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Abstract 

Background Despite therapeutic advances, once a cancer has metastasized to the bone, it represents a highly mor‑
bid and lethal disease. One third of patients with advanced clear cell renal cell carcinoma (ccRCC) present with bone 
metastasis at the time of diagnosis. However, the bone metastatic niche in humans, including the immune and stro‑
mal microenvironments, has not been well‑defined, hindering progress towards identification of therapeutic targets.

Methods We collected fresh patient samples and performed single‑cell transcriptomic profiling of solid meta‑
static tissue (Bone Met), liquid bone marrow at the vertebral level of spinal cord compression (Involved), and liquid 
bone marrow from a different vertebral body distant from the tumor site but within the surgical field (Distal), as well 
as bone marrow from patients undergoing hip replacement surgery (Benign). In addition, we incorporated single‑cell 
data from primary ccRCC tumors (ccRCC Primary) for comparative analysis.

Results The bone marrow of metastatic patients is immune‑suppressive, featuring increased, exhausted CD8 + cyto‑
toxic T cells, T regulatory cells, and tumor‑associated macrophages (TAM) with distinct transcriptional states in meta‑
static lesions. Bone marrow stroma from tumor samples demonstrated a tumor‑associated mesenchymal stromal cell 
population (TA‑MSC) that appears to be supportive of epithelial‑to mesenchymal transition (EMT), bone remodeling, 
and a cancer‑associated fibroblast (CAFs) phenotype. This stromal subset is associated with poor progression‑free 
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and overall survival and also markedly upregulates bone remodeling through the dysregulation of RANK/RANKL/OPG 
signaling activity in bone cells, ultimately leading to bone resorption.

Conclusions These results provide a comprehensive analysis of the bone marrow niche in the setting of human 
metastatic cancer and highlight potential therapeutic targets for both cell populations and communication channels.

Background
Bone metastasis occurs when cancer spreads from the 
primary tumor site to the bone and bone marrow (BM). 
Bone metastases represent a common complication of 
many advanced cancer types and generally portends 
an incurable disease [1]. While many tumor types can 
metastasize to the bone, certain cancers have a particu-
lar predilection to spread to the bone, including kidney 
cancer [2]. Clear cell renal cell carcinoma (ccRCC) is a 
primary kidney cancer that arises from the epithelium of 
the renal tubule [3]. One third of patients with advanced 
ccRCC have osteolytic bone metastasis at the time of 
presentation and a very poor prognosis, with a 5-year 
survival rate of only 12% [4, 5].

In metastatic cancer, the bone marrow can provide 
a supportive niche that ultimately allows for coloniza-
tion of disseminated tumor cells into the microenviron-
ment. Consistent with the “seed and soil” hypothesis, the 
establishment of bone metastasis likely depends on both 
cancer cells and the tumor microenvironment (TME). To 
form metastases, cancer cells overcome the barriers to 
metastatic spread, giving them a propensity to establish 
themselves outside their primary tissue [6]. Importantly, 
when cancer cells arrive and expand in the BM, they can 
remodel the bone and the BM into a permissive environ-
ment favoring tumor cell expansion. Within the normal 
BM, the growth of disseminated cancer cells should be 
initially suppressed by macrophages and cytotoxic T cells 
(CTL) that form an important line of defense against dis-
seminating cancer cells [6]. Unfortunately, changes in the 
bone metastatic niche can lead to an immunosuppressive 
TME that disrupts T cell-mediated cell killing and results 
in an ineffective immune response against the tumor [7].

Most previous work on ccRCC bone metastases has 
relied on bulk characterization (RNA-sequencing and 
whole exome/genome sequencing) [8, 9] and has there-
fore not permitted an in-depth analysis of critical cell 
type-specific changes of the bone metastatic TME. Many 
of the cells, molecules, and cell states that make the 
ccRCC microenvironment, which might be important 
for tumor growth, remain unknown. Here, we collected 
fresh human patient from ccRCC primary tumors and 
bone metastasis lesions for single-cell RNA-seq (scRNA-
seq) and provide a comparative single-cell transcriptomic 
analysis between ccRCC primary tumors and bone meta-
static lesions. We defined a distinct tumor-associated 

macrophage (TAM) population. We demonstrated meta-
static specific mesenchymal stromal cells (MSCs) that 
appear to have the capacity to promote epithelial-to mes-
enchymal transition (EMT) in tumor cells and that are 
accompanied by a phenotype of bone remodeling driven 
by dysregulation of RANK (TNFRSF11A)-RANKL 
(TNFSF11) and Osteoprotegerin (OPG, TNFRSF11B) 
signaling.

Methods
Patient cohorts and sample collection
ccRCC patients with bone metastatic (n = 9) were 
enrolled in this study. Tumor specimens were submit-
ted to pathology as standard confirmation of diagnosis of 
ccRCC and bone metastatic disease. The patient was clin-
ically indicated decompression and stabilization in the 
setting of spinal cord compression related to metastatic 
ccRCC. The patient was positioned prone under gen-
eral anesthesia to facilitate posterior spinal access. The 
insertion of a Jamshidi needle into the osseous structure 
allowed for the extraction of bone marrow and tumor 
samples, minimizing the dilution of the specimen with 
extraneous blood or irrigation fluids present in the surgi-
cal field. The aspirate from the vertebral body was then 
directly collected into sterile tubes, which were promptly 
transported to the laboratory to undergo further prepara-
tive procedures. Similar technique was utilized for the 
distant vertebral body level samples (e.g., Distal). We col-
lect bone metastatic tissue (Bone Met n = 9), liquid bone 
marrow at the vertebral level of spinal cord compression 
(Involved n = 4), and liquid bone marrow from a differ-
ent vertebral body distant from the tumor site but within 
the surgical field (Distal n = 4) for single-cell transcrip-
tomic profiling. For benign samples, we collect BM sam-
ples from patients undergoing hip replacement surgery 
served as a non-malignant control group (n = 9). In total, 
we generated high-resolution single-cell RNA-Seq pro-
files from 9 Bone Met samples, 4 Involved BM, 4 Distal 
BM, 9 Benign BM. The clinical information of all patients 
was shown in Additional file 1: Table S1.

Tissue dissociation and cell purification
To dissociate bone metastatic tissues into single 
cell, all samples were collected in Media 199 supple-
mented with 2% (v/v) FBS. Single-cell suspensions of 
the tumors were obtained by cutting the tumor in to 
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small pieces (1  mm3) in a 70-mm filter cap, followed by 
enzymatic dissociation for 45  min at 37  °C with shak-
ing at 120  rpm using Collagenase I, Collagenase II, 
Collagenase III, Collagenase IV (all at a concentration 
of 1 mg/ml), and Dispase (2 mg/ml) in the presence of 
RNase inhibitors (RNasin (Promega) and RNase OUT 
(Invitrogen). Erythrocytes were subsequently removed 
by ACK Lysing buffer (Quality Biological) and cells 
resuspended in Media 199 supplemented with 2% (v/v) 
FBS for further analysis. For bone marrow aspirate 
preparation, bone marrow samples were filtered using 
a 70-micron filter then centrifuged at 600  g for 7  min 
at 4  °C. Plasma was collected followed by erythrocytes 
removal using ACK Lysing buffer (Quality Biological). 
Cells were resuspended in Media 199 supplemented 
with 2% (v/v) FBS for further analysis.

FACS sorting
Single cells from tumor and bone marrow sam-
ples subjected to RBC lysis were surface stained with 
anti-CD235-PE (Biolegend) for 30  min at 4  °C. Cells 
were washed twice with 2% FBS-PBS (v/v) followed by 
DAPI staining (1  µg/ml). For human benign bone mar-
row stroma samples, bone marrow from hip replacement 
surgeries was collected in Media199 containing 2%FBS 
and 12.5  mM EDTA (1:1) volume and strained using 
100  µm strainer. The strained BM was enriched using 
the RosetteSep Human Mesenchymal Stem Cell Enrich-
ment cocktail (Stem cell technologies 15,128) accord-
ing to manufacturer’s instructions. Bone spicules stuck 
in the strainer were collected and digested in Media199 
containing the following: 2% FBS, RNAse out (Thermo 
Fisher, 10,777,019), 100 U/ml DNAse (Thermo Fisher 
90,083), 2  mg/ml Dispase Gibco, 17,105,041), 1  mg/ml 
ColI (LS004214), 1  mg/ml ColII (LS004202), 1  mg/ml 
ColIII (LS004206), 1  mg/ml ColIV (LS004210) all from 
Worthington Biochemical. Digestion was performed at 
37 °C in a shaking water bath at 120 rpm for 45 min. The 
digestion mix was strained using a 70-µm strainer and 
rinsed with Media199 + 2%FBS. The cells were counted 
and enriched for mesenchymal stromal cells using the 
RosetteSep Human Mesenchymal Stem Cell Enrichment 
Cocktail (Stem Cell Technologies 15,128) according to 
manufacturer’s instructions. Cells from both fractions 
were stained with CD71-PerCpCy5.5, CD235- Per-
CpCy5.5, CD45-BV711, CD11b-BV711, CD3-BV711, 
CD19-BV711, CD14-APC, and CD271-PE/Cy7 in 
Media199 + 2%FBS and RNAse out. Calcein was used 
for staining the live dead. Flow sorting for live and non-
erythroid cells (DAPI-neg/CD235-neg) was performed 
on a BD FACS Aria III equipped with a 100-µm nozzle 
(BD Biosciences, San Jose, CA) instrument.

