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A phenome-wide scan reveals convergence 
of common and rare variant associations
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Abstract 

Background Common and rare variants contribute to the etiology of complex traits. However, the extent to which 
the phenotypic effects of common and rare variants involve shared molecular mediators remains poorly understood. 
The question is essential to the basic and translational goals of the science of genomics, with critical basic-science, 
methodological, and clinical consequences.

Methods Leveraging the latest release of whole-exome sequencing (WES, for rare variants) and genome-wide 
association study (GWAS, for common variants) data from the UK Biobank, we developed a metric, the COmmon 
variant and RAre variant Convergence (CORAC) signature, to quantify the convergence for a broad range of complex 
traits. We characterized the relationship between CORAC and effective sample size across phenome-wide association 
studies.

Results We found that the signature is positively correlated with effective sample size (Spearman ρ = 0.594, 
P < 2.2e − 16), indicating increased functional convergence of trait-associated genetic variation, across the allele 
frequency spectrum, with increased power. Sensitivity analyses, including accounting for heteroskedasticity and vary-
ing the number of detected association signals, further strengthened the validity of the finding. In addition, consist-
ent with empirical data, extensive simulations showed that negative selection, in line with enhancing polygenic-
ity, has a dampening effect on the convergence signature. Methodologically, leveraging the convergence leads 
to enhanced association analysis.

Conclusions The presented framework for the convergence signature has important implications for fine-mapping 
strategies and drug discovery efforts. In addition, our study provides a blueprint for the expectation from future large-
scale whole-genome sequencing (WGS)/WES and sheds methodological light on post-GWAS studies.
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Background
The gap between chip-based heritability and the nar-
row-sense heritability estimated from twin studies 
suggests a substantial role for rare variants in the eti-
ology of complex traits [1–3]. Empirically, it has been 
observed that up to approximately 22% of the pheno-
typic variance can be explained by rare variants [4]. 
Since rare variants have historically been excluded in 
genome-wide scans, the contribution of this class of 
variants to complex traits has been much less under-
stood [1, 5, 6]. Several studies have suggested that 
common and rare variants may play distinct etio-
logical roles [7]. Mediated by quantitative molecular 
traits, the variance of common variants constitutes the 
background of disease liability according to the infini-
tesimal model, while most deleterious rare variants 
modify the liability through protein dysfunction [8, 9].

Although some studies appear to show that the sig-
nals from whole-exome sequencing (WES) diverge in 
function from those from genome-wide association 
studies (GWAS) [10–13], these studies are limited in 
their effective sample size. By contrast, recent stud-
ies with relatively large sample sizes report that most 
rare variants implicate loci which have been previ-
ously identified by common variants [14–16], indicat-
ing some level of convergence on mediating genes. A 
more recent study shows that common and rare vari-
ants partially colocalize at individual genes and loci 
across 22 complex traits [17]. The extent of this con-
vergence is a fundamental question in human genetics 
that remains poorly understood. Methodologically, it 
may enable the development of a rigorous strategy to 
fine-map a genomic region of interest, allowing dis-
crimination of causal mechanisms.

Given recent results from some relatively well-
powered empirical studies, we hypothesized the pres-
ence of a substantial degree of functional convergence 
after accounting for sample size and heritability. The 
increasing availability of common variant and rare 
variant genomic datasets provides an opportunity 
to gain new insights into the genetic architecture of 
complex traits by extrapolating the degree of concord-
ance. Leveraging common variant-based GWAS and 
rare variant-based WES [18] and a broad collection 
of phenotypes with a wide range of effective sample 
sizes [12, 18] from a large-scale biobank, we set out 
to investigate the concordance of common and rare 
genetic influences on complex traits, using a newly 
defined Common variant and Rare variant Conver-
gence (CORAC) signature. We examined a potential 
mechanism on the phenome underlying the patterns of 
shared or divergent mediation.

Methods
Common variant analysis
The GWAS summary statistics for common variants 
were obtained from the Neale Lab (http:// www. neale lab. 
is/ uk- bioba nk) [19]. After quality control, variants with 
minor allele frequency (MAF) ≥ 0.05 were included. Up to 
337,199 subjects were available, with the effective sample 
size varying with the trait. The genome-wide association 
statistics had been estimated using a linear model with sex 
and the first 10 principal components as covariates. We 
mapped the common variants to protein-coding genes. 
The generalized gene-set analysis approach MAGMA 
[20] with default settings was implemented to project the 
SNP-level signal to a gene level signal (Pcommon). The com-
mon variant-based heritability was estimated using ldsc 
applied to the GWAS summary statistics.

