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Abstract 

Gain-of-function (GOF) variants give rise to increased/novel protein functions whereas loss-of-function (LOF) vari-
ants lead to diminished protein function. Experimental approaches for identifying GOF and LOF are generally slow 
and costly, whilst available computational methods have not been optimized to discriminate between GOF and LOF 
variants. We have developed LoGoFunc, a machine learning method for predicting pathogenic GOF, pathogenic LOF, 
and neutral genetic variants, trained on a broad range of gene-, protein-, and variant-level features describing diverse 
biological characteristics. LoGoFunc outperforms other tools trained solely to predict pathogenicity for identifying 
pathogenic GOF and LOF variants and is available at https://​itanl​ab.​shiny​apps.​io/​goflof/.

Keywords  Gain-of-function, Loss-of-function, Protein function, Variant functional impact, Pathogenicity prediction, 
Precision medicine, Genomic medicine, Phenome-wide association studies, Natural language processing, Machine 
learning

Background
Genetic variations exert diverse functional effects on 
gene products and can impact protein stability, interac-
tions with binding partners, and catalytic activity, among 
many other properties [1]. It is essential to investigate 

the functional consequences of genetic variations to 
understand their impact on the diverse array of observed 
human disease phenotypes. In particular, the functional 
consequences of genetic variations include two broad cat-
egories: gain-of-function (GOF) variants, characterized 
by enhanced or novel protein activity, and loss-of-func-
tion (LOF) variants which result in partial or complete 
knockdown of protein activity. GOF and LOF variants 
are of particular interest because they can give rise to dis-
tinct phenotypes in the same gene via contrasting molec-
ular mechanisms [2]. For example, GOF mutations in 
the STAT1 gene cause Chronic mucocutaneous candidi-
asis (CMC)—a susceptibility to Candida infection of the 
skin, nails, and mucous membranes [2]. By contrast, LOF 
variants in STAT1 result in Mendelian Susceptibility to 
Mycobacterial Disease (MSMD)—an immunodeficiency 
characterized by vulnerability to weakly virulent myco-
bacteria [2]. Given the established heterogeneity in phe-
notypic outcomes and their diverse modes of action, it is 
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necessary to distinguish between GOF and LOF variants 
to develop a greater understanding of the genetic mecha-
nisms of human disease, estimate individual genetic dis-
ease risk, identify candidate drug targets, and construct 
effective treatment regimens.

To date, effective, practical methods for distinguish-
ing GOF and LOF variants are lacking. Experimental 
techniques are capable of accurately detecting GOF and 
LOF variants, but these methods are constrained by their 
significant cost and low throughput [3]. Rapid computa-
tional methods for assessing various aspects of variants 
such as pathogenicity or impact on protein structure/
function have been developed [4–8]. For example, CADD 
[4] leverages a range of functional annotations and con-
servation metrics to rank the relative deleteriousness of 
variants. PolyPhen-2 [5] and SIFT [6] combine the physi-
cal characteristics of proteins with evolutionary features 
such as sequence conservation to predict whether a vari-
ant will impact protein structure or function. Tools such 
as REVEL [7] and BayesDel [8] combine the outputs of 
other predictors to generate a meta-score indicating 
variant pathogenicity. Yet, none of these tools have been 
designed for GOF and LOF classification. Some methods 
for the prediction of GOF and LOF variants have been 
reported, but they are limited by restriction to a handful 
of proteins [9] or lack precomputed predictions or avail-
able high-throughput implementations [10] barring them 
from usage genome-wide.

Here we present LoGoFunc—a robust genome-wide 
predictor of variant functional impact—and gener-
ate predictions of functional outcomes for all missense 
variants in canonical human transcripts. LoGoFunc is 
a machine learning model comprising an ensemble of 
LightGBM [11] classifiers trained on pathogenic GOF 
and LOF variants identified in the literature. We collected 
474 descriptors for use in the model including features 
derived from AlphaFold2 [12] (AF2) predicted protein 
structures, graph-based learning-derived network fea-
tures representing interactions within the human protein 
interactome, measures of evolutionary constraint and 
conservation, and many others. We analyze the distribu-
tions of these features across GOF, LOF, and neutral vari-
ants, highlighting structural and functional features of 
proteins as well as features related to disease mechanisms 
such as splice disruption. Next, we assess LoGoFunc’s 
performance and demonstrate that LoGoFunc generates 
state-of-the-art predictions of GOF, LOF, and neutral 
variants and is better able to distinguish between patho-
genic GOF and LOF variants than tools trained solely to 
predict pathogenicity or general variant impact. Finally, 
we investigate which features most influence LoGoFunc’s 
predictions and identify relationships between high con-
fidence, predicted GOF and LOF variants, and patient 

phenotypes. We provide precomputed GOF, LOF, and 
neutral predictions for missense variants genome-wide, 
which are freely available for rapid retrieval and analysis 
at https://​itanl​ab.​shiny​apps.​io/​goflof/ [13].

Methods
Dataset assembly
We obtained 11,370 labeled pathogenic GOF and LOF 
variants from Bayrak et al. [14]. To supplement this data-
set, we collated the 65,075 variants that were deposited in 
the Human Gene Mutation Database [15] (HGMD) Pro-
fessional version 2021.3 database specifically in 2020 and 
2021 and assigned labels using the strategy employed by 
Bayrak et  al. [14]. From these variants, we first selected 
32,911 disease-causing class (DM) variants. We then used 
the Spacy 3.0.6 NLP library to search for GOF- and LOF-
related nomenclature in associated publications for each 
DM variant. Using the phrase-based matching algorithm 
PhraseMatcher, we iteratively searched the paper titles 
and abstracts from all associated publications for the pat-
terns “gain of function(s)”, “gain-of-function(s)”, “GOF”, 
“loss of function(s)”, “loss-of-function(s)”, and “LOF” with 
text converted to lowercase to allow for case sensitivity. 
When at least one of the publications indicated GOF or 
LOF, we labeled the corresponding variant accordingly. 
When there was a disagreement, i.e., a variant was found 
as GOF in one abstract and LOF in another abstract, 
the variant was excluded from the dataset. NLP-derived 
labels were checked manually by examining the litera-
ture for a subset of variants from the dataset. Based on 
the results of this analysis, the true positive rate of the 
NLP labeling approach was estimated to be about 90% 
[14]. Additionally, we downloaded all variants from Clin-
Var with the “Pathogenic” and “Likely Pathogenic” sig-
nificance designations along with the associated PubMed 
IDs when provided by ClinVar (version 2023–08-13) [16]. 
Variants without an accompanying citation could not be 
labeled via our NLP procedure and were thus filtered. 
Following the labeling procedure described above, we 
retrieved the abstracts associated with the ClinVar vari-
ants and applied our NLP pipeline to extract terminol-
ogy denoting GOF and LOF. We then associated labels 
derived from these abstracts with the respective variants. 
As a result, we were able to procure an additional 14,251 
LOF variants and 823 GOF variants not included in our 
HGMD-derived dataset; 15,562 variants from ClinVar 
with the “Benign” significance designation and matched 
to genes from which came the ClinVar GOF and LOF 
variants were also selected.

