
Liu et al. Genome Medicine            (2024) 16:3  
https://doi.org/10.1186/s13073-023-01274-4

METHOD Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Genome Medicine

MAGPIE: accurate pathogenic prediction 
for multiple variant types using machine 
learning approach
Yicheng Liu1,2,3†, Tianyun Zhang1,2†, Ningyuan You1,2, Sai Wu2,3* and Ning Shen1,2*   

Abstract 

Identifying pathogenic variants from the vast majority of nucleotide variation remains a challenge. We present 
a method named Multimodal Annotation Generated Pathogenic Impact Evaluator (MAGPIE) that predicts the patho-
genicity of multi-type variants. MAGPIE uses the ClinVar dataset for training and demonstrates superior performance 
in both the independent test set and multiple orthogonal validation datasets, accurately predicting variant patho-
genicity. Notably, MAGPIE performs best in predicting the pathogenicity of rare variants and highly imbalanced 
datasets. Overall, results underline the robustness of MAGPIE as a valuable tool for predicting pathogenicity in various 
types of human genome variations. MAGPIE is available at https:// github. com/ shenl ab- genom ics/ magpie.
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Background
The rapid accumulation of the whole genome sequenc-
ing (WGS) and the whole exome sequencing (WES) 
data has led to the discovery of a tremendous number of 
genetic variations, both pathogenic and non-pathogenic. 
To aid the assessment and understanding of these varia-
tions, population databases such as gnomAD [1], ExAC 
[2], and ChinaMap [3] have been established. Addition-
ally, genetic disease databases, e.g., ClinVar [4], OMIM 

[5], and HGMD [6], have also amassed a large amount of 
information on known pathogenic or benign genetic vari-
ations. These databases have been widely used as refer-
ences in the genetic diagnosis of Mendelian diseases.

Pathogenic mutations that cause Mendelian diseases 
are known to function through various biological mecha-
nisms and thus have been categorized and studied in dif-
ferent aspects. For instance, exonic mutations based on 
the protein sequence alterations are categorized into syn-
onymous, missense, stop-gain, stop-loss, frameshift, etc. 
Synonymous mutations do not alter protein sequence, 
whereas missense mutations result in different amino 
acids being encoded. Since missense mutation-asso-
ciated changes in protein sequence may potentially be 
pathogenic, various studies have focused on predicting 
the pathogenic impact of missense variants [7–17]. On 
the other hand, some mutations are pathogenic at the 
RNA level through splicing alterations, and these muta-
tions are often located in the splicing donor, acceptor, 
and intronic regions. Consequently, splicing alterations 
have also been considered for the pathogenicity evalua-
tion of mutations [18, 19]. However, in clinical practice 
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of genetic diagnosis using WES, different types of muta-
tions and mechanisms should be considered simultane-
ously to identify the pathogenic mutation.

With the development of machine learning (ML) and 
deep learning (DL), many computational methods using 
ML or DL have been developed for predicting mutation 
disruption or pathogenicity. Some methods were devel-
oped based on specific biological mechanisms or data 
types. For example, SpliceAI employs a deep neural net-
work to learn information about splicing codes of the 
genome and predict whether a mutation affects splic-
ing [19]. Frazer et al. proposed the evolutionary model 
of variant effect (EVE) based on a deep generation 
model of evolutionary data to predict the pathogenic-
ity of human missense variants [16]. On the other hand, 
some algorithms consider ensemble features from mul-
tiple aspects and build on top of existing pathogenicity 
prediction. For example, the Combined Annotation-
Dependent Depletion (CADD) implements a support 
vector machine with annotation features in conserva-
tion metrics, regulatory information, transcript infor-
mation, and so on [20]. Daniel et  al. proposed DANN, 
which uses the same features as CADD but integrates 
them into a deep neural network for better performance 
[21]. REVEL is another approach proposed by Nilah 
et  al. that uses a logistic regression model and relies 
on multiple pathogenicity prediction tools, including 
MutPred [22], VEST [14], PROVEAN [9], Mutation 
Assessor [11], and phastCons [23]. Although the afore-
mentioned methods are widely used or developed with 
state-of-the-art methods, they only apply to specific 
cases or depend on multiple prediction tools, leaving 
many genetic variants unpredictable in real-world pre-
diction tasks.

In this study, we present MAGPIE (Multimodal 
Annotation Generated Pathogenic Impact Evaluator), 
a pathogenicity prediction tool for all nonsynonymous 
exonic variants. MAGPIE employs multimodal annota-
tion to annotate all exonic variants to cope with vari-
ous mutation types and pathogenic mechanisms. The 
idea is that from the user’s perspective, the pathogenic-
ity of a variant should be jointly evaluated on multiple 
scopes, and MAGPIE can help automate this process by 
leveraging the modern machine learning methodolo-
gies. We benchmarked MAGPIE against 14 previously 
published methods and found that MAGPIE outper-
formed all other methods in both independent test 
set and several imbalanced orthogonal validation sets. 
Notably, MAGPIE was able to make predictions on 
multiple types of exonic mutations, fulfilling 5–60% of 

unapplicable missing values based on previous meth-
ods. Most importantly, the superior performance of 
MAGPIE in highly imbalanced validation dataset, as 
well as variants with low population allele frequency 
highlights its advantage in clinically relevant applica-
tions of interpreting VUS for individual patients, where 
the model is typically applied to identify less than 5% 
pathogenic variants from tens of thousands of can-
didate variants. We envision that MAGPIE will be a 
valuable tool and widely adopted for pathogenicity pre-
diction in the field. MAGPIE is available as an online 
server at http:// tools. shenl ab- genom ics. org/ tools/ 
MAGPIE.

Methods
Data preparation
We ensemble several germline mutation databases as the 
source of our datasets. Germline mutations are changes 
to DNA that individuals inherit from the egg and sperm 
cells during conception. ClinVar database (https:// ftp. 
ncbi. nlm. nih. gov/ pub/ clinv ar/, accessed 2022.6.24) 
was downloaded and included nonsynonymous SNV 
(missense variants), stop-gain variants, start-loss vari-
ants, frameshift mutations, nonframeshift mutations, 
and stop-loss variants [4]. Variants were categorized as 
benign, including Likely_benign, Benign, and Benign/
Likely_benign labels, and pathogenic, including Likely_
pathogenic, Pathogenic, and Pathogenic/Likely_patho-
genic, which were selected as true negative (benign) and 
true positive (pathogenic) labels respectively. All variants 
with conflicting interpretations and unknown labels were 
removed. After filtering, we initially identified 78,089 
mutations from ClinVar.