Rare variant analysis
The rare variant analysis was performed for a set of phe-
notypes in the UK Biobank dataset of 450,953 individu-
als. A total of 263,696 rare variants were annotated using 
VEP v95, as implemented in Hail with default parameters, 
and grouped into three annotation categories, including 
pLoF (high-confidence by LOFTEE), missense|LC (mis-
sense variants and variants annotated as low-confidence 
by LOFTEE), and synonymous. For each category, gene-
based burden tests and SKAT-O tests were performed 
for each of the 19,407 protein-coding genes [21, 22]. The 
summary-level results were accessed from the Genebass 
portal through Hail (https:// hail. is/) [18]. For each gene, 
the minimum p-value (Prare) among the six tests (two sta-
tistical tests × three annotation categories) was used in 
downstream analyses.

Estimation of level of convergence on shared effector 
genes
To estimate the convergence of common and rare vari-
ants on shared molecular mediators, variant-level signals 
were mapped to gene-level signals as described above. 
For each approximately independent linkage disequi-
librium (LD) block [23], p-value-based (the product of 
Pcommon and Prare) clumping was performed to reduce 
the complexity of the LD structure. i.e., for each LD 
block, one gene with the highest association signal was 
included.

To control for the effect of sample size on the number of 
significant genes, the top-ranked 100 genes were selected 
from both common and rare variant-based gene lists as 
the significant genes. Sensitivity analysis was performed 
using top 20, top 50, and top 200 genes. Let a, b, c, and  
d denote the number of genes showing significance from 

http://www.nealelab.is/uk-biobank
http://www.nealelab.is/uk-biobank
https://hail.is/
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both the common and rare variant-based tests, only from 
the common variant-based test, only from the rare variant-
based test, and neither from the rare nor common variant-
based test, respectively. Let n = a+ b+ c + d be the 
total number of genes. Let p11 , p10 , p01 , and p00 denote 
the corresponding probabilities for the 4 sets of genes, 
respectively.

We define the Common variant and Rare variant 
Convergence (CORAC) signature, which quantifies the 
concordance of implicated genes for common and rare 
variants. The proportionate agreement ( pα = p11 + p00 ) 
is estimated using the gene-count statistics:

The expected probability that both common and 
rare variants show a high-ranking signal at random 
( pβ = p1. × p.1 ) is estimated as follows:

The expected probability that a gene implicated by nei-
ther common nor rare variants shows a high-ranking sig-
nal at random ( pδ = p0. × p.0 ) is estimated as follows:

The overall random agreement probability pǫ is the 
sum of pβ and pδ . CORAC is given by the Cohen’s kappa 
coefficient κ:

Note the estimator κ  is a chance-corrected statistic (via 
p̂ǫ ). As a measure of agreement, κ is to be contrasted with 
the Fisher’s exact test and the χ2 test, which assign the 
same p-value to perfect agreement or perfect disagree-
ment. Furthermore, odds ratio has a problematic scale; 
it equals 1 in the case of random agreement and infinity 
in the absence of error, rendering comparison difficult to 
interpret.

To quantify the standard error of the estimator and 
facilitate downstream statistical inference, we performed 
bootstrap. Alternatively, one can conduct posterior infer-
ence from a Bayesian model [24] to quantify the uncer-
tainty. The likelihood is given by:

Note this likelihood is a function of p1. , p.1 , and p11 . 
The prior on p1. And p.1 can be assumed to be:

p̂α =
a+ d

n

p̂β =
a+ b

n
×

a+ c

n

p̂δ =
c + d

n
×

b+ d

n

(1)κ =
pα − pǫ

1− pǫ

L =
n!

a!b!c!d!
[p11]

a[p10]
b[p01]

c[p00]
d =

n!

a!b!c!d!
[p11]

a[p1. − p11]
b[p.1 − p11]

c[1− p1. − p.1 − p11]
d

where 0 < s, t < 1 , respectively. The prior on p11 is a uni-
form distribution. Using the likelihood and the choice 
of prior, the posterior distribution can then be used to 
obtain the posterior mean and the credible interval.

The Spearman’s correlation coefficient ρ was then cal-
culated between the CORAC estimate κ̂  and the effective 
sample size.

In addition, we define a modified statistic CORAC modi-

fied, which has some methodological advantages. CORAC 
modified is less dependent on the prevalence. i.e., the true 
proportion of associated genes, which may need to be 
considered in interpreting the agreement rate, allowing 
comparisons among phenotypes. CORAC modified is given 
by Gwet’s AC1:

where

The difference between the two convergence coeffi-
cients stems from how the adjustment for chance agree-
ment between the common and rare variant signals is 
implemented ( pǫ in κ versus pγ in g).

