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Abstract 

Identifying expressed somatic mutations from single-cell RNA sequencing data de novo is challenging but highly 
valuable. We propose RESA – Recurrently Expressed SNV Analysis, a computational framework to identify expressed 
somatic mutations from scRNA-seq data. RESA achieves an average precision of 0.77 on three in silico spike-in data-
sets. In extensive benchmarking against existing methods using 19 datasets, RESA consistently outperforms them. 
Furthermore, we applied RESA to analyze intratumor mutational heterogeneity in a melanoma drug resistance data-
set. By enabling high precision detection of expressed somatic mutations, RESA substantially enhances the reliability 
of mutational analysis in scRNA-seq. RESA is available at https:// github. com/ ShenL ab- Genom ics/ RESA.
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Background
Somatic mutations are accumulated during cell genera-
tions and can transform normal cells into cancer, pro-
mote tumor progression, and develop drug resistance. 
Genetic heterogeneity together with transcriptional het-
erogeneity are two key aspects that contribute to can-
cer evolution and drug resistance. Recent studies have 
attempted to identify somatic mutations, single nucleo-
tide variants (SNVs) in particular, by associating them 
with transcriptional variations in cancer bulk RNA-seq 
data [1, 2]. However, it remains challenging to connect 
transcriptional heterogeneity to genetic heterogene-
ity at the single-cell level. Therefore, identifying somatic 
mutations carried by RNA at the single-cell level is highly 
valuable.

Experimental technologies, such as targeted geno-
typing coupled with scRNA-seq, have been developed 
to enable the study of expressional and somatic varia-
tions together at single-cell level [3–5]. However, the 
single cells have limited amounts of biological materi-
als, a small number of detectable mutations, and a low 
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signal-to-noise ratio have restricted their application. 
As a result, computational methods are sought-after to 
identify expressed somatic mutations from scRNA-seq 
data. Profiling of scRNA-seq coupled with bulk genotyp-
ing, e.g. whole exome sequencing (WES), whole genome 
sequencing (WGS), and single cell genotyping of selected 
mutations, of the same sample have been applied to study 
intratumor heterogeneity and lineage tracing [5–10]. 
Although such data can effectively minimize false posi-
tives, their design requires thoughtful consideration and 
can only characterize a limited number of mutations, 
thus they were not widely adopted.

Computational methods that identify expressed 
somatic mutations directly from scRNA-seq data de novo 
are highly desirable, as such methods not only provide 
orthogonal insights into the intratumor heterogeneity 
but also face fewer experimental challenges. Most muta-
tional analysis of scRNA-seq use data generated from 
scRNA-seq technologies with full length library prep, 
e.g. SMART-seq2 [11], for its higher coverage in the 
gene body compared to the 10X genomics and Drop-seq 
approach. De novo somatic mutation calling and follow-
up analysis have been applied to various biological ques-
tions including aging in the human pancreas, Alzheimer’s 
disease, glioblastoma, lung cancer, etc. [12–15]. Methods 
reported in these studies employ standard variant calling 
steps that involve quality-based filtering such as sequenc-
ing quality or stratification from a curated whitelist of 
known cancer mutations, following the standard variant 
calling steps. However, these methods were originally 
designed for bulk RNA-seq data and their reliability for 
single-cell RNA-seq data still requires further evaluation 
[16–19].

In this study, we developed a computational framework 
named Recurrently Expressed SNV Analysis (RESA) 
that can detect expressed somatic SNVs with high preci-
sion directly from scRNA-seq data. RESA is composed 
of a specific filtering workflow tailored for scRNA-seq 
data, especially the recurrence of expressed SNVs across 
cells. Additionally, we introduced a joint logistic regres-
sion (RESA-jLR) model that expands the pool of somatic 
variants by leveraging information from earlier steps. To 
evaluate the performance of RESA and RESA-jLR, we 
conducted in silico spike-in experiments using over 800 
cells from the human pancreas. Furthermore, we bench-
marked RESA and RESA-jLR using real scRNA-seq data-
sets with matched WES data from 15 cancer cell lines 
and 4 tumor PDX tissues. RESA is specifically designed 
for high precision detection of somatic mutations while 
minimizing noise and artefacts from experimental proce-
dures, so that users can be confident with the reliability 
of the results (Additional file 1: Fig. S1). Thus, the appli-
cations of RESA and RESA-jLR may provide a reliable 

and integrative view to study intratumor heterogeneity 
and drug resistance.

Methods
WES and scRNA‑seq datasets of cancer cell lines
The exonic somatic mutations for all cancer cell lines 
tested in this study were processed by the CCLE pro-
ject and downloaded from CCLE_20Q1_mutations [20]. 
The scRNA-seq for cancer cell lines were downloaded 
from GSE105451, GSE76312, GSE99795, GSE150993, 
GSE108383, GSE140440, and GSE69405 respectively.

Specifically, scRNA-seq for JURKAT, SET2 
(GSE105451), and K562 (GSE76312) was done using the 
SMART-seq + and TARGET-seq technologies [4, 5]. All 
other cell lines were done with the Smart-seq2 protocol. 
LNCaP (GSE99795) was treated with double thymidine 
for 12  h (hr) to synchronize the population cell cycle, 
then single cells were collected at 0 h without drug treat-
ment, and 12  h with and without drug treatment [21]. 
HCT116 (GSE150993) live cells and methanol-fixed cells 
were processed and sequenced respectively [22]. Yu-jui 
Ho et al. sequenced A375 (GSE108383) with and without 
BRAF inhibitor [23]. Similarly, Patricia M Schnepp et al. 
divided their cells into docetaxel-sensitive and -resistant 
groups of DU145 (GSE140440) [24]. Finally, we analyzed 
both the cancer cell line NCI-H358 data (GSE69405) and 
lung adenocarcinoma (LUAD) PDX tumor data from 
Kyu-Tae Kim et al. [25].

Besides, we evaluated the consistency between two 
experimental replicates of these cell lines after applying 
RESA-jLR in all applicable cases. We counted the number 
of detected mutations in each replicate and computed the 
fold change between the number of detected mutations 
in replicate 1 and the number of detected mutations in 
replicate 2. If the result is close to 1, it means the number 
of detected mutations between two replicates is similar. 
The consistency shows that our method has stable per-
formance in datasets under similar conditions.

RESA workflow
RESA comprises three main steps: initial variant calling, 
filtering and labeling, and modeling and refinement [26]. 
The first step of RESA is to align the sequencing reads 
to the genome and run through basic mutation calling 
algorithms with RNA-seq specific parameter settings 
(Fig.  1a). To minimize aligner and variant caller biases, 
two independent alignments and two basic variant callers 
were employed. Next, we run through a series of process-
ing, filtering, and most importantly, cross-cell recurrence 
counting. In this step, the variants are grouped into 3 cat-
egories: 1) a high-confidence set of SNVs that are either 
putative somatic SNVs or artefacts; 2) a set of filtered-
out variants; and 3) a set of undefined SNVs for further 
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refinement (Fig. 1b). The high-confidence set of putative 
positive somatic variants were labeled as RESA-identified 
somatic mutations.

