs.  2 and 3A). These results became the 
class labels for subsequent ML. It was essential that all 
subsets have a “true label” in order to validate subsequent 
ML algorithms, so this step was employed to assign sub-
set designation of all patients within the universe of 3166 
SLE patients examined. Each endotype was characterized 
by unique patterns of dysregulation of the 26 informative 
gene modules (Additional file 2: Figure S7).

Next, we employed GSVA scores from the five train-
ing/internal validation datasets (n = 2183, Additional 
file 1: Table S1, Datasets 1–5) to generate an ML model 
to classify patients into the final eight endotypes. Testing 
and external validation were carried out on gene expres-
sion profiles of 983 patient samples from 12 additional, 
independent datasets not used to generate the ML model 
(Additional file  1: Table  S1, remaining datasets). The 
training data from the 2183 samples were further parti-
tioned into training (80%) and validation (20%) sets and 
one-vs.-one multi-class classification by multiple algo-
rithms was carried out to predict endotype memberships 
and carry out internal validation. Receiver operating 
characteristic (ROC) curves for RF, SVM, logistic regres-
sion (LR), and gradient boosting (GB) models were gen-
erated on the 983 patients from 12 test datasets not used 
to generate the model (external validation) and demon-
strated high predictive capabilities (Fig. 3B, C, Additional 
file  2: Figure S3). LR had the highest precision overall 
with sensitivity ranging from 89 to 100% and specificity 
ranging from 99 to 100% for the eight endotypes. Alto-
gether, all the classifiers worked well, and even though 
SVM and LR appeared to be somewhat more effective, we 
selected RF because it was effective in both multi-class 
and binary analyses and also afforded the opportunity to 
access many feature importance techniques. Classifica-
tion of the 983 patients from the test set into the eight 
endotypes using the RF classifier is shown (Fig. 3D).
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Because of concern that assignment of “true labels” 
might have biased the outcome of the external valida-
tion, we carried out an additional ML approach, the 
centroid-based ML validation, in which “true labels” 
were not assigned by k-means clustering of the GSVA 
scores of the entire 3166 patients. Rather, labels for 
the test set (983 patients, 12 datasets) were generated 
by centroid similarity of the GSVA scores to the train-
ing set. With this external validation ML design, we 
observed classification performance with high accuracy 
(Additional file 2: Figure S8-10). A third ML approach, 
the unsupervised ML validation, was also carried out, 
in which class labels were generated using only the 
initial five training/validation datasets. Five different 
ML models (LR, SVM, RF, GB, extreme GB, or XGB) 
were trained and model weights were generated. The 
model weights were then used to predict the class of 
the patients from the 12 independent testing datasets, 
for which we did not have true labels (Additional file 2: 
Figure S11A). When the output of the ML models on 
the 12 datasets were compared to the outputs from the 
five training/validation datasets using cosine similar-
ity, it can be seen that there was a high level of same-
ness of the derived endotypes (cosine similarity > 0.9 for 
each comparison) for each of the five ML algorithms 
employed (Additional file 2: Figure S11B-F). This third 
orthogonal approach clearly shows that the ML model 
generates the same endotypes from unrelated datasets 
in an unbiased manner and validates the performance 
of the models.

To determine whether all 26 features were required 
to achieve similar performance, we analyzed the model 
performance when features were randomly removed. 
We found that all 26 features were needed to iden-
tify the eight endotypes by k-means optimally (Addi-
tional file  2: Figure S12). In addition, the RF classifier 
and other ML models were largely built using female 
patients. To ensure the model was applicable to both 
sexes, we applied the RF classifier from the first ML 
approach (Additional file  2: Figure S8-10) to a large 
cohort of male patients (Additional file 2: Figure S13). 
Indeed, we observed all endotypes in the male cohort, 
demonstrating these endotypes are not restricted to 
female patients.

Development of composite metric LuCIS
With the identification of eight endotypes represent-
ing the apparent universe of lupus patients and high 
predictive capability of ML algorithms, we sought to 
reduce the information from gene expression profiles 
into a clinical metric, designated LuCIS, to display the 
range of molecular abnormalities numerically. An RPLR 
model was employed to calculate a LuCIS value for each 

patient based on his or her binarized GSVA enrichment 
score (Fig. 4A). These scores were then compared to the 
placement of each patient in our eight lupus endotypes 
and showed increasing LuCIS values for each endotype 
(Fig. 4B).

