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Abstract 

Background Copy-number variations (CNVs) have been associated with rare and debilitating genomic disorders 
(GDs) but their impact on health later in life in the general population remains poorly described.

Methods Assessing four modes of CNV action, we performed genome-wide association scans (GWASs) 
between the copy-number of CNV-proxy probes and 60 curated ICD-10 based clinical diagnoses in 331,522 unrelated 
white British UK Biobank (UKBB) participants with replication in the Estonian Biobank.

Results We identified 73 signals involving 40 diseases, all of which indicating that CNVs increased disease risk 
and caused earlier onset. We estimated that 16% of these associations are indirect, acting by increasing body mass 
index (BMI). Signals mapped to 45 unique, non-overlapping regions, nine of which being linked to known GDs. Num-
ber and identity of genes affected by CNVs modulated their pathogenicity, with many associations being supported 
by colocalization with both common and rare single-nucleotide variant association signals. Dissection of associa-
tion signals provided insights into the epidemiology of known gene-disease pairs (e.g., deletions in BRCA1 and LDLR 
increased risk for ovarian cancer and ischemic heart disease, respectively), clarified dosage mechanisms of action (e.g., 
both increased and decreased dosage of 17q12 impacted renal health), and identified putative causal genes (e.g., 
ABCC6 for kidney stones). Characterization of the pleiotropic pathological consequences of recurrent CNVs at 15q13, 
16p13.11, 16p12.2, and 22q11.2 in adulthood indicated variable expressivity of these regions and the involvement 
of multiple genes. Finally, we show that while the total burden of rare CNVs—and especially deletions—strongly 
associated with disease risk, it only accounted for ~ 0.02% of the UKBB disease burden. These associations are mainly 
driven by CNVs at known GD CNV regions, whose pleiotropic effect on common diseases was broader than antici-
pated by our CNV-GWAS.
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Conclusions Our results shed light on the prominent role of rare CNVs in determining common disease susceptibil-
ity within the general population and provide actionable insights for anticipating later-onset comorbidities in carriers 
of recurrent CNVs.

Keywords Structural variation, CNV, GWAS, Time-to-event analysis, Common diseases, Pleiotropy, 16p13.11, 16p11.2, 
Genomic disorders

Background
Copy-number variants (CNVs) refer to duplicated or 
deleted DNA fragments (≥ 50 bp) and represent an impor-
tant source of inter-individual genetic variation [1, 2]. As a 
highly diverse mutational class, CNVs can alter the copy-
number of dosage-sensitive genes, induce gain- or loss-of-
function (LoF) through gene fusion or truncation, unmask 
recessive alleles, or disrupt regulatory sequences, thereby 
representing potent phenotypic modifiers [3, 4]. As such, 
their role in human disease has mainly been studied in 
clinically ascertained cohorts, often presenting with con-
genital anomalies and/or severe neurological (e.g., devel-
opmental delay and intellectual disability or epilepsy) or 
psychiatric (e.g., autism or schizophrenia) symptoms [5–8]. 
Today, close to 100 genomic disorders (GDs), i.e., diseases 
caused by genomic rearrangements, have been described 
[9, 10]. Despite their deleteriousness, some of these CNVs 
are flanked by repeats and recurrently appear, remaining at 
a low but stable frequency in the population [11].

The emergence of large biobanks coupling genotype 
to phenotype data has fostered the study of CNVs in the 
general population. Whole genome sequencing repre-
sents the best approach to characterize the full human 
CNV landscape [1, 12, 13] but current long- and short-
read sequencing association studies have a limited sample 
size [14–16]. Alternatively, larger sample sizes are avail-
able for exome sequencing data, offering the possibility to 
assess the phenotypic consequence of small CNVs [17–
19], while microarray-based CNV calls are better-suited 
for the study of large CNVs and have been successfully 
used in association studies [9, 20–30]. Performing a CNV 
genome-wide association study (GWAS) on 57 medically 
relevant continuous traits in the UK Biobank (UKBB) 
[31], we previously identified 131 independent associa-
tions, including allelic series wherein carriers of CNVs 
at loci previously associated with rare Mendelian disor-
ders exhibited subtle changes in disease-associated phe-
notypes but lacked the corresponding clinical diagnosis 
[27]. Paralleling findings for point mutations [32–35], this 
supports a model of variable expressivity, where CNVs 
can cause a wide spectrum of phenotypic alterations 
ranging from severe, early-onset diseases to mild subclin-
ical symptoms, opening the question as to whether these 
loci are also associated with common diseases.

While continuous traits can be objectively measured in 
any individual, population cohorts, such as UKBB, have 
lower numbers of individuals with a disease compared to 
the population as a whole [36], leading to a case–control 
imbalance that reduces power compared to a balanced 
cohort of the same size. Moreover, defining cases relies 
on the dichotomization of complex underlying patho-
physiological processes [37]. Beyond the inherent loss of 
power associated with the usage of binary variables [38], 
cases might be missed because an individual did not con-
sult a physician, was misdiagnosed due to atypical clinical 
presentation, or is in a prodromal disease phase. Studies 
investigating CNV-disease associations in the general 
population have either focused on only a few diseases 
[29, 39–44] or well-established recurrent CNVs [24, 45–
48]. Alternatively, high-throughput studies have assessed 
a broad range of continuous and binary traits simultane-
ously [18, 20, 21] without any precautions to accommo-
date the aforementioned challenges. To date, the largest 
disease CNV-GWAS meta-analyzed ~ 1,000,000 individ-
uals [9]. While boosting power through increased sample 
size, it comes at the cost of extensive data harmonization, 
resulting in the exclusion of smaller CNVs (≤ 100 kb) and 
usage of broader disease categories (e.g., “immune abnor-
mality”). Moreover, as this study includes several clinical 
cohorts, phenotypes are biased towards neuropsychiatric 
disorders (24/54 phenotypes) for which the role of CNVs 
is well-established [5–8].

Using tailored CNV-GWAS models mimicking four 
mechanisms of CNV action and time-to-event analy-
sis, we investigate the relationship between CNVs and 
60 carefully defined common diseases affecting a broad 
range of physiological systems in 331,522 unrelated white 
British UKBB participants. Extensively validating our 
results, we report associations according to confidence 
tiers and take advantage of rich individual-level pheno-
typic data to demonstrate the contribution of CNVs to 
the common disease burden in the general population.

Methods
Study material
Discovery cohort: UK Biobank
The UK Biobank (UKBB) is composed of ~ 500,000 vol-
unteers (54% females) from the general UK population 
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for which microarray-based genotyping and extensive 
phenotyping data—including hospital-based Interna-
tional Classification of Diseases, 10th Revision (ICD-10) 
codes (up to September 2021) and self-reported condi-
tions—are available [31].

Replication cohort: Estonian Biobank
The Estonian Biobank (EstBB) is a population-based 
cohort of ~ 208,000 Estonian individuals (65% females; 
data freeze 2022v01 [12/04/2022]) for which microarray-
based genotyping data and ICD-10 codes from crosslink-
ing with national and hospital databases (up to end 2021) 
are available [49].

Software versions
CNVs were called with PennCNV v1.0.5 [50] using Pen-
nCNV-Affy (27/08/2009) and filtered based on a quality 
scoring pipeline [51]. Genetic analyses were conducted 
with PLINK v1.9 and v2.0 [52]. ANNOVAR (24/10/2019) 
was used to map genes to genetic regions [53]. Whenever 
genomic coordinates needed to be converted between 
builds, the UCSC Genome Browser LiftOver tool was 
used [54]. Statistical analyses were performed with R 
v3.6.1, and graphs were generated with R v4.1.3.

CNV association studies in the UK Biobank
Microarray‑based CNV calling
All results in this study are based on the human 
genome reference build GRCh37/hg19. UKBB genotype 
microarray data were acquired from two arrays with 
95% probe overlap (Applied Biosystems UK Biobank 
Axiom Array: 438,427 samples; Applied Biosystems UK 
BiLEVE Axiom Array by Affymetrix: 49,950 samples) 
[31] and used to call CNVs as previously described [27]. 
Details about the CNV calling, quality control, and 
encoding in PLINK file sets are provided in Additional 
file 1: Note S1. Briefly, CNVs were called using standard 
PennCNV settings and samples with abnormal CNV 
profile were excluded. Remaining CNVs were attrib-
uted a probabilistic quality score (QS) that reflects the 
likelihood that the CNV call is a true positive [51]. The 
QS ranges from − 1 (likely deletion) to 1 (likely dupli-
cation), with intermediate values around 0 reflecting 
less confident CNV calls [51]. High-confidence CNVs, 
stringently defined by |QS|> 0.5, were retained and 
encoded in chromosome-wide probe-by-sample matri-
ces with entries of 1, − 1, or 0 indicating probes over-
lapping a high-confidence duplication, deletion, or no/
low-quality CNV, respectively. These matrices were 
converted into three PLINK binary file sets to accom-
modate association analysis according to four modes of 
CNV action.

Case–control definition and age of disease onset calculation
A pool of 331,522 unrelated white British UKBB par-
ticipants (54% females) was considered after excluding 
related individuals (≤ 3rd degree), individuals with high 
genotype missingness (≥ 0.02), individuals that are not 
of white British ancestry (self-reported + genetically con-
firmed), CNV outlier samples based on genotyping plate 
or extreme CNV profile, and individuals reporting blood 
malignancies. Detailed criteria and number of individuals 
excluded at each step are described in Additional file 1: 
Note S2.

Cases and controls were defined for 60 ICD-10-based 
clinical diagnoses using diagnosis – ICD10 (#41270), 
cancer code, self-reported (#20001), and non-cancer ill-
ness code, self-reported (#20002) to build exclusion and 
inclusion lists. For each disease, starting with the selected 
subset of 331,522 individuals previously described, we 
identified cases as individuals having received a specific, 
restricted set of ICD-10 codes matching our disease defi-
nition (i.e., inclusion list). We then defined our controls 
as individuals lacking both ICD-10 codes matching the 
case definition and self-reported or ICD-10 diagnoses of 
a broad set of conditions related to the assessed disorder 
(i.e., exclusion list). For instance, breast cancer controls 
should not have other cancers or radio-/chemotherapy, 
while schizophrenia controls should not have mood or 
personality disorders. For second-level ICD-10 codes, 
all subcodes are considered, otherwise only the speci-
fied ones. Finally, the disease burden was calculated as 
the number of diagnoses (out of the 60 assessed ones) an 
individual has received. For male- (prostate cancer) and 
female- (menstruation disorders, endometriosis, breast 
cancer, ovarian cancer) specific diseases, downstream 
analyses were conducted excluding individuals from the 
opposite sex.