To improve the model performance in classifying 
rare variants, we considered adding rare benign vari-
ants to the training dataset as a trade-off between pre-
serving the importance of allele frequency information 
and helping identify rare pathogenic variants from rare 
benign variants. We selected ultra-rare benign vari-
ants with allele frequency between 1e−5 and 1e−3 based 
on the gnomAD database (https:// gnomad. broad insti 
tute. org/ downl oads/, accessed 2022.09.14) [1]. For 
most chromosomes, there existed about 500,000 avail-
able variants. Secondly, we randomly choose 5000 per 
chromosome. Thirdly, we filtered out variants without 
enough information after annotating by ANNOVAR 
(ANNOtate VARition). Finally, we randomly chose 
again and just retained 500 variants per chromosome. 
For chr11 and chrY, which did not contain enough 
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variants, we kept them all and randomly used qualified 
ones in other chromosomes to fill the gap. In total, we 
incorporated 11,998 variants from gnomAD, and these 
variants were split into two subsets based on the pro-
portion of the number of variants in ClinVar to that in 
SwissProt [23] for further training and evaluation. We 
aim to enhance the model’s ability to deal with rare 
benign variants; thus, it is crucial to minimize the false 
positive rate influenced by the allele frequency to iden-
tify pathogenic variants in the clinical scenario.

We constructed an orthogonal validation set to evalu-
ate the performance of our model. The orthogonal test set 
was constructed from SwissProt (https:// ftp. unipr ot. org/ 
pub/ datab ases/ unipr ot/, accessed 2022.7.10) [23], which 
contains over 70,000 variants with validated pathogenic-
ity labels. We selected exonic mutations, filtered out vari-
ants labeled as US (uncertain significance), and applied 
the filtering and transformation process to remove all 
synonymous SNVs, following the same steps used in the 
ClinVar training and test datasets.

We obtained the ACMG-guided dataset (https:// doi. 
org/ 10. 1016/j. gim. 2021. 11. 018, accessed 2023.05.22), 
which includes a total of 1270 mutations, from the offi-
cial website as another orthogonal test panel. We first 
removed 328 mutations without clear clinical significance 

labeled as uncertain significance—insufficient evidence 
or uncertain significance—conflicting evidence, 93 vari-
ants whose position cannot be mapped from HGVS ID, 
358 intronic, 3′ UTR, and 5′ UTR variants, splice sites, 
and synonymous SNVs, etc., to ensure a fair comparison 
with other methods (Additional file 1: Table S3). After fil-
tering, a final dataset of 491 missense mutations was used 
to compare MAGPIE and other model performances.

Gene-level features encapsulate characteristics that are 
relevant to genes and are shared across variants within 
the same gene. As we used gene-level features, variants 
in the same gene share identical scores for these gene-
level features, and it would cause some potential biases 
and label leakage. Therefore, we performed a random 
split according to genes. Let D as the dataset to be split; A 
and B are datasets after splitting; LA , LB , and LD are lists 
containing genes for datasets A and B ; and let D and N  as 
the proportion threshold of variants that should be added 
to A and nA as the realtime proportion of A accounts for 
D . After completing these steps, the resulting datasets 
would be as follows: LA contains the randomly selected 
genes from LD . LB is the remaining genes in LD after 
removing the selected genes. Datasets A and B consist 
of mutations occurring in genes belonging to categories 
LA and LB within dataset D , respectively. We defined the 
splitting process in Algorithm 1:

Algorithm 1. Dataset split

https://ftp.uniprot.org/pub/databases/uniprot/
https://ftp.uniprot.org/pub/databases/uniprot/
https://doi.org/10.1016/j.gim.2021.11.018
https://doi.org/10.1016/j.gim.2021.11.018


Page 4 of 19Liu et al. Genome Medicine            (2024) 16:3 

First, to further enhance the robustness of MAGPIE 
and ensure a fair comparison, we split the gnomAD 
dataset. Let nClinVar , nSwissProt , and ngnomAD denote the 
number of variants in ClinVar, SwissProt, and gno-
mAD, respectively. We define dataset D as gnomAD, 
threshold N  as nClinVar/(nClinVar + nSwissProt) ∗ ngnomAD , 
and randomly split D into A and B which are 
then added to ClinVar and SwissProt, respec-
tively. We named these two datasets as ClinVar_
gnomAD and SwissProt_gnomAD. Second, we 
defined dataset D as  ClinVargnomAD , threshold N  as 
nClinVar + nClinVar/(nClinVar + nSwissProt) ∗ ngnomAD ∗ 10% 

and randomly split D into A and B , namely train-
ing and independent test set respectively. Finally, we 
excluded all variants in  SwissProtgnomAD located on 
genes that appear in ClinVarTraining and defined it as 
an orthogonal validation set.

MAGPIE framework
The machine learning component of MAGPIE is based 
on a gradient-boosting tree-based model of classify-
ing pathogenic and benign variants, which includes 
three steps. First, we annotated candidate SNVs to 
obtain information needed for model training. Second, 
we used automated feature engineering to pull out 
meaningful features from the datasets, and then we 
designed a feature selection strategy to obtain the opti-
mal combination of features to feed the model. Finally, 
we trained the model using the processed dataset with 
step-wise tuning to make the process controllable and 
avoid overfitting.

The whole framework in this paper was mainly imple-
mented in Python (v3.7) [24] and MATLAB [25], and 
other models were built using the sklearn (v0.21.3) pack-
age [26].

Feature annotation
We annotated candidate SNVs with ANNOVAR (24 
October 2019, latest version) [27] and included predicted 
scores provided by SpliceAI [19].

As for feature selection, we used ANNOVAR, SpliceAI, 
and the ChromHMM [28] model to annotate candidate 
variants and ended up with 132 features. To narrow down 
the number of features, we applied several models on the 
ClinVar dataset with all these features and kept the models 
that satisfied over 95% accuracy on the validation set. Then, 
we calculated feature importance of all input features based 

on these models and filtered out features whose contribu-
tion to the models is less than 1e−3 . The number of features 
was reduced to 60 and below. We will describe these fea-
tures in detail (Additional file 1: Table S4-S5).

For further training, we included six different types 
of variant classifications, namely nonsynonymous SNV 
(missense), startloss, stopgain, stoploss, frameshift, and 
non-frameshift. For each type of variant, 60 features 
were retrieved from the annotated datasets, includ-
ing six categories: (1) epigenomics, (2) functional 
effects, (3) splicing effects, (4) population-based fea-
tures, (5) biochemical properties, and (6) conservation 
(Additional file  1: Table  S4-S5). And in our model, we 
excluded all predicted scores from variant pathogenic-
ity prediction tools to minimize the effects of prior 
bias.