Single‑cell RNA‑sequencing
All flow cytometry data were analyzed using the FlowJo 
software (Treestar, San Carlos, CA). Single cells were 
encapsulated into emulsion droplets using Chromium 
Controller (10X Genomics). scRNA-seq libraries were 
constructed using Chromium Single-Cell 3’ v2 Reagent 
Kit according to the manufacturer’s protocol.

Summary of scRNA‑seq data
To provide an additional comparison, we also analyzed 
BM single-cell RNA-seq data from healthy individuals 
published by Oetjen et al. [10]. The data was downloaded 
from GEO (GSE120221, GSE120446). ccRCC Primary 
tumors and matched adjacent normal samples were 
obtained from our previous study [11]. In total, we have 
9 Bone Met samples, 4 Involved bone marrow, 4 Distal 
bone marrow,12 Healthy bone marrow, 9 Benign bone 
marrow, 14 ccRCC Primary tumors, and 9 matched adja-
cent normal samples. Detailed sample groups were listed 
in Additional file 1: Table S1.

scRNA‑Seq data preprocessing and data quality control
Single-cell RNA-seq data were quantified using Cell-
ranger 3.0.2 (10 × Genomics) with reference genome 
GRCh38. For human benign bone marrow stroma 
(FASC) samples, we removed non-stroma cells. To 
remove low-quality and doublets cells, we excluded the 
following cells: (1) cells with fewer than 700 total UMI, 
(2) cells with more than 20% mitochondrial transcripts, 
(3) Scrublet scores above 0.4 using Scrublet (v0.2.3) [12]. 
Detailed sample and single-cell information was listed in 
Additional file 1: Table S2 and Table S3.

scRNA‑Seq data processing and batch effect correction
We performed dimensionality reduction and clustering 
using the Pagoda (v1.0.11) [13] package. Briefly, we first 
selected top 2000 highly variable genes based on dis-
persion of variance to mean expression ratios using the 
pagoda. We then performed principal component analy-
sis (PCA) and reduced the data to the top 30 PCs. The 
PCA-reduced data were then used to compute a shared 
nearest neighbor graph, and were further subjected to 
graph-based clustering with the Louvain Method. To 
correct batch effects, we used the Conos (v1.5.0) [14] 
alignment method for data integration. Briefly, these 
Pagoda2 objects were used to perform alignment with 
Conos [14], using graph parameters k = 20, k.self = 5, 
space = ‘PCA’, ncomps = 30, n.odgenes = 2000, match-
ing.method = ‘mNN’, and metric = ‘angular’. The graph 
embedding was estimated using UMAP with default 
parameters. Leiden clustering was used to determine 
joint cell clusters across the entire dataset collection. To 
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ensure the robustness of our data integration, we also 
analyze the data using Seurat (v4.3.0) pipeline [15]. In 
the Seurat pre-processing pipeline, the NormalizeData 
and ScaleData functions were applied to obtain com-
parable expression values, while FindVariableFeatures 
was employed to identify genes with significant variabil-
ity across cellular transcriptomic profiles. Additionally, 
RunPCA, FindNeighbors, FindClusters, and RunUMAP 
were utilized to calculate reduced-dimension coordinates 
for visualization and unsupervised clustering. Integra-
tion of RCC primary and bone metastasis tumor showed 
embedding and clustering consistent with Conos results 
(Additional file 2: Fig. S1C).

Cell type annotation
To determine cell type signature genes, non-parametric 
Wilcoxon rank sum test was performed to find DEGs 
(differential expressed genes) among clusters using get-
PerCellTypeDE function in Conos [14]. DEGs were 
ranked by p-value determined Z score and filtered by 
Z score of more than 3. Major cell populations and cell 
subtypes were annotated using well-established marker 
genes. The detailed gene list can be found in Additional 
file 1: Table S4. Bone marrow and ccRCC primary tissue 
are annotated separately. We then verify the major cell 
annotations through joint integration (Fig.  1F). We first 
integrate all BM samples, including Healthy, Involved, 
Distal, and Bone Met samples. In total, 24 major clusters 
were obtained. To further confirm the cell annotations, 
we collected human bone marrow scRNA-seq data from 
HCA and Oetjen et  al. [10, 16] and integrate our data 
with public datasets and perform single-cell reference 
mapping.

Differential gene expression analysis
To analyze differential expressed genes between sam-
ple fractions for the same cell type (for example meta-
static tumor cells vs. primary tumor cells), pseudo-bulk 

differential expression analysis [17] was applied by 
aggregating the counts of a group of cells from the 
same individual. We used estimateDEPerCellType func-
tion in Cacoa (v0.4.0) [18] to conduct pseudo-bulk dif-
ferential expression analysis. After identification of 
the cell type identities of the scRNA-seq clusters, we 
aggregated the counts to the sample level for each cell 
type, and then used DESeq2 with the Wald test and the 
parameter independentFiltering = TRUE for differential 
expression analysis. A minimal number of 10 cells (of 
the selected cell type) and maximum 320 cells (average 
tumor cells per sample; down sampling if exceed) were 
required for a sample to be included in the comparison. 
To control for the variation in samples, we performed 
leave-one-out resampling procedure on samples and 
repeat this process 100 times (resampling.method = ‘loo’, 
n.resamplings = 100, min.cell.count = 10, n.cells.subsam-
ple = 320). Significant differential expressed genes (DEG) 
were defined as those with adjusted p values below 0.05 
and log fold changes exceeding 1.5 (Fig. 5E).

Cluster‑based cell composition analysis
For cluster-based cell proportion analysis, we measure 
the relative cell proportion differences within the major 
cell population. In this analysis, we required at least 50 
cells for the major cell population and measure the frac-
tion of cell types per sample to avoid skewing the find-
ings by a few individual samples. Statistical significance 
of proportion differences was evaluated using two-sided 
Wilcoxon rank sum test, followed by BH multiple testing 
correction.

Cluster‑free cell composition analysis
We use cell density to estimate cluster-free compositional 
changes by cacoa (v0.4.0) [18] pacakge. Briefly, UMAP 
embedding space is split into a grid of 400 × 400 bins, and 
2D kernel density was estimated on UMAP. To account 
for the varying number of cells per sample, 2D kernel 

Fig. 1 Overview of immune and stromal cell landscape in ccRCC bone metastasis. A Schematic illustration of experiment design and patient 
sample processing. B Sagittal T1 MRI imaging of the thoracic spine showing tumor masses with spinal cord compression for BM1 and BM9. C 
Integrative analysis of scRNA‑seq samples of all bone marrow samples (Healthy, Benign, Involved, Distal, and Bone Met), visualized using a common 
UMAP embedding. D Bar plot representing the fraction of major cell types within each sample (column). E Dot plot representing key‑marker 
gene expression in major cell types. The color represents scaled average expression of marker genes in each cell type, and the size indicates 
the proportion of cells expressing marker genes. F Integrative analysis of scRNA‑seq samples from ccRCC primary and bone metastatic tumors, 
visualized using a common UMAP embedding for ccRCC primary samples (left), bone metastasis samples (right). G Comparison of relative 
cell abundance of major cell clusters between Bone Met (n = 9) and different control fractions (Healthy n = 12, Benign n = 7, Involved n = 4, Distal 
n = 4). Statistics are accessed with two‑sided Wilcoxon rank sum test and BH multiple testing correction. (*p < 0.05, ***p < 0.001). H Pairwise 
expression distances between samples are shown using MDS embeddings. The similarity measures the magnitude of expression change for each 
subpopulation, using size‑weighted average to combine them into an overall expression distance that controls the compositional differences. Each 
dot is a sample, with colors and point shapes corresponding to the sample condition. I UMAP embedding of joint alignment of the Benign bone 
marrow stromal cells, color coded by the cell type. J Heatmap of scaled normalized expression for representative marker gene expression in stromal 
cell populations

(See figure on next page.)
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density was estimated for each individual sample. Then, 
average cell density per sample condition is shown as 
Fig. 3B. Then, the difference of sample densities between 
conditions is estimated for each data point (by default, 
using Wilcoxon test statistics).