Putatively neutral variants were selected from the gno-
mAD v2.1 [17] exome sequencing data. gnomAD vari-
ants were selected from genes represented by the labeled 
GOF and LOF variants after filtering HGMD pathogenic 
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variants from the gnomAD dataset. gnomAD variants 
were not filtered by minor allele frequency or other fea-
tures to avoid selecting a biased sample. A minimum of 
two gnomAD variants and up to the number of GOF or 
LOF variants, whichever was the lower, were selected 
from each gene represented by the labeled GOF and 
LOF variants for a total of 13,361 putatively neutral 
variants. The complete labeled dataset comprising 1492 
GOF, 13,524 LOF, and 13,361 neutral variants was split 
into training and testing sets such that the ratio of GOF 
to LOF to neutral variants in the training and testing 
sets reflected the ratio in the complete dataset and such 
that there was no overlap of represented genes between 
the training and testing sets (Additional file 1: Table S1). 
The training set and testing sets comprise 90% and 10% 
of the complete dataset, respectively. All optimization 
and selection of preprocessing steps, model architec-
ture, and model hyperparameters were performed via 
nested cross-validation on the training set, while the 
testing set was used exclusively for the assessment of 
the model. To investigate the impact of homology on the 
model, we constructed an alternative dataset split with 
the additional stipulation that proteins represented by 
variants in the training set share no more than 40 per-
cent sequence similarity with proteins represented by 
variants in the testing set [18]. Additionally, the homol-
ogy-disjoint training and testing sets were filtered such 
that only one representative protein from each homol-
ogy cluster remained. When variants from homologous 
proteins were identified only those from the protein with 
the greatest number of labeled samples were retained for 
calculating performance. Sequence identity was deter-
mined via the CD-HIT [19] tool using protein amino acid 
sequences from the Ensembl database version 106.

Variant annotations
A wide variety of features, putatively correlated with vari-
ant functional effects, were obtained for use in the classi-
fier. These features were influenced by previous methods 
for variant effect classification [4, 14, 20] and were cho-
sen to maximize LoGoFunc’s power for classifying path-
ogenic GOF and LOF. Features were selected whenever 
possible from datasets and methods with high genome/
proteome coverage, and some redundancy between the 
collected features was allowed, considering the poten-
tial for varying quality and coverage among the different 
sources. To leverage the recent availability of high-quality 
protein models from AF2 across the proteome, several 
tools for the calculation or prediction of protein struc-
tural qualities, such as ligand-binding and residue con-
tacts, were employed.

Ensembl’s Variant Effect Predictor [21] (VEP) version 
106 was employed to annotate all variants according 

to their GRCh38 genomic coordinates. VEP provided 
affected transcripts, genes, and proteins, and the posi-
tion of variants within these elements where applica-
ble. VEP[21]plugins provided pathogenicity predictions 
from CADD [4], SIFT [6], PolyPhen2 [5], and CON-
DEL [22]. Additional pathogenicity predictions were 
collected using the VEP dbNSFP [23] plugin version 
4.1a, along with variant allele frequencies, and conser-
vation scores from PhastCons [24], PhyloP [24], SiPhy 
[25], and GERP +  + [26]. VEP plugins were also used to 
retrieve BLOSUM62 [27] scores, GERP [28] scores, dis-
tances from variants to the nearest exon junction bound-
ary and the nearest transcription start site, MaxEntScan 
[29] predictions, dbscSNV [30] splice variants, and pre-
dictions of variants allowing for transcript escape from 
nonsense-mediated decay. AF2 [12] structural models 
were downloaded from the AlphaFold Protein Structure 
Database version three [31]. The Biopython PDB module 
was used to load Protein Data Bank [32] formatted AF2 
models and to calculate various geometric properties of 
proteins and residues. Specifically, residue contacts were 
inferred when the α-carbons of a given pair of residues 
resided within 12 Angstroms of each other in 3D space. 
Similarly, the distance of each residue from the protein 
center of mass was defined as the 3D distance in Ang-
stroms from the residue’s α-carbon to the protein center 
of mass as calculated by the Biopython PDB module. To 
calculate the number of proximal HGMD pathogenic and 
gnomAD variants in a residues 3D environment, we first 
mapped protein coordinates to genomic positions for 
the 18,901 canonical human proteins for which UniProt 
[33] provides such a mapping. The number of all patho-
genic or gnomAD variants, regardless of molecular con-
sequence, occurring in the nine closest residues in 3D 
space based on the structural models was then summed 
for each residue in each protein. The Biopython PDB 
and DSSP [34] modules were used to extract secondary 
structure characterizations and relative solvent acces-
sibility (RSA) for the model residues. Putative protein–
ligand binding sites were predicted using ConCavity [35] 
v0.1 with the protein structural models as input (default 
parameters). DDGun [36] and GraphBind [37] were simi-
larly employed to predict variant impacts on protein sta-
bility and ligand binding residues respectively using the 
default parameters and the structural models. Because 
the pLDDT score, which indicates AF2’s confidence in 
its prediction of each residue, has been demonstrated 
to correlate with protein secondary structure, residues 
with lower pLDDT scores were not excluded when gen-
erating features from AF2 models [38]. The protein–pro-
tein interaction (PPI) network from the STRING v11 
database was processed with node2vec, a random-walk 
based algorithm for representational learning on graphs/
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networks [39, 40]. Node2vec reduced the dimensionality 
of the PPI to 64 vectorial features representing the quali-
ties of each individual protein in the PPI as a function 
of its interactors. All other features were collected from 
their respective web servers or calculated via standalone 
tools (Additional file 2, Additional file 1: Table S2).

Feature analysis and feature importance
Feature enrichments were calculated via Fisher’s exact 
test. Continuous features obtained from the Describe-
PROT [41] database were categorized according to the 
cutoffs derived from proteome-wide metrics described in 
Zhao et al. [41]. Residues were classified as buried if their 
RSA was less than 20%; otherwise, they were regarded 
as exposed. Grantham [42] scores for amino acid sub-
stitutions were considered to be conservative if lower 
than 100 and radical if greater than or equal to 100. The 
numbers of residue contacts were binned into categories 
“high” and “low” based on the median number of residue 
contacts across the 20,504 proteins included in the AF2 
Homo sapiens reference proteome dataset. Similarly, the 
number of residue proximal pathogenic variants from 
the HGMD and residue proximal gnomAD variants were 
categorized as “high” or “low” based on the median value 
of each of these features across the 18,901 proteins for 
which UniProt provided a mapping between genomic 
coordinates and residue position. Other continuous fea-
tures were categorized by assigning a cutoff according to 
the value recommended by the authors of the tools from 
which the features were derived. When no such cutoff 
was reported, a cutoff of 0.5 was selected for probabilistic 
features. Distance from exon–intron junction bounda-
ries and MMSplice [43] predictions were compared via 
one-sided two-sample t-tests. The Benjamini–Hoch-
berg correction [44] was applied at an alpha level of 0.05 
to control for false positives as a result of multiple test-
ing. Feature importance was assessed via the SHAP [45] 
Python package version 0.41.0. Specifically, the mean 
SHAP values across the ensembled LightGBM [11] mod-
els were generated via the SHAP tree explainer model.

Preprocessing of input data
Preprocessing steps were applied to prepare sample vari-
ants for prediction. An ordinal encoder was fitted to the 
categorical features in the training set and used to encode 
the categorical features in the training and test sets. 
Missing values were imputed either with a constant (− 1) 
or with the median value of the feature in the training set. 
Zero variance features in the training set were dropped 
from both the training and test sets. Finally, random 
oversampling was performed on the GOF and neutral 
variants to bring their total count in the training set equal 
to the majority class, LOF.