Denoting RESA identified mutations as “positive” and 
the putative biases and artefacts variants as “negative”, 
RESA randomly splits the data into training and test sets. 
We developed a joint logistic regression classifier that 
models both quality and sequence-related features inde-
pendently (Fig.  1c). The joint logistic regression classi-
fier was then applied to make predictions on the set of 

undefined SNVs. The final set of somatic SNVs identi-
fied by RESA-jLR is a combination of positive SNVs from 
the high-confidence set and predicted positive SNVs 
from the undefined set using the joint logistic regression 
model.

Initial read mapping and variant calling
To reduce the bias in aligners and variant callers, we 
employed two independent alignment and variant call-
ing methods for each cell’s fastq file in the scRNA-seq 

Fig. 1 RESA workflow. a Step1 is an initial variant call using two aligners and two mutation calling algorithms. b RESA: Variants calling then goes 
through a series of filtering and labeling, categorizing into a confident set of positive somatic variants and artefacts, and a set of unsure SNVs 
to refine. c RESA-jLR: The confident set of variants is used to build a joint logistic regression model, where the model is applied to make predictions 
in the unsure set of SNVs to refine and expand the final positive set of somatic SNVs. d the detailed workflow of RESA
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analysis. The first method consisted of aligning the reads 
using the widely adopted STAR aligner  [27], a highly 
effective read aligner, in a two-pass mode to improve 
alignment accuracy. Then processing the aligned reads 
based on recommendations from GATK (gatk/4.0.0.0) 
[28] involving steps such as removing duplicates and 
recalibrating base quality scores and calling variants 
using GATK (Fig.  1d). The second method involved 
aligning the reads using the Minimap2 aligner [29], fol-
lowed by RNA variant calling settings from Strelka  [30] 
(Fig. 1d). Only variants marked as passing the default fil-
tering set by the Strelka algorithm were retained for this 
method. Therefore, we obtained two sets of candidate 
variants per cell that were detected by these two pipe-
lines. Our primary reference for downstream analysis 
was the STAR-GATK procedure which is a widely used 
combination of read alignment and variant calling pipe-
lines, as we found that the GATK process can aid in iden-
tifying and correcting noise and artefacts in the data. The 
outputs from the STAR-GATK procedure included infor-
mation that was utilized in subsequent steps.

RESA
We then annotated and filtered variants from the STAR-
GATK pipeline similar to the CTAT-Mutations Pipeline 
which is designed to detect variants from bulk RNA 
sequencing data [31]. We first annotated the variant 
location using ANNOVAR and kept only SNVs located 
in the exonic region for downstream filtering and labe-
ling. Then SNVs that overlapped with RNA editing data-
bases were removed for potential RNA editing events 
(Fig. 1d). After that, we filtered germline variants gener-
ated from matched normal if available, or from popula-
tion SNP databases such as the genome Aggregation 
Database(gnomAD) 3.0. Hence, the primary filtered can-
didate variants from the original STAR-GATK pipeline 
were kept for further procession.

Next, we checked the concordance between the filtered 
STAR-GATK pipeline and the second pipeline using 
RESA. Variants identified by both pipelines were consid-
ered for candidate variant set A which represented the 
intersection of results from these two pipelines, while the 
variants of the filtered STAR-GATK pipeline which were 
the elements of the second pipeline were considered for 
candidate set B. RESA further processed the variant call-
ing outputs by setting additional requirements on read 
quality, variant quality, strand bias, and variant positional 
bias. The common variants from the above-mentioned 
procedures were required to have a minimum read depth 
of 3 or user-specified site-specific depth.

Importantly, the resulting filtered SNVs for variant 
set A were stricter or at least comparable to quality-
based filtering approaches used in other studies, such 

as the Quality-filter approach [12, 16] referred to as 
Enge, 2017, for performance comparison.

RESA assumes that cancer cells evolve in a clonal 
manner and thus expressed somatic mutations have 
cross-cell recurrence, whereas the noise and artefacts 
are likely distributed randomly with a small probabil-
ity of recurrence across the cell population (Fig.  1d). 
Based on this assumption, RESA set a cross-cell recur-
rence filter on a pseudo-bulk basis by keeping only 
SNVs that were detected in at least X number of cells 
to filter out artefacts, where X (X >  = 3) by default is 
no less than 10% of the total cell number and can be 
adjusted by users (Fig. 1d), which removed background 
sequencing errors and artefacts from candidate somatic 
SNVs. This criterion was intended to filter the false 
positive somatic mutations because we assume that the 
true positive somatic mutations should at least express 
a certain number of cells, but it may also remove true 
positive somatic mutations that are only expressed 
in very few cells (less than 10%). Furthermore, muta-
tions detected in more than 80% of the total cell num-
ber were considered to be germline polymorphisms or 
artefacts as well. The key assumption is that compared 
with somatic mutations, germline variants should be 
detected in most cells at the RNA level.

The upper and lower limit number of cross-cell recur-
rence were used as parameters in the software and could 
be adjusted in a user-specified manner. The filtered SNVs 
from set A were considered putative true somatic vari-
ants. Thus, RESA built a putative “true positive” set of 
somatic variants directly from scRNA-seq data based on 
cross-cell recurrence and quality-based filtering.

RESA applied several criteria to enable filtering of 
putative germline mutations: 1) germline variants that 
were generated from the matched normal data, if avail-
able and specified in user input; 2) putative germline 
variants identified from population SNP databases such 
as gnomAD 3.0.; 3) putative germline variants with high 
detection recurrence in the tested cell population.