To contextualize LuCIS values, we calculated the scores 
of healthy, non-lupus controls in five datasets for which 
adequate control samples were available (Fig. 4C). Nota-
bly, the mean LuCIS values of the least abnormal lupus 
endotypes were not significantly different from those of 
the non-lupus controls, indicating that LuCIS identified 
the least abnormal endotypes’ resemblance to a normal 
transcriptional profile.

Use of SHAP to determine the most important features 
of endotypes
We determined the most important GSVA enrichment 
scores contributing to the endotype groupings using 
additional ML classification and SHAP. To accomplish 
this, we used ML to classify samples using one-vs.-rest 
multi-class classification (Additional file  2: Figure S14) 
and then employed SHAP to compute the contribution of 
each feature to each endotype. A summary of mean abso-
lute SHAP values across patients in the eight endotypes 
from the extreme GB classifier revealed the top 20 fea-
tures contributing to the model, with gamma/delta (gd) T 
cells, major histocompatibility complex II (MHCII), and 
IFN being the overall most impactful (Additional file  2: 
Figure S15). Anti-inflammation, granulocyte, and neu-
trophil features most distinguished endotype H, the most 
perturbed endotype (Fig. 3A), whereas the lack of enrich-
ment of monocytes, anti-inflammation, and IFN most 
impacted the least perturbed endotype, endotype A.

To elucidate the specific features determinant of 
the eight endotypes, we additionally employed seven 
binary classifications, each comparing one of the seven 
more transcriptionally perturbed endotypes (B–H) 
to the least abnormal endotype (A). These classifiers 
(Additional file  2: Figure S16-22) demonstrated excel-
lent performance with a mean positive predictive value 
of 0.97 for the RF classifier, but all classifiers performed 
well (Additional file 1: Table S4).

SHAP analysis of the RF classifiers was then employed 
to delineate the features that characterized individual 
endotypes from those of the most normal lupus endotype 
(endotype A) (Fig. 5). Data are shown as the features that 
distinguish endotypes. In addition, the impact of each 
feature at the individual patient levels is shown as SHAP 
waterfall plots (Additional file 2: Figures S16-22). Differ-
ent patterns of features distinguished most of the endo-
types (Fig. 5). For example, the endotype with the most 
immunologic abnormalities (H) demonstrated high con-
tributions from the monocyte, neutrophil, TNF, and IFN 
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signatures (Fig. 5, Additional file 2: Figure S22), whereas 
T cell signatures were most contributory to endotype B 
(Fig. 5, Additional file 2: Figure S16). SHAP dependence 
plots detailed the various effects of the individual fea-
tures on predictions made by the model with, for exam-
ple, granulocytes having an impact throughout the range 
of granulocyte GSVA scores, gd T cells at the transition 
of GSVA scores from positive to negative, and LDG at the 
extremes of GSVA scores for distinguishment of endo-
type B (Additional file  2: Figure S16E). Using the Gini 
Index, another feature importance metric employed with 
the RF classifier, we were able to confirm these analyses 
(Additional file 2: Figure S23).

Clinical data do not identify molecular endotypes
To test whether clinical characteristics alone could iden-
tify the endotypes, we employed our clustering pipeline 
on ILL-2 lupus patient clinical metadata. With k-means, 

six subsets based on clinical features alone were identi-
fied (Additional file 2: Figure S24A). Another six subsets 
were also identified by separate employment of a vari-
ational autoencoder to determine whether a deep learn-
ing algorithm would alternatively be able to identify the 
endotypes (Additional file  2: Figure S24B). The clini-
cal k-means subsets were largely dictated by ancestry, 
whereas the clinical autoencoder subsets were ancestrally 
heterogeneous. Notably, by Adjusted Rand Index, the 
clinically determined subsets were significantly different 
from the molecular endotypes (Additional file  2: Figure 
S24C-D) and from each other (Additional file  2: Figure 
S24E). To corroborate this finding, we employed ML clas-
sifiers using the same clinical data as features to deter-
mine whether they could predict molecular endotype 
memberships (Additional file 2: Figure S25). Performance 
was suboptimal, with a mean RF classifier precision of 
32%, further indicating that clinical characteristics are 
insufficient features to identify the molecular endotypes.