Model selection
We performed fivefold outer, fivefold inner, nested cross-
validation in which folds did not contain variants from 
the same sets of genes on the training dataset to assess 
the variance associated with our preprocessing pipe-
line, model hyperparameters, and model architecture 
(Additional file 2: Fig. S1). Specifically, we evaluated the 
performance and generalizability of four models: Ran-
domForest [46], LightGBM, XGBoost [47], and Neural 
Networks. For each algorithm, the data preprocessing 
procedure and relevant hyperparameters were tuned for 
200 rounds in each iteration of the inner cross-validation 
loop with the Optuna [48] optimization library to maxi-
mize the macro-averaged F1-score (F1) (for hyperparam-
eter search spaces see Additional file 2). The F1 score is 
a function of the precision and recall, defined as follows, 
where y is the set of predicted samples, label pairs, and y’ 
is the set of true sample, label pairs:

To extend the F1 score to multiclass classification, we 
calculated the macro-averaged F1-score, defined as fol-
lows where L is the set of labels:

The preprocessing pipeline and hyperparameters that 
performed best for each model in the inner cross-valida-
tion iteration were then used to assess each model on the 
held-out set of the outer cross-validation loop. After all 
rounds of outer and inner cross-validation, the median 
Matthew’s Correlation Coefficient (MCC) and F1 were 
compared to determine which model performed best for 
the dataset. The MCC is defined as follows where k is the 
number of classes and kl refers to an element of the con-
fusion matrix:

LightGBM obtained the best MCC and F1 scores 
across outer folds (Additional file  2: Fig. S2). We sub-
sequently performed the same nested cross-validation 
procedure described above with ensembles of 5 to 
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31 LightGBM models with individual model hyper-
parameters and the number of ensemble estimators 
tuned simultaneously. The ensembled LightGBM mod-
els achieved the highest MCC and F1 scores across 
outer folds and were selected as the final model. Sub-
sequently, we performed the inner cross-validation 
procedure with all of the training data to determine 
the final number of ensemble estimators and model 
hyperparameters.

The final LightGBM classifiers, which are gradient-
boosted decision trees, are subjected to significant L1 and 
L2 regularization as well as constraints on maximum tree 
depth and impurity reduction as per the hyperparameters 
selected during cross-validation. Further, decision tree 
algorithms are generally robust to overfitting as a result 
of multicollinearity among features [49]. Together, these 
qualities combat potential overfitting due to the relatively 
large feature set employed by LoGoFunc.

LoGoFunc performance
LoGoFunc’s performance was assessed via average pre-
cision (AP), F1, and MCC calculated using scikit-learn 
version 1.1.1. AP is defined as follows, where n is the nth 
threshold:

For each class, we computed these metrics as one vs. 
rest tasks where the class in question was relabeled as 
one and the other classes were relabeled as zero.

Gene 95% confidence intervals
For each variant class, GOF, LOF, and neutral, we selected 
predictions from the training and testing sets for variants 
of that class. We applied the Kolmogorov–Smirnov [50] 
test for goodness of fit to predictions for these variants 
with continuous distributions implemented in scipy [51] 
version 1.0.1. For each distribution, we first estimated 
the distribution parameters that best modeled the pre-
dictions using scipy and then selected the parametrized 
distribution with the highest p-value from the Kolmogo-
rov–Smirnov test; 95% confidence intervals were then 
calculated using the best fitting, parameterized distri-
bution for predictions from each class respectively and 
clipped between zero and one where applicable. When 
five or more variants were available from a given class 
for a given gene, we repeated the above process to calcu-
late gene-specific 95% confidence intervals. When fewer 
than five variants were available for a class in a gene, we 
defaulted to the 95% confidence intervals calculated for 
predictions from the entire dataset.

AP =
∑

n
(recalln − recalln−1)precisionn

Method comparison
LoGoFunc was compared to other computational meth-
ods by assessing the AP. All GOF (n. 136) and LOF (n. 
545) variants from the test set for which all compared 
tools provided a prediction of pathogenicity were col-
lected. APs were calculated, treating GOF as the positive 
class. To assess the performance separating neutral vari-
ants from GOF and LOF, we added all neutral (n. 411) 
variants from the test set for which each tool provided 
a prediction. APs were again calculated, this time with 
GOF and LOF variants as the positive classes respec-
tively, and neutral as the negative class. Finally, we cal-
culated the one-vs.-all APs with GOF and LOF variants 
as the positive class and neutral variants as the negative 
class. Most of the compared tools provide predictions in 
which higher scores correspond to a greater likelihood 
that a given variant will be damaging. However, SIFT 
outputs predictions between zero and one in which lower 
scores correspond to a greater likelihood of a damaging 
effect. LoGoFunc’s neutral prediction is a value between 
zero and one, where higher scores indicate a greater like-
lihood of neutrality. Thus, to ensure consistency between 
all compared tools when treating neutral as the negative 
class and GOF and LOF as the positive class, SIFT and 
LoGoFunc neutral predictions were transformed by sub-
tracting each prediction from one before assessing AP.

PheWAS of predicted GOF and LOF variants
The Mount Sinai BioMe BioBank comprises de-identified 
whole exome sequencing (WES) data from two distinct 
cohorts. The first WES cohort includes 30,813 samples, 
which were sequenced on the Illumina v4 HiSeq 2500 
system following the extraction of exome regions using 
the IDT xGen capture platform. The second WES cohort 
includes 14,985 BioMe participants who were sequenced 
on the Illumina NovaSeq6000 sequencing system with 
the Agilent SureSelect QXT Human All Exon V7 target-
ing kit.

For our initial Phenome-Wide Association Stud-
ies (PheWAS), we utilized the data from the first WES 
cohort, specifically including the information of 29,477 
participants for whom we had access to both WES data, 
demographic information, and associated ICD-10 elec-
tronic health records (EHR). We mapped ICD-10 codes 
to 1856 phecodes using Phecode Map 1.2 [52]. Subse-
quently, we selected 1075 phecodes with at least 50 cases 
for further analysis.

A phenome-wide association study (PheWAS) was 
conducted employing the PLINK 2.0 [53] glm function 
with the Firth regression model, a robust method for 
association testing of rare variants in cohorts character-
ized by skewed case–control ratios [54, 55]. Our analysis 
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included age, biological sex, and the first ten principal 
components as covariates. Principal component analy-
sis (PCA) was performed using PLINK 2.0, with the 
exclusion of variants deviating from Hardy–Weinberg 
equilibrium (P < 1 × 10−6) on linkage disequilibrium (LD)-
pruned autosomal variants (r2 > 0.2, window size 50, and 
step size 5) with a minor allele frequency greater than 
0.05. We excluded association results with a minor allele 
count (MAC) < 20 and those with a convergence error. 
To account for multiple testing, we used a Bonferroni-
corrected P threshold of 4.65 × 10–5 (0.05/1075). Addi-
tionally, we assessed the independence of predicted and 
previously identified GOF and LOF variants using PLINK 
1.9 with the –r2 option.

For the replication of significant associations identified 
in the initial PheWAS for the predicted GOF and LOF 
variants, we leveraged data from the second WES cohort, 
comprising 14,985 participants for whom we had access 
to both WES data, demographic information, and asso-
ciated ICD-10 EHR. The same methodology applied in 
the initial PheWAS was used for the replication, includ-
ing the mapping of ICD-10 codes to phecodes, PCA, and 
association testing. However, due to the smaller sample 
size in the replication cohort, we adjusted the test criteria 
by setting the minimum number of cases to 20 and the 
minimum MAC to 10 to ensure statistical robustness.