To build a high-confidence set of noise and artefact 
SNVs, RESA selected SNVs from set B that failed the 
above-mentioned criteria, such that putative noise and 
artefacts had the following properties:1) SNVs did not 
pass the quality-based filtering as described above, and 
2) SNVs did not show any cross-cell recurrence. The 
remaining SNVs in set B pass the above-mentioned cri-
teria and SNVs in set A failed the criteria were defined 
as the unsure set, which was subjected to RESA-jLR 
described below. We applied this selection criteria for 
each single cell and found very few SNVs overlapping 
between the positive and negative sets after merging 
SNVs across the cell population, suggesting a decent sep-
aration between our putative positive and negative sets.
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RESA‑jLR
RESA employs a process of combining all putative posi-
tive and negative sets of somatic SNVs. The input vari-
ants to feed RESA-jLR combined all variants in positive 
and negative sets. Then the input dataset was split into 
training and test sets with the 3:1 ratio, with 3 quarters 
of the data used for training the model, and a quarter of 
the data used as an independent test set to evaluate the 
model performance. Because the sample size for each 
class on the training set was often imbalanced, thus, 
random oversampling was applied to replicate observa-
tions in minority classes, thereby rebalancing the data-
set. RESA with the joint logistic regression model was 
the joint composition of two logistic regression models. 
One model depended on quality-based features such as 
variant quality, read depth, variant allele fraction, nor-
malized probabilities of genotype, and allele depth. The 
other model derived its features from sequence-based 
attributes like mutation types, sequence contexts, and 
mutation signature components. Quality-based fea-
tures were generally weighted similarly across datasets, 
while mutation sequence composition can be more 
sample-specific; hence, they were modeled differently. 
We trained the joint logistic regression model using 
the liblinear library, with L1 regularization applied to 
the quality-based model and L2 regularization applied 
to the sequence-based model using one-hot encoding. 
Each logistic regression model returned probability val-
ues for positive and negative classifications, with users 
being able to specify their thresholds based on these 
probabilities. Then we combined these two models into 
an integrated classifier with the following equation:

Where w =

{

1, if P ≥ 0.5

0, otherwise
 , Pseq and Ppos were probabili-

ties to be the positive class of the two regression models. 
RESA-jLR sets 0.5 as the default threshold, which meant 
RESA-jLR defined the SNVs as positive if 
P posclassifier ≥ 0.5 . We also included probability as a 
parameter so that users could modify the thresholds.

After training, we assess the model’s performance on 
the test set using the AUC score. As opposed to accu-
racy, the AUC score is appropriate for imbalanced 
datasets. Additionally, we applied the model to the can-
didate SNVs in the unsure set to refine and extrapolate 
the putative somatic variant set. This step recovered 
some true somatic variants filtered out in stringent cri-
teria described earlier and enhanced sensitivity while 
maintaining high precision.

P
(

posclassifier

)

=
1

2

∑

P∈(Pseq ,Ppos)
wP,

Somatic mutation detection by other methods
We conducted a performance evaluation of RESA and 
RESA-jLR by comparing them to five previously pub-
lished methods, including Enge 2017, Maynard 2020, 
BCFtools, VarScan, and Hovestadt 2019. We applied sim-
ilar filtering criteria and parameters for somatic mutation 
filtering across all methods.

Somatic mutations were filtered by similar quality cri-
teria which have been adopted in Enge 2017 [12, 16]. 
Specifically, we aligned sequencing data to the hg38 
human reference using STAR and called alignment BAM 
files for different cell lines using GATK HaplotypeCaller. 
We then filtered out potential artefacts using Variant-
Filter (-cluster 3; -window 35; -filter QD < 2.0; -filter 
FS > 30.0). Finally, we employed the GATK variant qual-
ity score recalibration pipeline to filter the variation calls 
and exclude known germline variants.

Moreover, we utilized concord whitelist-based muta-
tion selection which has been adopted in the Maynard 
2020 with similar filtering criteria [15]. Reads were 
aligned using STAR aligner, processed as suggested by 
GATK pipeline (gatk 4.0.0.0). Variants were called by 
GATK HaplotypeCaller (this process is adopted as part of 
the STAR-GATK Pipeline) [30]. Next, we filtered out var-
iants using the following criteria: 1) variants are located 
in exonic region; 2) variants have pathogenic effect as 
predicted by FATHMM; 3) variants have minimum total 
read depth of 3; 4) variants have been curated in COS-
MIC database [32] in the same tissue type as sample 
tested. Besides, we also applied the STAR-GATK Pipe-
line [28] from raw sequencing data detecting variants.

BCFtools [33] (BCFtools 1.9) and VarScan (Varscan 
v2.4.4) [34] were evaluated for their performances of 
detecting mutations across scRNA-seq data [16]. We 
aligned reads to hg38 human reference using the BWA-
MEM (BWA 0.7.17) and then used the GATK-PICARD 
pipeline to preprocess the BAM file. For better compari-
son, we chose the default parameters of these toolkits.

Besides, we created another recurrence-based method 
based on recurrence rates by following filtering criteria 
in the Hovestadt 2019 [10]. We quantified variants at the 
genomic position using SAMtools mpileup for preproc-
essed BAM files in scRNA-seq data and then filtered out 
variants detected in fewer than three cells or not detected 
in the genome sequencing data.

Somatic mutation detection using RESA in in silico 
spiked‑in dataset
In order to further assess the effectiveness of RESA on 
human tissue datasets, we conducted a test using in sil-
ico spiked-in datasets. We hypothesized that scRNA-seq 
data from healthy juveniles would not contain somatic 
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mutations, with the variants detected more likely to be 
germline mutations or artefacts resulting from sequenc-
ing. To assess the ability to detect somatic mutations in 
human tissue RNA datasets, we added somatic mutations 
from 10 distinct cell lines. The inclusion of various types 
of somatic mutations from different cell lines allowed 
for the evaluation of the generalization of RESA, as it 
was exposed to diverse mutation spectrums. And in this 
experiment, our focus was on the ability to detect add-
on somatic mutations to avoid the potential impact on 
model performance that could arise from using ground 
truth data filtered by different criteria.

To avoid the subjective factors and controllable pref-
erences, we used an independent tool – BAMSurgeon, 
a tool that can introduce somatic mutations to BAM 
files, to generate simulation data [35]. To add mutations, 
we collected three independent real scRNA-seq data of 
pancreatic epithelial cells from healthy juveniles with 
SMART-seq2 technology, aged 1  month, 5  years, and 
6 years [12]. We aligned the raw reads from real scRNA-
seq data to GRCh38 (GRCh38.p12) using BWA-MEM 
0.7.17 with default parameters to create the original 
BAM files.

To spike SNV mutations into each scRNA-seq data-
set, we used ten cancer cell lines with varying numbers 
of mutations from CCLE [20] as the ’truth’ VCF files 
that contained variant position information and variant 
allele fraction (VAF). The VAF of SNVs was determined 
by WES. If the VAF was missing, we replaced the VAF 
with 0.5. We used addsnv.py with the following relevant 
settings to spike SNVs in the original BAM files of cells: 
–mindepth 2 –minmutreads 1 –aligner mem. We then 
converted the ’burned-in’ BAMs to in silico ’spiked-in’ 
FASTQ files using GATK 4.2.3.0 SamToFastq. We iden-
tified ’spike-in’ SNVs from each cell and reintroduced 
simulated SNVs to 50% of VCF files generated by the 
STAR-GATK procedure. Once algorithmic biases were 
introduced into the cells, we proceeded to analyze the 
’spike-in’ data using RESA and five other algorithms—
Enge 2017 [12], Maynard 2020 [15], Hovestadt 2019 [10], 
BCFtools [16], and VarScan [16].