Fig. 4 LuCIS summarizes the severity of molecular abnormalities in individual lupus patients

Logistic regression with ridge penalization was employed to classify endotype A (Z1), the “least abnormal,” and endotype G/H (Z6), the “most 
abnormal,” from GSE88884 ILL-1 & ILL-2 which produced coefficients (A) that can be used to calculate LuCIS. B The mean + SEM (top) 
and distribution (bottom) of LuCIS calculated for the eight endotypes in all 17 datasets using the 26 features shown in A and the imputed values 
for the six features not measured on all platforms (IG chains, TCRA, TCRAJ, TCRB, TCRD, Treg) as described in the Supplemental Methods. Statistical 
differences between mean LuCIS of the endotypes were evaluated with the Kruskal–Wallis test and Dunn’s multiple comparisons. C Comparison 
of mean LuCIS between non-lupus healthy controls and the least “abnormal” lupus endotype in five independent datasets for which adequate 
controls were available. Missing values for GSVA modules not measured (IG chains, TCRAJ, TCRB, TCRD) in GSE65391 were imputed as described 
in the Methods. All plots were generated, and statistics were computed, in GraphPad Prism v. 9.4.0 (673)
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Clinical characterization of SLE endotypes
Next, we sought to determine whether endotype mem-
bership was associated with various clinical features 
of SLE. For clarity, subsets/endotypes identified in 
Fig.  1A were re-assigned to a letter classification (A-H) 
based on cosine similarity to the final eight endotypes 
(Fig. 6, Additional file 2: Figure S26). Despite all patients 

having SLEDAI ≥ 6 in GSE88884 ILL-1 & ILL-2, analy-
sis of the associated metadata revealed significant dif-
ferences among endotypes with respect to SLEDAI, 
autoantibody titers, lymphopenia, and serum comple-
ment levels. Subset A (Z1, the least abnormal) had the 
lowest SLEDAI, lowest autoantibody titers, and high-
est complement levels, whereas endotypes E (Z3), D/G 

Fig. 5 SHAP analysis reveals features most distinctive of transcriptional perturbations in the seven abnormal lupus endotypes

SHAP analysis of the seven binary RF classifiers distinguishing the seven out of eight most transcriptionally abnormal lupus endotypes (B–H) 
from the eighth least abnormal endotype (A) reveals the features most contributory to the ML model’s classification capacity. Mean SHAP values 
were calculated using only the samples in each more severe endotype (B–H) that were positive. The size of the data points enumerates the positive 
mean SHAP value of each feature listed on the y-axis. Bubble plot rendered in R using the ggplot2 package
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(Z4), F/H (Z5), and G/H (Z6) manifested more abnor-
mal clinical characteristics (Fig.  6A, Additional file  2: 
Figure S27). By these systemic measures, endotype A 
(Z1) exhibited the lowest disease activity. On the other 
hand, E (Z3) exhibited the most disease activity, followed 
closely by F/G (Z6). Endotypes associated with more dis-
ease activity were characterized by various combinations 

of enrichment of features for plasma cells, myeloid cells, 
neutrophils, inflammatory cytokines, and lymphopenia 
(Fig. 1A).

Of note, the patients in A (Z1) receiving standard of 
care (SoC) medication had a lower frequency of severe 
flares over the subsequent 52  weeks as compared to 
the patients in other subsets (OR = 0.116, p = 0.00041, 

Fig. 6 Clinical characterization of SLE endotypes

Clinical metadata were summarized for each cluster from GSE88884 (ILL-1 & ILL-2) using baseline values. Metadata was categorized by A 
quantitative immunologic/inflammatory and systemic disease indicators, B incidence of subsequent flares over 52 weeks in placebo patients 
receiving SoC medication (n = 550), C patient ancestry, and D medication use. Labels on x-axes indicate the shorthand name for the endotypes. 
Clusters were relabeled as one of the eight endotypes using cosine similarity. Scatterplots in A display the mean ± SD for each endotype; statistical 
differences were found with Dunn’s multiple comparisons test. Significant associations between categorical variables and endotypes in B–D 
(denoted with asterisks in titles) were identified using chi-square test of independence. In B–D, odds ratios of endotype A (Z1) having a positive 
value for the clinical trait of interest as compared to the other cohorts combined are displayed above the respective bar with significance indicated 
by asterisks. Missing data (n.d.) were excluded from analyses. All plots were generated, and statistics were computed, in GraphPad Prism v. 9.4.0 
(673). MMF = mycophenolate mofetil. MTX = methotrexate. AZA = azathioprine. n.d. = no data. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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Fig. 6B, Additional file 1: Table S5). Significant relation-
ships between endotype membership and ancestry (Afri-
can, European, or Hispanic) (Fig. 6C) and medication use 
(oral steroids, azathioprine, or methotrexate) were also 
identified (Fig. 6D). Patients of each ancestry were noted 
in each subset, although AA lupus patients were most 
enriched in E (Z3) and least enriched in A (Z1) (Fig. 6C). 
More subtle but significant differences were found among 
endotypes for vasculitis, alopecia, leukopenia, arthritis, 
mucosal ulcers, accompanying organ systems, and the 
overall number of SLEDAI domains involved (Additional 
file 2: Figures S28-29).