Based on the date at first in-patient diagnosis – ICD10 
(#41280) and the individual’s month (#52) and year (#34) 
of birth (birthday assumed on average to be the 15th), the 
age at diagnosis was calculated by subtracting the earli-
est diagnosis date for codes on the inclusion list from the 
birth date and converting it to years by dividing by 365.25 
to account for leap years.

Covariate and probe selection
To reduce computation time, relevant covariates and 
probes were pre-selected to fit tailored main CNV-
GWAS models, with detailed methodology and quality 
controls reported in Additional file 1: Note S3. For each 
disease, a logistic regression was fitted to explain disease 
probability as a function of age (#21003), sex, genotyping 
array, and the 40 first principal components (PCs) from 
the single-nucleotide polymorphism (SNP) genotyping 
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data. Nominally significantly associated covariates 
(p ≤ 0.05) were retained for the main analysis. Probe-level 
CNV, duplication, and deletion frequencies, i.e., the fre-
quencies at which a probe is found to be overlapped by a 
CNV, duplication, or deletion, respectively, was estimated 
and probes with a CNV frequency < 0.01% were excluded. 
Retained probes were pruned at r2 > 0.9999 (--indep-pair-
wise 500 250 0.9999 PLINK v2.0) in the  PLINKCNV file set 
based on their CNV genotype. Two-by-three genotypic 
Fisher tests assessed dependence between disease sta-
tus and probe copy-number (rows: control versus case; 
columns: deletion versus copy-neutral versus duplica-
tion; --model fisher PLINK v1.9; TEST column “GENO”) 
of the remaining probes. Fisher test p-values were not 
prone to strong genomic inflation. Finally, probes with 
pFisher ≤ 0.001 and a minimum of two disease cases among 
CNV, duplication, or deletion carriers were retained for 
assessment through the mirror/U-shaped, duplication-
only, or deletion-only model, respectively.

Genome‑wide significance threshold
Due to the recurrent nature of CNVs, the copy-number 
status of the 18,725 probes retained after frequency filter 
and pruning remain highly correlated and are thus not 
independent. Accounting for these 18,725 probes would 
result in an overly strict multiple testing correction. 
Using an established protocol [26, 27, 55], we estimated 
the chromosome-level number of effective tests and 
summed them up, resulting in an estimate of Neff = 6,633, 
setting the genome-wide (GW) threshold for signifi-
cance at p ≤ 0.05/6,633 = 7.5 ×  10−6. This threshold is of 
the same order of magnitude as what others have esti-
mated for disease CNV-GWASs [9]. We also assessed the 
number of associations surviving an experiment-wide 
threshold for significance that further accounts for the 
60 assessed diseases  (plus the disease burden), defined 
as p ≤ 0.05/(6,633*61) = 1.2 ×  10−7. Enrichment for tier 1 
and 2 associations (“Statistical confidence tiers”) among 
experiment-wide, as opposed to genome-wide, signifi-
cant signals was assessed with a two-sided Fisher test.

Main CNV‑GWAS model
Association between disease risk and copy-number of 
CNV-proxy probes was assessed through logistic regres-
sion with Firth fallback (--covar-variance-standardize 
--glm firth-fallback omit-ref no-x-sex hide-covar --ci 
0.95 PLINK v2.0), using disease- and model-specific 
probes and covariates (“Covariate and probe selec-
tion”). Four association models were assessed: the mirror 
model assessed the additive effect of each additional copy 
 (PLINKCNV file set); the U-shape model assessed a con-
sistent effect of any deviation from the copy-neutral state 
 (PLINKCNV file set, using the “hetonly” option in --glm 

PLINK v2.0); the duplication-only model  (PLINKDUP file 
set) assessed the impact of a duplication while disregard-
ing deletions; the deletion-only model  (PLINKDEL file 
set) assessed the impact of a deletion while disregarding 
duplications. Effect sizes were harmonized to obtain the 
effect of the CNV—or of an additional copy for the mir-
ror model—and the number of independent signals per 
disease was determined by stepwise conditional analy-
sis (Additional file  1: Note S4). Briefly, for each disease 
and association model, the numerical CNV genotype of 
the lead probe was included along selected covariates 
in the logistic regression model and association stud-
ies were conducted anew in an iterative fashion until no 
probes passed the GW significant threshold. Character-
istics of the most significant model (i.e., “best model”) are 
reported. The “main model” indicates which CNV type 
mainly drives the association, i.e., when associations were 
found through multiple models, priority was given to 
either the duplication-only or deletion-only models, oth-
erwise to the model yielding the lowest p-value.

Due to the quantitative nature of the disease burden, 
the CNV-GWAS for that phenotype was based on linear 
regressions (--covar-variance-standardize --glm firth-
fallback omit-ref no-x-sex hide-covar --ci 0.95 PLINK 
v2.0), correcting for selected covariates. Post-GWAS pro-
cessing was performed as previously described [27].

CNV region definition and annotation
CNV region (CNVR) boundaries were defined by the 
most distant probes within ± 3  Mb and r2 ≥ 0.5 of each 
independent lead probe (--show-tags -tag-kb 3000 -tag-
r2 0.5 PLINK v1.9; U-shape model: custom code). When 
multiple disease-CNV associations mapped to overlap-
ping (≥ 1  bp) genomic coordinates, the CNVRs were 
merged, resulting in 45 unique, non-overlapping, disease-
associated CNVRs, whose boundaries are defined as the 
maximal CNVR. Manual inspection ensured substantial 
overlap between merged CNVRs. CNVRs were annotated 
with hg19 HGNC and ENSEMBL gene names using anno-
tate_variation.pl from ANNOVAR (--geneanno). Number 
of genes mapping to a CNVR was calculated and set to 
zero for CNVRs with REGION not equaling “exonic”.

Statistical confidence tiers
Following primary assessment through logistic regression 
(“Main CNV-GWAS model”), three statistical approaches 
were implemented to gauge robustness of the lead 
probe’s association signal. First, we assessed post hoc the 
p-value of  the 2-by-3 genotypic Fisher tests (“Covariate 
and probe selection”). Second, we transformed the binary 
disease status into a continuous variable by computing 
the response residuals of the logistic regression of dis-
ease status on disease-relevant covariates. This allowed to 
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use linear regressions to estimate the effect of the CNV 
genotype, encoded according to all significantly associ-
ated models in the primary analysis, on disease risk. The 
model generating the lowest p-value for the CNV encod-
ing is reported. Third, time-to-event analysis was used 
to assess whether CNVs influence age  of  disease onset 
using Cox proportional hazards (CoxPH) models, the lat-
ter requiring an estimate for the age at last healthy meas-
urement. For cases, age at last healthy measurement was 
defined as the age at disease diagnosis. For controls, age 
at last healthy measurement was defined by subtracting 
birth date from cutoff date (30/09/2021) and the resulting 
period was converted in years (“Case–control definition 
and age  of  disease onset calculation”). CoxPH models 
were fitted including disease-relevant covariates and 
numerically encoded CNV genotype for either of the four 
association models as predictors, using the coxph() func-
tion from the R survival package [56]. The model with the 
lowest CNV genotype p-value is reported. CNV-disease 
associations were classified in confidence tiers depend-
ing on whether they were confirmed by 3 (tier 1), 2 (tier 
2), or 1 (tier 3) of the above-described approaches at the 
arbitrary validation significance threshold of p ≤ 1 ×  10−4. 
Above-described validation strategies are not suitable for 
disease burden associations. As quantitative variables do 
not suffer from the same caveats as binary traits, we clas-
sified all disease burden associations as tier 1.

Literature‑based supporting evidence
Using three literature-based approaches, we exam-
ined whether disease-associated CNVRs had previously 
been linked to relevant phenotypes. First, we investi-
gated the colocalization of autosomal CNVRs with SNP-
GWAS signals. GRCh38/hg38 lifted CNVR coordinates 
were inputted in the GWAS Catalog and associations 
(p ≤ 1 ×  10−7) relevant to the investigated disease (i.e., 
disease itself,  synonyms, continuous proxies, or major 
risk factors) were identified through manual curation. 
Second, we overlapped OMIM morbid genes (i.e., linked 
to an OMIM disorder; morbidmap.txt) with disease-
associated CNVRs. Through manual curation, we flagged 
OMIM genes associated with Mendelian disorders shar-
ing clinical features with the common disease associated 
through CNV-GWAS. Third, we examined if implicated 
CNVRs overlapped regions at which CNVs were found to 
modulate continuous traits [27] or disease risk [21, 24].

Replication in the Estonian Biobank
Disease cases and disease burden in the EstBB were defined 
using the same inclusion and exclusion criteria as for 
UKBB, with exceptions described in Additional file 1: Note 
S5. Autosomal CNVs were called from Illumina Global 

Screening Array genotype data for 193,844 individuals of 
European ancestry that survived general quality control and 
CNV-specific quality control as described in Additional 
file  1: Note S5. High-confidence CNV calls (|QS|> 0.5) of 
the 156,254 remaining individuals were encoded into three 
PLINK binary file sets (Additional file 1: Note S1). Related 
individuals with available CNV calls were pruned (< 3rd 
degree relatedness), leaving 90,211 unrelated samples for 
the replication study. Disease-relevant covariates were 
selected among sex, year of birth, genotyping batch (1–11), 
and PC1-20. EstBB probes overlapping the 68 UKBB auto-
somal disease-associated CNVRs were filtered for a CNV, 
duplication, or deletion frequency ≥ 0.01% and were tested 
for association according to the mirror/U-shape, duplica-
tion-only, or deletion-only model, respectively, depending 
on the best UKBB model. Summary statistics of the EstBB 
probe with the closest genomic location to the lead UKBB 
probe whose regression did not fail could be retrieved for 
49 signals, setting the replication threshold for signifi-
cance at p ≤ 0.05/49 = 1.0 ×  10−3. P-values were adjusted to 
account for directional concordance with UKBB effects by 
rewarding ( pnew =

pold
2

 ) and penalizing ( pnew = 1−
pold
2

 ) 
signals with matching and non-matching effect size signs, 
respectively. One-sided binomial tests (binom.test()) were 
used to assess enrichment of observed versus expected sig-
nificant replications at various thresholds ( α= 0.1 to 0.005 
by steps of 0.005). Details of the replication analysis are in 
Additional file 1: Note S5.