Method evaluation
To evaluate the performance of different methods, we 
gathered somatic mutations identified by various meth-
ods as mentioned above. We defined WES-identified 
somatic mutations that were carried in the tested scRNA-
seq dataset as the ground truth. In this context, false pos-
itives are "false" somatic mutations including germline 
variants, RNA editing sites, noise, and artefact mutations 
in scRNA-seq data that are labeled as somatic mutations 
by RESA. Meanwhile, false negatives refer to true somatic 

mutations in scRNA-seq that are mislabeled by RESA as 
"false".

Precision, sensitivity, and F0.5 score were utilized to 
assess the performance of RESA across datasets. Preci-
sion evaluates the proportion of true positives among all 
the predicted positives, while sensitivity measures the 
proportion of true positives among all the ground truth 
positives. The F0.5 score is a commonly used adjusted 
F-score that assigns greater weight to precision than to 
sensitivity, given that precision is of greater importance 
in our algorithm. The F0.5 score satisfies the following 
equation:

As we developed RESA, our strategy prioritized pre-
cision over sensitivity to instill greater confidence. This 
means our focus was on detecting true somatic muta-
tions while minimizing the impact of artefacts. Even 
in  situations where there is no matched normal WES/
WGS data available for comparison, our strategy could 
still accurately predict somatic mutations.

To show the consistency between replicate experi-
ments, we have presented it by using the overlap coeffi-
cient. It is defined as the size of the intersection divided 
by the smaller of the size in these two datasets.

Analyzing primary tumor data
Kyu-Tae Kim used scRNA-seq by SMART-seq and 
whole-exome sequencing (WES) to examine intratu-
mor heterogeneity in lung adenocarcinoma tumors 
(GSE69405). A 60-year-old male patient had a treatment-
naïve lung cancer tumor, which was surgically excised 
and inoculated into immunocompromised mice to gen-
erate patient-derived xenograft (PDX) tumors. A sample 
of PDX tumor containing 34 single cells and an addi-
tional sample with 43 cells as a biological replicate were 
sequenced. WES analysis was also done on the patient’s 
blood to obtain the matched normal data and filter out 
germline mutations.

The raw reads for melanoma scRNA-seq used for 
mutation identification were obtained from GSE116237 
[36]. The matched WES data for the PDX sample with 
two replicates were downloaded from EGAD0000179 
[37]. Four time points (T0, phase 1, phase 2, and phase 
3) were included in the scRNA-seq dataset, but only T0 
and phase 3 had matched WES data. To assess the per-
formance of our method using matched WES data, we 

F0·5 = 1.25 ·

(

precision sensitivity
)

0.25 precision+ sensitivity

overlap(X ,Y ) =
|X ∩ Y |

min(|X |, |Y |)
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utilized RESA and RESA-jLR separately on these two 
time points.

Somatic mutation calling from WES data was car-
ried out similarly to the CCLE project, including align-
ing WES reads to the GRACh38 reference genome using 
BWA-MEM 0.7.17, marking duplication with Picard, 
and avoiding systematic errors by Base Quality Score 
Recalibration with variant sites identified from the 1000 
Genomes Project, dbSNP138, and Mills and 1000G gold 
standard indels. HaplotyCaller was used to call SNVs for 
the PDX tumor sample that contained matched normal 
data such as patient blood WES. The model of scoring 
variant quality for filtering was developed by VariantRe-
calibrator and ApplyVQSR under default parameters.

Re‑analyzing melanoma scRNA‑seq expression matrix
The gene expression read count table after process-
ing melanoma PDX data for all cells was obtained from 
GSE116237. The Seurat package was employed for 
expression analysis, and read counts were log normalized. 
The top 2000 variably-expressed genes were selected for 
dimension reduction using PCA. The K-nearest neigh-
bor (KNN) graph was clustered and refined using the 
Louvain algorithm based on the top 30 transformed 
PCs from PCA. UMAP was used with a dimension of 20 
and applied to the top 30 PCs for data exploration and 
visualization.

Analyzing stage‑specific somatic mutations
To enhance the sensitivity of our methods, we utilized 
RESA and RESA-jLR on the melanoma scRNA dataset 
across four time points. We then assessed stage-spe-
cific enrichment by calculating the p-value based on the 
cumulative distribution function of the hypergeometric 
distribution. We aimed to determine whether the num-
ber of cells with a mutant gene was overrepresented in 
one stage compared to the other stages. For each candi-
date gene containing a somatic mutation, we counted the 
number of mutation-carrying cells in each tumor stage 
and computed the p-value to identify the enrichment at 
each stage. If a gene passed the defined threshold p-value 
of 0.05 at a specific stage, we labeled it as enriched at that 
stage. This indicates that the distribution of the num-
ber of mutation-carrying cells is non-uniform and sig-
nificantly enriched at the specific stage compared to the 
other stages [38].

Custom analysis and plots
Mutation Signature plots were done using SigProfiler-
Ploting. UMAP plots were done using the Seurat package 
in R. Other custom plots were done using the Seaborn 
package in Python and the ggplot2 package in R.

Results
Challenges of detecting expressed SNVs in scRNA‑seq data
De novo identification of somatic SNVs from scRNA-seq 
data is challenging due to the sparsity and noisiness of the 
data. Several factors, including allelic expression, expres-
sion abundance of mutant-containing genes, sequenc-
ing coverage per cell, variant allele frequency (VAF), and 
clonality, may contribute to the sparsity of the detectable 
mutations. To understand various factors that may influ-
ence the detectability of somatic mutations in scRNA-
seq data, we gathered WES, bulk RNA-seq (bRNA-seq), 
and scRNA-seq datasets for the melanoma cell line A375. 
For example, the site for the BRAF V600E driver muta-
tion has high coverage (referred to as site-specific depth 
hereafter) in both WES and bRNA-seq data, whereas 
only three out of five selected single cells have detect-
able site-specific depth (Fig.  2a). As indicated by this 
example, allelic expression as well as sequencing cover-
age might contribute to the sparsity of somatic mutations 
detectable from scRNA-seq data, which is also known as 
the effect of “allelic dropout”. Next, we analyzed scRNA-
seq of all A375 cells and observed a significant correla-
tion between sequencing coverage and expressed somatic 
mutations per cell (Fig. 2b). Concordantly, both site-spe-
cific depth and the gene expression levels correlate posi-
tively with the number of detectable somatic mutations 
(Fig.  2c, Additional file  1: Fig. S2). In addition, scRNA-
seq VAF correlates positively with VAF from both bRNA-
seq (Fig.  2d) and WES (Fig.  2e, Additional file  1: Fig. 
S3). Collectively, these results suggest that the detection 
of somatic mutations in scRNA-seq is jointly shaped by 
the mutation burden, sequencing coverage of the cell, as 
well as the sequencing depth and expression level of the 
mutant allele.