Because extensive clinical metadata accompanied 
the pediatric lupus patients (GSE65391), we examined 
the relationships between endotype and clinical fea-
tures and found significant differences among endo-
types with regard to SLEDAI, complement levels, and 
ESR, with endotype E (X3) exhibiting the most dis-
ease activity (Additional file 2: Figure S30). Although 
mean anti-dsDNA levels varied among endotypes 
and were highest in E (X3), intra-group variation was 
too high to detect significant intergroup differences. 
Pediatric endotypes also differed by occurrence of 
lymphopenia (p < 0.05), oral steroid use (p < 0.01), 
and HCQ use (p < 0.01), but, interestingly, not ances-
try (p > 0.05, Additional file  2: Figure S30C-E). How-
ever, the endotype with the highest SLEDAI, E (X3), 
contained the highest proportions of AA and Native 
American Ancestry (NAA/Hispanic) patients and 
patients with proliferative nephritis (Additional file 2: 
Figure S30F).

Relationship between endotypes and ancestry and SoC 
therapies
Because we previously found that ancestry and SoC 
therapies, such as mycophenolate, can significantly 
influence gene expression [13], and there were vari-
ations in subset membership based on ancestry and 
medication use (Fig.  6C-D), we examined these rela-
tionships in greater detail. When only EA patients 
from GSE88884 were clustered (n = 1118), the same six 
endotypes as observed in the full GSE88884 ILL-1 & 
ILL-2 cohort were represented (Additional file 2: Figure 
S31). Similar results were seen in the AA population 
(n = 216, Additional file  2: Figure S32), although the 
percentage of patients in the least abnormal subset was 
diminished (R1, chi-square, p = 0.03) and a plasma cell-
enriched subset was more prominent (R3, chi-square, 
p = 0.02). When only NAA/Hispanic patients were clus-
tered (n = 232), five out of six endotypes from the full 
cohort were identified (Additional file  2: Figure S33). 
Thus, endotype distribution varied based on ancestry, 

even though most endotypes were observed in each 
ancestry group.

We repeated these analyses among patients stratified 
by immunosuppressive agents at baseline and compared 
distributions of patients to the endotypes in the full pro-
totypic cohort (all active female) to identify which endo-
types were maintained (cosine similarity > 0.7, Additional 
file  2: Figure S34). Treatment with mycophenolate or 
methotrexate in combination with steroids appeared to 
deplete the most perturbed endotype, G/H (Z6), whereas 
this endotype was expanded in groups treated without 
SoC SLE therapies, without immunosuppressive agents, 
and without steroids alone. Treatment with steroids with 
methotrexate also appeared to deplete endotype E (Z3), 
which exhibited the highest disease activity. The distribu-
tion of patients in the least perturbed endotype, A (Z1), 
also increased with treatment by steroids and immuno-
suppressive agents. Altogether, these analyses illustrate 
that some endotypes cannot be found/are reduced (by 
cosine similarity) in patients treated with immunosup-
pressive drugs, and implies that therapy can suppress 
the appearance of specific endotypes. In addition, ther-
apy may contribute to the proportion of patients in each 
endotype.