Epigenomics of each variant was annotated by the 
15-state ChromHMM model across nine different cell 
lines in order to capture the significant combinatorial 
interactions between different chromatin marks in their 
spatial context (chromatin states). Functional effects 
included the gene damage index (GDI), residual variation 
intolerance score (RVIS), gene intolerance scores based 
on the loss of function tool (LoFtool), variant types, and 
annotations from the OMIM database. We use variant 
types as features including missense, frameshift, non-
frameshift, startloss, stopgain, and stoploss. We use the 
OMIM database to annotate the mutation inheritance 
pattern, which is categorized into five distinct types: auto-
somal recessive, autosomal dominant, X-linked recessive, 
X-linked dominant, and others. Epigenomics features, 
variant type features, and mutation inheritance pattern 
features are one-hot encoded and fed into the model for 
training.

SpliceAI annotated each variant with its predicted 
effect on splicing. The delta score of the variant repre-
sents the probability of the variant being splice-altering 
as acceptor gain (DS_AG), acceptor loss (DS_AL), donor 
gain (DS_DG), and donor loss (DS_DL). Furthermore, 
we also obtained information about the location where 
splicing changes relative to the variant position, which 
included the delta position of acceptor gain (DP_AG), 
acceptor loss (DP_AL), donor gain (DP_DG), and donor 
loss (DP_DL). SpliceAI does not annotate variants if 
they are close to chromosome ends or too long reference 
sequences. We use 0 to fill in missing values of SpliceAI 
prediction.

Population-based features represented the incidence 
of an allele in a population, including 12 different types 
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of allele frequencies (AF). We retrieved AF in various 
populations: all exome, raw allele frequency (AF_raw), 
African (AF_afr), Latino/Admixed American (AF_amr), 
Ashkenazi Jewish (AF_asj), East Asian (AF_eas), Finn-
ish in Finland (AF_fin), Non-Finnish European (AF_
nfe), and other (AF_oth). Besides, allele frequencies in 
different genders were also obtained from annotated 
information.

Biochemical properties contain the effects of amino 
acid changes before and after mutations. We first 
checked whether the mutation causes an amino acid 
change, and if not, we assigned 0 to all relevant fea-
tures. Amino acid change (AAchange) was used as the 
basis for subsequent annotation. We stored the phys-
icochemical properties of each amino acid, including 
molecular weight, equipotential point, dissociation 
constant, hydrophilicity, polarity, acid–base, etc., in a 
matrix, in which the characteristics of Boolean type 
were represented by 1/0. We obtained the correspond-
ing properties of the amino acids by querying the 
matrix and took the delta value between the proper-
ties before and after the mutation as the features of 
the mutation. We then employed different strategies 
for different types of variants since some variants 
cause multiple amino acid changes, which require 
specific handling. When a mutation affects more than 
one amino acid, we calculate the average value before 
and after the change, respectively, to ensure that the 
feature selection process is comprehensively rep-
resentative. We also used the information obtained 
from the BLOSUM100 matrix as a feature to demon-
strate the conservation and similarity of amino acid 
substitutions.

Conservation scores included phastCons 20way mam-
malian, 30way mammalian, 100way mammalian, 100way 
vertebrate; phyloP 20way mammalian, 30way mamma-
lian, 100way vertebrate; and odds ratios of SiPhy 29way 
mammalian.

We use the Bayesian PCA-based missing value estima-
tion method by Oba et al. [29] to impute missing values 
for several features in preparing the next steps, and any 
outliers that may arise from extensive imputation are 
carefully removed from our analysis.

Feature engineering and selection
We applied automated feature engineering on our train-
ing dataset to generate tens of thousands of candidate 

features to capture potential non-linear and more com-
plex relationships within the data.

We first generate new features based on mathemati-
cal transformations of the existing numerical features. 
AutoFE (automatically feature engineering) applied 
operations such as logarithms, square roots, and expo-
nentials to the original features. Next, we created new 
categorical features by grouping the original features 
based on their values. For example, we grouped con-
servation scores into categories by binning. These 
categorical features could capture relationships that 
might not be easily captured by the original numeri-
cal ones. We use the openFE [30] package to perform 
autoFE.

After generating these new features, we used the 
default method defined in openFE to perform feature 
selection to remove any redundant or irrelevant fea-
tures. OpenFE evaluated the importance of each feature 
and removed those that did not contribute significantly 
to the model’s predictive power. Even though the data-
set still contains over 3000 features for each variant, 
which could lead to over-fitting. So, we stepped further 
based on openFE to perform separated feature selection 
(SFS).

In our study, we segregated all features into two cat-
egories, namely a core set and an add-on set. The for-
mer included features related to pathogenicity with 
validated evidence, such as population-based features, 
conservation, and functional effects. These features 
were retained during the training phase. The latter 
comprised additional features, including biochemical 
properties, splicing effects, epigenomics, and auto-
mated feature-engineered features. We then employed 
a feature selection process to determine the most 
important ones for feeding our model. We initially 
trained a simplified tree-based model for less than 
50 rounds to reduce the features to 200 or less. Sub-
sequently, after each round, we evaluated the impor-
tance of each feature and discarded those with relative 
importance scores lower than 1e−3.

After analysis, we observed that the core features 
exhibited prominent significance compared to the entire 
set of features. To further enhance the performance of 
our model, we conducted training using feature combi-
nations, as described in Algorithm 2, to attain the opti-
mal amalgamation of features that would yield superior 
performance on the test set.
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Algorithm 2. Separated feature selection

Model training
MAGPIE was based on a LightGBM (LGBM) model for 
predicting pathogenicity. LightGBM has a faster train-
ing speed and lower memory consumption than other 
tree-based models. To better learn from data and avoid 
over-fitting problems, especially as a tree-based model, 
we defined five rounds to train the model with 5-fold 
cross-validation in each round.

We first set the initialization parameters of the model, 
where boosting type is set to gbdt, and the learning rate 
was set to 0.1. The purpose of the first round was to 
improve the accuracy, so in this round, we mainly searched 
for the depth of trees (3–8) and the maximum number 
of leaf nodes per tree (5–100). Meanwhile, we set early-
stopping to 50 to minimize the magnitude of overfitting. 
The next four rounds of tuning were to make a trade-off 
between reducing the overfitting and ensuring accuracy 
after the first round of tuning. In the second round, we 
adjusted max_bin, the number of segments in the histo-
gram algorithm, to discretize the eigenvalues. The value 
of min_data_in_leaf depended on the number of sample 
trees and num_leaves in the training data. Setting it larger 
can avoid generating a too-deep tree. The third round of 
adjusting the focus on feature_fraction and bagging_frac-
tion was to specify a certain percentage of samples from 
all data for training, which can reduce the variance at the 

cost of increasing the bias. So, in this step, we tried to 
reduce the sampling proportion as much as possible while 
ensuring accuracy. In the fourth round of adjustment, 
lambda_l1 and lambda_l2 were tuned, representing the 
L1 and L2 regularization terms, respectively, which were 
used to filter the features and control their influence in the 
model to prevent some features from greatly affecting the 
whole model. Finally, we adjusted min_split_gain, which 
means that node splitting will only be performed when the 
gain is more significant than our given threshold, which 
will greatly limit the growth of trees. Upon completing the 
training process, we observed no substantial decrease in 
accuracy and classification performance measures. This 
outcome indicates the generalization ability of the model 
extends far beyond the boundaries of the training dataset, 
thereby mitigating the issue of learning bias commonly 
associated within datasets.