BMI confounding analysis
We sought to assess whether some of our associations 
might be driven by the CNVR’s effect on body mass index 
(BMI). Average BMI (#21001) over available instances 
was used. For an association to be tested for possible con-
founding, we required that (i) BMI significantly associ-
ated with disease risk (p ≤ 0.05/61 = 8.2 ×  10−4) in a model 
including all disease-specific covariates and (ii) the CNV 
genotype of the lead probe encoded numerically accord-
ing to the best model to significantly associate with BMI 
(p ≤ 0.05/73 = 6.8 ×  10−4) previously inverse normal trans-
formed and corrected for age,  age2, sex, genotyping batch, 
and PC1-40. Twenty-five association signals matched 
these criteria and for them, we fitted a logistic regression 
(or linear regression for the disease burden) with disease 
status as outcome and lead probe encoded numerically 
according to the best model, disease-specific covariates, 
and BMI as predictors. Significant differences in CNV 
effect sizes upon BMI adjustment were assessed by two-
sided t-test and deemed significant at p ≤ 0.05/25 = 0.002. 
Associations likely driven by BMI were defined as those 
for which the CNV effect p-value dropped below the GW 
significance threshold upon adjustment for BMI.
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CNV region constraint analysis
Evolutionary constraint of genes overlapping disease-
associated CNVRs, i.e., “disease genes,” was assessed by 
comparing their probability of LoF intolerance (pLI), loss 
of function observed/expected upper bound fraction 
(LOEUF), probability of haploinsufficiency (pHaplo), and 
probability of triplosensitivity (pTriplo) scores to the ones 
of “background genes” with a two-sided Wilcoxon rank-
sum test. Background genes were identified by annotat-
ing ranges of one or multiple consecutive probes with 
CNV frequency ≥ 0.01% with ANNOVAR (hg19 HGNC 
gene names) and excluding disease genes. For pLI and 
LOEUF, all disease genes were considered together. For 
pHaplo and pTriplo, two disease gene groups were con-
sidered: genes overlapping CNVRs with at least one asso-
ciation through the duplication-only model and genes 
overlapping CNVRs with at least one association through 
the deletion-only model. As many CNVRs associated 
through both models, the analysis was repeated consider-
ing genes overlapping CNVRs with at least one associa-
tion through the duplication-only and none through the 
deletion-only model and vice versa.

Extended phenotypic assessment
17q12 deletion
For time-to-event analysis, the same chronic kidney dis-
ease (CKD) definition as in the main analysis was used. 
Low-quality CNVs (|QS|≤ 0.5) were excluded from analy-
ses. Time-to-event analysis was performed as previously 
described (“Statistical confidence tiers”), modeling both 
17q12 deletions and duplications in the same CoxPH 
model adjusted for sex, age,  age2, array, and PC1-40. Esti-
mated glomerular filtration rate (eGFR) was calculated 
based on the CKD-EPI equation using #30700 (creatinine 
[µmol/L]), accounting for age, sex, and ancestry [57].

Subgrouping of CNV carriers
For fine-mapping of association signals, CNV carriers 
were divided into subgroups based on visual inspection 
of CNV breakpoints (BPs) and segmental duplications. 
Used coordinates are in Additional file 1: Note S6.

CNV versus copy‑neutral comparisons
Comparisons between groups of CNV carriers and copy-
neutral individuals always exclude low-quality CNV 
(|QS|≤ 0.5) carriers altogether. For diseases, prevalence is 
estimated as q =

c
n
 , with c and n representing the num-

ber of cases and total number of individuals in a group, 
and SE(q) = q∗(1−q)

n
 . Differences in prevalence com-

pared to copy-neutral individuals were assessed with a 
two-sided Fisher test. For continuous traits, comparisons 
were based on two-sided t-tests.

CNV burden analyses
CNV burden association studies
In the UKBB, individual-level CNV, duplication, and 
deletion burden were calculated as the number of Mb or 
genes affected by high-confidence (|QS|> 0.5) autosomal 
CNVs, duplications, and deletions, respectively, yielding 
six CNV burden metrices, as previously described [27]. 
Variance explained by these six CNV burden metrices 
was estimated by fitting logistic or linear regressions 
predicting disease outcome or disease burden as a func-
tion of the CNV burden metric (without any covariates) 
and assessing the McFadden pseudo-R2 or the adjusted 
 R2 of the regression, respectively. Association between 
the six CNV burden metrices and the 60 diseases (logis-
tic regression) or the disease burden (linear regression) 
were assessed including disease-relevant covariates in 
the model. Accounting for the 61 evaluated traits, signifi-
cance was defined at p ≤ 0.05/61 = 8.2 ×  10−4.

CNV burden association studies corrected for CNV‑GWAS 
signals
For each disease, CNVs, duplications, and deletions over-
lapping (≥ 1 bp) a CNVR significantly associated with the 
disease of interest through CNV-GWAS were omitted from 
the CNV, duplication, and deletion burden calculations 
if the CNVR had been found to associate with the disease 
through the mirror/U-shape, duplication-only, or deletion-
only model, respectively. Association studies were repeated 
as previously described using corrected burden values.

Partitioned CNV burden association studies
To determine which part of the genome was driving the 
associations between disease risk and the CNV burden, 
we defined 5 genomic partitions:

• CNVR partition: 40 autosomal disease-associated 
CNVRs identified in this study. CNVRs were con-
sidered for the CNV, duplication, and deletion bur-
den, except for CNVRs yielding associations uniquely 
through the duplication-only or deletion-only mod-
els, which were considered only for the duplication 
and deletion burdens.

• GD partition: 92 GDs curated by Crawford et al. 
[24]. Duplication syndromes were considered for the 
duplication burden, deletion syndromes for the dele-
tion burden, and all genomic disorders were consid-
ered for the CNV burden.

• R1 partition: Intersect between the CNVR and GD 
partitions, encompassing nine disease-associated 
CNVRs and 20 GDs caused by 10 reciprocal CNVs.

• R2 partition: 72 GDs not included in the R1 partition.
• R3 partition: 31 autosomal CNVRs not included in 

the R1 partition.
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For every individual, we identified and summed up the 
subset of CNVs, duplications, and deletions (measured in 
number of genes or number of Mb) that overlaps these 
partitions (i.e., “subset burden”). Overlaps were defined 
either as (i) any overlap (≥ 1 bp) with the regions defined 
by the partition, or more stringently, (ii) by reciprocal 
50% bp overlap (i.e., the CNV covers > 50% of the parti-
tion’s region and the partition’s region covers > 50% of the 
CNV). The subset burden was subtracted from the total 
burden (i.e., “corrected burden”). Association studies 
were repeated as previously described using subset and 
corrected burden metrices.

Results
The spectrum of common diseases in the UK Biobank
Sixty disorders spanning 12 ICD-10 chapters were 
selected to cover a wide range of physiological systems, 

favoring conditions with sufficiently large sample size 
and a likely genetic basis (Fig.  1; Additional file  2: Fig-
ure S1; Additional file 3: Table S1). We used a three-step 
approach to designate cases and controls in the UKBB 
(Fig.  1A; top): Starting from 331,522 unrelated white 
British individuals, we defined cases based on a narrow 
list of hospital-based diagnoses (i.e., ICD-10 codes) and 
excluded self-reported cases, as well as self-reported and 
hospital diagnoses of related conditions from controls. 
Except for systemic lupus erythematosus (N = 422) and 
polycystic kidney disease (N = 454), all diseases had over 
500 cases. Nineteen diseases had a case count > 10,000, 
with arthrosis (N = 62,175) and essential hypertension 
(N = 97,860) being the most frequent. Seven diseases had 
a median age of onset ≤ 60  years, predominantly female 
reproductive disorders, autoimmune conditions, and 
psychiatric diseases. Conversely, the nine diseases with a 

Fig. 1 Overview of the study. A Schematic representation of the analysis workflow. Diseases: For each of the 60 investigated diseases, 331,552 
unrelated white British individuals were divided into three subsets: controls (encoded as 1; step 1), cases with the disease (encoded as 2; step 
2), and a subset of individuals who were excluded because they had conditions similar but not identical to the disease (encoded as NA; step 
3). Primary association study: Disease-specific relevant covariates were selected. Probes were pre-filtered based on copy-number variant (CNV) 
frequency, Fisher test association p-value, and presence of ≥ 2 diseased carriers. Disease- and model-specific covariates and probes were used 
to generate tailored genome-wide CNV association scans (CNV-GWASs) based on Firth fallback logistic regression according to a mirror, U-shape, 
duplication-only (i.e., considering only duplications), and deletion-only (i.e., considering only deletions) models. Independent lead signals 
were identified through stepwise conditional analysis and CNV regions were defined based on probe correlation and merged across models. 
Validation: Statistical validation methods (i.e., Fisher test, residuals regression, and Cox proportional hazards model (CoxPH)) were used to rank 
associations in confidence tiers. Literature validation approaches leverage data from independent studies to corroborate that genetic perturbation 
(single-nucleotide polymorphisms (SNP), rare variants from the OMIM database, or CNVs) in the region are linked to the disease. Independent 
replication in the Estonian Biobank. B Age of onset for the 60 assessed diseases, grouped based on ICD-10 chapters and colored according to case 
count. Data are represented as boxplots; outliers are not shown
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median age of onset ≥ 70 years were mainly degenerative 
disorders of the brain, eye, and kidney, overall aligning 
with epidemiological knowledge of the respective dis-
eases (Fig. 1B).

Copy‑number variant genome‑wide association study
To assess whether disease susceptibility is modulated 
by CNVs, we performed CNV-GWASs, i.e., test if the 
copy-number of CNV-proxy probes influences the prob-
ability to develop a disease or an individual’s disease 
burden (Fig.  1A; middle). Briefly, microarray-called 
CNVs for 331,522 unrelated white British individuals 
were transformed to the probe level after quality control 

[27]. To further reduce the number and complexity of 
implemented logistic regressions, pre-processing steps 
selected relevant covariates and probes for each disease 
and model combination, thereby lowering computation 
time (Additional file 1: Note S3; Additional file 3: Tables 
S2-3). As CNVs can act through different gene dosage 
mechanisms, four association models were assessed: 
mirror and U-shape models consider deletions and 
duplications simultaneously, assuming that they impact 
disease risk in opposite or identical direction, respec-
tively, while the CNV type-specific duplication- and 
deletion-only models assess independently the effect of 