Stratified analysis
For a given phenotype, we define statistics that quantify 
the extent to which rare (common, respectively) variant 
informed analysis improves our ability to detect genes 
from the common (rare, respectively) variant analysis. 
Following the stratified FDR [25] approach for GWAS, 
we calculated the posterior probability that a gene is null 
for the rare variants given that the associations from the 
rare variants and the common variants are at least as 
significant as the observed associations:

Here, pR is the p-value of the gene from the rare variant  
analysis, pC is the corresponding p-value from the com-
mon variant analysis, π0(pC) is the conditional proportion  

of null genes for the rare variant analysis given that  
the p-values for the common variant analysis are as small 

p1. ∼ Beta(us,u(1− s))

p.1 ∼ Beta(vt, v(1− t))

g =
pα − pγ

1− pγ

pγ = 2π(1− π) with π =
1

2
pβ =

1

2
(p1. + p.1)

(2)FDR(pR|pC) =
π0(pC)pR

F(pR|pC)
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as pC , and F(pR|pC) is the conditional cumulative distri-
bution function. Similarly, we define the posterior prob-
ability FDR(pC|pR) with pR and pC switched in Eq. (2).

This analysis was illustrated using a stratified Q-Q plot. 
This plot can be used to visualize the degree to which 
the use of gene-level associations from the rare (com-
mon, respectively) variant analysis enhances our ability 
to detect gene-level associations from the common (rare, 
respectively) variant analysis. Differential departure from 
the null across different p-value inclusion threshold cri-
teria quantifies the enrichment due to the prior informa-
tion independently of the presence of shared subjects in 
the common and rare variant analyses.

Role of negative selection in convergence
We tested the extent to which negative selection impacts 
the functional convergence of common and rare vari-
ant associations. Negative selection has been proposed 
as a mechanism for the extreme polygenicity of complex 
traits characterized by the flattening of heritability across 
the genome [26]. Negative selection may also induce vari-
ant effect size to vary with linkage disequilibrium [27].

We considered a class of genetic architectures consist-
ent with signatures of negative selection [28], i.e., where 
the allele frequency influences the allelic substitution 
effect at a causal variant as follows:

Here, the constant of proportionality C =
h2trait
Ntrait

 is given 
by the heritability h2trait divided by the number of causal 
variants Ntrait and independent of the variant; pi is the 
allele frequency of the variant i ; li is the LD score; and α 
is a signature of selection on the trait linking the allele fre-
quency of i to the variance of SNP effects. We assume r is 
either 0 (which corresponds to a MAF-dependent distribu-
tion of effect sizes) or 1 (which corresponds to a MAF- and 
LD- dependent distribution of effect sizes). The parameters 
pi and li can be estimated from an ancestry-matched refer-
ence panel. In our framework, the LD score is integrated in 
the effect size distribution (Eq. 3), rather than downstream 
in the definition of CORAC, as one model of genetic archi-
tecture, through which LD influences the convergence sig-
nature. We assume that the genotype is scaled with mean 
0 and variance 1. The model (Eq. 3) has been shown to be 
consistent with what is observed in the UK Biobank, with 
α̂ = −0.37 [29]. We note that the constant factor C is the 
expected value of the per-SNP heritability under a neutral 
model ( α = 0 ), in which the causal effect size distribution 
is independent of allele frequency. An estimate of α can be 
obtained by maximizing the profile likelihood [30].

(3)βi|(pi, li) ∼ N (0, C[pi(1− pi)]
1+α

{
1
/
(1+li)

}r
)

Here, we estimated α̂ using the approximate joint log 
likelihood loglSS that can be calculated from summary 
statistics [31]. We computed the partial correlation 
between the convergence level κ̂  (Eq.  1) and α̂ (Eq.  3) 
while adjusting for the effective sample size in addition 
to the Spearman correlation (without the adjustment).

We tested the robustness of the observation concern-
ing the effect of negative selection on the degree of 
convergence by using another approach to detect the 
selection signal. We applied a Bayesian mixed model 
approach [29, 32] to infer the action of natural selection 
on the genetic variants underlying a phenotype. The 
approach estimates a parameter S (with an asymptotic 
normal approximation to its posterior distribution) 
representing the relationship between the variance of 
SNP effects and minor allele frequency using genome-
wide SNP data. We then tested the correlation of the 
estimate Ŝ  with the CORAC estimate κ̂ .