Evaluate and compare models by multiple metrics
To quantitatively evaluate model performance, we com-
pared MAGPIE with 14 other predicted tools includ-
ing ClinPred [31], REVEL [17], MetaSVM [13], MetaLR 
[13], VEST4 [14], M-CAP [32], MutationAssessor [11], 
PrimateAI [33], SIFT4G [34], LIST-S2 [35], DANN [21], 
MutationTaster [36], VARITY [16], and MutPred [22]. 
SIFT4G score less than 0.05 is putatively pathogenic 
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according to the authors’ recommendation. For other 
tools that predict continuous values or probabilities of 
pathogenicity, we utilized the threshold recommended 
by the authors in the corresponding article to distinguish 
between the pathogenic and benign variants. 0.025 is used 
for M-CAP, 0.8 for Mutation Assessor and PrimateAI, 0.85 
for LIST-S2, 0.3 for MutationTaster, 0.79 for MutPred, and 
0.5 as the threshold for other prediction tools. Variants 
with scores greater than or equal to the threshold in the 
prediction results of each tool possessed to be pathogenic, 
and those less than the threshold were benign.

Due to the different distribution of pathogenic and 
benign mutations in both the balanced test set and the 
imbalanced orthogonal set, we used several different met-
rics to assess the predictive performance of the model, 
including accuracy, precision, recall, specificity, F1-score, 
G-mean, Matthew’s correlation coefficient (MCC). Com-
pared with accuracy and F1-score, MCC, which considers 
all components in the confusion matrices, can be used even 
if datasets are very imbalanced. We illustrated curves and 
computed the area under the receiver operating character-
istic (ROC) curve (AUC).

accuracy =
TP + TN

TP + FP + TN + FN

precision =
TP

TP + FP

recall =
TP

TP + FN

specificity =
TN

TN + FP

Here, n is the total number of samples, npositive is the 
number of positive samples, nnegative is the number of 
negative samples, and Ranki is the rank of the i-th sam-
ple’s predicted value among all samples. For samples with 
the same predicted value, their ranks are averaged.

Most models are designed to handle specific variant 
types or rely heavily on crucial information such as protein 
structure predictions. As a result, if a variant falls outside 
the model’s scope or crucial information is unavailable, the 
pathogenicity prediction becomes challenging. To assess 
the performance of these prediction tools, we excluded var-
iants without available results for each tool and generated 
a confusion matrix using the true labels to derive relevant 
metrics. In addition, we also compared the performance 
of these tools on unpredictable variants by classifying the 
variants without predicted results as benign.

Feature importance
The utilization of autoFE has facilitated the incorporation 
of numerous novel features, which are the culmination of 
distinct amalgamations of two distinct features or the dis-
tribution of one specific feature. In the case of the origi-
nal features, the importance is derived from LightGBM. 

Fbeta− score =
(1+ beta2)(recall× precision)

recall+ precision× beta2

g −mean =
√

recall× specificity

mcc =
TP × TN − FP × FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

AUC =

∑n
i=1Ranki −

n(n+1)
2

npositive × nnegative

Fig. 1 Framework of MAGPIE. The model was trained to predict pathogenic scores of multi-type variants and included three steps. First, candidate 
variants were annotated with high-dimensional features covering six different modalities. Second, automatic feature engineering and separated 
feature selection were undertaken step by step. Finally, a gradient boosting method with controllable tuning was implemented to train the model 
and obtain predictions for the pathogenicity of variants
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As for the combined features, which were hard to inter-
pret in biology, we employ an average importance metric 
based on the number of contributing features, which is 
subsequently added to the original features. Ultimately, 
we determine the importance of each original feature, 
followed by the comparison and analysis.

Website
The accompanying web services of MAGPIE have been 
developed as shown in Additional file 2: Fig. S1. The tool 
provides online search functionality for pathogenicity 

scores by entering information on possible single-nucleo-
tide variants (SNVs). Additionally, users can register and 
request analysis for non-SNV mutations. The develop-
ment of MAGPIE was initiated to enhance the precision 
and convenience of mutation pathogenicity prediction,  
providing comprehensive support to researchers and 
clinicians within the biomedical field.

Users of the MAGPIE tool can input mutation informa-
tion in the chr:start–end-ref-alt format via the website 
to obtain pathogenicity scores. For bulk variant predic-
tion, users can submit tasks by uploading a csv file. A task 

Fig. 2 Feature importance and correlation. A Correlation between features used to train MAGPIE. B A captivating hierarchical relationship diagram 
is presented, displaying the intricate relationship between features and the categories they belong to. Each dot in the outermost layer represents 
a distinct feature, while the size of the dots indicates their importance. The second layer depicts feature categories, with the size reflecting the sum 
of importance of the subordinate features. C The bar plot illustrates feature importance, which shows the contribution of each feature after feature 
selection. Part of the add-on features is automatically removed during the training process
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ID will be generated upon successful submission, ena-
bling users to obtain pathogenicity annotations from the 
download page once the prediction process is complete. 
The tool aims to contribute to advancing research and 
treatment in this area.

Results
MAGPIE overview
MAGPIE is a computational method to predict the 
pathogenicity of multiple variant types using a gradient-
boosting machine learning framework (Fig.  1). To pre-
pare data used for modeling, we collected all mutations 
with a pathogenic interpretation in the ClinVar database 
and selected mutations labeled as pathogenic (including 
likely pathogenic) and benign (including likely benign). 
We then randomly selected 90% of the dataset to use as 
training data, rendering a total of 39,893 pathogenic and 
38,125 benign variants to feed into the model.

The MAGPIE framework is composed of 3 steps 
(Fig.  1). First, for a given variant, MAGPIE annotates 
the variant with high dimensional features covering six 
different modalities, including epigenomics, functional 
effects, splicing effects, population-based features, bio-
chemical properties, and conservation. In the second 
step, we use automatic feature engineering followed by 
feature selection to create candidate features based on 
the training dataset. Automatic feature engineering aims 
to create multiple new combinations of features based on 
input features automatically to capture as much informa-
tion as possible. After that, feature selection is used to 
pull out meaningful features. Lastly, using 5-fold cross-
validation and step-wise parameter tuning, we trained 
an interpretable gradient-boosting model (GBM) based 
on ensemble trees [37] and predicted the probability 
of pathogenicity in candidate variants. The gradient-
boosting model, namely LightGBM, uses algorithms like 
gradient-based one-side sampling (GOSS) and exclusive 
feature bundling (EFB) to accelerate the training pro-
cess while assuring accuracy. The output of MAGPIE is a 
score of pathogenicity defined over the interval between 
0 and 1, in which 0 refers to benign variants and 1 repre-
sents the most pathogenic. To understand how MAGPIE 

achieves satisfying performance with multiple modalities, 
we performed an ablation study to investigate the effects 
of the training dataset, feature selection, and LightGBM 
on MAGPIE. Moreover, the ablation study indicated that 
the MAGPIE integrating a series of modules achieved the 
best performance improvement in pathogenic prediction 
(Additional file  2: Fig. S2). A more detailed description 
of the MAGPIE framework is included in the “Meth-
ods” section. Additionally, we made MAGPIE available 
through an online website to facilitate access and use 
of the tool at http:// tools. shenl ab- genom ics. org/ tools/ 
MAGPIE (Additional file 2: Fig. S1).