Estimate expression distance
Expression differences between matching subpopulations 
were calculated using estimateExpressionShiftMagni-
tudes function from cacoa (v0.4.0) [18]. Briefly, we first 
define “pseudo-bulk” RNA-seq measurements for each 
subpopulation in each sample and then calculate corre-
lation distances between all pairs of samples. The over-
all expression distance is determined as a normalized 
weighted sum of correlation distances across all cell sub-
populations contained in both samples, with the weight 
equal to the subpopulation proportion. Expression dis-
tances between samples are further projected to 2D space 
using multidimensional scaling (MSD) method with plot-
ExpressionDistanceEmbedding function.

Gene Ontology and Gene Set Enrichment Analysis
We use Cacoa [18] to perform Gene Ontology and Gene 
Set Enrichment Analysis. Cacoa uses clusterProfiler 
(v4.6.0) [19] functions for Gene Ontology (GO) and Gene 
Set Enrichment Analysis (GSEA). In all cases, Cacoa 
define gene universe as the set of all genes, expressed in 
at least 5% of cells of the analyzed cell type. The visuali-
zation function “dotplot” provided by clusterProfiler was 
used to generate the GO enrichment plots.

Gene set signature score
We used a gene set signature score to measure cell states 
in different cell subsets and conditions. The signature 
scores were calculated as average expression values of the 
genes in a given set. Specifically, we first calculated the 
signature score for each cell as an average normalized (for 
cell size) gene expression magnitudes, and then the sig-
nature score for each sample was computed as the mean 
across all cells. All signature gene modules are listed in 
the Additional file 1: Table S5. The statistical significance 
was assessed using the two-sided Wilcoxon rank-sum 
test. Furthermore, we perform Benjamini-Hochberg 
(BH) multiple testing correction to ensure robustness of 
the results (*p < 0.05, **p < 0.01, ***p < 0.001).

Ligand receptor analysis
To delineate the ligand-receptor (LR) interaction pair in 
ccRCC Bone Met single-cell data, we download LR pairs 
from CellPhoneDB (v3.1) [20] as background and use a 
similar approach described in CellPhoneDB to test if 
LR expression is significantly higher in certain cell types 
than it would be from a random cell type pairing. We first 

calculate ligand and receptor gene expression ratio scores 
for each cell type, requiring the genes that are at least 
expressed in 10% of cells within that cell type. To obtain 
the signal strength of a LR-pair in two corresponding cell 
types, we rely on the joint expression distribution of the 
associated genes. Specifically, we compute the LR-pair 
score given a cell type A and cell type B as the product 
of average expression of the ligand from cell type A and 
receptor for cell type B. We observe such a product might 
lead to an inflation of LR pairs that are in actuality not 
present in the environment. To filter out the statistically 
significant (p value 0.05) interactions, we further ran-
domly shuffle the cluster labels of all cell types and re-
calculate LR-pair score across 1000 permutations. This 
background is used as null distribution to evaluate the 
p-value for the target LR-pair interaction. In addition, we 
also evaluated ligand and receptor expression, requiring 
both ligand and receptor highly expressed in correspond-
ing cell type. The getDifferentialGenes function from 
Conos [14] was used to derive DEG from each cell type 
and genes. We next screened each of the LR pair using 
p-value determined ligand Z score > 4 and receptor Z 
score > 0. The detailed LR list can be found in Additional 
file 1: Table S6.

inferCNV analysis
To identify the copy-number variations of tumor cells 
from normal epithelial cells, we used interCNV (v1.3.3) 
[21] for inferring large-scale chromosomal copy-num-
ber variations. As ccRCC malignant cells originate from 
proximal tube epithelial cells, we performed inferCNV 
on tumor cells using the proximal tube cells as the refer-
ence “normal” cells.

Survival analysis
To test if a given signature predicts survival, we first com-
puted the average expression of the signature in each 
tumor based on the bulk RNA-Seq data. Next, we strati-
fied the patients into two groups according to the average 
expression of the signature: high or low expression cor-
respond to the top or bottom 25% of the population. We 
used a two-sided log-rank test to examine if there was a 
significant difference between patient groups in terms of 
their survival. R package survival (v3.5.0) and survminer 
(v0.4.9) were used to draw Kaplan Meier (KM) plot. In 
addition, we use Cox regression to analyze the potential 
technical factors that associated with patient survival. 
We included age and disease stage into the Cox regres-
sion model. Given the presence of age and disease stage, 
Macro-2 and MSC-2 signature still show a significant 
relationship with patient OS and PFS survival (Additional 
file 1: Table S7). In order to assess the stability of the list 
of signature genes, we performed a bootstrap resampling. 
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This involved randomly selecting subsets of the signature 
genes and repeating the analysis 200 times. We then cal-
culated p-values for each round of resampling and deter-
mined the statistical significance by reporting the 0.90th 
quantile of the sampled p-values.

Flow cytometry analysis for myeloid and T cells
Samples from patients with RCC bone metastases were 
used for FACS analysis. Cells from human Bone Met and 
Distal BM samples were surface stained with a lymphoid 
antibody panel (Additional file  1: Table  S8). Cells were 
washed once with 2% FBS-PBS (v/v). For intracellular 
staining to detect Treg infiltration, cells were fixed and 
permeabilized with Cytofix/Cytoperm (BD Biosciences, 
San Jose, CA) for 20 min at 4  °C, followed by one wash 
with 1 × Perm/Wash buffer (BD Biosciences, San Jose, 
CA). Cells were incubated overnight at 4  °C with anti-
FoxP3-AF488, washed once in Perm/Wash buffer, and 
finally resuspended in Perm/Wash buffer for analysis. We 
acquired cell fluorescence data using a BD FACSAria II 
flow cytometer and used FlowJo (BD Biosciences, San 
Jose, CA) for analysis.

Reverse transcription‑quantitative PCR (RT‑qPCR)
Total RNA from snap-frozen tissues or sorted cells was 
extracted using Direct-zol RNA MiniPrep Kit (Zymo 
Research, R2052) or RNeasy Micro Kit (Qiagen, 74,004). 
cDNA was synthesized from total RNA using iScript 
cDNA Synthesis Kit (Bio-Rad, 1,708,891). qPCR was 
performed using iTaq Universal SYBR Green Supermix 
(Bio-Rad, 1,725,121) on a CFX384 Real-Time System (Bio-
Rad). The data were analyzed using the 2-ΔΔCt method. 
ACTB was used as housekeeping genes. The following 
primers were used for qPCR analysis: ACTB, AGA GCT 
ACG AGC TGC CTG AC, AGC ACT GTG TTG GCG TAC 
AG; FN1, ACA ACA CCG AGG TGA CTG AGAC, GGA 
CAC AAC GAT GCT TCC TGAG; FAP, GGA AGT GCC 
TGT TCC AGC AATG, TGT CTG CCA GTC TTC CCT 
GAAG; CCL18, GTT GAC TAT TCT GAA ACC AGCCC, 
GTC GCT GAT GTA TTT CTG GACCC.

Multiplex immunofluorescence
Multiplex immunofluorescence staining was performed 
using PANO 4-plex IHC kit (cat 10,001,100,100, Pano-
vue). We performed the fluorescent dyes by using the 
Mouse anti Human CD90 antibody, clone F15-42–1 
(Dako, MA5-16,671), and RANKL rabbit anti-human 
antibody (PA5-110,268). After applying different primary 
antibodies, horseradish peroxidase-conjugated secondary 
antibody incubation and tyramide signal amplification 
were conducted. Following this, the slides were micro-
waved heat-treated. After labeling all human antigens, 
DAPI (SIGMA-ALDRICH, D9542) was used to stain the 

nuclei. Fluorescent images were captured by Confocal 
microscopes Leica SPE (Leica).

Statistical analysis
P values < 0.05 were considered significant. Two-sided 
Wilcoxon rank sum test was used to assess significance 
in bulk seq and scRNA-seq analyses unless otherwise 
stated.