Simulation framework
We studied the behavior of the convergence level with 
respect to effective sample size in simulations. Towards 
this end, using actual (scaled) genotype data, we sim-
ulated genetic architectures consistent with negative 
selection (Eq.  3, with r = 0 ) for comparison with a 
baseline class of genetic architectures (in which there 
is no dependence of the distribution of variant causal 
effect on allele frequency):

We set the following parameters: heritability (0.30), 
the proportion of causal genes (10%), and the probabil-
ity pα (0.50), i.e., the proportion of shared causal genes 
between common and rare variant-based signals. We 
varied the effective sample size (from 1000 to 10,000). 
For each class of genetic architectures, we generated n 
simulations (100) with different seeds for sampling. We 
generated the phenotype and identified the gene-level 
signals from the common and rare variants. We inves-
tigated the Spearman correlation between κ and sample 
size for each class of genetic architectures.

To examine the behavior of the correlation before 
and after decorrelating common and rare variants, we 
fixed the genotype for common variants and shuffled 
the genotype for each rare variant across individuals to 
break any potential correlation. Furthermore, we calcu-
lated the convergence level under different degrees of 
polygenicity by varying the proportion of causal genes 
across the genome (from 5 to 20%).

(4)βi|(pi, li) ∼ N

(
0,

h2trait
Ntrait

)
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Verification using independent data sources for common 
and rare variants
We further estimated the correlation between the con-
vergence level and effective sample size using independ-
ent data sources for the common and rare variant-based 
signals. This analysis enabled us to evaluate the impact 
of the use of a shared biobank dataset for the common 
and rare variant analyses. We used the UK Biobank-
free GWAS results from the GWAS ATLAS [33] as the 
source for the common variant-based associations. The 
GWAS results generated from any UK Biobank samples 
were excluded. The WES-based results from the UK 
Biobank were used as the source for the rare variant-
based signals. Only European ancestry samples were 
included. To harmonize the phenotype data between 
the GWAS ATLAS and the UK Biobank, the Sentence-
BERT [34] word embedding model was implemented 
[34]. The resulting embeddings from the Transformer-
based network were used to search for semantic simi-
larity. Phenotype pairs with cosine similarity less than 
or equal to 0.75 were filtered out. We then manually 
confirmed the resulting phenotype pairs and removed 
duplicated ones. The correlation between CORAC and 
effective sample size was estimated in this dataset.

Results
Gene signals from common and rare variants
Gene signals from common variants were estimated 
in 337,199 individuals from the UK Biobank. The gen-
eralized gene-set analysis approach MAGMA was 
implemented to map the SNP-level GWAS signals 
to gene-level signals. Leveraging the WES data from 
450,953 UK Biobank participants, the burden test and 
SKAT-O test were applied to identify trait-associated 
genes by pooling rare variants. For each gene, the mini-
mal p-value among the two tests across three annota-
tion categories (pLoF, missense|LC, and synonymous) 
was used in the subsequent analyses. We did not adjust 
for gene length since the correlation between the sig-
nificance of a common or rare variant-based gene and 
gene length was negligible (with median Spearman 
correlation coefficient < 0.02 across the traits). In total, 
1043 traits were analyzed, having both common and 
rare variant-based genome-wide results available. We 
included 412 heritable traits with nominally significant 
p-value (P < 0.05) from the common variant-based h2 
estimation (as implemented in ldsc) in the downstream 
analyses. These traits include body measurements, lab 
measurements, self-reported disorders, doctors’ diag-
noses, and treatments. The effective sample size ranged 
from 596 to 394,432.

Convergence signature
An overview of our framework is shown in Fig.  1a, b, 
and c. CORAC was estimated for each trait, quantifying 
the rate of functional convergence from common vari-
ants and rare variants (Methods). Bootstrap was used to 
estimate the 95% confidence interval of the estimator 
(Additional file  2: Table  S1.). The bootstrap distribution 
of CORAC can be viewed as its nonparametric poste-
rior distribution under a non-informative prior within a 
Bayesian formulation (Methods).