Fig. 2 CNV-disease association map. A Duplication and deletion frequencies ([%]; y-axis; break: //) of the lead probe for each unique 
and non-overlapping disease-associated CNV region (CNVR), labeled with corresponding cytogenic band (x-axis; 16p11.2 is split to distinguish 
the distal 220 kb BP2-3 and proximal 600 kb BP4-5 CNVRs; non-overlapping CNVRs on the same cytogenic band are numbered). If signals mapping 
to the same CNVR have different lead probes, the maximal frequency was plotted. B Associations between CNVRs (x-axis) and diseases (y-axis) 
identified through CNV-GWAS. Color indicates the main association model. Size and transparency reflect the statistical confidence tier. Black 
contours indicate overlap with OMIM gene causing a disease with shared phenotypic features. Black crosses indicate overlap with SNP-GWAS signal 
for a related trait. Gray shaded vertical lines indicate CNVRs with continuous trait associations [27]. N provides count for various features
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Table 1 45 disease-associated CNV regions. Cytogenic band and genomic coordinates (GRCh37/hg19) of the 45 unique, non-
overlapping, disease-associated CNV regions (CNVRs) depicted on the x-axis of Fig. 2. For each CNVR, length in kilobase pairs 
is given (“Size”). “GD” indicates whether the CNVR matches any of the 92 genomic disorders (GD) compiled by Crawford et al. [24]: 
Y = “yes”; * = partial overlap with the 22q11.2 distal CNVR (chr22:21,920,000–23,650,000). Disease associations mapping to that CNVR 
are listed, with bold font indicating that the association is likely mediated by increased body mass index (BMI). All the models through 
which the association was detected at genome-wide significance are indicated in superscript: “U” = U-shape model; “ + ” = duplication-
only model; “ − ” = deletion-only model; “M” = mirror model; CKD = chronic kidney disease; AKI = acute kidney injury

Cytogenic band Chr CNVR start CNVR end Size [kb] GD Disease associations

1p36.21 1 12,854,105 13,038,285 184 Pulmonary  embolismU,+,M

1q21.1‑1q21.2 1 146,478,785 147,832,715 1,354 Y Chronic obstructive pulmonary  diseaseU,+,  emphysema+,M, iron deficiency 
 anemiaU,+

2p12 2 78,376,475 78,680,202 304 Disorders of bilirubin  metabolismU, −,M

3p26.3 3 2,141,411 2,465,091 324 Asthma+,M

3p12.2 3 80,344,634 83,400,564 3,056 Disorders of mineral  metabolism−,M

3q29 3 196,953,177 197,331,898 379 Y Alzheimer’s  diseaseU

4q28.3 4 136,510,759 136,952,267 442 Cornea  diseasesU, −,M

4q35.1‑4q35.2 4 186,687,554 187,182,384 495 Cornea  diseasesU

5p14.3 5 20,254,182 20,924,403 670 Systemic lupus  erythematosusU

6p25.1 6 4,235,784 4,658,277 422 Endometriosis−,M

6q26 6 162,705,164 162,873,489 168 Sleep  disorders−,M

7p22.1‑7p21.3 7 7,260,027 7,504,011 244 Aplastic  anemiaU

7p21.2 7 15,074,783 15,249,515 175 Bipolar  disorder−,M

7q31.2‑7q31.31 7 117,399,981 119,333,169 1,933 Chronic obstructive pulmonary  diseaseU,+,M

7q36.3 7 158,530,132 158,953,160 423 Ovarian  cancerU,+,M

8p22 8 17,599,136 17,719,930 121 Cardiac valve  disordersU

10p14 10 6,677,540 6,833,390 156 EpilepsyU

10q26.3 10 135,217,002 135,237,176 20 Sleep  apnea−

11p15.4 11 5,322,902 5,417,034 94 Parkinson’s  diseaseU, −,M

12q24.33 12 131,611,538 131,825,359 214 Psoriasis+,M

15q13.2‑15q13.3 15 30,912,719 32,516,949 1,604 Y AKI+,  anemiaU,+,  asthma−,M, hemorrhagic strokeU

15q26.3 15 101,319,208 101,613,151 294 Vitamin B12  anemiaU,+,M

16p13.13‑16p13.12 16 12,516,765 12,659,427 143 Sleep  apneaU

16p13.11 16 15,120,501 16,353,166 1,233 Y Epilepsy−,  hypertensionU, kidney  stones−

16p12.2 16 21,946,523 22,440,319 494 Y Cardiac conduction  disordersU, −,M, disease  burdenU, −,M,  hypertension−,M, 
 pneumonia−,

16p11.2 BP2‑BP3 16 28,775,159 29,043,450 268 Y Anemia−, cholelithiasis−,M

16p11.2 BP4‑BP5 16 29,596,230 30,208,637 612 Y AKIU, −,M, anemiaU, −, asthma−, bipolar  disorderU,+,M, chronic obstructive 
pulmonary  diseaseU, −,M,  CKDU, −, disease  burdenU, −,M, epilepsy−, hyperten‑
sion−, lipidemias and lipoprotein disorders−,  pneumoniaU, −,M, recurrent 
depressive  disorderU,+,M,  schizophreniaU,+,M, sleep apnea−,M, type I diabetes−, 
vitamin B12  anemiaU

16q23.3 16 82,954,230 83,133,760 180 Emphysema−

17p13.3 17 631,380 738,187 107 Epilepsy−,M

17p13.2 17 4,378,105 4,498,641 121 Pulmonary  embolismM

17q12 17 34,755,219 36,249,489 1,494 Y CKDU,+,M

17q21.31 17 41,197,733 41,276,111 78 Ovarian  cancer−,M

18p11.32 18 685,968 1,266,259 580 Kidney  stonesU,+

19p13.3 19 6,873,527 6,881,286 8 Systemic lupus  erythematosusU,+,M

19p13.2 19 11,210,904 11,218,188 7 Ischemic heart  disease−

20p12.1 20 14,523,969 14,652,973 129 GoutU

22q11.21 22 19,024,651 21,463,545 2,439 Y Aneurysm−, headaches+,M, ischemic heart diseaseU,+,M

22q11.21‑22q11.22 22 21,797,101 22,661,627 865 * Disorders of mineral  metabolism−,M

22q11.23 22 23,627,256 23,658,006 31 * Disorders of bilirubin  metabolism−,M
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duplications and deletions, respectively. All summary 
statistics are publicly available.

Stepwise conditional analysis narrowed GW significant 
associations (p ≤ 7.5 ×  10−6; see “Methods” for threshold 
calculation) to 40, 41, 21, and 38 independent signals for 
the mirror, U-shape, duplication-only, and deletion-only 
models, respectively. These were combined into 70 risk-
increasing (i.e., no disease-protecting CNV) disease asso-
ciations and 3 disease burden associations that map to 
45 unique, non-overlapping, disease-associated CNVRs 
(Fig. 2; Table 1; Additional file 3: Table S4), among which 
nine (20%) could be unambiguously linked to a known 
GD. Forty-five associations (45/73 = 62%) were sup-
ported at GW significance by multiple models, the low-
est p-value (i.e., “best model”) being obtained through 
the mirror, deletion-only, U-shape, and duplication-only 
models for 24, 23, 21, and 5 of the signals, respectively. 
No association was detected at GW significance by both 
the duplication-only and deletion-only models, so that 
each signal was attributed a “main model” that indicates 
whether the association is primarily driven by duplica-
tions or deletions (Fig.  2). The main model should be 
interpreted with caution as both deletions and duplica-
tions might influence disease risk but only one CNV 
type-specific model might reach GW significance, due 
for instance to higher frequency of one CNV type. This 
is particularly relevant as 73% of the 45 disease-asso-
ciated CNVRs have a higher duplication than deletion 
frequency (Fig. 2A). Hence, 20 out of 21 (95%) of signals 
mainly driven by duplications were also identified by the 
mirror/U-shape model(s) and contribution of deletions 
cannot be excluded.

Validation of identified CNV‑GWAS signals
Across the 45 disease-associated CNVRs, CNV frequen-
cies were low, ranging between 0.01% (our frequency 
cutoff) and 0.36%, with 87% (39/45) of CNVRs having 
a frequency ≤ 0.1% (Fig.  2A). Consequently, associa-
tions rely on a low number of diseased CNV carriers and 
require validation (Fig.  1A; bottom; Fig.  2B; Additional 
file  3: Table  S4). We used three statistical approaches 
to assess the robustness of CNV-disease associations: 

(i) Fisher test, (ii) residual regression, and (iii) time-to-
event analysis through CoxPH modeling. We replicated 
28/70 (40%), 23/70 (33%), and 70/70 (100%) of the asso-
ciations with the respective methods at the arbitrary 
validation threshold of p ≤  10−4. This allowed to stratify 
associations in confidence tiers, with 17 signals replicat-
ing with all methods (tier 1), 20 with two (tier 2), and 36 
only through time-to-event analysis (tier 3). Importantly, 
time-to-event analysis showed that CNVs always contrib-
uted to an earlier age of disease onset (Additional file 3: 
Table  S4), in line with the paradigm that diseases with 
a strong genetic etiology have earlier onset [58]. Finally, 
when accounting for the number of assessed traits by 
using a stringent experiment-wide threshold for signifi-
cance (p ≤ 1.2 ×  10−7), 32 out of 73 (44%) CNV-GWAS 
signals remained significantly associated. These signals 
were enriched for tier 1 and 2 associations (pFisher = 0.05).

In parallel, we gathered literature evidence link-
ing genetic variation at CNVRs with relevant pheno-
types (Additional file  3: Table  S4). Forty-eight signals 
(48/73 = 64%) mapped to a CNVR harboring a least 
one OMIM morbid gene and in 15 cases, the gene was 
linked to a Mendelian disorder sharing phenotypic fea-
tures with the associated common disease. For instance, 
association between 4q35 CNVs and corneal conditions 
(chr4:186,687,554–187,182,384;  ORU-shape = 18.2; 95%-
CI [5.2; 63.1]; p = 5.0 ×  10−6) mapped to CYP4V2 [MIM: 
608614], a gene associated with autosomal recessive 
Bietti crystalline corneoretinal dystrophy [MIM: 210370], 
a disorder that impairs vision and progresses to blindness 
by age 50–60 years [59]. We next assessed whether SNPs 
overlapping disease-associated CNVRs were reported 
to associate with the implicated disease or a biomarker 
thereof in the GWAS Catalog. This was the case for 28 
(28/66 = 42%) autosomal signals, a similar proportion 
(38%) than for continuous trait CNV-GWASs [27]. For 
instance, distal 22q11.2 CNVs increased risk for disorders 
of mineral metabolism (chr22:21,797,101–22,661,627; 
 ORmirror = 0.02; 95%-CI [0.006; 0.083]; p = 9.9 ×  10−9) 
and overlapped heel bone mineral density SNP-GWASs 
signals, while 3q29 CNVs increased Alzheimer’s disease 
risk (chr3:196,953,177–197,331,898;  ORU-shape = 11.8; 

Table 1 (continued)

Cytogenic band Chr CNVR start CNVR end Size [kb] GD Disease associations

22q12.1 22 25,929,538 25,994,013 64 GlaucomaU, −

Xp22.33 X 1,746,850 2,046,202 299 Sleep  apneaM

Xp22.33 X 2,128,228 2,361,712 233 Disease  burdenU,+,M

Xp22.33 X 2,814,160 2,945,477 131 Celiac  diseaseU

Xp22.11 X 22,946,631 23,087,940 141 Ovarian  cancerU, −,M

Xq28 X 152,703,776 152,887,811 184 Ovarian  cancerU,+,M
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95%-CI [4.0; 34.7]; p = 6.6 ×  10−6) and overlapped with 
SNP-GWAS signal for PHF-tau levels, and suggestive sig-
nals (p < 5 ×  10−6) for frontotemporal dementia and cog-
nitive decline in Alzheimer’s disease. Finally, 37 signals 
(37/73 = 51%) mapped to nine CNVRs previously found 
to be associated with complex traits [27], among which 
eight correspond to known GDs.