Results
Labeled GOF, LOF and neutral variant dataset curation
LoGoFunc was trained on a dataset of pathogenic GOF 
and LOF variants, collected from the literature via a NLP 
pipeline [14]. In brief, the NLP pipeline parses abstracts 
associated with high-confidence, disease-causing vari-
ants derived from the HGMD [15]. Professional ver-
sion 2021.3, searching for terminology denoting GOF 
and LOF (Fig. 1a). In total, 1492 GOF variants from 344 
genes and 13,524 LOF variants from 2030 genes were 
collected and labeled. In addition, 13,361 putatively neu-
tral variants were randomly selected from the genes in 
which the labeled GOF and LOF variants occur, from 
gnomAD v2.1 [17] exome sequences (Fig. 1b, Additional 
file 1: Table S1). We used Ensembl’s VEP [21] to map the 
genomic coordinates of each variant to impacted genes 
and proteins where applicable and to retrieve molecular 
positioning information (e.g., residue position, transcript 
position) for each variant in the dataset. Leveraging this 
positional information, we further annotated each variant 
with 474 different features (Additional file  1: Table  S2). 
These include protein structural features such as residue 
solvent accessibility and total residue contacts calculated 
from AF2 [12] predicted protein structures, gene-level 
features such as gene haploinsufficiency, variant-level fea-
tures including splicing effects and inheritance patterns, 

and network features encapsulating the STRING [39] 
protein–protein interaction (PPI) network, represent-
ing, as a low-dimensional vector of numerical values, the 
qualities of a given protein’s inter-protein interactions 
in the context of its interacting partners (Fig.  1b). The 
annotated variants were split into label-stratified, gene-
disjoint training and testing sets comprising 90% and 10% 
of the full dataset, respectively (Fig. 1b, Additional file 1: 
Table S1).

GOF, LOF and neutral variants stratified by protein features
We postulated that structural and functional features of 
proteins predicted or derived from protein sequences and 
AF2 structural models may help to stratify GOF, LOF, 
and neutral variants. To investigate the varying impact 
on protein structure and function as well as potential dif-
ferential localization within distinct protein regions, we 
examined protein features by calculating enrichments 
for each variant class, determined via Fisher’s exact test 
(Fig.  2a, Additional file  1: Table  S3, 4). In total, GOF, 
LOF, and/or neutral variants demonstrated significant 
enrichments or depletions across 17 features derived 
from AF2-predicted protein structures and across 20 
protein features derived from protein sequences or oth-
erwise describing the proteins (Fig. 2a, Additional file 1: 
Table S3, 4). For example, LOF variants were significantly 
more likely to have a destabilizing effect on proteins, as 
predicted by DDGun [36], and to occur in highly con-
served residues as determined by multiple sequence 
alignments generated by MMSeqs2 [56] (Fig.  2a, Addi-
tional file  1: Table  S3, 4). GOF variants were found to 
be significantly more likely to occur in homomultimeric 
proteins and α-helices among other features (Fig.  2a, 
Additional file  1: Table  S3, 4). Interestingly, both GOF 
and LOF variants were significantly more likely to have 
a high number of pathogenic HGMD variants in their 
spatial proximity (“Methods”), whereas neutral variants 
were significantly more likely to have a high number of 
gnomAD variants in their immediate vicinity. This phe-
nomenon is exemplified by the Vasopressin V2 receptor 
protein in which pathogenic and putatively neutral vari-
ants can be qualitatively observed to localize to distinct 
regions of the 3D AF2 protein structure (Fig. 2b). Finally, 
neutral variants were significantly enriched for several 
features including occurrence in disordered protein 
regions and significant depletion in Pfam [57] or InterPro 
[58] domains among other features (Fig.  2a, Additional 
file 1: Table S3, 4).

We additionally performed Fisher’s exact test with neu-
tral variants excluded so as to compare only pathogenic 
GOF and LOF variants and noted significant differences 
between GOF and LOF variants for seven structure-
associated features and seven sequence or otherwise 
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associated features (Additional file 2: Fig. S3, Additional 
file  1: Table  S5, 6). Interestingly, GOF variants were 
enriched and LOF variants were depleted in Pfam or 
InterPro domains, in α-helices, in homomultimer-form-
ing proteins, and for residues not affecting protein sta-
bility based on sequence-based and structural evidence 
(Additional file 2: Fig. S3, Additional file 1: Table S5, 6). 
Conversely, we found that LOF variants were enriched 
for destabilizing amino acid substitutions, for highly con-
served residues and radical Grantham [42] position-spe-
cific scoring matrix substitutions, for high AF2-predicted 

local distance difference test scoring (pLDDT) residues, 
and in β-strands (Additional file  2: Fig. S3, Additional 
file 1: Table S5, 6).

Training, architecture and performance of LoGoFunc
To predict pathogenic GOF, pathogenic LOF, and neutral 
variants, we developed LoGoFunc, a soft-voting ensem-
ble composed of 27 LightGBM [11] classifiers. Vari-
ants are represented as an array of 474 features that are 
encoded, imputed, and scaled before being input to the 
model which outputs three values corresponding to the 

Fig. 1  LoGoFunc workflow and model architecture. a Pipeline for the collection of labeled pathogenic GOF and LOF variants. Related abstracts 
for high confidence pathogenic variants from the HGMD [15] were searched for nomenclature denoting gain or loss of function. b Dataset 
preparation and annotation. 1492 GOF, 13,524 LOF, and 13,361 neutral variants were obtained from the GOF/LOF database [14], HGMD, 
and gnomAD [17]. Using VEP [21] and other tools, variants were annotated with protein structural and functional features derived from AlphaFold2 
[12] models or from sequence, with gene- and genomic-level features, variant-level features, and network-derived protein interaction features. 
The annotated data were split into training and test sets comprising 90% and 10% of the dataset respectively, stratified by variant label. c Model 
architecture and output. Variants are input to the model represented as an array of the 474 collected features. These features are encoded, imputed, 
and scaled prior to prediction. The model consists of an ensemble of 27 LightGBM [11] classifiers. A probability is output for each class, GOF, LOF, 
and neutral
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predicted probability that the input variant results in a 
GOF, LOF, or neutral phenotype, respectively (Fig. 1c).

LoGoFunc achieved notable success in classifying GOF, 
LOF, and neutral variants. Considering the class imbal-
ance in the dataset, we calculated the AP scores on the 

held-out testing data for each class. As expected, predict-
ing GOF variants proved to be the most challenging task 
as GOF variants were the least represented in the train-
ing dataset. However, LoGoFunc still performed well 
with AP values of 0.52, 0.93, and 0.96 for GOF, LOF, and 

Fig. 2  Structure- and sequence-based protein feature analysis. a Enrichments and depletions for protein structural and functional features used 
by the LoGoFunc model. GOF (blue), LOF (orange), and neutral (green) log odds ratios are displayed for each feature. Significant enrichments 
and depletions are denoted by asterisks. Significance was calculated with Fisher’s exact test, Benjamini–Hochberg corrected [44] to allow 
for multiple comparisons. (Left) Features derived from protein sequences or protein interaction data. (Right) Features derived from AlphaFold2 [12] 
protein structures. b AlphaFold2 predicted structure of the Vasopressin V2 receptor protein. (Left) Residues colored by the number of HGMD [15] 
pathogenic variants occurring in the nine closest neighboring residues in space. (Right) Residues colored by the number of gnomAD [17] variants 
occurring in the nine closest neighboring residues in space
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neutral variants, respectively (Fig. 3a). We also calculated 
the F1-score and MCC for LoGoFunc’s predictions of 
variants from each class. LoGoFunc realized F1-scores of 
0.56, 0.87, and 0.89 and MCCs of 0.54, 0.75, and 0.80 for 