The convergence level was found to be positively corre-
lated with the effective sample size (Spearman ρ = 0.594, 
P < 2.2e − 16; Fig.  2a). A positive correlation was also 
observed between CORAC and the common-variant 
based heritability (Spearman ρ = 0.369, P = 9.0e − 15). 
The association was also estimated using a parametric 
test. Considering the heteroskedasticity, we applied gen-
eralized least squares estimation. In this case, the weight 
(model) was determined as the choice of the exponent 
which maximizes the value of the likelihood function. A 
higher CORAC level continued to be associated with a 
larger effective sample size (P < 2.2e − 16). Certain phe-
notype classes such as hematopoietic traits and biomark-
ers showed a relatively higher convergence level than the 
other trait classes. However, after accounting for sample 
size, the difference dropped substantially (Additional 
file 1: Fig. S1.). The use of odds ratio supported the sig-
nificant correlation with sample size (Additional file  2: 
Table  S1), but the statistic has a problematic scale for 
practical use as a measure of concordance (Methods).

The significance of this relationship remained when 
we further adjusted for the number of significant genes 
(MAGMA). Thus, the higher convergence level for a 
larger effective sample size was not due to the number of 
detected association signals. Indeed, for sensitivity analy-
sis, we varied the number association signals by consider-
ing the top 20, top 50, and top 200 genes. The Spearman 
ρ with effective sample size ranged from 0.594 to 0.622 
across the different cutoffs, indicating the robustness of 
our finding.

A modified statistic CORAC modified, which is defined to 
be less dependent on prevalence (i.e., the proportion of 
associated genes; Methods) and thus, through enhanced 
calibration, allows phenotypes to be compared, rein-
forces the significant association of the level of conver-
gence with effective sample size (P < 2.2e − 16, Additional 
file 1: Fig. S2).

We identified phenotypes with an unexpectedly 
high CORAC coefficient. In Fig.  2a, phenotypes away 
from the red line are labeled. In the top right corner, 
a group of lab measurements showing a high degree 
of convergence is highlighted. The Manhattan plot for 
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cholesterol is displayed in Fig. 5a. Among the 100 top-
ranked genes identified by common variants, 26 were 
also highly ranked from the rare variant-based test.

Polygenicity and the convergence signature
We implemented SbayesS [29, 32] and estimated the 
degree of polygenicity for each trait. We observed that 
traits (colored orange in Fig. 2a) with low convergence 
levels (CORAC) have a significantly higher degree of 
polygenicity than traits (colored blue in Fig.  2a) with 
high convergence levels (P = 3.5e − 4, two sample t-test, 
Fig.  2b). This comparison was conducted in traits 
with similar effective sample sizes (~ 400  k), thereby 
minimizing any potential confounding effect of this 
variable. We also calculated the Spearman correlation 
between the degree of polygenicity and the conver-
gence level across all available traits (in Fig.  2a). We 
observed that a higher degree of polygenicity tends to 
show a lower convergence level (Spearman ρ = -0.310, 
P = 2.3e − 10). This result held robustly after accounting 

for effective sample size (Kendall’s τ coefficient = -0.266, 
P = 1.8e − 15).

Simulations
Simulations were performed to evaluate CORAC under 
different genetic architectures (Methods). Briefly, using 
empirical genotype data from the UK Biobank, we var-
ied the negative selection parameter α (from − 1 to 0.5) 
to investigate the convergence level under a range of 
scenarios: the neutral model (α = 0) and the model con-
sistent with negative selection (α =  − 0.37, the average 
across complex traits estimated from the empirical data 
[29, 31]). In each case, we performed 100 simulations 
with different seeds for sampling. Compared with the 
neutral model (α = 0), the model consistent with negative 
selection (α =  − 0.37) tends to show a lower convergence 
level, a pattern supported by a clear dose–response trend 
(Fig. 3a). Furthermore, in simulations, we varied the pro-
portion of causal genes across the genome (from 5 to 
20%) as a proxy for the degree of polygenicity. A higher 
degree of polygenicity showed a lower convergence level 

Fig. 1 Study design. a Leveraging the empirical data (e.g., UK Biobank/GWAS ATLAS) and simulations of different genetic architectures, the signals 
from common and rare variants were projected to genes via MAGMA and Burden/SKAT-O, respectively. b Non-parametric and parametric tests 
were used to estimate the correlation between the effective sample size and the Common variant and Rare variant Convergence (CORAC) 
signature and an alternative chance-corrected convergence coefficient (CORAC modified). Sensitivity analysis was performed by varying the number 
of top-ranked significant genes. The standard error of the convergence coefficient was estimated using bootstrap, enabling downstream statistical 
inference. Posterior inference can be performed on the signature using a Bayesian framework (Methods). c Visualization of the convergence 
signature
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Fig. 2 Convergence of common and rare genetic effects as a function of sample size. The CORAC statistic (y-axis) is positively correlated 
with effective sample size (x-axis). The positive relationship remained after accounting for heteroskedasticity (P < 2.2e − 16). The significant 
relationship was also observed after further adjustment for the number of detected association signals and after sensitivity analysis that varied 
the number of significant genes (20, 50, and 200 top genes). The regression line and the 95% confidence bands are shown, allowing identification 
of traits with a higher or lower convergence signature than expected given the effective sample size. Traits with relatively high and low CORAC 
values are colored blue and orange, respectively. Two traits (body mass index and standing height) located close to the regression line are colored 
grey (a). We implemented SbayesS and estimated the degree of polygenicity (pi) for each trait. Traits (colored orange in a) with low CORAC values 
show a significantly higher degree of polygenicity than traits (colored blue in a) with high CORAC values (P = 3.5e − 4, b)