We also set out to replicate association signals in 
90,211 unrelated EstBB individuals [49], using a similar 

case definition as in the UKBB analysis (Additional file 1: 
Note S5; Additional file  2: Figure S1). A total of 49 out 
of 73 associations could be evaluated, among which 
three were strictly replicated (p ≤ 0.05/49 = 1.0 ×  10−3) 
and four additional ones reached nominal significance 
(p ≤ 0.05) (Additional file 3: Table S4). Compared to what 
would be expected by chance, this corresponds to a 2.9-
fold (pbinomial = 0.011) and 16.3-fold (pbinomial = 1.1 ×  10−4) 
enrichment for replication at p ≤ 0.05 and p ≤ 5 ×  10−3, 

Fig. 3 Replication of CNV-disease associations in the Estonian Biobank. A Enrichment for signal replication (y-axis; 95% confidence interval as gray 
ribbon) at different levels of significance (alpha; x-axis) in the Estonian Biobank (EstBB). Color and size indicate the p-value of the enrichment 
(one-sided binomial test) and the number of observed associations, respectively. Dashed red line indicates one-fold enrichment, i.e., the number 
of observed associations matches the number of expected ones. B Associations replicated at nominal significance in the EstBB, color-stratified 
according to whether they meet the replication (p ≤ 1.0 ×  10−3; green) or nominal (p ≤ 0.05; light green) significance threshold. Disease 
(CKD = chronic kidney disease; AKI = acute kidney injury; HTN = hypertension; PD = Parkinson’s disease), cytogenic band and coordinates, best model 
(M = mirror; U = U-shape; DUP = duplication-only; DEL = deletion-only), odds ratio (OR), p-value (P), and statistical confidence tier are given for the 
UK Biobank (UKBB) discovery analysis. OR, one-sided p-values, and number of cases among CNV carriers are provided for the EstBB replication. 
Overlap with SNP-GWAS signals for a related trait (✓ = yes; ✗ = no) or a relevant OMIM gene (RCAD = renal cyst and diabetes; KIN = karyomegalic 
interstitial nephritis) is indicated. Previous association with diseases [24] (duplication (DUP) or deletion (DEL) was associated with indicated disease; 
no association (✗); some CNVRs were not tested) and continuous traits [27] (disease-relevant biomarkers are specified; other traits (*); no association 
(✗)) are listed
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respectively (Fig. 3A). We have previously shown that the 
smaller sample size of the EstBB strongly limits replica-
tion power [27]. Hence, despite only 7 out of 49 (14%) 
associations being nominally replicated, the strong 
enrichment for significant results support validity of the 
primary UKBB association signals. Replicated associa-
tions harbor SNP-GWAS signals for related phenotypes 
(5/7), relevant morbid OMIM genes (2/7), or map to 
CNVRs previously associated with similar diseases (5/6) 
or biomarkers (4/7) (Fig. 3B). Among them is the associa-
tion between 15q13 duplications and increased risk for 
acute kidney injury (AKI; chr15:30,946,160–31,881,106 
| UKBB:  ORdup = 4.6; 95%-CI [2.5; 8.4]; p = 7.1 ×  10−7 | 
EstBB: p = 2.7 ×  10−4). Homozygous  LoF mutations in 
FAN1 [MIM: 613534], one of the five genes mapping to 
this CNVR, have been linked to karyomegalic intersti-
tial nephritis [MIM: 614817] [60], opening the possibility 
that both increased and decreased dosage of this region 
have negative consequences on renal health. Importantly, 
integrating evidence provided by statistical, literature-
based, or independent replication helps prioritize the 
most promising associations for follow-up studies and 
pinpoint plausible candidate genes.

CNV‑disease associations driven by BMI
Large recurrent CNVs have been linked to altered body 
weight [20, 23, 26, 27], which itself represents a risk fac-
tor for a broad range of common diseases. We identified 
25 CNV-disease associations for which both disease risk 
and CNV status associated with BMI, indicating that the 
latter might confound these associations. While includ-
ing BMI as an additional covariate did not result in sig-
nificantly different CNV effects, 12 out of 25 associations 
did not meet the strict GW significance threshold any-
more (Table  1; Additional file  2: Figure S2; Additional 
file 3: Table S5), so that 16% of the 73 associations uncov-
ered by our CNV-GWAS are likely driven by the CNV’s 
propensity for increasing adiposity in its carriers. In line 
with expectations, associations showing the strongest 
confounding include cardiometabolic diseases such as 
lipidemia, or sleep apnea, while pulmonary, renal, and 
psychiatric diseases, along with the disease burden were 
less affected. Importantly, only one CNVR lost all its 
associations upon BMI adjustment, i.e., the SH2B1-over-
lapping distal 16p11.2 BP2-3 deletion, which is known to 
cause severe, early-onset obesity [47, 61].

Global characterization of disease‑associated CNV regions
We sought to identify global characteristics that dis-
tinguish disease-associated CNVRs (Additional file  3: 
Table  S6). Number of protein-coding genes embed-
ded in the 45 disease-associated CNVRs ranged from 0 

to over 30 and generally correlated with the number of 
encompassed probes (ρPearson = 0.50; p = 4.2 ×  10−4; Addi-
tional file 2: Figure S3A). Exceptions include single-gene 
CNVRs overlapping well-known pathogenic genes cap-
tured thanks to high probe coverage, such as BRCA1 
(Additional file  1: Note S7) or LDLR (Additional file  1: 
Note S8). Seven CNVRs (16%) associated with multi-
ple diseases, all of which mapped to known GD regions. 
One CNVR that stood out is the 600  kb 16p11.2 BP4-5 
region (Fig. 2B; Table 1). Originally identified as a major 
risk factor for autism, schizophrenia, developmental 
delay and intellectual disability, macro-/microcephaly, 
epilepsy, and obesity/underweight [62–68], we previ-
ously found the region to associate with 26 continuous 
complex traits [27]. Here, we show that 16p11.2 BP4-5 
deletions increase the risk of 12 diseases across multiple 
organ systems as well as the disease burden (+ 3 diseases/
deletion; p = 1.2 ×  10−26), five of which, alongside the dis-
ease burden, remain significant upon adjustment for BMI 
(Table 1; Additional file 3: Table S5). On the other hand, 
the region’s duplication drove increased risk for psychi-
atric conditions (i.e., bipolar disorder, schizophrenia, and 
depression), in line with previous findings [67].

Next, we assessed whether disease genes were under 
stronger evolutionary constraint than genes affected 
by CNVs at the same frequency but not associated 
with any disease (i.e., “background genes”). Compared 
to background genes, the 231 disease genes had more 
constrained pLI (pWilcoxon = 1.3 ×  10−4; Additional file  2: 
Figure S3B) and LOEUF (pWilcoxon = 1.9 ×  10−7; Addi-
tional file  2: Figure S3C) scores, suggesting stronger 
intolerance to LoF mutations. Splitting CNVRs depend-
ing on whether they have at least one association 
through either the duplication-only or deletion-only 
model, we evaluated whether embedded disease genes 
were more susceptible to haploinsufficiency (Addi-
tional file 2: Figure S3D) or triplosensitivity (Additional 
file  2: Figure S3E). No significant difference in pHaplo 
scores were observed but genes overlapping regions 
whose duplication (pWilcoxon = 9.0 ×  10−19) and deletion 
(pWilcoxon = 1.0 ×  10−23) have been linked to diseases 
were more likely to be triplosensitive than background 
genes. Similar trends were observed considering genes 
overlapping CNVRs involved uniquely through the 
duplication-only and deletion-only models and not the 
other CNV type-specific model (Additional file  2: Fig-
ure S3F-G). Overall, our results indicate that a CNVR’s 
pathogenicity is influenced both by the number and 
characteristics of affected genes, even though our study 
did not explore whether part of the observed pheno-
typic consequences is driven by disruption of regulatory 
regions [4].
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CNV‑biomarker‑ associations tag pathophysiological 
processes
Integration of biomarker and disease CNV-GWAS sig-
nals can identify high-confidence, clinically relevant asso-
ciations. Heterozygous LoF of HNF1B [MIM: 189907] and 
17q12 deletions cause renal cyst and diabetes (RCAD) 

[MIM: 137920], a severe disorder characterized by renal 
abnormalities and maturity-onset diabetes of the young 
[69, 70]. While we previously showed that renal biomark-
ers were increased in duplication carriers [27], here, we 
demonstrate that both 17q12 deletions and duplica-
tions increase CKD risk (chr17:34,755,219–36,249,489; 
 ORU-shape = 6.5; 95%-CI [3.4; 12.1]; p = 5.9 ×  10−9; Fig. 4A), 