GOF, LOF, and neutral variants, respectively. To assess 
the impact of variants from homologous proteins in the 
training and testing sets on the model’s performance, 
we retrained the model on a training dataset that was 

Fig. 3  Performance assessment. Precision-recall curves indicating the discriminatory power of various pathogenicity prediction methods 
and LoGoFunc on a set of variants from the test set for which predictions were available from all compared tools. a LoGoFunc’s performance on all 
testing variants (n. GOF = 152, n. LOF = 1340, n. neutral = 1339). b GOF (n. 136) vs. neutral (n. 411). c LOF (n. 545) vs. neutral (n. 411). d GOF (n. 136) 
and LOF (n. 545) combined vs. neutral (n. 411)
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constructed such that protein sequence identity with 
proteins in the testing set was no more than 40 percent. 
When testing on this sequence unique testing dataset the 
model achieved AP values of 0.37, 0.92, and 0.96 (Addi-
tional file 2: Fig. S4), F1 scores of 0.37, 0.84, and 0.88, and 
MCCs of 0.34, 0.70, and 0.79, for GOF, LOF, and neu-
tral variants, respectively. To aid in the interpretation of 
LoGoFunc’s predictions, we calculated 95% confidence 
intervals for determining cutoffs for each class, as well 
as 95% confidence intervals for determining GOF, LOF, 
and neutral prediction cutoffs per gene (Additional file 1: 
Table S7).

We further assessed LoGoFunc on an independent set 
of variants collected from ClinVar for which we were able 
to derive functional labels from the literature. In total, 
we collected 823 GOF, 14,251 LOF variants, and 15,562 
neutral variants from ClinVar which did not occur in our 
dataset collected from the HGMD and gnomAD. We 
found LoGoFunc to perform well on the ClinVar variants, 
achieving AP values of 0.52, 0.98, and 0.99, respectively, 
for GOF, LOF, and neutral variants (Additional file 2: Fig. 
S5a). Similarly, LoGoFunc realized F1 scores of 0.51, 0.90, 
and 0.93 and MCCs of 0.52, 0.94, and 0.96 for GOF, LOF, 
and neutral variants, respectively.

Benchmark against variant assessment algorithms
Current methods for classifying pathogenic GOF and 
LOF variants are limited by a restriction to a small num-
ber of proteins or have low predictive accuracy [14]. We 
therefore compared LoGoFunc to ten established predic-
tors of pathogenicity/deleteriousness: CADD [4], SIFT 
[6], PolyPhen2 [5], DANN [59], BayesDel [8], ClinPred 
[60], GenoCanyon [61], MetaSVM [62], PrimateAI [63], 
and REVEL [7]. Importantly, none of these methods were 
developed to discriminate between pathogenic GOF and 
LOF, but rather were developed or are used to estimate 
the pathogenicity of genetic variants in general. To equi-
tably assess each method’s ability to classify the different 
classes of pathogenic variants in our dataset, we selected 
the subset of 1092 GOF, LOF, and neutral variants from 
the test set for which all predictors provided a score. Of 
these variants, 136 were GOF, 545 were LOF, and 411 
were neutral. Importantly, these variants are all missense, 
as the majority of compared methods provide predic-
tions only for missense variants. We tested each meth-
od’s performance in classifying the pathogenic GOF and 
neutral variants, the pathogenic LOF and neutral vari-
ants, and all pathogenic and neutral variants separately. 
Finally, we examine if these methods produce scores that 
can discriminate pathogenic GOF from pathogenic LOF 
variants. Unsurprisingly, when comparing the methods 
for separating GOF and LOF variants, LoGoFunc is the 
only method to achieve a substantial improvement over 

the baseline with an AP of 0.63 followed by GenoCan-
yon with a score of 0.25 (Additional file  2: Fig. S6). For 
separating pathogenic GOF and neutral variants, LoGo-
Func achieved an AP of 0.82 (Fig. 3b) and an AP of 0.87 
for pathogenic LOF vs. neutral variants (Fig. 3c). The next 
best tool, REVEL, achieved AP values of 0.55 and 0.87 
for GOF and LOF vs. neutral, respectively (Fig.  3b,c). 
Finally, we calculated the one-vs.-all AP for the neutral 
variants against the GOF and LOF variants. Once again, 
LoGoFunc scored highest with an AP of 0.91, followed by 
REVEL with an AP of 0.88 (Fig. 3d). We additionally com-
pare the performance of these methods on the sequence 
unique testing set (Additional file  2: Fig. S7), though it 
should be noted that this comparison may overestimate 
the performance of the compared methods in relation to 
LoGoFunc as they may have been trained on variants in 
our testing set and were likely trained on an overlapping 
and/or homologous set of genes.

Previously, two methods, funNCion [9] and VPatho 
[10], were developed for the classification of GOF and 
LOF variants. However, both are limited in their applica-
bility; in the case of funNCion, by a restriction to a small 
set of ion channel proteins, and in the case of VPatho, by 
an inability to produce discriminative predictions. We 
compared LoGoFunc to funNCion on the set of 27 GOF 
and 58 LOF variants in funNCion’s testing set and found 
our method to compare favorably despite focusing on a 
broader predictive task. Particularly, when treating GOF 
as the positive class, LoGoFunc’s GOF score achieved an 
AP of 0.77 compared to funNCion’s AP of 0.58 (Addi-
tional file  2: Fig. S8a). When treating LOF as the posi-
tive class, LoGoFunc’s LOF score achieved an AP of 0.87 
compared to funNCion’s AP of 0.91 (Additional file  2: 
Fig. S8b). Similarly, we compared LoGoFunc to VPatho 
on all variants from our testing dataset for which we were 
able to retrieve predictions from the VPatho website (n. 
GOF = 152, n. LOF = 1339, n. Neutral = 1339). As above, 
we compared LoGoFunc and VPatho’s performances for 
classifying GOF vs. LOF variants (Additional file  2: Fig. 
S9a), GOF vs. neutral variants (Additional file 2: Fig. S9b), 
LOF vs. neutral variants (Additional file 2: Fig. S9c), and 
all pathogenic vs. neutral variants (Additional file 2: Fig. 
S9d), separately. We found that for each of these tasks, 
LoGoFunc substantially outperforms VPatho, predictions 
from which do not improve meaningfully over the esti-
mated random baseline performance.

Because autosomal recessive (AR) disorders are most 
commonly associated with LOF mechanisms, and GOF 
variants more commonly associate with autosomal 
dominant (AD) disorders, we additionally investigated if 
mode of inheritance predictions—an important feature 
for the model (Fig. 4a)—alone are predictive of GOF and 
LOF variants. We selected the 134 GOF, 518 LOF, and 
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409 neutral variants from our test for which MOI-pred, 
a mode of inheritance predictor, produced a prediction. 
Similar to the methods designed for binary classification 
of variant pathogenicity, we found MOI-pred to be sub-
stantially less capable of discriminating between GOF 
and LOF variants than LoGoFunc (Additional file 2: Fig. 
S10) and likewise less able to discriminate between GOF 
and neutral and LOF and neutral variants, respectively.