Results
The landscape of immune and stromal cells within human 
ccRCC bone metastasis
To define the microenvironment of ccRCC bone metas-
tasis, we performed scRNA-seq on fresh patient sam-
ples. Our samples included metastatic tissue (Bone Met) 
and liquid BM at the vertebral level of spinal cord com-
pression (Involved) as well as liquid BM from a different 
vertebral body distant from the tumor site but within 
the surgical field (Distal). In addition, we included bone 
and bone marrow stroma from patients undergoing hip 
replacement surgery and incorporated publicly avail-
able BM single-cell data from healthy donor controls 
(Healthy) and ccRCC primary tumors (ccRCC Primary) 
from our previous study [10, 11] (Fig. 1A). Among those 
data, we have two special patients (BM1 and BM2), 
where we collected the primary tumor, adjacent-normal 
kidney tissue, metastatic tumor, and involved and dis-
tal bone marrows from the same patient at diagnosis. 
All patients had a historic diagnosis of ccRCC and had 
standard pathologic evaluation to confirm ccRCC in the 
bone marrow within tissue sampled at the time of spi-
nal decompression surgery (Fig. 1B and Additional file 2: 
Fig. S1A). Detailed clinical and pathological information, 
including tumor stage and treatment information, are 
available in Additional file 1: Table S1. Following quality 
control, including doublet removal and mitochondrial 
genes filtering, 264,681 cells were obtained. Conos [14] 
was used to integrate the multiple samples separately for 
primary and metastatic tumors. Unsupervised clustering 
of BM samples revealed 24 clusters including immune 
cells: T cells, natural killer (NK) cells, myeloid cells; stro-
mal cells: MSCs, endothelial cells, pericytes (Fig.  1C–E 
and Additional file 2: Fig. S1B). To ensure the robust of 
scRNA-seq data integration, we re-analyzed the data 
using Seurat [15] pipeline, which shows consistent 
embedding and clustering (Additional file  2: Fig. S1C). 
Integrating primary and metastatic tumors confirms 
the cell identity and reveals cellular composition shifts 
in myeloid cell subsets, MSCs and tumor cells (Fig.  1F 
and Additional file 2: Fig. S1D). ccRCC tumor cells arise 
from epithelial cells of the proximal convoluted tubules, 
which do not exist in the normal BM [22, 23]. We could 
therefore distinguish malignant cells by their epithelial 
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origin, which differs from the immune and stromal cells. 
We identified 1941 malignant cells by their expression 
of a panel of markers including KRT8, KRT18, and CA9 
[24] (Additional file 2: Fig. S1E). Tumor cell identity was 
validated by inferred copy number aberrations (CNVs), 
showing notable inter-patient variation (Additional 
file 2: Fig. S1F).

Focusing on bone marrows, cellular composition analy-
sis between samples revealed cell shifts in multiple line-
ages. The largest increase was observed in macrophages, 
regulatory T cells (Tregs), and CTLs in the Bone Met 
fraction, while naïve T cells and T helper cells were sig-
nificantly decreased (Fig.  1G and Additional file  2: Fig. 
S1G). Complementary to the shifts of cell abundance 
between malignant and non-malignant BM, we exam-
ined transcriptional state differences using a weighted 
expression distance measurement [18]. There was sig-
nificantly more variability between the samples collected 
from patient metastases as compared to control samples, 
suggesting broader complexity and heterogeneity of the 
bone metastatic microenvironment (Additional file  2: 
Fig. S1H). Expression distances between samples were 
projected in 2-dimensions using multidimensional scal-
ing (Fig. 1H), to illustrate that the overall similarity of cell 
state in the different sample fractions consistently sepa-
rates metastatic and non-metastatic BM.

Interestingly, stromal cell populations were readily 
detected in the Bone Met fraction, which contrasts to 
our previous study in prostate cancer bone metastases 
where there was a paucity of stromal cells [7]. We ana-
lyzed the transcriptome of enriched stromal cells from 
non-malignant BM (Fig. 1A). Benign BM revealed 6 sub-
clusters including endothelial cells (VWF, PLVAP, CD34, 
CLDN5), osteoblasts (BGLAP, RUNX2, SPP1, NCAM1), 

and two pericytes clusters (Pericyte1: MYH11, DSTN, 
ACTA2; Pericyte2: MYL6, STEAP4, SEPT7, MYO1B) 
(Fig.  1I–J). MSCs expressing LEPR [25] were found in 
high abundance in the benign bone marrow (MSC1: 
CXCL12, LEPR, VCAN, SEPP1, VCAM1). In addition, 
a smaller fibroblast population was identified with high 
expression of APOD, MFAP4, IGFBP6, MGP) (Fig. 1J).

RCC bone metastases exhibit increased recruitment 
of a distinct tumor‑associated macrophage subpopulation
The bone marrow contains abundant immune cells, 
including different myeloid and T cell lineages [10]. 
Myeloid cells play an instrumental role in the TME 
and contribute to both tumorigenesis and metastasis 
[26, 27]. Within the ccRCC BM microenvironment, 
we identified 6 myeloid subclusters (Fig. 2A and Addi-
tional file  2: Fig. S2A): classical monocytes (Mono-1/
Mono-2: S100A8, S100A9, and CD14), non-classical 
monocytes (Mono-3: lacked CD14 expression but 
expressed FCGR3A (CD16)), monocyte progenitor cells 
(expressed high levels of MPO and MKI67), dendritic 
cells (DCs, expressed CD1C and FCER1A) (Additional 
file 2: Fig. S2B,C). We also identified a tumor-associated 
macrophage (TAM) population that was specifically 
enriched in the patient Bone Met fraction (Fig. 2B and 
Additional file 2: Fig. S2A, D). Flow cytometry analysis 
confirmed a higher infiltration of macrophages in Bone 
Met tissues compared to Distal BM tissue (Fig.  2C). 
TAMs were marked by the high expression of C1QA, 
C1QB, and CD163 [7] and displayed an M2-like phe-
notype, with high levels of IL10, MSR1, CD163, and 
TREM2 [28–30] (Fig.  2D, E and Additional file  2: Fig. 
S2B, E). TREM2 + macrophages have been identified 
in advanced ccRCC patients and are associated with T 

(See figure on next page.)
Fig. 2 Distinct tumor‑associated macrophage subpopulations in ccRCC bone metastasis. A UMAP joint embedding showing myeloid cell subsets. 
B Comparison of relative cell abundance of myeloid cell subsets between Bone Met (n = 9) and different control fractions (Healthy n = 12, Benign 
n = 7, Involved n = 4, Distal n = 4). Statistics are accessed with two‑sided Wilcoxon rank sum test and BH multiple testing correction. (*p < 0.05, 
***p < 0.001, Additional file 1: Table S3). C Box plot showing the percent of Macrophages (CD68 +) of the CD45 + / CD11b + population in Bone Met 
(n = 4) and Distal (n = 4) by flow cytometry. Statistical significance determined using two‑sided t‑test (*p < 0.05). D Scaled average expression of M2 
signature genes visualized on UMAP embedding. E Representative M2 marker gene expression shown on violin plot. F UMAP joint embedding 
showing integrated analysis of myeloid cells from ccRCC primary tumor and bone metastasis tumor. G Violin plot showing representative marker 
gene expression across three macrophage subpopulations. H Box plot comparing proportion of macrophage populations across bone metastatic 
ccRCC (n = 9), primary ccRCC (n = 14), and adjacent normal tissue (n = 9). Statistics are accessed with two‑sided Wilcoxon rank sum test and BH 
multiple testing correction. (*p < 0.05, ***p < 0.001). I Dot plots showing cytokine gene expression across different macrophage subsets. The color 
represents scaled average expression of marker genes in each cell type, and the size indicates the proportion of cells expressing marker genes. J, 
K Gating strategy for enrichment of TREM2 + SPP1 + macrophages. Labels above the flow plots refer to the parent population in the percentages 
are of the parent gate (J). Box plot showing the percent of TREM2 + /SPP1 + cells for the CD45 + / CD11b + population in Bone Met (n = 4) 
and Distal (n = 4). Statistical significance was determined using two‑sided t‑test (K). L Kaplan–Meier curves showing ccRCC samples with higher 
Macro‑2 signature gene (SPP1, FABP5, CCL18, CXCL5, CCL7) expression have worse overall survival (top; n = 533) and progression‑free survival 
(bottom; n = 435) in TCGA KIRC data. Patients were stratified into two groups based on the average expression (binary: top 25% versus bottom 
25%) of Macro‑2 signatures. p value was evaluated using Log‑rank test. Bootstrap resampling was performed on signature genes and p‑value 
was calculated using the 95% reproducibility power p‑value (see the “Methods” section)
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cell exhaustion and anti-PD-1 resistance [31]. IL10 can 
mediate immune suppressive effects by directly sup-
pressing lymphocyte responses and indirectly block-
ing DC functions. The finding of M2-like TAMs within 
ccRCC bone metastasis suggests an immunosuppres-
sive microenvironment favoring tumor cell growth. 
Macrophages are heterogeneous and several popula-
tions of macrophages have been described in primary 

ccRCC [32]. To define the subpopulations of mac-
rophages and the association with TAMs identified in 
primary ccRCC, we performed integrated analysis of 
myeloid cells from primary ccRCC patients. Myeloid 
sub-clustering revealed three distinct macrophage pop-
ulations (Macro1-3) (Fig. 2F–H). Macro-1 was defined 
by expression of SEPP1, PDK4 and FOLR2, Macro-2 by 
expression of FABP5, VIM and SPP1, and Macro-3 by 