The sparsity of detectable somatic mutations in 
scRNA-seq data can be alleviated by sequencing a 
large number of cells (Fig.  2f ). However, de novo 
identification of expressed somatic mutations follow-
ing standard variant calling pipelines results in tre-
mendous amounts of noise in the data (Fig.  2g). One 
possible explanation for the noise is that currently 
used mutation calling algorithms failed to take into 
account the noise and artefact SNVs generated dur-
ing the experimental procedure. Consistently, a recent 
study evaluated the performance of several muta-
tions calling algorithms on scRNA-seq data using 
simulated scRNA-seq reads, and demonstrated that 
most of the algorithms tested showed satisfying per-
formance with FDR < 0.05 [16], suggesting that noise 
and artefacts carried by the sequencing read can be 
picked up equally well with actual mutations of the 
cell. This aligns with our knowledge that the experi-
mental procedures of scRNA-seq, including cell lysis, 
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cDNA conversion, library preparation, etc., may result 
in arteficial variants that far exceed the number of true 
variants (Additional file  1: Fig. S4). Subsequently, the 
direct application of such mutation calling algorithms 
on real scRNA-seq data may mislead biological inter-
pretations of the data. Therefore, computational meth-
ods that can effectively filter out such experimental 
noise and artefacts are essential for de novo identifica-
tion of somatic mutations in scRNA-seq data.

The computational principle of RESA to identify somatic 
SNVs from scRNA‑seq
We present a computational framework RESA – 
Recurrently Expressed SNV Analysis, which detects 
expressed somatic mutations with high precision 
directly from scRNA-seq data (Fig. 1a-d). We focused 
on scRNA-seq technologies that capture full length 
transcripts and single nucleotide variants (SNVs) for 
somatic mutation analysis. RESA effectively eliminates 

Fig. 2 Detecting expressed somatic mutations in the A375 cell line and pancreas tissue datasets. a Integrative Genomics Viewer (IGV) window 
shows the hotspot mutation BRAF V600E in the A375 cell line. b The scatter plot of the percentage of exonic SNVs validated in scRNA-seq 
against the million reads per cell. c The scatter plot shows the expression level against the number of expressed somatic mutations in each gene. 
d, e, The bar plot illustrates the distribution of VAF of expressed somatic mutations in scRNA-seq compared with corresponding VAF in bRNA-seq 
(d) and in WES (e). f The percentage of accumulated expressed SNVs validated in scRNA-seq. g The density plot shows the distribution of detected 
SNVs of each cell after passing the standard variant calling pipeline in the A375 cell line datasets with two conditions
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noise and artefact variants in the scRNA-seq data by 
applying a series of filtering steps, including cross-cell 
recurrence. For instance, with the standard variant 
calling process, about 0.5–0.8 million SNVs were iden-
tified in cancer cell lines A375 and HCT116, where 
numerous noises and artefacts dominate the pool 
(Additional file 1: Fig. S5). We found that different var-
iant callers followed with basic filtering barely helped. 
On the contrary, applying RESA effectively removed 
the majority of noises and artefacts, and achieved 
about 75% of true somatic SNVs out of the total SNVs 
identified by the algorithm (Additional file 1: Fig. S5c, 
d). In addition, we developed a joint logistic regres-
sion approach following RESA, i.e., RESA-jLR, to filter 
out noise and artefacts while increasing sensitivity by 
identifying positive cases from an unsure set of vari-
ants. Notably, applying RESA-jLR identified additional 
somatic SNVs while keeping the proportion of noise 
and artefacts small (Additional file 1: Fig. S5).

We validated that RESA-identified somatic muta-
tions maintained a positive VAF correlation between 
scRNA-seq and WES, as well as scRNA-seq and 
bRNA-seq across multiple cell lines (Additional file 1: 
Fig. S6a, b). In particular, although germline vari-
ants are thought to share similar quality properties 
as somatic mutations, we adopted several approaches 
to help eliminate germline variants in different 
circumstances.

We applied RESA-jLR to full-length scRNA-seq data 
from 15 datasets encompassing 8 cancer cell lines, 
which were generated by different research groups, 
employed different experimental protocols, and oper-
ated under different experimental conditions (Meth-
ods, Additional file 2: Table S1). To assess the accuracy 
of the joint logistic regression model, we evaluated its 
performance in the independently held-out test sets. 
The model achieved an AUC ranging from 0.79 to 
0.98, with an average AUC of 0.89 (Additional file  1: 
Fig. S7), suggesting the joint logistic regression model 
was highly effective. Furthermore, we observed high 
agreement among most datasets when comparing the 
feature weights of quality-related features in the qual-
ity-based logistic regression. This indicates that the 
effect of quality-related features on mutation detection 
could be generalizable (Additional file  1: Fig. S8a). In 
contrast, we found that feature weights of sequence-
related features were cell type-specific, with high 
correlation observed only among different experimen-
tal conditions of the same cell line (Additional file  1: 
Fig. S8b). This demonstrated the adaptable nature of 
RESA-jLR to specific cell types and the robustness of 
RESA-jLR across experimental conditions.

RESA maintains high precision in in silico spike‑in 
scRNA‑seq datasets of human tissue
To comprehensively benchmark RESA against other 
methods in human tissue scRNA-seq data under diverse 
scenarios, we designed an in silico spike-in experiment 
(Fig.  3a). Briefly, we collected SMART-seq2 data gener-
ated from pancreas tissues of three donors as three base-
line datasets, namely 4-month-old (221 cells), 5-year-old 
(331 cells), and 6-year-old (178 cells), respectively [12]. 
We considered the datasets from these donors to carry 
predominantly noise and artefacts and expected mini-
mal true somatic mutations as they were generated in 
body cells after birth. We then collected a total of 77,088 
somatic mutations from CCLE WES data of 10 cancer 
cell lines with varying cancer types and mutation bur-
dens. For each cancer cell line and each baseline dataset, 
we “spiked-in” somatic SNVs in silico using BAMSurgeon 
[35], followed by performing RESA or other methods to 
detect somatic mutations. To analyze the effect of cover-
age per cell and cell number on algorithm performance, 
we sorted the single cells in decreasing coverage and 
tested algorithms’ performance on different subsets of 
the cell population (Fig. 3a, Methods).