LoGoFunc leverages diverse biological signals 
for prediction
To gain further insight into the model’s performance, we 
estimate the impact of each included feature on LoGo-
Func’s predictions with SHAP [45]—a game theoretic 
approach for the derivation of explanations for machine 
learning models (Fig.  4a). We observed that LoGoFunc 
learned from a diverse array of features describing the 
genes and proteins containing variants and the variant 
impact upon these elements. These included functional, 
conservation, structural, and systems-based/network fea-
tures, among others (Additional file 1: Table S8, Fig. 4a). 
For example, the top feature across classes was the conse-
quence score collected from the CADD database of vari-
ant annotations which describes the severity of a variant 
according to sequence ontology [65] consequence terms 
(Fig.  4a). Other important variant features include pre-
dictions indicating pathogenicity from CADD, VEST4 
[66], M-CAP [67], and MVP [68], the MOI-pred [69] 
mode of inheritance prediction of variants underly-
ing autosomal dominant (AD) and autosomal recessive 
(AR) disease, and various measures of conservation from 
tools such as GERP [28], PhyloP [24], and PhastCons [24] 
(Fig.  4a). Several gene-level features were important for 
the model including the number of gene paralogs, the 
de novo excess rate [70], the mutation significance cut-
off [71] 95% confidence interval, and the indispensability 
score [72]—all of which have previously been implicated 
in the stratification of pathogenic GOF and LOF variants 
and neutral variants [14] (Fig.  4a). In addition, LoGo-
Func’s predictions were influenced by features indicating 
variant effects on protein structure and function such 
as the predicted variant impact on protein stability, the 
number of HGMD pathogenic or gnomAD variants 
proximal to variant impacted residues in 3D space, AF2 

pLDDT scores which indicate AF2’s per-residue pre-
diction confidence, and overlapping Pfam or InterPro 
domains (Fig.  4a). Notably, PPI network features also 
had a significant impact on the model. We processed the 
STRING PPI network using node2vec [40] resulting in 64 
tabular features summarizing the human protein interac-
tome weighted by the probability of interaction between 
each pair of putatively interacting proteins. Several 
dimensions of the transformed PPI network appeared 
in the list of top features as determined by SHAP [45] 
(Fig. 4a).

To further investigate the model’s predictions within 
genes, we examined the 22 variants included in our test 
set from sodium voltage-gated channel alpha subunit 2 
(SCN2A)—an important transmembrane protein impli-
cated in seizure disorders [73] and autism spectrum 
disorders [74]. Of these 22 variants, VEP indicated 12 
to be missense, 4 to be stop-gains, 2 to be splice donor 
site variants, 3 to be synonymous, and 1 to be intronic. 
Twelve of the coding variant positions are included in 
the experimentally determined structure (PDB identifier 
6J8E [64]) (Fig.  4c). Because the other ten variants are 
located in regions not covered by the structure, we ana-
lyzed the structural model generated by AF2 (Fig.  4d), 
which includes the full-length protein. Remarkably, LoG-
oFunc successfully classified all seven SCN2A pathogenic 
GOF variants, all seven SCN2A neutral variants, and six 
of eight pathogenic LOF variants, misclassifying two LOF 
variants as GOF. We then examined the top ten features 
indicated by SHAP to contribute to the model’s predic-
tions for the GOF, LOF, and neutral variants separately 
(Fig.  4b). Again, we found a mixture of gene, protein, 
variant, and network features influenced the model’s 
predictions. Specifically, a range of mode of inheritance 
predictions (MOI-pred) of variants pathogenic for AD 
inheritance, scores indicating less protein destabilization 
(DDGun), and high VEST4 scores among others influ-
enced the model to predict the SCN2A GOF variants 
as GOF. Similarly, several features prompted the model 
to predict the LOF variants to be LOF, including scores 
indicating higher impact on transcripts and downstream 
products, high VEST4 and CADD scores, scores indicat-
ing a greater destabilizing effect on proteins (DDgun), 
and high vertebrate conservation scores (PhyloP). 

(See figure on next page.)
Fig. 4  Explanation of LoGoFunc predictions. a SHAP values by class for features with combined SHAP values in the 90th percentile and above. b 
(Top) The SHAP values for the top ten features for the seven GOF variants found in the ion channel SCN2A in the test set. (Middle) The SHAP values 
for the top ten features for the eight LOF SCN2A variants in the test set. (Bottom) The SHAP values for the top ten features for the seven neutral 
SCN2A variants in the test set. c The experimentally determined structure of SCN2A [64] with the represented GOF (red), LOF (blue), and neutral 
(yellow) SCN2A variants from the test set. d The SCN2A model from the AlphaFold2 prediction database annotated with the represented GOF (red), 
LOF (blue), and neutral (yellow) SCN2A variants from the test set
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Fig. 4  (See legend on previous page.)
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Notably, high values indicating likely loss of native splice 
sites [29] contributed to the model’s LOF predictions 
for two LOF variants, consistent with VEP’s characteri-
zation of two of the LOF variants as splice donor site 
variants. The model’s predictions were most influenced 
towards neutrality by lower consequence scores, lower 
VEST4 scores, lower estimates of evolutionary constraint 
(GERP-S [26]), and vertebrate and mammalian conserva-
tion scores (PhyloP), and lower MOI-pred scores among 
other features.

PheWAS of predicted GOF and LOF variants
We conducted phenome-wide association studies 
(PheWAS) using predicted GOF and LOF missense vari-
ants in the BioMe BioBank cohort, comprising 29,477 
individuals, which revealed several significant associa-
tions (Fig. 5). We compared some of the identified asso-
ciations with those previously documented for known 
effects and predicted neutral variants, wherever possible 
(Additional file  1: Table  S9). In summary, we observed 
a predicted LOF variant in the HBB gene, p.Glu7Lys 
(rs33930165), demonstrating associations with heredi-
tary hemolytic anemias and sickle cell anemia (phe-
codes = 282 and 282.5, odds ratios [OR] = 5.63 and 6.59, 
P = 1.26 × 10−13 and 2.8 × 10−11). Similarly, another pre-
dicted LOF variant in HBB, p.Glu27Lys (rs33950507), 

showed an association with hereditary hemolytic ane-
mias (OR = 14.8, P = 2.51 × 10−5). Notably, a previously 
identified LOF variant in the same gene, p.Glu7Val 
(rs334), exhibited significant associations with the 
same phenotypes, with an OR of 16.4 and a P value of 
9.15 × 10−103 for hereditary hemolytic anemias and an OR 
of 116 with a P value of 2.04 × 10–68 for sickle cell disease. 
Importantly, LD analysis indicated that these three vari-
ants were independent of each other. In contrast, a pre-
dicted neutral variant, p.Ala111Pro (rs10768683), was 
found to be associated with a reduced risk of sickle cell 
anemia (OR = 0.38, P = 1.2 × 10–4).