0.
0

0.
2

0.
4

0.
6

M
ac

ro
ph

ag
e

m
D

C

M
on

oc
yt

e 
pr

o

fra
ct

io
n 

of
 to

ta
l m

ye
lo

id
 c

el
ls

Group
Healthy

Benign

Distal

Involved

Bone Met

**

*

**

A B D

C F

E

H

I J

0

Z score

M2 score

0.
0

0.
2

0.
4

0.
5

fra
ct

io
n 

of
 to

ta
l m

ye
lo

id
 c

el
ls

Group
ral

RCC Primary

RCC Bone Met

Macrophage
mDC

Monocyte pro

mDC

Monocyte pro

2FOLR2

FABP5

4

EREG

4CCL20

0

5

10

15

%
of

m
ye

lo
id

ce
lls

Distal Bone Met

TREM2+SPP1+

0

5

10

15

20

25

%
 o

fm
ye

lo
id

 c
el

ls

Macrophages

Distal Bone Met

2TREM2
2
2

Mac
rop

ha
ge

mDC

Mon
oc

yte
 pr

o

VEGFA

OSM

CCL20

CXCL2

CCL7

CCL2

CXCL5

CCL4

0

2

avg.exp.scaled Percent Expressed
0
20
40
60
80

G

K L

Macrophages
3.39

50K 100K 150K 200K 250K

FSC-A

10
1

10
2

10
3

10
4

10
5

C
D

68
 - 

PE
-C

y7

43.2 1.40

0.1255.3

10
1

10
2

10
3

10
4

10
5

SPP1 - FITC

10
1

10
2

10
3

10
4

10
5

TR
EM

2 
- A

PC

Macrophages
16.3

50K 100K 150K 200K 250K

FSC-A

10
1

10
2

10
3

10
4

10
5

C
D

68
 - 

PE
-C

y7

54.3 38.2

0.317.26

10
1

10
2

10
3

10
4

10
5

SPP1 - FITC

10
1

10
2

10
3

10
4

10
5

TR
EM

2 
- A

PC

Bo
ne

 M
et

D
is

ta
l

***

*

*

p=0.0260.25

0.50

0.75

1.00

0 50 100 150
Months (OS)

Su
rv

iva
l P

ro
ba

bi
lit

y

ow

p=0.043
0.2

0.4

0.6

0.8

1.0

0 50 100
Months (PFS)

Su
rv

iva
l P

ro
ba

bi
lit

y

Fig. 2 (See legend on previous page.)



Page 10 of 21Mei et al. Genome Medicine            (2024) 16:1 

expression of CCL20, EREG, THBS1, and IL1B (Fig. 2G 
and Additional file 2: Fig. S2F).

The Macro-1 cluster was transcriptionally simi-
lar to tissue-resident macrophages [33] as reported 
in primary ccRCC, breast and lung cancers [34], and 
expressed markers such as SEPP1, FOLR2, CCL3, 
CCL4, and CXCL12. Macro-2 showed high expres-
sion of SPP1, CXCL5, CCL2, CCL7, and CCL18 (Fig. 2I 
and Additional file  2: Fig. S2F). Compared to sam-
ples from primary ccRCC, the composition of mac-
rophages in bone metastases demonstrated a shift 
towards an increased fraction of Macro-2 (Fig.  2H). 
SPP1 is involved in bone formation and in anchor-
ing of osteoclasts to the bone remodeling matrix [35]. 
CCL18 is reported to promote metastasis in breast can-
cer, colon cancer, and squamous cell carcinoma [36, 
37]. CXCL5 is elevated in tumor tissues and is posi-
tively associated with lymphatic metastasis and tumor 
differentiation [38, 39]. Flow cytometric analysis of 
freshly cryopreserved samples validated the increase 
of TREM2 + SPP1 + macrophages in Bone Met com-
pared to Distal BM tissue (Fig.  2J, K). To evaluate the 
potential prognostic value of different macrophage sub-
populations, we ran survival analysis on public ccRCC 
bulk RNA sequencing data based on key marker gene 
expression from our scRNA-seq dataset. Interestingly, 
Macro-2 was associated with poor progression-free 
and overall survival (Fig.  2L). Furthermore, differen-
tial gene expression analysis comparing Macro-2 from 
bone metastases versus primary ccRCC showed that 
lymphocyte and T cell activation genes are down-
regulated (Additional file  2: Fig. S2G), suggestive of a  
immunosuppression within the metastatic TME. Col-
lectively, our data revealed distinct tumor-associated 

macrophage subpopulations in the metastatic TME and 
suggested the potential role of Macro-2 in tumor bone 
metastases.

Sustained T cells dysfunction in ccRCC primary and bone 
metastatic tumors
T cells play a central role in the anti-tumor immune 
response [40]. Dysfunctional or exhausted CD8 + cyto-
toxic T cells have been identified in ccRCC and the 
metastatic TME [32, 41] We found clusters of naïve 
CD4 (SELL, CCR7, CD4), naïve CD8 (SELL, CCR7, 
CD8A), T helper (CD4, RORC), Treg (FOXP3, CTLA4, 
IL2RA), NK1 (GZMB, FGFBP2, NKG7, KLRD1), NK2 
(XCL1, XCL2, CMC1), proliferating T cells (TOP2A, 
MKI67), and three subtypes of CTLs, CTL-1 (CD8A, 
KLRG1, CMC1), CTL-2 (KLRB1, GZMK, IL7R), and 
CTL-3 (PDCD1, HAVCR2, IFNG, GZMK) (Fig.  3A, 
B and Additional file  2: Fig. S3A-C). The CTL-3 clus-
ter exhibited high expression of exhaustion signature 
genes (HAVCR2, PDCD1, TOX, TIGIT) (Fig.  3C). The 
dysfunctional cell state in CTL-3 was compared across 
different sample fractions by exhaustion signature score 
analysis, demonstrating the highest exhaustion in the 
Bone Met compartment (Fig.  3D). Moreover, cell com-
position analysis demonstrated a significant increase of 
CTL-3, Tregs, and the proliferating T cells in the Bone 
Met fraction, whereas naïve CD4 and naïve CD8 were 
reduced (Fig. 3B and Additional file 2: Fig. S3D, E). Flow 
cytometric analysis of freshly cryopreserved samples fur-
ther validated the upregulation of PDCD1 and increased 
PDCD1 + CD8 + cells in the Bone Met compartment 
(Fig. 3E, and Additional file 2: Fig. S3F,G). Together, this 
suggests that CTLs have lost their immune responsive 
capacity in the metastatic BM TME. Tregs are critical to 