Fig. 4 Increased and decreased dosage of 17q12 impairs kidney function. A 17q12 association landscape. Top: Negative logarithm of association 
p-values of CNVs (dark gray; CNV region (CNVR) delimited by vertical dashed lines) and single-nucleotide polymorphisms (SNPs) with chronic kidney 
disease (CKD; orange) [71] and SNPs with estimated glomerular filtration rate (eGFR; red) [72]. Lead SNPs are labeled. Red horizontal dashed lines 
represent the genome-wide threshold for significance for CNV-GWAS (p ≤ 7.5 ×  10−6) and SNP-GWAS (p ≤ 5 ×  10−8). Middle: Genomic coordinates 
of genes and DECIPHER GD, with HNF1B, the putative causal gene in red. Segmental duplications are represented as a gray gradient proportional 
to the degree of similarity. Bottom: Genomic coordinates of duplications (blue) and deletions (red) of UK Biobank participants overlapping 
the region. B CKD prevalence (± standard error) according to 17q12 copy-number (CN). P-values compare deletion (CN = 1) and duplication (CN = 3) 
carriers to copy-neutral (CN = 2) individuals (two-sided Fisher test). Number of cases and samples sizes are indicated (N = cases/sample size). C 
eGFR levels according to 17q12 CN, shown as boxplots; outliers are not shown. P-value comparisons as in B (two-sided t-test). Gray horizontal 
line represents median eGFR in non-carriers. Light and darker green background represent mildly decreased (60–90 ml/min/1.73m2) and normal 
(≥ 90 ml/min/1.73 m.2) kidney function, respectively. D Kaplan–Meier curve depicting the percentage, with 95% confidence interval, of individuals 
free of CKD over time among copy-neutral and 17q12 deletion and duplication carriers. Hazard ratio (HR) and p-value for deletion and duplication 
are given (CoxPH model)
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with a prevalence of 33.3% (pt-test = 0.026) and 16.9% (pt-

test = 6.8 ×  10−5) among deletion and duplication carri-
ers, respectively, versus 4.4% in copy-neutral individuals 
(Fig.  4B). Results replicated in the EstBB (p = 8.6 ×  10−4; 
Fig. 3B) and are supported by 20% of CNV carriers show-
ing signs of kidney disease based on eGFR (< 60  ml/
min/1.73m2), compared to 2.2% in copy-neutral individuals 
(Fig. 4C). Importantly, both 17q12 deletion and duplication 

lower age of CKD onset (HR ≥ 4.6; p ≤ 1.3 ×  10−7; Fig. 4D), 
providing strong evidence of the deleterious consequences 
on kidney health of altered dosage of 17q12. These results 
align with two recent clinical studies that found that 17q12 
deletions were observed in ~ 2% of individuals with con-
genital kidney anomalies [42] and that the 17q12 CNV 
was the most common GD  etiology within a cohort 
of 6,679 CKD cases, in which nine deletion and seven 

Fig. 5 Dissection of complex pleiotropic patterns of recurrent CNVs at 16p13.11. A 16p13.11 genetic landscape. Coordinates of UK Biobank 
duplications (shades of blue; top) and deletions (shades of red; bottom) overlapping the maximal CNV region (CNVR delimited by vertical dashed 
lines) associated with epilepsy, kidney stones, hypertension, and alkaline phosphatase (ALP). CNVs are divided and colored according to five 
categories (cat1-5) to reflect recurrent breakpoints, with atypical CNVs in gray (Additional file 1: Note S6). Breakpoints reflect segmental duplications, 
represented with a gray gradient proportional to the degree of similarity. Middle: genomic coordinates of genes and DECIPHER GD. Inset: Overlap 
between ABCC6’s exonic structure and cat5 deletions. B, D, F, H Negative logarithm of association p-values of CNVs (dark gray; model in parenthesis; 
CNVR delimited by vertical dashed lines) with B epilepsy, D kidney stones, F hypertension, and H ALP and SNPs with B epilepsy [73], D kidney 
stones [74], calcium levels, and phosphate levels (y-axis; break: //); F hypertension and systolic blood pressure [75], and H ALP. Lead SNPs are labeled. 
Red horizontal dashed lines represent genome-wide thresholds for significance for CNV-GWAS (p ≤ 7.5 ×  10−6) and SNP-GWAS (p ≤ 5 ×  10−8). C, E, 
G Prevalence (± standard error) of C epilepsy, E kidney stones, and G hypertension according to 16p13.11 copy-number (CN) and CNV categories 
from A. P-values compare carriers of specific deletions (CN = 1) and duplications (CN = 3) to copy-neutral (CN = 2) individuals (two-sided Fisher 
test). Number of cases and samples sizes are indicated (N = cases/sample size). I ALP levels according to 16p13.11 CN and CNV category, shown 
as boxplots; outliers are not shown. P-values compare carriers of specific deletions (CN = 1) and duplications (CN = 3) to copy-neutral (CN = 2) 
individuals (two-sided t-test). Gray horizontal line represents median ALP value in non-carriers
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duplication carriers were identified [43]. In another similar 
example, the blood pressure-increasing 16p12.2 deletion 
(chr16:21,946,523–22,440,319) [23, 27] increased risk for 
hypertension  (ORdel = 2.7; 95%-CI [1.9; 3.8]; p = 1.3 ×  10−8) 
and cardiac conduction disorders  (ORdel = 3.3; 95%-CI [2.2; 
4.9]; p = 1.1 ×  10−8), suggesting a role in cardiovascular 
health (Additional file 1: Note S9) and highlighting the rel-
evance of CNV-biomarker associations.

Dissecting complex pleiotropic CNV regions
While some CNV signals converge onto the same under-
lying physiological processes, others tie apparently unre-
lated traits to the same genetic region, suggesting genuine 
pleiotropy. 16p13.11 harbors multiple, partially overlap-
ping recurrent groups of CNVs that allow fine-mapping 
of signals to different subregions of the CNVR (Fig.  5). 
Through different association models, the CNVR was 
linked to uncorrelated traits including epilepsy, kidney 
stones, hypertension, alkaline phosphatase (ALP), forced 
vital capacity, and age at menopause and menarche. We 
previously proposed MARF1 as a candidate gene for the 
female reproductive phenotypes [27] and will focus here 
on the remaining traits.

The 654 duplications and 355 deletions overlapping 
the maximal CNVR (chr16:15,070,916–16,353,166) 
were grouped into 5 categories (cat1-5) based on their 
breakpoints (Fig.  5A). Matching previous findings 
[44], risk for epilepsy was increased in deletion carri-
ers (chr16:15,122,801–16,353,166;  ORdel = 6.2; 95%-CI 
[2.8; 13.4]; p = 4.4 ×  10−6; Fig.  5B), with a prevalence of 
8.2% among cat1-4 deletion carriers compared to less 
than 1.5% among copy-neutral and duplication carriers 
(Fig.  5C). Previously associated with epilepsy in clini-
cal cohorts [7, 76, 77], the region harbors NDE1 [MIM: 
609449], a gene associated with autosomal recessive lis-
sencephaly [MIM: 614019] and microhydranencephaly 
[MIM: 605013] and whose mutation has been linked to 
epilepsy [78, 79]. Deletions also increased risk for kid-
ney stones (chr16:15,120,501–16,353,166;  ORdel = 5.9; 
95%-CI [2.9; 11.9]; p = 7.3 ×  10−7), with the CNV-GWAS 
signal peaking close to a missense variant (rs41278174 
G > A;  FrequencyA: 2.6%) in exon 23 of ABCC6 [MIM: 
603234] associating with calcium and phosphate levels 
through SNP-GWASs (Fig.  5D). These signals coincide 
with the recurrent cat5 deletion that covers 29 probes 
spanning exons 23–29 of ABCC6 (Fig. 5A). Kidney stones 
prevalence reaches 4.3% among cat5 deletion carriers, 
in-between estimates for larger cat1-4 deletion carriers 
(9.2%) and copy-neutral individuals (2.3%) (Fig.  5E). A 
wide range of variants affecting ABCC6 have been identi-
fied and linked to the calcification disorder pseudoxan-
thoma elasticum through recessive [MIM: 264800]—and 
more rarely dominant [MIM: 177850]—inheritance 

[80–83], with the Alu-mediated cat5 deletion represent-
ing one of the most frequent variants [84, 85]. ABCC6 is 
expressed in the kidney and recent estimates from clini-
cal cohorts suggested that kidney stones are an unrec-
ognized (i.e., not used to establish clinical diagnosis) but 
prevalent (11–40%) feature of pseudoxanthoma elasti-
cum [86–88]. Our data support kidney stones as a clinical 
outcome of ABCC6 disruption with partial gene dele-
tions having lower penetrance than larger 16p13.11 dele-
tions. Unlike epilepsy and kidney stones, both deletion 
(38.8%) and duplication (43.3%) carriers are at increased 
risk for hypertension (chr16:15,127,986–16,308,285; 
 ORU-shape = 1.5; 95%-CI [1.3; 1.8]; p = 5.5 ×  10−6; Fig. 5F), 
compared to copy-neutral individuals (35.3%) (Fig.  5G). 
The CNVR overlaps a SNP-GWAS signal for systolic 
blood pressure mapping to MYH11 [MIM: 160745] 
(Fig.  5F). Expressed in arteries, MYH11 encodes for 
smooth muscle myosin heavy chains and has been linked 
to dominant familial thoracic aortic aneurysm [MIM: 
132900], for which hypertension represents a leading 
risk factor. Intermediate prevalence (37.4%) of hyperten-
sion among cat5 deletions implicates ABCC6, suggest-
ing that multiple genes contribute to hypertension risk 
at 16p13.11. Consistent with this model, ABCC6 plays a 
role in vascular calcification as the causal gene for gener-
alized arterial calcification of infancy [MIM: 614473] [89, 
90], typically diagnosed by hypertension in newborns. 
Interestingly, the previously described mirror association 
with ALP (chr16:15,070,916–16,276,964; βmirror = 6.6 U/L; 
p = 3.5 ×  10−7; UKBB field #30610) peaks at the distal end 
of the CNVR [27], nearby a suggestive SNP-GWAS sig-
nal for ALP levels (Fig. 5H). Splitting ALP levels by CNV 
category revealed that this mirroring effect is driven 
by individuals with cat2 deletion (mean = 76.4 U/L; pt-

test = 9.7 ×  10−3) and duplication (mean = 92.9 U/L; pt-

test = 8.2 ×  10−5), as other CNV carriers had ALP levels 
indistinguishable from those of copy-neutral individuals 
(mean = 83.6 U/L) (Fig. 5I). Hence, we propose the distal 
region of the CNVR to harbor the critical region regulat-
ing ALP levels, even though no obvious candidate gene 
could be identified in the literature.