Another significant association was observed 
between a known LOF variant in TTR​, p.Val142Ile 
(rs76992529), and amyloidosis (phecode = 270.33, 
OR = 29.9, P = 9.07 × 10–15). Furthermore, two independ-
ent predicted LOF variants in this gene, p.His110Asn 
(rs121918074) and p.Thr139Met (rs28933981), showed 
associations with amyloidosis (OR = 10.3 and 14.5, 
P = 6.8 × 10–4 and 1.4 × 10–3). Conversely, a neutral vari-
ant in TTR​, p.Gly26Ser (rs1800458), did not exhibit an 
association with amyloidosis (P = 0.71). We also iden-
tified three predicted LOF variants in HFE, namely, 
p.Cys282Tyr (rs1800562), p.His63Asp (rs1799945), 
and p.Ser65Cys (rs1800730). While p.Cys282Tyr and 
p.His63Asp were associated with disorders of iron 

Fig. 5  PheWAS of predicted GOF and LOF variants. Selected examples of phenotype associations of predicted GOF and LOF variants in the BioMe 
BioBank. Each circle represents an association, with the circle size proportional to the natural logarithm of the odds ratios (ln(OR)). The dashed line 
indicates the Bonferroni-adjusted P-value threshold
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metabolism (phecode = 275.1, OR = 6.79 and 2.12, 
P = 1.82 × 10–14 and 5.5 × 10–4), we did not observe such 
an association for p.Ser65Cys (P = 0.61). On the other 
hand, two predicted neutral variants in HFE, p.Arg6Ser 
(rs149342416) and p.Val295Ala (rs143175221), were not 
associated with disorders of iron metabolism (P = 0.19 
and 0.17). Additionally, a predicted LOF variant in 
PSEN1, p.Gly206Ala (rs63750082), exhibited an asso-
ciation with dementias (phecode = 290.1, OR = 17.3, 
P = 9.79 × 10–10), while a neutral variant in PSEN1, 
p.Glu318Gly (rs17125721), did not demonstrate such an 
association (P = 0.86).

Moreover, our PheWAS analysis revealed additional 
interesting associations of predicted GOF variants with 
various other phenotypes. Notable findings included 
p.Val617Phe in JAK2 (predicted GOF, rs77375493), which 
was associated with myeloproliferative disease (phe-
code = 200, OR = 40.6, P = 1.29 × 10–29), p.Trp620Arg 
in PTPN22 (predicted GOF, rs2476601), displaying 
an association with type 1 diabetes (phecode = 250.1, 
OR = 1.78, P = 4.08 × 10–6), as well as a predicted GOF 
variant in LRRK2, p.Asn2081Asp (rs33995883), which 
demonstrated an association with regional enteritis (phe-
code = 555.1, OR = 2.33, P = 4.28 × 10–7). Importantly, we 
successfully replicated the above-mentioned associations 
of p.Glu7Lys in HBB, p.Cys282Tyr in HFE, p.Trp620Arg 
in PTPN22, p.Asn2081Asp in LRRK2, and p.Val617Phe in 
JAK2 in an independent BioMe WES cohort, consisting 
of 14,985 individuals (Additional file  1: Table  S10). We 
could not replicate the remaining associations due to the 
limited size of cases or low MAC.

Discussion
Describing the functional consequences of genetic vari-
ations is critical for the development of a better under-
standing of disease mechanisms. In our previous work 
[14], we described the curation of a database of path-
ogenic GOF and LOF variants compiled using a NLP 
pipeline to extract labels denoting the mechanism of 
pathogenicity for 11,370 variants from the HGMD. We 
further annotated these GOF and LOF variants with 
a variety of features and compared them to identify 
the distinct biological qualities of variants resulting in 
these opposing modes of pathogenicity. In the present 
work, we significantly expand our original database of 
pathogenic GOF and LOF variants to include an addi-
tional 3228 LOF variants and 255 GOF variants from 
newer releases of the HGMD database. We also expand 
the set of features describing these variants to include 
additional measures of conservation, protein struc-
tural characteristics including features derived from 
AlphaFold2 structures, features describing the protein–
protein interactome, and others, and we used this set 

of expanded labeled variants and biological features 
to develop LoGoFunc, a rapid and accurate classifier 
of GOF, LOF, and neutral variants. Four key findings 
emerge from this work.

First, we observe that pathogenic GOF, LOF, and neu-
tral variants inhabit varying structural and functional 
regions of proteins, exert differing effects on protein 
structure, and inhabit proteins with different PPI char-
acteristics (Fig. 2, Additional file 2: Fig. S3). Specifically, 
LOF variants consistently demonstrate a greater propen-
sity for the disruption of protein structure and/or func-
tion, as has been previously demonstrated [9, 75, 76]. 
Particularly, LOF variants are significantly more likely 
to have a predicted destabilizing effect on protein struc-
ture and significantly less likely to stabilize or result in a 
negligible effect on protein structure (Fig. 2a). LOF vari-
ants are enriched for highly conserved residues and for 
more radical amino acid substitutions (Fig.  2a). Simi-
larly, LOF variants are enriched for known post-trans-
lationally modified residues (PTMs) and are more likely 
to be buried in protein structures. GOF variants com-
pared to LOF, while enriched in potentially functionally 
important Pfam [57] domains, appear to impact protein 
structure less radically (Additional file 2: Fig. S3). Indeed, 
compared to LOF variants, GOF variants were depleted 
for predicted protein destabilizing substitutions, highly 
conserved residues, and radical amino acid substitu-
tions (Additional file 2: Fig. S3). Interestingly, when con-
sidering both sequence-based predictions and evidence 
derived from AF2 [12] structures, we found GOF vari-
ants to be enriched in α-helices and LOF variants to be 
enriched in β-strands (Additional file  2: Fig. S3). Previ-
ous studies have demonstrated mutations in α-helices to 
be less structurally impactful than mutations occurring 
in β-strands [77], consistent with the characterization 
of GOF and LOF variants established by other features. 
GOF variants were also enriched in proteins capable of 
forming homomultimers suggesting a potential domi-
nant negative pattern of gain of function for some of the 
variants and further emphasizing the necessity to inves-
tigate protein interactions when assessing variant func-
tional impact (Additional file 2: Fig. S3). Interestingly, we 
found GOF and LOF variants to have a greater number 
of pathogenic variants in neighboring residues than do 
neutral variants in our dataset. Together, these observa-
tions indicate significant divergence between GOF and 
LOF variants in their mode of pathogenicity at the pro-
tein level and suggest several mechanisms that may guide 
and inform the investigation of individual variants. Fur-
ther, these results demonstrate that AF2-predicted pro-
tein structures may provide significant biological signal 
in variant assessment tasks and can facilitate the extrac-
tion of protein structural features proteome-wide.
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Previous studies have also attempted to establish and 
investigate databases of experimentally identified GOF 
and LOF variants. One such study identified 258 LOF 
variants and 129 GOF variants in 168 genes and sug-
gested that LOF variants appear to impact protein func-
tion more severely than GOF variants, similar to our 
findings in this work [76]. However, the variants identi-
fied in that study were not selected to include only patho-
genic variants, and, further, GOF variants that result in 
increased protein function were omitted from that work. 
Heyne et  al. [9] examined 518 LOF variants and 309 
GOF variants in 12 SCNxA and CACNA1x family genes, 
labeled on the basis of known gene-disease mechanisms. 
The authors identified several features relating to protein 
structure as well as qualities specific to transmembrane 
proteins by which the distributions for GOF and LOF 
variants differed significantly and employed those fea-
tures to develop a classifier for variants in the SCNxA/
CACNA1x genes. In a recent study, GOF and LOF labels 
were inferred for pathogenic variants based on the sus-
pected mode of inheritance for gene-related disorders, 
resulting in a total of 7357 putative LOF and 2877 puta-
tive non-LOF variants (GOF + dominant negative). 
Similarly to our analysis, the authors compare predicted 
protein stability changes between GOF and LOF vari-
ants to indicate that LOF variants are more disruptive to 
protein structures [75]. Further, the authors suggest that 
GOF variants tend to cluster more closely in 3D space 
than do LOF variants. Conversely, we do not observe 
GOF variants to be surrounded by a significantly greater 
number of pathogenic variants than LOF variants (Addi-
tional File 2: Fig. S3). While these findings are seemingly 
at odds, the study in question considers only known GOF 
or LOF variants when examining clustering procliv-
ity, whereas we consider all known pathogenic variants 
regardless of GOF or LOF status, possibly accounting for 
this discrepancy.