Fig. 3 Simulations indicate that negative selection, in line with enhancing polygenicity, dampens the convergence level. Using empirical 
genotype data from the UK Biobank, we simulated the effect size for each causal variant by fixing the total h2 = 0.3 under genetic models consistent 
with negative selection (α =  − 1, α =  − 0.37), a neutral model (α = 0), and positive selection (α = 0.5). The CORAC coefficients observed for these 
models are shown in both violin plot and boxplot along with the data points in grey (a). We also varied the proportion of causal genes as a proxy 
for polygenicity and observed decreased CORAC with increased polygenicity (b)
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(Fig.  3b), an observation consistent with our empirical 
results above. Altogether, our simulations demonstrate 
that traits under strong negative selection, in line with 
a high degree of polygenicity, would have a dampened 
level of convergence. This assertion is supported by both 
empirical data and simulations.

To determine the behavior of CORAC in the case of 
independent common and rare variants, we performed 
additional simulations that kept these two classes of 
variants (MAF cutoff: 0.01) independent. We fixed the 
genotype matrix (SNPs x individuals) for the common 
variants and shuffled the genotype matrix across individ-
uals for each rare variant to decorrelate the two classes of 
variants. The CORAC coefficient decreased with decor-
related common and rare variants relative to the original 
(correlated) dataset (Fig. 4a and c). However, the positive 
correlation between CORAC and effective sample size 
continued to hold robustly (Fig. 4b and d). Indeed, among 

these scenarios, the model that assumes negative selec-
tion and decorrelated common and rare variants (Spear-
man ρ = 0.553) provides a reasonably good fit to the real 
data (Spearman ρ = 0.594).

Enhanced association analysis by utilizing the convergence
The CORAC signature may be a useful guide in restrict-
ing the search space for trait-associated genes. Strati-
fied analysis (Methods) showed that conditioning on 
the common variant gene-level results significantly 
improved identification of rare variant implicated genes 
(Additional file  1: Fig. S3a). The observed differential 
departure from the null across different conditioning 
p-value thresholds implies that this gain was not due 
to the presence of the shared samples from the two 
sets of analyses. For example, the pattern was seen for 
cholesterol and cystatin C with 26 and 20 genes ranked 
at the top in both common and rare variant analyses, 

Fig. 4 Simulations reveal the relationship between CORAC and effective sample size under different genetic architectures. Using empirical 
genotype data from the UK Biobank, we simulated the effect size for each causal variant by fixing the total h2 = 0.3 in genetic architectures 
consistent with a neutral model (α = 0, a and b) and consistent with negative selection (α =  − 0.37, c and d). We also investigated the impact 
of linkage disequilibrium on CORAC by decorrelating the common and rare variants (b and d; Methods). We varied the effective sample size (from 
1000 to 10,000). The Spearman correlation coefficient between CORAC and effective sample size was calculated for each configuration
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respectively (Fig.  5a, b, Additional file  1: Fig. S3a, and 
Fig. S3b). On the other hand, the Townsend depriva-
tion index at recruitment (bottom right corner) showed 
a different pattern. Although the sample size was large 
(N = 394,375), the limited heritability (h2 = 0.031, 
P = 3.70e − 37) resulted in fewer significant signals from 
both the common and rare variant analyses and limited 
level of convergence (Fig.  5c and Additional file  1: Fig. 
S3c). With a large sample size, BMI and height showed 

a reasonable number (12 and 11, respectively) of over-
lapped genes (Fig.  5d and Additional file  1: Fig. S3d). 
Surprisingly, only one gene was co-mapped by the 
common and rare variant analyses for current tobacco 
smoking, a heritable trait with a large sample size. The 
CORAC signature estimate for each trait can be found 
in Additional file 2: Table S1. These results on signal con-
vergence illustrate the diversity of genetic architectures 
across human complex traits.