Fig. 3 Dysfunctional T cells correlate with Macro‑2. A UMAP embedding demonstrating T cell subpopulations. B Visualization of the average 
cell density across Bone Met (n = 9) and multiple control conditions (Healthy n = 12, Benign n = 7, Involved n = 4, Distal n = 4), using embedding 
density estimates. Brighter colors correspond to denser regions (see the “Methods” section). C Expression of representative T cell exhaustion 
markers on UMAP embedding. D Box plots showing T cell exhaustion score within CTL‑3 across Bone Met (n = 9) and control conditions (Healthy 
n = 12, Benign n = 7, Involved n = 4, Distal n = 4). Statistics are accessed with two‑sided Wilcoxon rank sum test and BH multiple testing correction 
(*p < 0.05). For box plots, center line represents the median and box limits represent upper and lower quartiles, and whiskers depict 1.5 × the 
interquartile range (IQR). E Comparison of PDCD1 expression (MFI) in Distal (n = 4) and Bone Met (n = 4) samples. Statistical significance determined 
using two‑sided t‑test (*p < 0.05). F ICOS, CTLA4, TNFRSF4, and TNFRSF18 expression in Tregs shown as violin plot. G Bar plot showing CTL‑3 (top) 
and Treg abundance (bottom) comparing RCC Bone Met (n = 9) with RCC Primary (n = 14) and adjacent normal (n = 9) fractions. Statistics are accessed 
with two‑sided Wilcoxon rank sum test (*p < 0.05, **p < 0.01). H Violin plot showing representative exhausted T cell signature gene expression 
in CTL‑3 comparing RCC Bone Met with RCC Primary and adjacent normal fractions. I Correlations of the cell abundance between myeloid and T 
cell subsets shown as heatmap. Significance was assessed using Pearson correlation test and BH multiple testing correction. Color represents 
correlation coefficient and star presents the significance. (*p < 0.05). J Heatmap showing scaled average expression of CCL18 and CCR8 in major cell 
populations. K Circle plots showing the inferred CCL18‑CCR8 signaling between Macro‑2 and Treg. L Box plot showing CCL18 and CCR8 abundance 
in tumor (n = 72) compared to adjacent normal (n = 533) tissue in TCGA KIRC. Statistics are accessed with two‑sided Wilcoxon rank sum test 
(****p < 0.0001). M Correlation of CCR8 expression in Tregs and CTL‑3 exhaustion score in CTL‑3 is shown as a scatter plot. Pearson linear correlation 
estimate, and p‑values are shown. The error band indicates 95% confidence interval. N Correlation of CCR8 expression and CTL‑3 exhaustion score 
is shown as a scatter plot for TCGA KIRC data (n = 533). Pearson linear correlation estimate, and p‑values are shown

(See figure on next page.)
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the maintenance of immune tolerance and suppression 
[42] Compared to non-malignant BM TME, we observed 
increased expression of Treg costimulatory molecules 
(TNFRSF4, TNFRSF18, ICOS) and the inhibitory mol-
ecule CTLA4, pointing to an immune suppression and 
T cell escape within the Bone Met location [43, 44] by 
Tregs (Fig. 3F). We further compared ccRCC Bone Met 
T cell compartments with ccRCC primary tumors (Addi-
tional file  2: Fig. S3H). The two immune suppressive 
components (CTL-3 and Tregs) significantly increased 
in primary tumors and were sustained in metastatic 

lesion (Fig.  3G). Examination of CTL exhaustion and 
Treg costimulatory molecules expression further veri-
fied dysfunctional T cell states both in RCC primary and 
bone metastatic tumors (Fig.  3H and Additional file  2: 
Fig. S3I, J).

Dysfunctional T cells correlate with the myeloid TAM‑2 
population
Our data suggest that T cells and TAMs may cooperate to 
contribute to an immunosuppressive TME. The Macro-2 
(TAM-2) abundance was significantly correlated with 
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Treg abundance and CTL-3 abundance (Fig. 3I and Addi-
tional file 2: Fig. S4A), pointing towards an interplay that 
might favor immune suppression [45]. Ligand-receptor 
analysis identified biologically important interactions 
between Macro-2 and CTL-3/Treg populations, includ-
ing known immune suppressive interactions such as 
CD86/CTLA4 [46] and IL10/IL10RB [47] (Additional 
file  2: Fig. S4B). Interestingly, the expression of CCL18 
was specific to the Macro-2 population, and recep-
tor CCR8 was exclusive to Tregs, suggesting a biologi-
cally relevant interaction (Fig.  3J, K). We validated this 
by using FACS to sort TREM2 + SPP1 + macrophages 
and confirmed the expression of CCL18 with RT-qPCR 
in multiple patient samples (Additional file 2: Fig. S4C). 
Compared to Distal BM, TREM2 + SPP1 + macrophages 
significantly increased in Bone Met tissue (Fig.  2K). As 
limited TREM2 + SPP1 + macrophages were obtained in 
Distal BM, we merge all Distal TREM2 + SPP1 + mac-
rophages together for as control (#1). Additionally, we use 
FACS to demonstrate CCR8 protein expression in Tregs, 
as CCR8 is a cell surface protein (Additional file  2: Fig. 
S4D). Moreover, analysis of bulk RNA-seq data shows 
that both CCL18 and CCR8 are significantly upregulated 
in tumors (Fig. 3L). CCL18 expressed from TAMs plays a 
critical role in immune and inflammation responses, and 
its receptor CCR8 marks suppressive Treg cells within 
the tumor [48] suggesting the immunosuppressive poten-
tial of the CCL18-CCR8 axis in bone metastatic ccRCC. 
To further investigate the immunosuppressive proper-
ties of CCL18-CCR8, we perform correlation analysis 
between CCR8 expression from Tregs and exhaustion 
signature score from CTL-3. Interestingly, a significant 
correlation coefficient was observed and was further 
confirmed in bulk RNA-seq data. (Fig.  3M, N). Taken 

together, our data show that bone marrow in metastatic 
patients is immune-suppressive, featuring increased 
TAMs, exhausted CD8 + T cells, and Tregs, indicating 
the potential interactions among immune suppressive 
components (Additional file 2: Fig. S4E).

A tumor‑specific mesenchymal stromal cell population 
is associated with worse patient survival
Stromal cells of normal human BM and bone metastatic 
tumors have not yet been characterized at the single-
cell level. We identified osteoclasts (VAMP8, CAP5) 
[49] osteoblasts (SPP1, RUNX2) [50], fibroblasts (DCN, 
APOD, MFAP4) [51], endothelial cells (PLVAP, RAMP2) 
[52], two MSC (NT5E, CXCL12, LEPR), and three peri-
cyte (RGS5, ACTA2) subpopulations [53] (Fig. 4A, B and 
Additional file  2: Fig. S5A, B). Comparing the distribu-
tion of stromal cells demonstrated changes in cell com-
position of MSCs, endothelial cells, and pericytes within 
the metastatic Bone Met fraction (Fig. 4A and Additional 
file 2: Fig. S5C-E), suggesting the tumor-induced stroma 
remodeling.

The MSC subsets were characterized by the expres-
sion of key MSC markers LEPR, NT5E, THY1 (CD90), 
VCAM1, and the known hematopoietic stem cell niche 
factor CXCL12 [25] (Fig.  4B). MSC-2 cluster main-
tained the expression of classic MSC markers NT5E, 
THY1(CD90) but had reduced expression of VCAM1, 
LEPR, and CXCL12 compared to MSC-1 (Fig. 4B, C and 
Additional file  2: Fig. S5A). The similar downregulation 
of CXCL12 expression was recently observed in bone 
marrow derived LEPR + MSCs in murine leukemia [25]. 
MSC-2 abundance was significantly increased in the 
Bone Met compartment compared to Benign (Fig.  4D) 
and displayed high expression level of EMT markers 

(See figure on next page.)
Fig. 4 A distinct tumor‑associated mesenchymal stroma cell (MSC) in ccRCC bone metastasis displaying CAFs phenotype. A UMAP embedding 
showing stromal cell subpopulations (left) and cell density difference comparing tumor with benign condition (right). Z score evaluates 
whether the cells are enriched in tumor (high Z score, red) or benign (low Z score, blue) condition. B Dot plot representing key‑marker gene 
expression of stromal cell types. The color represents scaled average expression of marker genes in each cell type, and the size indicates 
the proportion of cells expressing marker genes. C Visualization of MSC marker gene expression shown as violin plot. D Bar plot illustrates cell 
abundance differences between Bone Met (n = 9) and Benign (n = 9) conditions for MSC‑1 (left) and MSC‑2 (right). Significance was assessed 
using two‑sided Wilcoxon rank sum test. E Heatmap showing scaled average gene expression in MSC‑2 across Bone Met and Benign conditions 
for each patient (column). F UMAP visualization of representative EMT and CAFs signature gene expression in stromal cells. G EMT gene signature 
score in stromal cells, UMAP visualization of EMT score (left). Violin plots of the EMT gene signature score in Bone Met and Benign MSC‑2 cells 
(right). Significance was assessed using two‑sided Wilcoxon rank sum test (****p < 0.0001). H Similar to Fig. 4G, showing CAF gene signature 
score (****p < 0.0001). I Bar plot showing relative mRNA expression (log fold change) of FAP and FN1 in Benign (n = 5) and Bone Met (n = 7) tissue 
by RT‑qPCR. Data are expressed using the 2 − ∆∆Ct method. Gene expression levels were normalized to the benign control. Statistical significance 
determined using two‑sided t‑test. J Kaplan–Meier curves showing ccRCC samples with higher MSC‑2 signature gene (COL6A2, FN1, TIMP1, 
COL3A1, COL1A2) expression have worse progression‑free and overall survival (n = 533) in TCGA KIRC data. Patients were stratified into two groups 
based on the average expression (binary: top 25% versus bottom 25%) of MSC‑2 signatures. p value was evaluated using Log‑rank test. Bootstrap 
resampling was performed on signature genes and p‑value was calculated using the 95% reproducibility power p‑value (see the “Methods” section). 
For box plots, center line represents the median and box limits represent upper and lower quartiles, and whiskers depict 1.5 × the interquartile 
range (IQR)
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HTRA1, INHBA, and ITGA5 [54, 55] (Fig.  4E,  F). Fur-
thermore MSC-2 showed pronounced EMT signature 
score, particularly within Bone Met fraction (Fig.  4G). 
This elevated EMT score indicates a substantial degree of 
cell state plasticity and motility, which are recognized as 
key indicators of metastatic potential [56].