Another region exhibiting complex pleiotropic 
patters is 15q13. Deletions spanning BP4-5 [MIM: 
612001]—and to a lesser extent duplications—have 
been associated with neuropsychiatric and develop-
mental conditions [91, 92], with the nicotinic ace-
tylcholine receptor ion channel CHRNA7 being 
proposed as the driver gene based on the presence 
of similar phenotypes in individuals with a smaller 
deletion (D-CHRNA7-BP5) only affecting CHRNA7 
[93] (Fig.  6A). BP4-5 duplication carriers—but 
not ~ 10-times more numerous D-CHRNA7-BP5 
duplication carriers—showed higher prevalence of 
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AKI (EstBB-replicated: Figs.  3B and 6B), hemorrhagic 
stroke (chr15:30,912,719–31,982,408;  ORU-shape = 7.5; 
95%-CI [3.2; 17.9]; p = 4.3 ×  10−6; Fig.  6C; note that 
this association is possibly confounded by BMI; 
Table  1; Additional file  3: Table  S5), and anemia 
(chr15:30,912,719–31,094,479;  ORdup = 4.9; 95%-CI 
[2.5; 9.7]; p = 3.2 ×  10−6; Fig.  6D), reminiscent of asso-
ciations with pulse rate, mean corpuscular hemoglobin, 
and red blood cell count [23, 27]. Replicating an asso-
ciation with asthma [24] (chr15:30,912,719–32,516,949; 

 ORmirror = 0.17; 95%-CI [0.08; 0.35]; p = 1.2 ×  10−6) 
which parallels the previously reported decreased 
forced vital capacity [27] and peak expiratory flow 
[23], this was the only association at the locus driven 
by deletions, with prevalence being increased in only 
BP4-5 (46.2%; pt-test = 1.8 ×  10−5) but not D-CHRNA7-
BP5 deletion carriers (16.7%; pt-test = 0.538), compared 
to copy-neutral individuals (12.1%) (Fig.  6E). Hence, 
the non-neurological disorders we associate with 15q13 

Fig. 6 Dissection of complex pleiotropic patterns of recurrent CNVs at 15q13. A 15q13 genetic landscape. Top: Coordinates of duplications 
(shades of blue; top) and deletions (shades of red; bottom) overlapping the maximal CNV region (CNVR; delimited by vertical dashed lines) 
associated with acute kidney injury (AKI), asthma, forced vital capacity, hemorrhagic strokes, heart rate, anemia, mean corpuscular hemoglobin, 
and red blood cell count. CNVs are divided and colored according to whether they span breakpoint (BP) 4 to 5 or D-CHRNA7 to BP5, with atypical 
CNVs in gray (Additional file 1: Note 6). Breakpoints reflect segmental duplications, represented as a gray gradient proportional to the degree 
of similarity. Genomic coordinates of genes and DECIPHER GD are displayed. Bottom: Negative logarithm of association p-values of CNVs (best 
model in parenthesis) with renal, pulmonary, cardiovascular, and hematological traits. Traits-specific CNVRs are shown with vertical dashed lines. 
Red horizontal dashed line represents the genome-wide threshold for significance for CNV-GWAS (p ≤ 7.5 ×  10−6). B, C, D, E Prevalence (± standard 
error) of B AKI, C hemorrhagic stroke, D anemia, and E asthma according to 15q13 copy-number (CN) and groups from A. P-values compare BP4-5 
and D-CHRNA7-BP5 deletion (CN = 1) and duplication (CN = 3) carriers to copy-neutral (CN = 2) individuals (two-sided Fisher test). Number of cases 
and sample sizes are indicated (N = cases/sample size)
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CNVs appear to specifically involve dosage of the genes 
within BP4-D-CHRNA7 and not CHRNA7.

CNV burden at known genomic disorder CNVRs increases 
overall disease risk
By aggregating CNVs into a burden, we capture the effect 
of ultra-rare CNVs (frequency ≤ 0.01%), as well as those 
whose effect is not strong enough to reach GW signifi-
cance under current settings, increasing our power to 

detect the global pathogenic impact of CNVs on human 
health. Individual-level autosomal CNV (duplica-
tion + deletion), duplication, and deletion burdens were 
calculated as the number of Mb or genes affected by the 
considered type of CNV. The predictive value of these 
six CNV burden metrices on the same 60 diseases (and 
the disease burden) previously assessed through CNV-
GWAS was estimated (Fig. 7A; “middle”). Disease burden 
strongly associated with a high CNV load (βdel =  + 0.03 

Fig. 7 CNV burden at known genomic disorder CNVRs increases overall disease risk. A Burden calculation. Middle: Total CNV (duplication + 
deletion), duplication, or deletion burdens are calculated by summing up the length (in number of affected Mb or genes) of all CNVs, duplications, 
or deletions in an individual, respectively. Burden values are used as a predictor for disease risk. Left: Corrected burdens are calculated by summing 
up the length of all CNVs, duplications, or deletions that do not overlap with regions listed in a given genomic partition. Right: Subset burdens 
are calculated by summing up the length of all CNVs, duplications, or deletions that overlap with regions listed in a given genomic partition. Both 
corrected and subset burden values are used to re-estimate contribution of the CNV burden to disease risk (red curve). B Contribution of the total 
burden, CNV-GWAS signal- and CNVR-corrected burdens, and the R1, R2, and R3 subset burdens measured in number of affected Mb (x-axis; left) 
or genes (x-axis; right) to disease risk (y-axis). Only the effect of the most significantly associated of the CNV (purple), duplication (blue), or deletion 
(red) burdens, providing p ≤ 0.05/61 = 8.2 ×  10−4, is shown. Color indicates whether the CNV, duplication, or deletion burden was most significantly 
associated, with size and transparency being proportional to the effect size (beta) and p-value, respectively. Gray horizontal bands mark traits 
with no CNV-GWAS signal. C Schematic representation of the R1, R2, and R3 partitions used to define the subset burdens in B 
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disease per deleted gene; p = 3.7 ×  10−27) and risk for 20 
individual disorders was increased by at least one type 
of CNV burden (p ≤ 0.05/61 = 8.2 ×  10−4; Fig.  7B; “total 
burden”; Additional file 3: Table S7). Overall, the deletion 
burden tended to yield more significant associations than 
the duplication burden and strongest effect sizes were 
observed for psychiatric disorders, such as bipolar dis-
order  (ORMb_del = 1.4; p = 6.9 ×  10−4), schizophrenia (OR 
Mb_del = 1.4; p = 4.1 ×  10−5), or epilepsy  (ORMb_CNV = 1.1; 
p = 8.3 ×  10−5), in agreement with CNVs represent-
ing important risk factors for these complex and poly-
genic disorders. Still, we note that the CNV burden only 
accounts for ~ 0.02% of the variability in disease burden, 
with up to 0.1% of schizophrenia and bipolar disorder 
cases being explained by the CNV burden (Additional 
file 3: Table S8).

To ensure that we do not merely capture the effect of 
individual CNV-disease associations previously isolated 
by CNV-GWAS, we corrected the CNV burdens for 
CNV-GWAS signals. Specifically, we excluded from the 
burden calculation CNVs overlapping disease-associated 
CNVRs in a disease- and burden-type-specific fashion. 
We then estimated the predictive value of these corrected 
burdens on disease risk (Fig.  7A; left). Overall associa-
tion strength dropped but signal was lost only for type 
1 diabetes and chronic obstructive pulmonary disease 
(Fig. 7B; “GWAS-corrected”; Additional file 3: Table S7). 
However, if we exclude CNVs overlapping the 40 autoso-
mal unique disease-associated CNVRs systematically, i.e. 
not in a disease- and burden-type-specific fashion, the 
bulk of association signals disappears (Fig.  7B; “CNVR-
corrected”; Additional file  3: Table  S7), indicating that 
the genomic partition uncovered by our CNV-GWAS 
increases disease risk beyond the 73 CNV-disease pairs 
that reach genome-wide significance.

To further explore this hypothesis, we calculated sub-
set CNV burdens (Fig.  7A; right) overlapping three dif-
ferent genomic partitions (Fig. 7C) composed of (i) nine 
disease-associated CNVRs that map to known GDs (R1), 
(ii) regions of known GDs that did not yield any associa-
tion in our CNV-GWAS (R2), (iii) and disease-associated 
CNVRs uncovered by our CNV-GWAS that were not 
linked to a known GD (R3). Risk for 25 diseases, as well as 
the disease burden, were significantly increased by the R1 
CNV burden subset and included associations with eight 
diseases that were not picked up by the total burden asso-
ciation (Fig. 7B; “R1 burden”; Tables S7). We observed a 
substantial contribution of the R2 burden subset to the 
risk of diseases such as epilepsy, hypertension, cardiac 
conduction disorders, AKI, CKD, and hypothyroidism, 
even though the pleiotropy of this partition was more 
moderate than the one of the R1 burden subset (Fig. 7B; 
“R2 burden”; Tables S7). Few associations were observed 

for the R3 CNV burden (Fig. 7B; “R3 burden”; Tables S7). 
Supporting these results, the CNVR (R1 + R3 partitions) 
and GD (R1 + R2 partitions) burden subsets strongly 
associate with 28 and 23 phenotypes, respectively (Addi-
tional file  2: Figure S4; Additional file  3: Table  S7). A 
gradual loss of the number of associations was found 
when correcting the total CNV burden for the R3, R2, R1, 
GD, and CNVR partitions, with similar trends observed 
when requiring a more stringent overlap between CNVs 
and defined regions (“Methods”; Additional file 2: Figure 
S4; Additional file 3: Table S7). Overall, our results indi-
cate that known GD CNVRs are the major drivers of the 
CNV burden’s pathogenicity and hint at their currently 
underestimated pleiotropy.

Discussion
Using an adapted GWAS framework, we provide a 
detailed investigation of the contribution of rare CNVs 
to the genetic architecture of 60 common diseases and 
showcase how the rich phenotypic data of the UKBB can 
be leveraged to gain new biological insights, highlighting 
the role of CNVs as modulators of common disease sus-
ceptibility in the general population.

Various strategies have been used to study CNV-
disease associations in the UKBB. Focusing on diseases 
related to the ones assessed in the current study, we repli-
cate 10 out of the 24 detected associations (at FDR ≤ 0.1) 
with 54 likely pathogenic CNVs [24] and all four associa-
tions (at p ≤ 1 ×  10−9) in a recent CNV-GWAS investigat-
ing 757 diseases [21]. Despite data originating from the 
same cohort, we often obtained p-values orders of mag-
nitude smaller (e.g., 16p11.2 BP4-5 deletion and AKI: 
p = 5.6 ×  10−20; p = 6.0 ×  10−5 [24]; p = 3.3 ×  10−15 [21]). 
The increased power of our study might be explained 
by accruing case count from updated hospital records, 
careful case–control definition and statistical handling 
of the binary outcomes, probe-level association analy-
sis, and usage of different association models to mimic 
various dosage mechanisms. We consequently identi-
fied previously unreported CNV-disease associations 
whose relevance was asserted by follow-up analyses. 
Only one signal—17q12 CNVs increasing CKD risk—was 
backed by all approaches, emphasizing the importance 
of considering diverse lines of corroborative evidence, 
such as overlap with relevant SNP-GWAS signals and 
OMIM genes that indicate shared genetic mechanisms 
or both disease and disease-relevant biomarker asso-
ciations mapping to the same CNVR. For instance, four 
(1q21.1–1q21.2, 15q13, 16p12.2, 16p11.2 BP4-5) out of 
six CNVRs decreasing forced vital capacity [27] were 
found to increase risk for pulmonary diseases, with the 
association between 15q13 and asthma replicating in the 
EstBB (p = 6.2 ×  10−3) and 16p11.2 BP4-5 CNVs carriers 
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being found to be enriched for “abnormal findings exami-
nation of lungs” in the Vanderbilt University Medical 
Center electronic health record database [48]. This dem-
onstrates that biomarkers are efficient proxies underlying 
(CNV-driven) pathological processes, often increasing 
the statistical power to detect associations due to their 
continuous nature. While we regressed covariates out of 
disease status to render the outcome quantitative, more 
sophisticated approaches have recently been developed 
for SNP-based GWASs that transform binary outcomes 
into continuous liability scores while borrowing informa-
tion from age  of disease onset, sex, and familial history 
[94]. Future exploration is warranted to assess the ben-
efit of this approach in the context of CNV-GWASs. By 
coupling a CNV-GWAS framework that accounts for 
challenges linked to disease CNV association studies in 
population cohorts to extensive validation, we generated 
a list of 73 CNV-disease pairs with various levels of sup-
porting evidence that can inform follow-up studies.