Utility of molecular endotyping in determining patients 
with likelihood of therapeutic response
To explore the clinical utility of molecular endotyp-
ing in greater detail, we applied the k-means clustering 
pipeline to the patients belonging to the successful ILL 
trial, GSE88884 ILL-2 [39], and identified six endotypes 
similar to those found in the combined trial datasets 
(Fig. 7A, Additional file 2: Figure S35). Endotypes were 
re-assigned to A-H based on cosine similarity (Fig. 7B). 
We examined clinical response to the investigational 
product, tabalumab, by two metrics: SRI-5, used in the 
trial, and the more standard SRI-4 [39], among these 
endotypes (Fig.  7C, D). We identified three respon-
sive groups by SRI-5 (B [V2], F/H [V5], and G [V6]) 
and one responsive group by SRI-4 (B [V2]), each with 
a response effect size > 20%. Of note, the endotype with 
the least immunologic activity (A [V1]) was not respon-
sive by either metric. Notably, although A (V1) mani-
fested a high placebo SRI-5 response rate, the placebo 
response rates between A (V1) and D/G (V4) were not 
significantly different (p > 0.05). Clinically, the respon-
sive endotypes were characterized by lymphopenia at 
baseline (chi-square, p < 0.0001, OR = 3.2) and were com-
prised of more patients taking azathioprine (chi-square, 
p < 0.01, OR = 2.0), more NAA/Hispanic patients (chi-
square, p < 0.0001, OR = 2.6), and fewer EA patients (chi-
square, p < 0.05, OR = 0.72) (Additional file 2: Figure S36, 
Additional file  1: Table  S6). The responsive endotypes 
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also trended toward having an increased likelihood to 
experience a severe flare over the subsequent 52 weeks 
on SoC therapy (chi-square, p = 0.06, OR = 2.0).

Utility of LuCIS in determining likelihood of flare 
and therapeutic response
Finally, we also determined whether there was a rela-
tionship between LuCIS values and clinical features. 
First, we examined the correlation between LuCIS and 

anti-dsDNA titer, SLEDAI, serum C3, and serum C4 
(Fig. 8A–D) in GSE88884 for which full clinical data were 
available. Positive correlations were identified (p < 0.0001) 
between LuCIS and anti-dsDNA titer or SLEDAI, 
whereas negative correlations were identified (p < 0.0001) 
between LuCIS and C3 or C4; however, coefficients were 
modest, suggesting that LuCIS is related to these metrics 
but may provide additional information not captured by 
SLEDAI or serology that is reflective of immunologic 

Fig. 7 Endotyping to stratify patients who are more likely to respond to treatment

Gene expression profiles (A) of k-means clustering (k = 6) of 807 active female lupus patients from GSE88884 ILLUMINATE-2. B Cosine similarity 
comparing the eight global SLE endotypes to the molecular endotypes in ILL-2. Clinical responses by C SRI-4 and D SRI-5 per endotype determined 
by gene expression data and 32 features. Responses among the treatment groups in C and D were ascertained by the chi-square test for trend (all 
three doses) or chi-square test for independence. Chi-square tests were performed for each endotype individually and summarized on the same 
plot. Significant results of the chi-square test for trend are denoted in the x-axis label of the endotype. Clusters were relabeled as one of the eight 
global endotypes using cosine similarity. Q2W and Q4W indicate frequency of drug administration was every 2 weeks and 4 weeks, respectively. 
Heatmap in A was generated with GraphPad Prism v. 9.4.0 (673). Cosine similarity plot in B was generated with the plot.matrix R package and edited 
in Adobe Illustrator. Histograms in C, D were generated with GraphPad Prism v. 9.4.0 (673). *p < 0.05
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activity. Next, we used groupings defined by LuCIS val-
ues to predict likelihood of flare or response to active 
treatment in the ILL-2 trial. Patients were assigned to 
sextiles based on their LuCIS value, to mirror the number 
of groups identified by the clustering pipeline. LuCIS-
defined subsets were associated with a likelihood of 
severe flare (Fig. 8E) and response to the investigational 
product in post hoc analysis of the ILL-2 trial (Fig. 8F, G).

Discussion
The specific disease manifestations in individual lupus 
patients vary greatly and are difficult to predict. In addi-
tion, efforts to stratify lupus patients into clinically 
informative and actionable groups have been largely 
unsuccessful and often reduce to differences in sero-
logic features, systemic features, patient demographics, 
and the presence (or absence) of an interferon signature 
[9, 40–42]. Herein, we describe a novel characterization 

of lupus patients based on identifiable endotypes using 
inflammatory and immunologic transcriptomic features, 
k-means clustering, and ML.