Fig. 5 Comparisons of gene-level signals from common and rare variants. The CORAC signature, a global statistic, and the locus-specific 
convergence from common and rare variants highlight the diversity of genetic architectures of human complex traits. The common 
and variant-based gene-level Manhattan plots illustrate the convergence level. The hollow diamonds denote the top 100 genes. Genes highly 
ranked in both common and rare-variant-based tests are labeled with the gene symbol and a dashed vertical line. Traits with high (a and b), low (c), 
and average (d) CORAC coefficients are visualized
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Verification of the CORAC‑sample size correlation 
in independent sources of common and rare variant‑based 
signals
In the analyses above, both the common and rare var-
iant-based signals were derived from the shared UK 
Biobank dataset, which could inflate the observed cor-
relation between convergence level and effective sam-
ple size. We thus investigated this relationship using 
the UK Biobank-free results from GWAS ATLAS as 
the source for common variant-based signals (Fig. 6a). 
Here, GWAS results derived from any UK Biobank 
samples were excluded and only the European ancestry 
samples were included. To harmonize the phenotype 
data between the GWAS ATLAS and the UK Biobank, 
the pretrained Sentence-BERT word embedding model 
was implemented (Fig. 6a) to search for semantic simi-
larity. Phenotype pairs with cosine similarity less than 
or equal to 0.75 were excluded, followed by manual 
confirmation and removal of remaining duplications. In 
all, 132 traits were matched (Additional file 2: Table S2). 
Both common variant and rare variant-based signals 

were estimated as before. Notably, we confirmed the 
positive correlation between the convergence level and 
the effective sample size, the latter either from the rare 
(Fig. 6b, Spearman ρ = 0.407, P = 1.31e − 6) or common 
(Fig.  6c, Spearman ρ = 0.278, P = 1.23e − 3) variant-
based data source.

Discussion
Limited by the scale of the WGS/WES studies to date, 
it was far from clear to what extent common and rare 
variants would colocalize and induce phenotypic effects 
through the same effector genes. Using variants across 
the entire MAF spectrum and a broad set of phenotypes 
with a range of sample sizes, the UK Biobank provides a 
great opportunity to investigate the patterns of shared or 
divergent mediation through effector genes. In general, 
our results show that the convergence from common 
and rare variants becomes even greater as the study sam-
ple size increases. The observation was confirmed when 
leveraging the UK Biobank-free GWAS results from the 
GWAS ATLAS [33] as the source for the common variant 

Fig. 6 Independent data sources for the common and rare variant-based signals verified the correlation between CORAC and effective sample size. 
Instead of the UK Biobank as the data source for common variant-based signals, we leveraged the data from GWAS ATLAS to investigate the impact 
of the use of a shared dataset from which the common and rare variant signals were derived. Here, GWAS data that included any samples 
from the UK Biobank were excluded from the data source for the common variant-based signals. A pretrained Sentence-BERT word embedding 
model was implemented. The Transformer-based network searches for semantic similarity, enabling the mapping of phenotype descriptions 
in the UK Biobank to those in the GWAS ATLAS. Cosine similarity analysis (for semantic textual similarity), manual confirmation, and removal 
of duplications were then performed (a; Methods). The scatter plot shows the correlation between CORAC and effective sample size derived 
from the shared UK Biobank dataset (b) and from the independent data sources (c)
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signals. Thus, future studies will be expected to iden-
tify a substantial proportion of shared gene mediators. 
Although the concordance may be partially explained 
by the synthetic associations of common variants with 
nearby rare variants, in general, common variants identi-
fied to date have not been found to be driven by synthetic 
associations [35].

Although empirical data indicate that rare variants are 
likely to produce phenotypic effects through protein-
structure alteration while common variants are likely to 
act through regulation of gene expression, it is not con-
tradictory for variants across the allele frequency spec-
trum to have shared effector genes. Our observations 
are consistent with the notion that trait-associated genes 
may mediate their effects across a phenotypic continuum 
through a mechanistic continuum, i.e., through lower 
expression level (likely common variant driven) or by loss 
of function due to a structural change (likely rare variant 
driven). Furthermore, rare variants do not always exert 
their phenotypic effects via protein-structure alteration. 
For example, low frequency xQTLs (where x may be gene 
expression, splicing, methylation, or another molecular 
trait) have been reported [36]. With convergence on the 
same effector genes, the challenge of fine-mapping causal 
genes, e.g., among gene-level associations derived from 
MAGMA, PrediXcan, and similar methods [37–39], 
could be informed by incorporating rare variant signals. 
Recently, Weiner and colleagues observed statistical and 
functional convergence of common and rare genetic 
influences on autism at chromosome 16p [40]. Interest-
ingly, the 16p-specific polygenic risk score (PRS, rep-
resenting the common variant burden) and the 16p11.2 
CNV (representing a rare variant burden) resulted in 
a similar pattern of transcriptional effect for the genes 
on 16p, suggesting a potential shared mechanism [40]. 
Weiner and colleagues also showed that rare-variant her-
itability enrichment and common-variant enrichment 
were approximately equal for sets of genes specifically 
expressed in trait-matched cell and tissue types [17].