MSC-2 also demonstrated high expression of SPARC, 
a factor known to mediate the disruption of cell adhe-
sion [57]. Multiple collagen-associated genes (COL6A2, 
COL3A1, COL4A1, COL4A2) were upregulated in the 
Bone Met MSC-2 cluster, indicative of active extracellu-
lar matrix remodeling, which was further supported by 
upregulated processes such of cell adhesion, tube mor-
phogenesis, extracellular matrix organization, and colla-
gen fibril organization [58] (Fig. 4E and Additional file 2: 
Fig. S5F). Additionally, MSC-2 shown high expression 
of cancer-associated fibroblast (CAFs) markers, includ-
ing FAP, FN1, and CD44 [59] (Fig.  4F). The enhanced 
expression of FAP and FN1 were further validated using 
RT-qPCR in Bone Met samples (Fig.  4I). CAFs have 
been observed in multiple cancer types and are known 
to secrete factors (e.g., IL6, IL8, TGFB1) that can regu-
late cancer proliferation and metastasis [60]. Our analy-
sis revealed that the CAF signature was predominantly 
found in the Bone Met MSC-2 cells and enriched in Bone 
Met fraction (Fig.  4E, H). Moreover, we generated gene 
signatures describing MSC-2 and restricted these signa-
tures to MSC-2-specific genes (Methods). We utilize bulk 
RNA-seq data and found a significant upregulation of 
MSC-2 signature in tumor compared to adjacent normal 
tissue (Additional file  2: Fig. S5G). We then performed 
survival analysis separating bulk RNA-seq samples into 
MSC-2 high and MSC-2 low groups. MSC-2 signature 
was shown to be associated with poor progression-free 
and overall survival (Fig.  4J and Additional file  2: Fig. 
S5H). Our data provides evidence that CAFs phenotype 
of MSCs in the metastatic BM and are not shown in nor-
mal BM [61]. This observation implies a potential tran-
sition from MSC-1 to MSC-2 cells accompanied with a 
CAF-like and EMT-like transcriptional reprogramming 
in tumor bone metastasis cascade.

EMT programs are enriched in metastatic ccRCC compared 
to primary ccRCC 
The homing of the cancer cells to the bone marrow is a 
multi-step process that includes extravasation from the 
bloodstream, tissue invasion, disruption of normal bone 
marrow homeostasis, and ultimately the promotion of an 
immunosuppressive TME [62]. To better understand cell 
heterogeneity and the cellular programs that may drive 
tumor cell migration and metastasis, we also included 
comparison datasets of proximal tubule cells from adja-
cent normal kidney tissue (that are thought to be the 

origin of kidney cancer) and tumor cells from publicly 
available samples of primary ccRCC [11].

High similarity was observed between malignant cell 
and proximal tube cells in joint alignment (Fig.  5A and 
Additional file  2: Fig. S6A), showing high expression of 
epithelial markers KRT8, KRT18 (Fig. 5B). However, the 
transcriptional profile changed in the tumor with a sig-
nificant upregulation of ccRCC signature genes VEGFA, 
NDUFA4L2, and PDK4 [32] both in the primary and 
the metastatic setting (Fig. 5B and Additional file 2: Fig. 
S6B). Furthermore, we analyzed copy number variations 
(CNVs), taking proximal tube cells from adjacent nor-
mal kidney tissue as reference with inferCNV [21]. These 
inferred CNVs were consistent with previous reports of 
Chr3 loss in ccRCC patients and accumulated CNVs in 
metastatic ccRCC patients with additional loss of Chr9 
and Chr14 [9] (Fig. 5C).

Patient-to-patient variability was most highly pro-
nounced in the metastatic tumor cell fractions when 
compared to primary tumors or to normal epithelial 
proximal tubule cells (Additional file  2: Fig. S6C). This 
suggests a high degree of tumor cell transcriptional het-
erogeneity and may imply that the metastatic tumor has 
a higher degree of complexity and therefore might be 
more challenging to target. Further analysis of expression 
distances using multidimensional scaling resulted in con-
sistent divergence of the transcriptional state of meta-
static tumors (Fig. 5D). EMT programs have been widely 
considered to be drivers of tumor invasion and metasta-
sis [56]. We examined the EMT program in primary and 
metastatic samples with a focus on the tumor cells and a 
comparison to normal proximal tubule cells. EMT signa-
tures were significantly increased in the metastatic tumor 
cells (Fig. 5E, F) that is in agreement with previous report 
of EMT on tumor cells dissemination [6, 56]. Further dif-
ferential gene expression analysis showed that tumor cells 
from bone metastases also differed from primary tumor 
cells with upregulation of actin cytoskeleton organization 
and extracellular matrix organization, key programs in 
EMT (Fig. 5G and Additional file 2: Fig. S6D).

Tumor‑associated MSCs trigger dysregulated bone 
remodeling within ccRCC metastasis
Next, we focused on channels of communication between 
tumor cells and the TME that might explain the immune 
suppressive nature of the macrophages, the exhausted 
T cell populations, and the EMT changes in the tumor 
cells. We asked what channels might mediate growth 
and maintenance of the cancer in the BM? To answer 
this question, we performed a ligand-receptor analysis to 
identify cellular crosstalk among the different cell popu-
lations. In total, we identified 5317 channels as poten-
tial drivers of ccRCC bone metastases. While most of 
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the channel interactions are within the different stromal 
cell subpopulations, we also identified significant inter-
actions between stroma and immune cells (Fig.  6A and 
Additional file 2: Fig. S7A, B). With a focus on the inter-
actions within stroma cells and myeloid subpopulations, 
we identified biologically important interactions involved 
in bone remodeling, including RANKL-RANK, Oncos-
tatin M (OSM) and its receptor OSMR, and VEGF-KDR 
[63–65] (Fig. 6B, C and Additional file 2: Fig. S7B).

The RANKL/RANK/OPG signaling is critical in 
orchestrating osteoclasts maturation, bone modeling, 
and bone remodeling. We observed an increase of 
RANKL expression in Bone Met MSC-2 cells, along with 
an increase of the receptor RNAK expression in osteo-
clast (Fig. 6D, and Additional file 2: Fig. S7C). In addition, 
the decoy receptor OPG (acts as a RANK antagonist) was 
reduced in the Bone Met MSC-1 cells when compared to 
the Benign fraction (Fig.  6D). This observation suggests 
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a specific activation of the RANKL-RANK axis within 
the tumor [66]. Tumor cells are believed to provide the 
source of RANKL production, and it has been demon-
strated that RANKL-expressing tumor cells are attracted 
to the high local concentrations of RANK within the 
bone [5]. However, our analysis suggests that the source 
of RANKL is produced by the distinct tumor-associ-
ated MSC-2 population rather than tumor cells (Addi-
tional file  2: Fig. S7D). RT-qPCR validation confirmed 
the upregulation of RANKL in Bone Met samples com-
pared to Benign control (Fig. 6E). Additionally, multiplex 
immunohistochemistry (mIHC), performed in  situ on 
Bone Met tumor as the single-cell expression, confirmed 
the co-localization of CD90 and RANKL (Fig.  6F and 
Additional file 2: Fig. S7E). We further examined RANKL 
expression in two public scRNA-seq data from primary 
and advanced ccRCC patients [11,  41], showing an 
absence of RANKL expression in the tumor cells (Addi-
tional file  2: Fig. S7F). Therefore, we hypothesize that 
tumor-associated MSC-2 populations is the mediator of 
the bone remodeling observed in ccRCC bone metas-
tasis patients through the channel of RANKL-RANK/
OPG signaling. In line with this hypothesis, we observed 
changes in osteoblast and osteoclasts, the key regulators 
of bone formation and resorption, where dysregulation 
of bone remodeling is known to be involved in promot-
ing metastases [4, 5]. RANK (receptor) expression is sig-
nificantly enhanced in Bone Met-associated osteoclasts 
(Fig. 6D), and these osteoclasts displayed an upregulation 
of genes related to differentiation and activation [67, 68] 
(CA2, TCIRG1, CLCN7, OSTM1, and ANXA2), implying 
a program of active bone resorption. Meanwhile, osteo-
blasts showed reduced expression of genes related to 
osteoblast proliferation, mineralization, and connective 
tissue integrity (LRP5, ALPL, BGLAP and BMP4), indica-
tive of impaired osteoblast-mediated bone formation [69] 
(Additional file 2: Fig. S7G). Taken together, our data sug-
gested tumor-associated MSCs source to bone remod-
eling of ccRCC bone metastasis through dysregulation of 
the RANKL/OPG-RANK axis (Fig. 6G).