Using 17 datasets that contained diverse patients and 
data from different gene expression platforms, we were 
able to identify eight total endotypes representative of 
the apparent universe of molecularly defined lupus. With 
these data, we were able to overcome dataset-specific 
heterogeneity and develop two independent, informative 
tools: a multi-class ML classifier that predicts endotype 
membership of individual lupus samples, and a transcrip-
tomic-based composite score, LuCIS, that estimates the 
level and severity of lupus-related immunologic activity. 
The ML classifiers showed high predictive capabilities 
after validation in unrelated datasets, demonstrating the 
robustness of the endotypes. Further interrogation of 
features contributing to the ML models demonstrated 
specific gene signatures involved in the classification 

Fig. 8 The relationship between LuCIS value and clinical variables, flares or clinical response

Pearson correlations were computed between LuCIS values and A anti-dsDNA titers, B SLEDAI, C serum C3, and D serum C4 using LuCIS values of all 
the patients from GSE88884 ILL-1 & ILL-2 (n = 1620). LuCIS values were divided into sextiles for GSE88884 ILL-1 & ILL-2 and E incidence of subsequent 
flares over 52 weeks in placebo patients receiving SoC medication (n = 550) was examined. LuCIS values were also divided into sextiles for GSE88884 
ILL-2, and F SRI-4 response and G SRI-5 response were examined. Significant associations between incidence of flare among the sextiles 
(denoted with asterisks in the title) were identified using the chi-square test for trend. Differences in incidence of flare between sextiles were 
determined by chi-square test of independence and denoted below the figure. Similarly, responses among the treatment groups in each LuCIS 
sextile independently were determined by the chi-square test for trend (all three doses) or chi-square test for independence. Significant results 
of the chi-square test for trend are denoted in the plot title. All plots were generated, and statistics were computed, in GraphPad Prism v. 9.5.0 (730). 
*p < 0.05; **p < 0.01; ***p < 0.001



Page 19 of 23Hubbard et al. Genome Medicine           (2023) 15:84  

of patients into endotypes that could be further probed 
for druggable targets. The LuCIS calculations demon-
strated an overall worsening of lupus-related immuno-
logic aberrancies as endotype membership progressed 
from A to H and that, in combination with endotyping, 
LuCIS values could serve as a new clinical metric to esti-
mate lupus activity not captured by current approaches. 
It is important to note that LuCIS merges together vari-
ous immunologically distinct aberrations (lymphopenia, 
IFN, inflammatory cytokines), and, thereby, provides 
a numeric score, whereas subset membership groups 
patients with similar immunologic perturbations. Indeed, 
when patients were subsetted by the LuCIS value, it was 
possible to see differences in subsequent flare frequency 
and clinical response to therapy in a manner that was 
similar to that noted when the individual subsets were 
evaluated.

In the large cohort of adult lupus patients from the 
ILLUMINATE trials (GSE88884), the endotype with the 
least abnormal transcriptional profile manifested the 
lowest mean SLEDAI, lowest ANA titers, highest serum 
complement levels, and lowest incidence of lympho-
penia, whereas the subsets with more abnormal tran-
scriptional profiles showed significantly more abnormal 
clinical features. The endotype with the least abnormal 
transcriptional profile also had a significantly lower fre-
quency of severe flares over the subsequent 52  weeks 
while receiving SoC medication and exhibited no sig-
nificant clinical response to the investigational product, 
tabalumab. Moreover, we identified significant clinical 
responses to tabalumab in three endotypes with per-
turbed gene expression profiles. Notably, the effect 
sizes in these responsive subsets greatly exceeded that 
reported for responsiveness of the entire population (10.7 
vs > 20%) [39]. Thus, we were able to identify clinically 
meaningful phenotypes based on the gene expression-
based endotypes.

Several of the endotypes identified in the adult lupus 
patients were also found in pediatric patients, but a few 
transcriptionally distinct endotypes emerged among the 
pediatric patients that led to the final determination of 
eight global SLE molecular subsets. General patterns of 
clinical characterization were mirrored in the pediat-
ric endotypes, with the least transcriptionally perturbed 
endotype exhibiting comparably low disease activity, 
and the endotype manifesting the highest disease activ-
ity being comprised of the fewest EA patients. However, 
hydroxychloroquine usage differed among endotypes, 
unlike in adults, and pediatric endotype membership did 
not depend on patient ancestry. This could have been 
reflective of overall higher proportions of non-EA ances-
tries in the pediatric patients.