MAGPIE is interpretable
The application of the gradient boosting approach makes 
MAGPIE an interpretable machine-learning model. To 
better understand the learned representation, we calcu-
lated the importance of different feature modalities and 
presented them in a network view (Fig. 2B). The feature 
importance in MAGPIE indicates the degree to which 
each feature contributes to the model and reflects their 
information gains. During the classification process, 
MAGPIE ensembled six modalities of features. Among 
them, the most important feature group is the functional 
effect, which includes measures such as the loss of func-
tion score (LoF_score), human gene damage index (GDI), 
and so on (Fig.  2A, B, Additional file  1: Table  S4-S5). 
Loss-of-function mutations have a greater likelihood of 
causing disease [38]. As previous studies have shown, 
we found that pathogenic variants predicted by MAG-
PIE have significantly lower LoF scores than benign vari-
ants (Additional file 2: Fig. S3A). GDI is the accumulated 
mutational damage of each protein-coding human gene, 
and variants in highly damaged genes are less likely to 
be disease-causing. We observed a high weight assigned 
to the GDI feature, indicating that genes with a lower 
GDI tended to have higher MAGPIE prediction scores 
and were more likely to be pathogenic (Additional file 2: 
Fig. S3B), consistent with previously published stud-
ies [26]. The second most important feature modality is 
population-based, which is correlated inversely to the 
pathogenicity in test datasets. The third most significant 

Fig. 3 MAGPIE makes accurate predictions. A The pie chart showed the proportion of pathogenic and benign variants in the independent test set, 
and the bar plot illustrated the percentages of multi-type variants in the dataset. B The receiver operating characteristic curve of MAGPIE and 14 
other predicted tools in the independent test set. The area under the curve (AUC) scores were shown in the bar plot. C Precision-recall curve 
of MAGPIE and 14 other predicted tools in the ClinVarTest dataset were illustrated. D Missing rate comparison of MAGPIE and 14 other predicted 
tools in the independent test set. The higher missing rate represented that the prediction tools cannot predict pathogenic scores on the larger 
number of candidate variants. E AUC comparison of MAGPIE and 14 other predicted tools in the ClinVarRare, which only included variants 
with AF < 0.01. F AUBPRC comparison of MAGPIE and 14 other predicted tools in the ClinVarRare which only included variants with AF < 0.01. 
G Percentages of predictable variants across different variant types in various tools. H Violin plots illustrated distributions of pathogenic scores. 
And bar plots showed the precisions in each category of pathogenic variants and benign variants

(See figure on next page.)

http://tools.shenlab-genomics.org/tools/MAGPIE
http://tools.shenlab-genomics.org/tools/MAGPIE
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Fig. 3 (See legend on previous page.)
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feature modality is conservation, which has been consid-
ered in many previous methods such as CADD, SIFT [7], 
PolyPhen [8], and VARITY [16]. The importance of con-
servation is expected and indicates the validity of MAG-
PIE’s learned representations. Additionally, we observed 
that features within each modality are correlated, while 
features from different modality groups are more likely 
to be independent (Fig. 2A). This suggests that MAGPIE 
is capable of learning multiple-dimensional information 
from different feature classes. In other words, the learned 
representations were discriminative to help MAGPIE for 
classification.

MAGPIE outperforms existing methods across multiple 
conditions
We evaluated the performance of MAGPIE together 
with 14 previously published pathogenicity predic-
tion methods including MutationAssessor, MetaSVM, 
MetaLR, VARITY, VEST4, REVEL, MutPred, DANN, 
ClinPred, PrimateAI, LIST-S2, M-CAP, Mutation-
Taster, and SIFT4G [11, 13, 14, 16, 17, 21, 22, 31–36]. 
For benchmark purposes, we applied MAGPIE on the 
ClinVar training dataset as described in methods, and 
its independent split dataset, labeled as ClinVarTest 
hereafter, was used for evaluating all models, includ-
ing MAGPIE performances (Fig.  3A). The ClinVarT-
est dataset contains 4356 pathogenic and 4310 benign 
mutations. Since we split datasets based on gene sym-
bols, these variants and their corresponding gene-level 
features were not seen by the models in the training 
dataset (Fig.  3A, Additional file  1: Table  S1). To fairly 
compare MAGPIE with other methods, pathogenic-
ity classifications were set according to the thresholds 
recommended by the authors. Nevertheless, MAG-
PIE outperformed all other classifiers on the bench-
mark with the highest AUC score of 0.995 and AUPRC 
of 0.995 (Fig.  3B, C, Additional file  1: Table  S6-S8). 
In comparison, other methods, i.e., MutationTaster, 
DANN, LIST-S2, SIFT4G, PrimateAI, M-CAP, and 
MutationAssessor achieved AUC from 0.61 to 0.91. The 

performance evaluation suggested that MAGPIE is a 
reliable tool for pathogenic prediction.

Of note, existing pathogenic prediction tools mostly 
predicted a limited number of mutations, which indi-
cated a lack of generalization of previous methods. 
For example, for published classifiers, i.e., ClinPred, 
REVEL, MetaSVM, MetaLR, MutationAssessor, Pri-
mateAI, SIFT4G, LIST-S2, and M-CAP, 30–60% of can-
didate mutations were unpredictable by these methods 
(Fig.  3D), which leads to 30–60% of variants’ output as 
missing. These missing values were generated due to 
variant types not being predictable by specific predic-
tion tools. In contrast, MAGPIE succeeded in predicting 
the pathogenicity of all variants in the dataset, fulfill-
ing 3–60% of missing values predicted by other meth-
ods (Fig. 3C). In other words, for all the exonic variants 
assessed covering various mutation types other than syn-
onymous mutation, the missing rate of MAGPIE is zero. 
In summary, MAGPIE outperformed all previously pub-
lished machine learning methods as well as the state-of-
the-art deep learning methods on this benchmark.