RESA demonstrated the most consistent and high-
est precision in all spiked-in scRNA-seq datasets tested, 
with average precision of 0.84, 0.87, and 0.87 for the 
three baseline datasets, respectively, followed by RESA-
jLR model with average precision of 0.61, 0.66, and 0.76, 
respectively (Fig.  3b). Among the five previously pub-
lished methods, Maynard et al. showed the highest aver-
age precision. However, the precision varied significantly 
across different test cases, with an average precision of 
only 0.2 for all three baseline datasets (Fig. 3b). Further-
more, spike-in results showed that additional cells with 
lower sequencing coverage led to decreased precision 
overall, but RESA demonstrated more stable precision 
compared to the RESA-jLR model (Fig. 3b). This suggests 
that sequencing coverage at a single cell level might be 
more crucial for mutation detection than the total num-
ber of cells tested. Additionally, we observed that RESA 
consistently maintained high precision with low vari-
ation even with a significant variation in the number of 
“spiked-in” somatic mutations from different cancer cell 
lines (Fig.  3b, d). Here we demonstrated that RESA can 
reach average an precision of 0.86 in primary tissue sam-
ples, with an average of 1.8 million reads/cell (Additional 
file 1: Fig. S9). Notably, in the in silico spike-in data of a 
1-month-old infant, more than 50 cells had less than 1 
million reads, yet the average precision for this dataset 
was approximately 0.87.

The RESA-jLR model complemented the conservative 
approach used in RESA by demonstrating increased 
sensitivity at the cost of decreased precision. For 
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instance, the RESA-jLR identified, on average, 20% 
more new somatic mutations in the test cases from the 
5-year-old baseline dataset (Additional file 1: Fig. S10). 

We further evaluated the performance using an F0.5 
score, a weighted harmonic mean emphasizing more 
on precision over sensitivity. In test cases with large 

Fig. 3 Benchmark RESA to other methods in the in silico spike-in scRNA-seq datasets. a Workflow for in silico spike-in. scRNA-seq raw reads 
of pancreas tissues from 3 healthy juveniles using SMART-seq2 technology in Enge et al. 2017 [12] were collected as original BAM files. Somatic SNVs 
of 10 cancer cell lines covering 5 tissues of origin were identified from WES data. Bamsurgeon spiked cancer cell line somatic SNVs into the original 
BAM files to produce ‘Burn-in’ BAM files. In silico spike-in scRNA-seq datasets were ordered by the coverage of each cell, split into several subsets, 
and followed by further evaluations. b, The violin plot illustrates the distribution of coverage in each subset. The error bars display the average 
and standard deviation of the precision of RESA, RESA-jLR, and the other 5 previously published algorithms. If the minimum value of the error 
bar is less than 0, 0 is shown. Top: a 4-month-old infant (Blue). Middle: a 5-year-old child (Purple). Bottom: a 6-year-old child (Green). c The 
scatter plot shows precisions and sensitivities in different subsets of 10 cell lines. Points in red are the results of RESA, and points in blue are 
the results of RESA-jLR. Top: a 4-month-old infant. Middle: 5-year-old child. Bottom: a 6-year-old child. d F0.5 score in in silico spike-in scRNA-seq 
datasets (Wilcoxon rank-sum test, NS: not significant, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001). Top: a 4-month-old infant (Blue). Middle: 
5-year-old child (Purple). Bottom: a 6-year-old child (Green). e The bar plot illustrates the number of “spiked-in” mutations across 10 cell lines. Top: 
a 4-month-old infant (Blue). Middle: 5-year-old child (Purple). Bottom: a 6-year-old child (Green)
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numbers of “spiked-in” somatic mutations, RESA-jLR 
outperformed RESA with an increase in sensitivity and 
a stable precision that resulted in higher F0.5 scores 
(Fig. 3c, d, e, Additional file 1: Fig. S11), suggesting that 
RESA-jLR has advantages in datasets with high muta-
tion burden. In addition, through in silico “spike-in” 
analysis, we demonstrated the superior performance of 
RESA across different sequencing coverage and cancer 
cell lines. Our results highlighted the difficulty in bal-
ancing precision and sensitivity in scRNA-seq somatic 
mutation detection tasks.

RESA achieves higher precision across cancer cell line data
The WES/WGS data available from various cancer cell 
lines presented us with the opportunity to assess the per-
formance of different methods using orthogonal infor-
mation. We gathered 15 scRNA-seq datasets covering 
eight cancer cell lines with somatic mutations from WES 
available, and compared five previously published meth-
ods [10, 12, 15, 16] with varying strategies to benchmark 
against the RESA pipeline. Across all 15 datasets, both 
RESA and RESA-jLR consistently demonstrated sub-
stantially higher precision compared to other methods, 

Fig. 4 Evaluating the performance of RESA with comparison to other methods using WES data across multiple cancer cell lines. a Boxplots showing 
precisions (top) and sensitivities (bottom) of different methods in identifying positive somatic SNVs using WES data as ground truth across 15 
scRNA-seq datasets. b The scatter plot showing F0.5 scores of different methods in identifying positive somatic SNVs using the number of somatic 
SNVs in WES data as ground truth across 15 scRNA-seq datasets. c Mutation spectra of somatic SNVs identified using all exonic SNVs, all expressed 
SNVs, RESA-jLR, and the Maynard 2020 approach across 3 scRNA-seq datasets. Pairwise cosine similarity scores were shown next to brackets
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achieving an average precision of 0.75 (Fig.  4a, Addi-
tional file 1: Fig. S12), while RESA-jLR increased sensitiv-
ity with slightly decreased precision compared to RESA 
alone (Fig. 4a, Additional file 1: Fig. S13). The high preci-
sion of RESA and RESA-jLR made the identified somatic 
mutations much more reliable for downstream analysis 
and interpretations, despite suboptimal sensitivity. The 
other methods showed variable sensitivity but dramati-
cally lower precision, which diminished the value of these 
methods (Fig.  4a). Additionally, RESA and RESA-jLR 
outperformed other methods overall, with RESA-jLR 
showing marginally higher and more stable F0.5 perfor-
mance (Fig. 4b). The best-performing method, other than 
RESA, is the method used by Maynard et al. [15] (Meth-
ods), which mainly focused on filtering against a curated 
somatic mutation whitelist combined with tissue source 
information. Although this filtering of mutations is intui-
tively reasonable, however, the performances of the May-
nard et al. method varied dramatically depending on the 
dataset used, which confirmed the sporadic nature of 
cancer somatic mutations in a sample specific manner. 
In contrast, the somatic mutations identified by RESA 
between datasets of the same cell line showed remarkable 
consistency (Additional file 1: Fig. S14b).

Notably, RESA effectively identified somatic SNVs 
across cancer cells with varying mutation burdens despite 
sensitivity differences (Fig.  4a, Additional file  1: Fig. 
S14d). In particular, in the case of the JURKAT cell line, 
RESA detected a median of 449 and 387 somatic SNVs 
per cell in the SMART-seq and TARGET-seq datasets, 
respectively. These numbers were over 100 times higher 
than the somatic mutations detected in experimental 
multi-omic profiling (Additional file  1: Fig. S14c, Addi-
tional file 3: Table S1, Additional file 4: Table S1) [3, 4].