In addition to RANKL/OPG/RANK axis, OSM is of 
particular interest in the bone metastatic process because 
of its ability to independently stimulate the expression 
of RANKL. More specifically, OSM secreted by mono-
cyte-derived macrophages can stimulate RANKL pro-
duction through direct contact with MSCs via the OSM 
receptor [64]. Our results provide further support to the 
importance of this axis in metastatic ccRCC, as OSM 
expression was expressed in the Macro-1 and Macro-3 
populations, while the expression of OSMR was found 
in tumor-associated MSC-2 cells (Additional file  2: Fig. 
S7B). In addition, tumor cells also showed increased 
expression of OSMR, which suggests the presence of the 

OSM-OSMR axis in metastatic ccRCC potentially acting 
as an independent RANKL-inducing pathway.

Discussion
The tumor and immune microenvironment of pri-
mary and advanced ccRCC has been widely studied at 
the single-cell resolution [32, 41]. However, a deeper 
understanding of the cellular relationships within bone 
metastatic ccRCC has not been explored. Here, we used 
scRNA-seq to construct a single-cell transcriptomic atlas 
of the microenvironment of human ccRCC bone metas-
tasis. Our analysis identified cells influencing ccRCC 
bone metastasis, including immunosuppressive TAMs 
and Tregs, and dysfunctional CTLs. We revealed an EMT 
cell state shift in a distinct MSC populations that pro-
motes bone remodeling activity. Therapeutically modu-
lating immune cells (e.g., immune checkpoint blockade) 
has been proven beneficial in ccRCC [41]. Targeting stro-
mal cells in ccRCC bone metastases might as well be an 
effective therapeutic strategy.

Metastatic spread is often accompanied by tumor cell 
heterogeneity which may enable cancer cells to adapt to 
specific microenvironments and overcome metastatic 
barriers. Here, we observed significant inter-patient vari-
ability of malignant cells from metastatic patients. This 
suggests that distinct patterns of gene expression and 
mutational burden may be linked to different metastatic 
behaviors. Despite the variability of malignant cells in 
metastatic patients, we consistently observed an acti-
vated EMT program [70, 71].

TAMs are widely present in different TME. Removal 
or disruption of TAMs leads to reduced bone metastatic 
growth in breast and prostate cancer [7, 72]. We found 
a diversity of TAM subpopulations in metastatic sites. 
Among them, Macro-2 seems to be a key player in the 
tumor metastatic cascade, characterized by expression 
of SPP1, CCL18, CXCL5, CCL2, and CCL7. SPP1 + mac-
rophages have been observed in lung adenocarcinoma 
lymph node metastasis and colon cancer liver metasta-
sis [73, 74]. CXCL5 was reported to be involved in the 
formation of a premetastatic niche promoting breast 
cancer cells to proliferate and colonize in the bone [38, 
39]. Cell–cell interaction analysis points to communica-
tion between Macro-2 and Tregs through CCL18-CCR8. 
CCL18 plays a role in promoting breast cancer, colon 
cancer, and squamous cell carcinoma metastasis [37], 
and CCR8 + Tregs are highly suppressive cells within the 
tumor [48]. We observed a correlation between CCL18 
expression and the CTL-3 exhausted signature score, 
suggesting that CCL18-CCR8 axis also plays an immuno-
suppressive role in ccRCC bone metastases.

MSCs are critical in modulating the tumor micro-
environment and MSC-derived factors affect disease 
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progression in prostate bone metastasis [75] as well 
as in metastatic breast cancer [76]. MSCs segregated 
into two subsets, including MSC-1 that was enriched 
in normal samples while MSC-2 was enriched in the 
bone metastatic samples. The MSC-2 population was 
characterized by an enhanced EMT program and CAF 
phenotype (Fig.  4G, H). These changes imply that this 
subpopulation of MSCs in ccRCC bone metastases may 
be similar to CAFs seen in other cancers [77]. CAFs 
are a key component of the TME; they can modulate 
cancer metastasis through the remodeling of the extra-
cellular matrix (ECM) and production of growth fac-
tors and influence angiogenesis and immune response. 
Indeed, we observed expression of IL6, IL8, VEGFA, 
and TGFB1, as well as collagen-associated genes 
(COL6A2, COL3A1, COL4A1, COL4A2) (Fig.  4E), 
which is reported in CAFs [60].

Tumor cells can exploit certain aspects of the bone 
ME for homing, maintenance, and growth [1, 4]. In the 
osteolytic bone metastases of patients with bone meta-
static ccRCC, bone resorption mediated by osteoclasts 
is preferentially activated over bone formation [4]. The 
RANK-RANKL axis is a major pathway promoting 
osteoclast-mediated bone resorption through favoring 
osteoclast differentiation and maturation [78]. Here, we 
demonstrated that this mechanism is increased in bone 
metastatic ccRCC (Fig. 6B–D). Furthermore, the level of 
OPG, with its role in bone growth and homeostasis, was 
significantly decreased (Fig.  6D). OSM has been shown 
to independently stimulate the expression of RANKL 
through direct contact with MSCs via OSMR [64]. Our 
results support the relationship of the OSM-OSMR axis 
(Additional file  2: Fig. S7B) in promoting an osteolytic 
microenvironment as the tumor-associated MSC-2 pop-
ulation as well as the tumor cells themselves gain expres-
sion of OSMR, thereby favoring aberrant osteoclast 
formation and differentiation.

Although our analysis presents a good representation 
of immune and stroma cells in the ccRCC primary and 
bone metastatic niche, it is important to consider a few 
potential limitations of our study. One of the main limi-
tations is lack of validation in separate patient samples. 
Although we performed functional interpretation and 
protein validation of certain cell types using the same 
patient cohort, validation in independent datasets will be 
necessary to further substantiate these findings. Further-
more, the analysis of survival curves using bulk RNA-
seq gene expression data can be challenging due to the 
potential confounding factors, such as age, gender, treat-
ment status, genetics, risk group, and technical biases 
within large bulk RNA-seq cohorts. However, despite 
these challenges, we were able to identify significant 
differences that we believe might have a critical clinical 

implication for understanding how immune and stroma 
cells impact ccRCC survival.

Conclusions
Our single-cell transcriptomic analysis of ccRCC 
prim[ary and bone metastatic tumors revealed the 
dynamics of immune and stroma cell remodeling dur-
ing tumor progression and metastasis. We found that 
the bone metastatic niche is markedly immune suppres-
sive with increased exhausted CD8 + cytotoxic T cells, 
T regulatory cells, and TAMs. Within the TAMs, the 
TREM2 + SPP1 + subset was notably enriched in bone 
metastatic lesions and was associated with worse patient 
survival, implicating a potential role in metastatic pro-
gression. Additionally, our study captured a tumor-asso-
ciated mesenchymal stromal cell population (TA-MSC), 
which is transcriptionally similar to CAFs, which appears 
to contribute to the epithelial-to-mesenchymal transition 
and to bone remodeling. Overall, this comprehensive 
analysis offers valuable insights into the biology of ccRCC 
bone metastases and highlights potential therapeutic 
avenues targeting the diverse cellular constituents of the 
tumor microenvironment.
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