Finally, we constructed a rare mutation test set (Clin-
VarRare) to evaluate the ability of MAGPIE to identify 
pathogenic variants from rare benign variants, which 
is one of the major challenges in real-world analysis for 
genetic diagnosis of disease. The ClinVarRare test set 
included rare pathogenic ClinVar variants (AF < 0.01) and 
rare benign variants from gnomAD (AF < 0.01), which is 
more similar to the real whole-exome sequencing data-
sets. For the rare mutation test set, MAGPIE achieved the 
best performance with an AUC equal to 0.992, followed 
by REVEL, ClinPred, and MutPred. Previous computa-
tional tools predicted a proportion of variants within the 
whole dataset, and the rest of the variants were unpre-
dictable because these tools were designed to classify 
specific types of variants. Consequently, we examined 
that MAGPIE predicted all 4881 variants in the ClinVar-
Rare test set with the highest accuracy of 0.95 (Fig. 3E). 
In summary, MAGPIE outperforms all previously pub-
lished machine learning methods and the state-of-the-art 

(See figure on next page.)
Fig. 4 MAGPIE outperforms other models in orthogonal validation set and ACMG-guided dataset. A The pie chart showed the proportion 
of pathogenic and benign variants in the orthogonal validation set and the bar plot illustrated the percentages of multi-type variants in the dataset. 
B The receiver operating characteristic curve of MAGPIE and 14 other predicted tools in the orthogonal validation set. C The precision-recall curve 
of MAGPIE and 14 other predicted tools in the orthogonal validation set were illustrated. D Missing rate comparison of MAGPIE and 14 other 
predicted tools in the orthogonal validation set. The higher missing rate represented that the prediction tools cannot predict pathogenic scores 
on the larger number of candidate variants. E AUC comparison of MAGPIE and 14 other predicted tools in the SwissProtRare which only included 
variants with AF < 0.01. F AUBPRC comparison of MAGPIE and 14 other predicted tools in the SwissProtRare which only included variants 
with AF < 0.01. G The pie chart showed the proportion of pathogenic and benign variants in the ACMG-guided dataset, and the bar plot illustrated 
the percentages of multi-type variants in the dataset. H Performance comparison of MAGPIE and 14 other predicted tools in the ACMG-guided 
dataset. I The precision-recall curve of MAGPIE and 14 other predicted tools in the ACMG-guided dataset were illustrated
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Page 13 of 19Liu et al. Genome Medicine            (2024) 16:3  

deep learning methods on both the ClinVarTest dataset 
and the ClinVarRare test dataset.

MAGPIE achieves high performance in multiple mutation 
types
An important characteristic of MAGPIE is the ability to 
make pathogenic predictions on multiple types of muta-
tions. The ClinVarTest dataset contains a total of 6 types 
of mutations: missense variants (or nonsynonymous 
SNV), stop-gain variants, start-loss variants, frameshift 
mutations, nonframeshift mutations, and stop-loss vari-
ants. MAGPIE was predictive of clinical significance for 
all labeled variants across various mutation types, while 
many available methods only applied to certain mutation 
types (Fig. 3G). Besides, the performance of our methods 
was robust to different variant types, suggesting the gen-
eralizability of our method (Fig. 3H).

We further analyzed the distribution of pathogenic 
scores across mutation types to evaluate the classifica-
tion capability of MAGPIE. To visualize the distribution 
of MAGPIE-predicted pathogenic probability, we plot-
ted the MAGPIE score distributions for different types 
of pathogenic and benign variants (Fig.  3H). For patho-
genic variants, MAGPIE scores were highly concentrated 
around 1, and for benign variants, scores were near 
0 across six types of variants. This suggested that our 
model can separate pathogenic and benign variants well. 
We further analyzed the ability of classification quantita-
tively and evaluated how accurately our model can pre-
dict pathogenicity. The average precision of all types of 
variants was 0.98, suggesting that 98% of predicted path-
ogenic variants were consistent with their true labels. 
And the average false predictive value was 0.8, mean-
ing 80% of predicted benign mutations were true nega-
tives. In particular, MAGPIE identified pathogenic and 
benign variants successfully in the imbalanced datasets of 
stop-loss and stop-gain mutations. As shown in Fig. 3G, 
MAGPIE detected pathogenic mutations in stop-loss and 
stop-gain mutations and minimized false positives (aver-
age precision of 1.0). Therefore, MAGPIE can accurately 
differentiate pathogenic and benign mutations across 
various mutation types.

MAGPIE achieves the best performance on additional 
orthogonal datasets
We used the annotated variants from the SwissProt 
database as an orthogonal dataset to further benchmark 
MAGPIE against other methods. SwissProt contains 
80,840 labeled variants, with 71,400 explicitly labeled 
as pathogenic or benign. Only variants with unique ref-
erence SNP ID mapping, in the exonic region, exclud-
ing synonymous SNVs, were retained. To ensure the 

independence of the orthogonal dataset, we further 
removed variants located on genes reported in the 
ClinVarTrain dataset. We also made the orthogonal 
dataset closer to the real scenario and evaluate the per-
formance of MAGPIE in the imbalanced dataset with 
less than 10% positive samples. After filtering, the num-
ber of pathogenic and benign mutations became highly 
imbalanced. The number of benign variants was 12,075, 
while the number of pathogenic ones was only 1308, 
about 9.8% of the total number of variants to be tested 
(Fig. 4A, Additional file 1: Table S2). We also conducted 
an ablation study in this imbalanced orthogonal dataset 
and found that the full model was much superior to other 
model variations of MAGPIE (Additional file 2: Fig. S2).

Again, the performance of MAGPIE was superior to 
other machine learning and deep learning methods on 
this benchmark. MAGPIE outcompeted other tools 
with the best AUC of 0.97 and AUPRC of 0.88 (Fig. 4B, 
Additional file  1: Table  S6-S8). Furthermore, MAGPIE 
computed the pathogenic probability for all filtered vari-
ants without missing values (Fig.  4C), whereas VEST4, 
DANN, MutationTaster, and MetaSVM were the closest 
competitor with about 5% missing rate (Fig.  4C, Addi-
tional file  1: Table  S6-S8). As for M-CAP and MutPred, 
more than 40% variants were unpredictable. Hence, on 
this benchmark, MAGPIE was better than other methods 
in predicting novel pathogenic mutations.

To evaluate the performance of MAGPIE in the imbal-
anced test dataset with rare variants, we constructed a 
rare SwissProt test set (SwissProtRare) where all vari-
ants had AF less than 0.01. The dataset included 9% 
of rare pathogenic SwissProt variants and 91% of rare 
benign variants from gnomAD, an extreme case of an 
imbalanced rare variant dataset. MAGPIE outperformed 
all competitors with an AUC equal to 0.95, followed 
by REVEL (AUC = 0.92) and MutPred (AUC = 0.91) 
(Fig.  4E). In general, MAGPIE outperformed other 
competitors.