Second, LoGoFunc demonstrates strong performance 
on a test set of GOF, LOF, and neutral variants and 
achieves substantial improvement over the baseline in 
its classification of the functional impact of genetic vari-
ants, addressing a long-standing need for high-through-
put methods that discriminate between these important 
mechanisms of variant pathogenicity (Fig. 3). This is like-
wise notable considering the benchmarked tools in our 
analysis generally performed better on LOF variants than 
GOF, as has been similarly observed in previous studies 
[14, 75]. Particularly, many pathogenicity predictors such 
as CADD [4] and REVEL [7] tend to predict LOF variants 
as pathogenic or deleterious more often than GOF vari-
ants, whereas GOF variants are more often predicted to 
be benign [14, 75]. This may be due in part to the under-
representation of GOF variants in the training data used 

by these tools where applicable or may arise because 
GOF variants may be difficult to separate from neu-
tral variants using the features or methods employed by 
these tools. Importantly, LoGoFunc considers pathogenic 
variant functional effects during training and includes 
features selected to identify pathogenic variants with 
mechanisms beyond protein destabilization, allowing it 
to provide state-of-the-art performance for the discrimi-
nation of pathogenic GOF and LOF variants.

Third, our analysis identified previously undocumented 
associations between various biological features and the 
functional outcomes of genetic variants. We assessed 
the importance of the features used to train LoGoFunc 
and found that the model learns from a diverse array 
of gene-, protein-, and variant-level features including 
functional, conservation, structural, and network infor-
mation (Fig. 4). For example, we processed the STRING 
[39] PPI network using node2vec [40] to summarize the 
human protein interactome. Whereas some models have 
included binary indications of the involvement of a pro-
tein in any protein interaction [20], to our knowledge, 
such PPI network features are rarely used in popular 
pathogenicity prediction methods. Yet, many dimensions 
of the output are highly impactful for the LoGoFunc 
model, suggesting protein function at the pathway- and/
or systems-level may have a bearing on variant patho-
genicity and functional effect. Concordantly, PPI features 
are accompanied by several other protein sequence- and 
structure-based features from which the model also 
learns, including top features such as DDGun [36] stabil-
ity impact predictions, residue proximal pathogenic vari-
ants, and the AF2 structure pLDDT values which have 
been shown to correlate significantly with protein struc-
tural disorder [12]. Genic context also has a substantial 
impact on the model’s output as evidenced by the inclu-
sion of several gene-level features such as the gene dam-
age index [78] and the number of gene paralogs. Other 
important features, such as the per variant predictions of 
pathogenicity for autosomal dominant or recessive dis-
ease, align with previous characterizations of GOF and 
LOF variants, thereby supporting the biological plausi-
bility of LoGoFunc’s predictions and lending credence to 
the novel associations we identified between various fea-
tures employed by the model and GOF, LOF, and neutral 
variants.

Finally, we illustrate LoGoFunc’s potential utility in 
identifying clinically relevant variants. Although our 
PheWAS approach relies on EHR data, which lacks 
granularity for rare diseases where most disease-causing 
variants typically contribute and variant-level associa-
tion testing usually demands a significantly large sam-
ple size, we have identified strong associations between 
the predicted GOF and LOF variants and relevant 
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phenotypes using robust association testing methods. 
Our results both corroborate previously known associa-
tions of GOF and LOF effects and aid in the identifica-
tion of novel plausible candidates. For example, we found 
that two predicted LOF variants in HBB p.Glu7Lys and 
p.Glu27Lys were associated with hereditary hemolytic 
anemias, while a predicted neutral variant demonstrated 
a reduced risk. While p.Glu27Lys has been reported as a 
pathogenic variant, p.Glu7Lys has conflicting interpreta-
tions of pathogenicity in ClinVar [16]. Our results suggest 
that the p.Glu7Lys variant may indeed be pathogenic. 
Additionally, among the three variants in TTR​ that were 
previously classified as benign/likely benign or variant 
of uncertain significance (VUS), two were predicted as 
LOF by LoGoFunc, while one was predicted as neutral. 
TTR​ encodes transthyretin, and pathogenic forms of 
transthyretin are known to cause hereditary amyloidosis 
[79]. In line with LoGoFunc’s predictions, the two vari-
ants predicted as LOF were associated with amyloidosis, 
whereas the predicted neutral variant was not.

Furthermore, of the three predicted LOF variants in 
HFE, which have conflicting interpretations in ClinVar, 
two were associated with disorders of iron metabolism in 
BioMe BioBank. Pathogenic variants in HFE are recog-
nized as the cause of autosomal recessive hemochroma-
tosis, a disorder of iron metabolism [80]. The predicted 
LOF variant that failed to display an association with 
disorders of iron metabolism was only observed in a het-
erozygous state, possibly preventing the manifestation of 
a phenotypic effect. Moreover, we observed two variants 
in PSEN1, one predicted as LOF (p.Gly206Ala) and one 
predicted as neutral (p.Glu318Gly). PSEN1 is linked to 
frontotemporal dementia and Alzheimer’s disease [81]. 
LoGoFunc’s predictions aligned with previously reported 
associations in ClinVar, with p.Gly206Ala associated 
with the phecode for dementias while p.Glu318Gly 
was not associated. Another predicted GOF variant, 
p.Asn2081Asp in LRRK2, reported as benign in ClinVar, 
but has been previously shown to have a GOF effect and 
associated with Crohn’s disease [82]. Consistently, LoG-
oFunc identified this variant as a predicted GOF, and our 
PheWAS analysis confirmed its association with regional 
enteritis in BioMe. Other examples include a predicted 
GOF variant in PTPN22, p.Trp620Arg, associated 
with type 1 diabetes. p.Trp620Arg has been previously 
reported as a GOF variant altering T cell response and 
linked to autoimmune diseases, including type 1 diabetes 
mellitus [83]. Lastly, LoGoFunc predicted a GOF vari-
ant in JAK2, p.Val617Phe, which has been hypothesized 
to confer a proliferative advantage in hematopoietic pre-
cursor cells [84] and was associated with myeloprolifera-
tive disease in BioMe BioBank. Together, these results 

provide preliminary evidence that LoGoFunc may pro-
vide utility for identifying clinically relevant variants and 
in the assessment of VUS and uncharacterized variants 
in addition to providing predictions of functional effect.

Conclusions
In summary, we have developed LoGoFunc, a predictor 
of GOF, LOF, and neutral variants. Our model performs 
favorably compared to commonly used computational 
tools designed for the assessment of genetic variation 
and demonstrates strong predictive power across met-
rics on our test set of GOF, LOF, and neutral variants. We 
assessed the contribution of various features to the mod-
el’s output and found that LoGoFunc learns from a diverse 
array of structural, functional, sequence-based, and sys-
tems-level information, indicating that these features have 
a bearing on the functional outcome of genetic variants. 
Further, we demonstrated significant localization of GOF, 
LOF, and neutral variants in 3D structural and functional 
sites in proteins, and demonstrated LoGoFunc’s ability to 
assess previously uncharacterized variants. Our findings 
corroborated previously reported molecular mechanisms 
resulting in the gain or loss of function and also suggest 
novel mechanisms that may shed light on disease etiology. 
We applied our method to 82,468,698 canonical missense 
mutations in the human genome and provide our predic-
tions, which are freely available to noncommercial users, 
at https://​itanl​ab.​shiny​apps.​io/​goflof/ [13].
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