Next, we assessed the population-wise mutational 
spectrum captured by different methods against the 
WES mutational spectrum, and all expressed SNVs that 
can potentially be detected in the corresponding scRNA-
seq data. We observed that expressed SNVs generally 
captured the exonic mutational spectra well, with lower 
numbers of SNVs detected and sparser presentation for 
low mutation burden samples (Fig. 4c, Additional file 1: 
Fig. S14d). Expressed SNVs detected by RESA-jLR repro-
duced the mutational spectrum of all expressed SNVs 
faithfully, particularly in samples with a high mutation 
burden (Fig. 4c, Additional file 1: Fig. S14d). In contrast, 
Maynard 2020 [15], the best-performing method in pre-
cision among all other methods, failed to capture the 
mutational spectra of either expressed or all exonic SNVs 
(Fig. 4c, Additional file 1: Fig. S14d). Therefore, expressed 
SNVs detected by RESA-jLR from the scRNA-seq data 
can be used to assess the genomic mutational spectra, 
particularly in samples with a high mutation burden.

RESA achieved higher precision across tumor tissue 
datasets
To further evaluate RESA’s performance in real tumor 
data, we collected four scRNA-seq datasets with match-
ing WES data from two independent studies involving 
different cancer types. These datasets include two repli-
cates of lung adenocarcinoma tumor xenograft [25], and 
melanoma patient-derived xenograft (PDX) before and 
after RAF/MEK inhibitor treatment [36]. Again, RESA 
and RESA-jLR achieved the highest precision and F0.5 
scores over other methods (Fig.  5a, b, Additional file  1: 
Fig. S15, Additional file 1: Fig. S16). In particular, in the 
lung cancer datasets with matched normal WES avail-
able, RESA was able to obtain higher performance using 
germline variants from matched normal than using 
publicly available SNP databases to filter out germline 
variants (Additional file 1: Fig. S17), highlighting that ger-
mline variants from matched normal should be applied 
in RESA whenever such data is available. Despite the like-
lihood of primary tumor samples being more heteroge-
neous than cancer cell lines, RESA maintained a positive 
correlation between scRNA-seq VAF and WES VAF, even 
with large variations in the WES VAF (Fig. 5c).

Melanoma tumors are characterized by UV signatures 
in their mutational spectra, which can serve as an addi-
tional indicator to assess the reliability of RESA. In the 
above-mentioned time-course study of RAF/MEK inhi-
bition resistance using scRNA-seq datasets from the 
melanoma PDX model, over 600 single cells were profiled 
across four time points: T0 (tumor before treatment), 
phase 1 (tumor shrinking stage after treatment), phase 
2 (minimal residual disease stage), and phase 3 (relapsed 
stage after drug treatment) [36]. RESA accurately repro-
duced the typical mutational spectrum of UV signature 
in all melanoma datasets (Additional file  1: Fig. S18a). 
Interestingly, the UV signature remains strong with lit-
tle variation across different clusters or time points of 
the cell population, despite expression heterogeneity of 
somatic SNVs and involved genes (Additional file 1: Fig. 
S18c). This is consistent with previous knowledge that 
treatment with mechanism of action (MOA) not involv-
ing DNA replication and repair, e.g. BRAF inhibitor 
dabrafenib, is not expected to induce large mutational 
changes [36]. In addition, we identified the known BRAF 
V600E driver mutation present in the sample using RESA 
(Additional file  5: Table  S1), further validating the reli-
ability of RESA.

RESA identifies drug resistance‑associated genes 
with expressed somatic mutations in a melanoma PDX 
scRNA‑seq dataset
We applied RESA-jLR to the scRNA-seq datasets of the 
melanoma PDX model, where we identified 575 unique 
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Fig. 5 Benchmark RESA to other methods in PDX tumor datasets. a The bar plots illustrate precisions of RESA, RESA-jLR and other methods 
in a lung cancer PDX tumor from the same patient with 2 replicates. b The bar plots illustrate precisions of RESA, RESA-jLR and other methods 
in melanoma PDX datasets without treatment (T0) and after treatment (Phase3), c, d, e, f, Scatter plots showing VAF correlation of SNVs detected 
by RESA between scRNA-seq and WES in the lung cancer tumor sample with the replicate 1 (c) and replicate 2 (d), and melanoma datasets 
without treatment (e) and with treatment (f)
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somatic SNVs and their corresponding 524 genes (Meth-
ods, Additional file  5: Table  S1). To investigate the 
interplay between mutational heterogeneity and tran-
scriptional heterogeneity, we further analyzed the data-
set using graph-based clustering to summarize the gene 
expression heterogeneity (Additional file  1: Fig. S18b). 
By overlaying the four-time points onto the clusters, we 
identified both shared and unique clusters across time-
points (Fig. 6a), which confirmed the transcriptional het-
erogeneity in the scRNA-seq of the melanoma samples 
throughout different drug treatment stages. For exam-
ple, cluster 3 represented unique cell groups at the MRD 
stage (phase 2), whereas cluster 2 showed expression pat-
terns shared by both the tumor shrinking stage (phase 1) 
and MRD stage (phase 2). We observed that during the 
MRD stage of phase 2, cell clusters of 0,1,2,3,5 were all 
present, indicating a coexistence of heterogeneous sub-
clones rather than the dominance of a single subclone 
despite minimal tumor size. Thus, our gene expression 
reanalysis validates the existence of multiple subclones 
with distinct gene expression signatures across different 
tumor stages.

In order to study the mutational heterogeneity dur-
ing drug response, we defined "stage-specific" somatic 
mutations as follows (Fig.  6b,c). While most mutations 
were found present across all stages, we reasoned that 
subclonal mutations that contribute to different stages 
of the tumor should be non-uniformly present. Based on 
this assumption, we counted the number of cells carrying 
mutations in each tumor stage and calculated the enrich-
ment accordingly. We then identified mutated genes that 
were enriched in specific tumor stages of the cell popu-
lation compared to their wild-type counterparts. Specifi-
cally, we detected 72, 75, 88, and 63 mutated genes for 
the respective stages and focused our following analysis 
on mutated genes (Fig.  6b,c, Additional file  6: Table  S1, 
Methods).

To investigate the mutated gene expression signatures, 
we tested GSEA curated cancer hallmarks enriched for 
the stage-specific mutated genes (Fig.  6d). As expected, 
mutated genes were enriched in pathways associated 
with melanoma development and progression, includ-
ing the p53 pathway, epithelial to mesenchymal tran-
sition (EMT) pathway, mTORC1 signaling, androgen 
response pathway, and UV response [39–44]. Notably, 
when comparing hallmarks of mutated genes across dif-
ferent stages, the androgen response pathway, which is 
associated with melanoma tumor growth and invasion, 
was enriched exclusively in the MRD stage (Fig.  6d). 
Recent clinical research has reported that drug resistance 
is associated with sex, and males have shorter survival 
after BRAF-inhibitor monotherapy  [45, 46]. Addition-
ally, androgen receptor signaling is associated with the 

resistance of targeting BRAF [45]. Thus, the androgen 
response pathway may serve as a crucial mechanism for 
tumor survival in such cases. Therefore, cancer hallmarks 
that may be disturbed by expressed somatic SNVs may 
provide valuable orthogonal information beyond expres-
sion variation.