Three types of variants were included in the Swis-
sProt dataset, and MAGPIE was able to differentiate well 
between pathogenic and benign variants across all vari-
ant types in the orthogonal dataset as well (Additional 
file  2: Fig. S4A). Additionally, we found that MAGPIE 
scores of pathogenic variants were concentrated close 
to 1. In contrast, the probabilities of benign variants 
were near 0, which will further support the reliability 
of our method (Additional file  2: Fig. S4B). Precision of 
pathogenic variants was higher than 0.85, suggesting that 
MAGPIE achieved accurate pathogenic variants pre-
diction (Additional file 2: Fig. S4B). Consistent with the 
results in the ClinVarTest dataset, for start-loss and stop-
gain variants, MAGPIE achieved higher precision than 
the precision of nonsynonymous SNVs (precisions of 
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0.95 and 1, respectively) (Additional file 2: Fig. S4B). The 
false predictive values of stop-loss and stop-gain vari-
ants were slightly lower than the false predictive values of 
nonsynonymous SNVs and start-loss variants. However, 
the average false predictive value achieved 0.8 (Addi-
tional file 2: Fig. S4B). Thus, MAGPIE could successfully 
predict new pathogenic variants among different variant 
types.

Furthermore, we assessed the performance of MAGPIE 
and other models on an additional validation set from 
ACMG test panel. We obtained the ACMG guided test 
panel (2023.05.22), which includes a total of 1270 muta-
tions, from the official website. After filtering, a final 

dataset of 491 mutations was used to compare MAGPIE 
and other model performances. In contrast to the Swis-
sProt dataset, in the imbalanced ACMG dataset, there 
were 82% of pathogenic variants and 18% of benign vari-
ants. Again, MAGPIE achieved the highest AUC and 
AUPRC among all methods (Additional file 2: Fig. S5-S6, 
Additional file  1: Table  S6-S8), illustrating that MAG-
PIE could classify pathogenic and benign in imbalanced 
datasets.

Assessing MAGPIE performance with varying threshold
Different thresholds may affect the model performance, 
especially in imbalanced data. In the real-world clinical 

Fig. 5 MAGPIE detects most variants in pathogenic genes. A Comparison of the number of detected pathogenic variants in four well-known 
pathogenic genes between MAGPIE and 14 other prediction tools. B Density plots illustrated distributions of pathogenic scores predicted 
by MAGPIE, MutationTaster, and VEST4. Moreover, the pie charts showed the proportion of predictable and unpredictable variants of each tool
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applications of pathogenic prediction tools to inter-
pret VUS in individual patients, only a few pathogenic 
mutations should be identified out of tens of thousands 
of candidate variants called from WES data. Thus, the 
pathogenic prediction tasks are presumably assigned 
to handle highly imbalanced datasets. Therefore, we 
investigated the optimal threshold of MAGPIE under 
various data balance scenarios. The default parameter 
of our model is 0.5 in balanced datasets such as the 
ClinVarTest dataset. We found that with the predicted 
probabilities between 0.4 and 0.7, both the accuracy 
and F1-score were stable (Additional file 2: Fig. S7-S8). 
Besides, Matthew’s correlation coefficient (MCC), a 
measure of association for two binary variables, in the 
ClinVarTest dataset confirmed that 0.5 was a reliable 
threshold for this benchmark (Additional file  2: Fig. 
S7-S8).

To examine the effects of different ratios between 
the number of pathogenic and benign variants, the 
ClinVarTest dataset was randomly divided into a series 
of subsets with various combinations. We randomly 
added different proportions of pathogenic variants 
to all benign variants from the ClinVarTest dataset to 
construct independent test subsets. We can see that in 
such cases, the optimal thresholds had dropped from 
0.95 to 0.72 (Additional file 2: Fig. S7). However, MCC, 
accuracy, and F1-score were relatively stable in these 
subsets, which illustrated that performances of MAG-
PIE had less impact caused by the different thresholds 
(Additional file 2: Fig. S7). Furthermore, we added vari-
ous percentages of benign variants to all pathogenic 
variants. We also found similar results (Additional 
file 2: Fig. S8).

We next studied the orthogonal SwissProt dataset, 
which was highly imbalanced with only 9.8% patho-
genic mutations, and the ACMG dataset, which only 
included 18% benign variants. The SwissProt data-
set is more similar to real applied scenarios than the 
ClinVarTest dataset and has clear labels of pathogenic-
ity. Therefore, a precision-recall curve can help us to 
evaluate the influence of classifier performance with 
different thresholds. We found that the optimal thresh-
old in this dataset was 0.71 (Additional file 2: Fig. S9A). 
We analyzed the performance matrix in the dataset 
with the default threshold and the optimal threshold. 
Our findings showed that the performance of MAG-
PIE became better with stricter thresholds. MCC and 
F1-score increased by 2% and 3%, respectively (Addi-
tional file  2: Fig. S9A). Similarly, we observed that 
the optimal threshold of the ACMG dataset was 0.34 
(Additional file  2: Fig. S9B). MCC and F1-score had 
been slightly improved. However, if there is no precise 
estimate of the compositions of the dataset, MAGPIE 

with the default parameter still outperformed other 
methods. Therefore, using a default threshold can also 
achieve accurate prediction on both imbalanced and 
balanced datasets as shown before.

MAGPIE prediction on gene mutations that cause 
Mendelian diseases
Next, we applied MAGPIE to four genes curated with 
a large number of known pathogenic mutations caus-
ing different Mendelian diseases (Methods). For all 
the four genes tested, i.e., ATP7B, CFTR, FBN1, and 
LMNA, MAGPIE was able to recover the largest num-
ber of known pathogenic mutations compared to other 
methods with default parameters (Fig.  5A). On average, 
MAGPIE recovered 96% of known pathogenic variants. 
For instance, for FBN1, the gene mutated in Marfan syn-
drome [39] and included 1621 pathogenic mutations. 
MAGPIE predicted 1450 (87%) candidate variants as 
pathogenic, and MAGPIE scores of 95% pathogenic vari-
ants were close to 1 (Fig.  5B). All other tools correctly 
classified a smaller fraction of variants, which was lower 
than 70%. For CFTR (which is associated with cystic 
fibrosis), MAGPIE predicted 164 (95%) variants to be 
pathogenic. Compared to MutationTaster, VEST4, and 
other tools, MAGPIE scores were concentrated about 1 
(Fig. 5B). Moreover, the performance of our classifier on 
ATP7B and FBN1 was better than other methods, indi-
cating a stable performance for evaluating pathogenicity 
despite using entirely different disease-associated genes 
(Fig. 5A, B). Thus, MAGPIE performs better in identify-
ing pathogenic mutations that cause Mendelian diseases.