Disease-associated CNVRs harbored genes under 
stronger evolutionary constraint than those lacking asso-
ciations and their length correlated with their propen-
sity for pleiotropy, indicating that as previously observed 
[9], both the number and the nature of genes affected by 
CNVs influence their pathogenicity. Consequently, large, 
multi-gene, recurrent CNVs exhibited the strongest plei-
otropy. A longstanding question relates to the identifi-
cation of causal genes whose altered dosage drives the 
phenotypic alterations observed in carriers. Models with 
various levels of complexity have been proposed, ranging 
from a single driver gene to multiple driver genes mod-
ulated by epistatic interactions with other genes in the 
CNVR [95]. By analyzing disease prevalence in subsets of 
CNV carriers, association signals could be fine-mapped 
to narrower regions, pinpointing candidate drivers—such 
as ABCC6 for kidney stones. In other cases, our data sug-
gests that multiple subregions of the CNVR contribute to 
increased risk for a given disease, as observed for 22q11.2 
and ischemic heart disease (Additional file 1: Note S10) 
or 16p13.11 and hypertension. Interestingly, the putative 
driver for phenotypes originally associated with a CNVR 
might not be driving our newly identified associations, 
as shown for the 15q13 CNVR, whose non-neurological 
phenotypes do not appear to be linked to altered dos-
age of CHRNA7. Beyond characterizing the pleiotropic 
pathological consequences of recurrent CNVRs, we dem-
onstrate that dissection of CNV-GWAS signals can fine-
map associations and provide mechanistic insights into 
their phenotypic expression.

We show that rare CNVs, such as the ones assessed in 
our study, only contribute marginally (0.02%) to the global 
disease burden in the general population. Still, from a per-
sonalized medicine perspective, these variants are highly 

relevant. Indeed, all detected CNV-disease associations 
pointed at CNVs increasing disease risk and leading to an 
earlier age of onset. Incorporating age of onset informa-
tion has been shown to improve power to detect associa-
tions [94], and more importantly, represents proof of clinical 
relevance. Many signals mapped to regions whose genetic 
perturbation has been reported to be pathogenic in an 
autosomal dominant fashion. These include associations 
between well-described, clinically relevant gene-disease 
pairs—such as BRCA1 and LDLR deletions increasing the 
risk for early-onset ovarian cancer (Additional file 1: Note 
S7) and ischemic heart disease (Additional file 1: Note S8), 
respectively—but for which the role of CNVs in a large pop-
ulation cohort had not been previously investigated. CNVs 
in these genes have high penetrance but are extremely 
rare in the UKBB. Follow-up analyses based on the medi-
cal records, family history, medication use, and biomark-
ers could recapitulate additional clinical associations and 
establish that these deletions were most likely inherited. 
By recovering known gene-disease pairs typically studied 
in clinical cohorts, we showcase how the rich phenotypic 
data from biobanks can generate insights into the mecha-
nisms, epidemiology, and comorbidities of these diseases, 
implicating CNVs as important genetic risk factors. We 
also highlight several examples where deviations by one 
copy-number are linked to common diseases which share 
clinical features with rare Mendelian conditions caused by 
homozygous perturbations of the same genetic region. For 
instance, risk for kidney stones is gradually increased in car-
riers of partial versus full ABBC6 deletions. Another intrigu-
ing example is the association between a relatively common 
CNV (frequency = 0.22%) affecting exon 2 and intron 2–3 
of PRKN [MIM: 602544]—a gene causing juvenile autoso-
mal recessive Parkinson’s disease [MIM: 600116]—and sleep 
disorders such as insomnia and hypersomnia. As sleep dis-
turbances are among the earliest symptoms of Parkinson’s 
disease [96], follow-up studies should determine whether 
these individuals are more prone to develop Parkinson’s 
disease. Overall, this argues against a dichotomic view on 
dominant versus recessive modes of inheritance and analo-
gously to allelic series [32–35], suggests that Mendelian and 
common diseases represent different ends of the phenotypic 
spectrum caused by genetic variation at a given locus. We 
further show that nine CNVRs previously linked to pediatric 
GDs also increased risk for a broad spectrum of adult-onset 
common diseases. These associations were probably over-
looked as the medical consequences in adulthood of these 
etiologies are often poorly characterized owing to ascertain-
ment bias and difficulty to gather large cohorts. Importantly, 
12 out of 24 associations mapping to a GD linked to altered 
BMI remained significant when accounting for the latter. 
This indicates that while part of the increased disease risk 
among individuals with GDs represents a mere comorbidity 
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of obesity, other BMI-independent mechanisms further 
contribute to the high disease burden observed in these 
individuals. In the future, it will be important to assess the 
role of other possible confounders, such as clinical biomark-
ers or socioeconomic status, as such knowledge can guide 
preventive strategies and improve understanding of disease 
mechanisms. While awaiting validation in clinical cohorts 
of CNV carriers, we hope that these findings will improve 
clinical characterization of GDs, thereby facilitating diag-
nosis and allowing physicians to anticipate later-onset 
comorbidities. For instance, we found carriers of 16p13.11 
deletions affecting ABCC6, the causal gene for pseudoxan-
thoma elasticum, to be at increased risk for kidney stones, 
paralleling reports from clinical cohorts showing that kid-
ney stones represent an unrecognized feature of the dis-
ease [86–88]. Awareness of this disease feature can mitigate 
kidney stone risk through adapted diet and sufficient water 
intake. Together, our results advocate for a complex model 
of variable CNV expressivity and penetrance that can result 
in a broad range of phenotypes along the rare-to-common 
disease spectrum and represent fertile ground for in-depth, 
phenome-wide studies aiming at better characterizing spe-
cific CNV regions [45, 47].

Corroborating the deleterious impact of rare CNVs on 
an individual’s health parameters, socioeconomic status, 
and lifespan [21, 22, 26, 27, 33, 97–100], we here specu-
late that the CNV burden acts on the latter by increas-
ing risk for a broad range of common diseases beyond 
their known role in neuropsychiatric disorders [5–8]. 
While both duplications and deletions contributed to 
increased disease risk, the deletion burden’s impact was 
much stronger—especially for metabolic, psychiatric, 
pulmonary, and musculoskeletal diseases—in line with 
the commonly accepted view that deletions tend to be 
more deleterious. While only a marginal fraction of the 
CNV burden’s contribution to disease risk was cap-
tured by CNV-GWAS signals, burden associations were 
mainly driven by known GDs. Only psychiatric disor-
ders and the disease burden retained a significant asso-
ciation with the CNV burden when accounting for GDs, 
highlighting the polygenic CNV architecture of these 
traits. Illustrating the added value of the burden analysis, 
nine diseases showed a burden association despite lack-
ing any CNV-GWAS signal. In some cases, such as for 
hypothyroidism, the burden signal originated from GDs 
that did not yield any significant CNV-GWAS associa-
tions, possibly because the involved regions did not pass 
the ≥ 0.01% CNV frequency filter. In other cases, such as 
for osteoporosis, the signal appeared to emanate from 
the CNVRs pick-up by the CNV-GWAS, indicating that 
we were likely underpowered to detect associations with 
any specific region. Overall, a total of 49 (82%) of the 
assessed diseases associated with CNVs either through 

CNV-GWAS or burden analysis, emphasizing the impor-
tant role of this mutational class. While our burden 
analysis revealed that these associations mainly stem 
from known GDs, it also highlights that the latter are 
even more pleiotropic than what appears from our CNV-
GWAS, implying that increased power will broaden the 
spectrum of common diseases associated with rare GDs.

A major limitation of our study is the reliance on 
microarray CNV calls, which allows us to assess only a 
fraction of the CNV landscape, i.e., mostly large CNVs 
or in regions with high probe coverage. Furthermore, 
as different population cohorts are genotyped with 
different arrays, partial probe overlap hinders repli-
cation power in external biobanks, as well as the abil-
ity to meta-analyze summary statistics. We speculate 
that small and/or multiallelic CNVs that can only be 
uncovered by sequencing will have a genetic architec-
ture closer to the one of SNPs and indels, with higher 
frequencies and more subtle effect sizes. These effects, 
however, are more likely tagged by common variants, 
limiting novel discoveries. Furthermore, by detecting 
more events, sequencing-based studies require adapted 
and more stringent significance thresholds. Still, hav-
ing improved breakpoint resolution, such CNV calls are 
also likely to enhance fine-mapping strategies. Microar-
ray CNV calls also exhibit high false positive rates [51]. 
By using stringent CNV selection criteria, we decrease 
the latter at the cost of decreasing power to detect true 
associations. This aspect is particularly relevant given 
that the type of CNVs we assess are rare and that the 
UKBB is not enriched for disease cases [36], resulting 
in low-powered GWASs. While we adopt strategies to 
counter the lack of power, our results are likely sub-
ject to Winner’s curse, only capturing a fraction of the 
strongest, possibly overestimated effects. This phenom-
enon might be compensated by UKBB CNV carriers 
being at the milder end of the clinical spectrum, lead-
ing to effect underestimation. An interesting question 
will be to compare effect sizes from population-based 
studies to those emerging from clinical cohorts. In the 
future, longitudinal follow-up of UKBB participants will 
increase the number of cases—especially for late-onset 
diseases such as Alzheimer’s or Parkinson’s diseases—
allowing better powered CNV-GWASs. Larger and 
more diverse biobanks linking genotype to phenotype 
data [101–103] should both validate reported associa-
tions and identify new ones.

Conclusions
Our study provides in-depth analysis of the role of rare 
CNVs in modulating susceptibility to 60 common dis-
eases in the general population, broadening our view 
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on how this class  of mutations impacts human health. 
Besides describing clinically relevant and actionable 
associations, we illustrate how complex pleiotropic pat-
terns can be dissected to gain new insights into the path-
ological mechanisms of large recurrent CNVs, providing 
a framework that can be applied to an even larger spec-
trum of diseases.
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