Discussion
Identifying somatic mutations directly from scRNA-seq 
data has been a long-standing challenge. While attempts 
have been made, no computational method has been 
proven widely applicable. We report a computational 
framework named RESA, which identifies expressed 
somatic SNVs with high precision directly from the 
scRNA-seq data. RESA can effectively filter out noise 
and artefacts generated during the experimental proce-
dure, thereby achieving high precision. In addition, RESA 
applies a joint logistic regression to expand the putative 
somatic mutations, which helps increase detection sensi-
tivity while maintaining high precision. We comprehen-
sively benchmarked RESA across datasets both in  vitro 
and in vivo, and demonstrated the reliability of RESA in 
different scenarios.

In addition to evaluating individual SNVs, RESA also 
attempts to assess the mutational spectrum of expressed 
SNVs. High precision detection of somatic SNVs enables 
reliable mutational signature analysis of the expressed 
SNVs in scRNA-seq data, thus providing insights into the 
mechanistic biological processes involved in cancer pro-
gression, or revealing potential therapeutic opportunities 
in the sample of interest.

Balancing precision and sensitivity is tricky. Precision 
measures the proportion of true somatic mutations iden-
tified by RESA out of all somatic mutations suggested by 
RESA (Additional file 1: Fig. S1). On the other hand, sen-
sitivity measures the proportion of true somatic muta-
tions out of all somatic mutations carried in scRNA-seq 
data. Previous methods mostly achieve high sensitivity, 
but their low precisions lead to an excessive amount of 
noise and artefacts (Additional file 1: Fig. S1). The main 
purpose of our model is to identify higly reliable somatic 
mutation, which emphasizes more on precision over sen-
sitivity. So that we can be very confident in the RESA-
suggested somatic mutations in cases without matched 
WES/WGS for evaluation and improved the reliability of 
downstream analysis. To compensate for the loss of sen-
sitivity, and increase sensitivity, we developed the RESA-
jLR modeling step. In addition, we used the F0.5 score to 
reconcile the performance evaluation balance between 
precision and sensitivity. As demonstrated in our results, 
RESA-jLR achieves better performances than RESA in 
cases of high mutation burden or high sequencing cover-
age per cell.
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VAF represents the fraction of alleles contain-
ing mutations. In WES, the VAF value is affected by 
tumor purity and clonality. In bRNA-seq, the VAF 

interpretation is further complicated due to allelic and 
stochastic expression and the abundance of genes con-
taining mutations. However, the VAF estimate from 

Fig. 6 Somatic SNVs enriched in specific stages using RESA. a UMAP embedding of scRNA-seq profiles of each stage. b Distributions 
of percentages of cells harboring stage-specific mutations of each stage. (n.s.: p > 0.05, *: p <  = 0.05, **: p <  = 0.01, ***: p <  = 0.001, ****: p <  = 0.0001) 
c Aggregate expression of  log2 of transcripts per 10,000 reads (color bar) for stage-specific genes detected in more than 10 cells and the number 
of cells harboring the mutation in each stage (cycle). d List of gene set enrichment results for each stage (MSigDB hallmark)
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scRNA-seq might be perceived as the deconvolution 
of bRNA for VAF without the complication of tumor 
purity as long as only cancer cells are assessed. Inter-
estingly, we observed a positive correlation between 
scRNA-seq VAF and VAF from both bRNA-seq 
(Fig.  2d) and WES (Fig.  2e) in the A375 cell line data. 
These results suggest that scRNA-seq VAF might be 
indicative of the mutant VAF at the bulk level. Notably, 
we detected somatic mutations from scRNA-seq with a 
WES VAF as low as 0.13 (Additional file 1: Fig. S3).

Detection of expressed SNVs using RESA may suffer 
from several limitations. RESA works best in scRNA-
seq data that are sequenced relatively deep (1–3 million 
reads per cell in general), or in samples with relatively 
high mutation burden. Application to other widely used 
scRNA-seq technologies like 10X genomics and drop-seq 
might thus be limited by the nature of shallow sequenc-
ing and biased gene region coverage. However, recent 
studies have made efforts to address the coverage issue 
by combining bam files of the same cell type in 10X 
Genomics datasets to detect somatic mutations  [47]. 
Taking this into consideration, we acknowledge that 
RESA could be improved by incorporating this strategy 
in the future, thereby expanding its potential application 
areas. Another potential limitation is that this approach 
is designed to detect clonal somatic mutations instead of 
rare mutations in the population. Empirically we found 
that WES VAF above 0.1 can be detectable in scRNA-
seq data and RESA. In addition, due to the nature of the 
scRNA-seq experiment, only mutations with relatively 
high expression are potentially detectable. Lastly, some 
somatic mutations expressed in a single cell might not be 
detectable through WES/WGS, leading to a decreased 
precision value that underestimates the real precision. 
Moreover, the clonal divergence between cell cultures 
that generated WES/WGS data vs. scRNA-seq data 
might also decrease the precision. Thus, the limited sen-
sitivity of scRNA-seq data as well as RESA might poten-
tially limit its application.

The success of RESA in high precision somatic muta-
tion detection from scRNA-seq data highlights the 
critical importance of cellular recurrence, whereas pri-
oritizing based on functional prediction or stratification 
from curated whitelist mutations does not always work 
well. This is the first study, to the best of our knowl-
edge, that made a direct comparison among the methods 
emphasizing the above aspects and delivering distinctive 
results. As more datasets, especially datasets with both 
scRNA-seq and WES/WEG profiling on the same sam-
ple, become available, new methods may be developed 
with better performance. We believe RESA will provide 
valuable information to facilitate single cell level geno-
type to phenotype study in the future.

Conclusions
In summary, we introduce a computational framework 
package named RESA that identifies expressed somatic 
mutations from scRNA-seq de novo. RESA effectively 
filters out noise and artefacts identified through com-
mon variant calling pipelines. We demonstrated the 
remarkable improvement in precision and F0.5 score of 
RESA against other methods across multiple test case 
scenarios. We showcased the application of RESA-jLR 
to provide novel insights into the potential mutational 
mechanisms underlying melanoma MRD, and we believe 
RESA is highly valuable to providing orthogonal insights 
into the intratumor heterogeneity studies in scRNA-seq 
datasets.
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