In our analyses, lab measurements ranked high in their 
level of convergence. These traits—for example, cho-
lesterol traits, a class of well-studied traits with a large 
number of replicable loci—have a better (for example, 
less heterogeneous) quality of measurement, which may 
partially explain the observed high concordance. As rep-
resentative polygenic traits, BMI and height showed a 
moderate level of convergence. However, the presence 
of some heritable traits (e.g., current smoking) show-
ing a limited level of convergence is informative. The 
level of convergence for these traits raises the question 
of whether patterns of shared or divergent mechanisms 
are a critical feature or consequence of the architecture of 
complex traits.

Interestingly, we observed a lower convergence level 
for traits with a high degree of polygenicity even with 
large sample sizes. This finding is observed in empiri-
cal data, supported by simulations, and consistent with 
a previous report that extreme polygenicity of complex 
traits can be explained by negative selection [26]. Under 
negative selection, which purges large-effect muta-
tions in critical regions and generates an architecture 
with a high degree of polygenicity from common vari-
ants, genes from the common variants are constrained 
to have modest effects and scattered throughout the 
genome whereas the causal rare variant associations 
have very large effects and are less diffused. Thus, the 
genes from the common variants and the genes from 
the rare variants would likely differ.

The consequences of these observations are substan-
tial for study design and for our understanding of the 
joint effects of common and rare variants. First, fine-
mapping of causal genes in GWAS or transcriptome-
wide association study (TWAS)-implicated regions 
through rare variant data from sequencing studies 
could be more challenging under strong negative selec-
tion. Second, if estimates of α linking allele frequency to 
the variance of SNP effects lean towards more negative 
values, future WGS based GWAS of the correspond-
ing traits will be expected to discover more common 
variant-specific effects and fewer rare variant-specific 
effects. Third, as sample size increases, human phenome 
knockouts, i.e., complete loss of function by naturally 
occurring loss-of-function mutations, may be fruitfully 
studied by considering the phenotypic manifestations of 
lesser degree modulations of the genes through regula-
tory variations.

Several limitations need to be acknowledged. First, 
the current study used WES data to represent rare vari-
ants. This is a limitation given that the exome represents 
only 1–3% of the genome [7, 36]. In particular, inter-
genic signals from common variants would be challeng-
ing to match in WES-based studies. Follow-up studies 
with WGS data are needed to capture the rare variants 
in noncoding regions [36]. Second, the genes identified 
through MAGMA may not be causal. Indeed, empirical 
evidence suggests that only about one-third of the genes 
located nearest to the sentinel GWAS signals are poten-
tially causal [6]. These two limitations imply that the 
convergence level is likely to be underestimated. Third, 
although we verified our main conclusion using inde-
pendent data sources for the common and rare variant 
analyses, use of large-scale datasets such as AllofUs will 
further enhance the reliability of the finding. Fourth, we 
simplified the LD structure by picking one gene from 
each LD block. Future studies that model more com-
plex LD patterns will further fine-tune our results. The 
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latter two limitations may be addressed by future multi-
ancestry studies. For example, as African populations 
have shorter LD blocks [41] (because of the larger effec-
tive population size of ancestral Africans and the greater 
time for recombination to reduce LD), the integration 
of genetic datasets in African populations may substan-
tially improve the CORAC estimate by enhancing our 
understanding of causal genes from common and rare 
variants.

Conclusions
We defined the COmmon variant and RAre variant 
Convergence (CORAC) signature for complex traits 
and found that the effective sample size considerably 
explained the signature. Thus, future WGS/GWAS will 
be expected to show increasing functional convergence 
of common and rare variant associations. Using both 
empirical data and simulations, we provide evidence that 
negative selection would not only explain a high degree 
of polygenicity for complex traits but also dampen the 
convergence level. Our framework provides a generaliz-
able approach to rigorously investigate the level of con-
cordance of effector genes across the allele frequency 
spectrum, informing future fine-mapping studies and 
uncovering the extent of heterogeneity of gene-level 
mechanisms.
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