Because gene expression can be influenced by the use 
of corticosteroids, immunosuppressive agents, or patient 
ancestry, we repeated our analyses in cohorts restricted 
to patients of single ancestries and separate cohorts of 
patients taking oral steroids and/or mycophenolate, 
which we have shown to significantly affect plasma cells 
and other gene expression [13]. Most endotypes were 
identified across ancestries, but we found different dis-
tributions of patients by ancestry among the endotypes; 
in particular, very few AA patients were found in the 
endotype with the least perturbed transcriptional profile, 
and, likewise, few EA patients were found in the subset 
with the greatest number of immunologic perturbations 
when all ancestries were considered. These findings sug-
gest that these identified endotypes may be reflective of 
immunologic activity that presents clinically as more 
severe SLE among AA cohorts compared to EA cohorts 
[13, 43]. That is, the transcriptional profiling and subse-
quent endotyping presented herein may serve as a proxy 
for lupus immune activity.

We further illustrated this point by stratifying patients 
according to SoC medication and examining alterations 
in the distribution of patients among endotypes. When 
patients only taking oral steroids were considered, there 
was increased representation of a transcriptionally per-
turbed endotype; however, the addition of patients taking 
mycophenolate or methotrexate reduced the appearance 
of this endotype, confirming the clinical relevance of 
these drugs and the capacity of our endotype identifica-
tion to detect these influences.

Additionally, we were able to demonstrate the utility 
of transcriptomic profiling over current, standard bio-
markers, and patient demographics. Sub-setting lupus 
patients by k-means clustering of clinical data alone strat-
ified patients primarily by ancestry and was not robust 
to methodology, as employment of clustering by a deep 
learning, variational autoencoder produced significantly 
different results, and both differed from the molecular 
subsets, a finding confirmed by ML. Thus, the molecu-
lar endotypes could not be identified based on clinical 
metadata.

There are limitations to our study including the gen-
eralizability of our findings. The majority of the patients 
analyzed were female, and one of the largest cohorts of 
our data, GSE88884, was restricted to patients selected 
for enrollment in a clinical trial and did not have active 
lupus nephritis or central nervous system involvement. 
Additionally, less than 5% of total patients analyzed 
were children, which may limit applicability of these 
endotypes to these patients. However, we included 137 
pediatric patients as one of our formative datasets to 
identify the endotypes and we analyzed as many data-
sets as were available. Another possible limitation is 
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the unknown clinical utility of LuCIS. Although there 
were significant correlations between LuCIS and SLE-
DAI, anti-dsDNA, and serum complement (negative), 
most correlations were modest. Additional real-world 
evidence will be necessary to determine the clinical 
utility of LuCIS. We anticipate future directions of this 
research to include analysis of longitudinal gene expres-
sion data, and we have indeed begun examining the 
fluidity of endotype membership among lupus patients 
over time in groups taking targeted therapies. Initial 
results show a tendency to normalize gene expression 
profiles following treatment with the cereblon binder, 
iberdomide [44].

In keeping with the shift of clinical medicine to greater 
emphasis on individualization and precision, we identi-
fied eight endotypes that map the molecular heteroge-
neity of individual lupus patients while also representing 
an entire disease population. Our body of work and the 
development of LuCIS based on these eight endotypes 
demonstrates how an individual patient can be classified 
using his or her blood gene expression profile. With the 
power of big data, bioinformatics, and ML, we anticipate 
this new method of clinical classification of lupus will aid 
physicians’ overall decision making, facilitating precise 
therapeutic courses of action and disease management 
strategies.

Conclusions
We have developed a novel patient stratification meth-
odology based on analysis of gene expression profiles of 
blood samples to identify endotypes (subsets) of patients 
with SLE. We leverage this information to develop a 
machine learning algorithm that effectively predicts endo-
type membership and also identifies the major molecular 
features driving subset membership. Finally, we have also 
developed a novel composite score defining gradations 
of immunologic perturbations, based on gene expres-
sion profiles. This composite score complements the 
endotypes and summarizes the extent of modular immu-
nologic abnormalities, and may have both staging and 
prognostic relevance. These results provide the basis of 
precise identification of SLE patient endotypes and pro-
vide important novel information that should foster per-
sonalized care of patients with this heterogeneous disease.
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