Discussion
The next-generation sequencing has revealed tremendous 
amount of genetic variations in the human population. 
However, it has raised another challenge: the difficulty of 
identifying the actual disease-causing mutation from the 
millions of normal variations. The current computation 
tools have enabled to predict one or several specific types 
of mutations. For example, M-CAP, MutationTaster, and 
PrimateAI focus on missense variants. However, specific 
types of variants have been filtered out due to the models’ 
scope. Various types of mutations present the challenge 
of the generalization ability for computational methods 
to predict pathogenic scores among mutations. There-
fore, it is critical to train a generalized classifier foremost 
to expand predictable variant types.

To address this challenge, we report a computational 
classifier named MAGPIE, which focuses on classifying 
multiple types of mutations of uncertain significance for 
Mendelian diseases. The novelty of this work comes from 
a combination of data preparation, feature extraction, 
feature engineering, and model selection. The overall 
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idea is that from the users’ perspective, the pathogenic-
ity of a variant should be jointly evaluated on multiple 
scopes, which corresponds to features derived from six 
modalities in MAGPIE. Therefore, the machine learning 
components of MAGPIE are designed to maximize the 
models’ learning on multimodal data.

The machine learning component of MAGPIE mainly 
included autoFE and LightGBM, both of which we 
think contributes to the novelty of the method. In the 
pathogenicity prediction task, the pathogenicity of vari-
ants may be caused by multiple types of features. To 
enhance the model’s performance, we aimed to integrate 
these multimodal features. By incorporating the autoFE 
component, MAGPIE has the capability to handle the 
complexity of the features and effectively capture the 
underlying relationships. This enables us to extract valua-
ble information from the features and improve the overall 
performance of our model. This process involves apply-
ing certain transformations to the features, allowing for 
a better representation of their performance in predict-
ing mutation pathogenicity, such as through Group-By 
operations. Of note, MAGPIE employs separated fea-
ture selection and step-wise training approaches during 
the autoFE process to avoid overfitting. In our updated 
ablation study, the inclusion of the autoFE component 
enhances the performance of MAGPIE (Additional file 2: 
Fig. S2).

The input data for pathogenicity prediction in 
MAGPIE is in tabular format, which makes it suit-
able for tree-based models. Among the tree-based 
models, LightGBM stands out as one of the most effi-
cient models in terms of both prediction accuracy and 
computational time. LightGBM is based on the gra-
dient boosting framework and incorporates a num-
ber of advanced techniques such as histogram-based 
binning, leaf-wise tree growth, and gradient-based 
one-side sampling. These techniques improve model 
performance and enables faster training and inference 
times compared to other tree-based models or machine 
learning models. Consistently, in the ablation study 
for MAGPIE, we found that the computational time 
required for SVM with an identical training process 
was approximately 10 times longer than LightGBM. By 
incorporating LightGBM in MAGPIE, we are able to 
leverage its efficiency and accuracy to achieve accurate 
and timely pathogenicity predictions (Additional file 2: 
Fig. S10). Moreover, we can easily calculate feature 
importance from the LightGBM model, which enables 
the interpretability of MAGPIE.

Another novel aspect of MAGPIE design is the abil-
ity to make accurate prediction for rare variants, which 
is highly clinically relevant but not naturally well rep-
resented in ClinVar database as training source. In 

real-world pathogenicity prediction and diagnosis sce-
narios, it is common to encounter rare benign variants. 
Therefore, we aimed to include rare benign variants in 
the training of MAGPIE to enhance its ability to detect 
pathogenic variants in clinical settings. However, in large 
mutation datasets like ClinVar, rare benign variants make 
up a very small proportion of the dataset. To address 
this issue, we incorporated rare benign variants from 
gnomAD into the training set. By including rare benign 
variants from gnomAD, we were able to overcome the 
lack of features associated with rare benign variants in 
ClinVar. This inclusion of a more diverse dataset, encom-
passing rare benign variants, led to better generalization 
of the MAGPIE model. Ablation study also proves this 
crucial role of relevant cross-dataset working in improv-
ing model performance (Additional file 2: Fig. S2). In the 
ablation study, we find that removing the data from gno-
mAD in the training set has a significant impact on the 
performance of the MAGPIE model. Particularly in the 
pathogenicity prediction task for rare mutations, add-
ing gnomAD mutations to the training set significantly 
increases the probability of correctly classifying rare 
benign mutations (Additional file 2: Fig. S2).

On the ClinVarTest dataset and the orthogonal data-
sets, our approach accurately classified multi-type vari-
ants, respectively, whereas most tools can only predict 
one or two types of variants. However, the total numbers 
of variants across variant types in the ClinVar dataset 
were different. Compared with the number of missense 
variants, other types of variants, such as stopgain, stop-
loss, and so on, had less number of records. Thus, the 
small sample size in these variant types might limit, to 
some extent, the performance of MAGPIE and cause 
some biases.

Many previous studies have demonstrated outstanding 
performance in accurately predicting pathogenic muta-
tions and have paved the way for subsequent work. The 
design of MAGPIE draws inspiration from many previ-
ous work, such as utilizing the AUBPRC metric defined 
in VARITY to assess the performance of imbalanced 
datasets. However, we showed here that the state-of-
the-art methods included missing value because their 
predictions are concentrated on one or several specific 
mutation types. In the clinical application for genetic 
diagnosis, these unpredictable variants would be filtered 
out and often be treated as non-pathogenic ones (Addi-
tional file 2: Fig. S11).

Detection of pathogenic variants using MAGPIE may 
suffer from several limitations. First, we evaluated the 
running time of our method and found that the annota-
tion tools cost the most time in the MAGPIE pipeline 
since the running time of MAGPIE was limited by the 
necessary file I/O in annotation tools (Additional file  2: 
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Fig. S11). Also, our approach does not address the influ-
ences of a combination of variants. Human diseases may 
be associated with multiple causative mutations. How-
ever, our method focuses on predicting the pathogenic-
ity of a single variant. Another potential limitation is that 
this approach is designed to obtain information from 
genetic annotations without any phenotype-related anno-
tations. Future methods development may consider fea-
tures including phenotype-related annotations to build 
a more direct connection between diseases and genetic 
variants. Currently, the clinical work of genetic diagnosis 
rate is still limited. It was reported that using WES data, 
the genetic diagnosis rate can be up to 40%, suggesting 
a large space of improvement remains for practical clini-
cal work. Several reasons lead to this result, one of which 
is that most of the human genome is non-coding, while 
most algorithms can only predict a subset of the coding 
region. Admittedly, computational predictions focus-
ing on exonic mutations other than synonymous muta-
tions like MAGPIE are necessary but still insufficient to 
address all the clinical diagnosis challenges. MAGPIE 
cannot provide reliable predictions for intronic and inter-
genic variants due to the scarcity of annotation informa-
tion in existing databases and the lack of training sources. 
As we move forward, we will endeavor to acquire essen-
tial information about these types of mutations.

Conclusions
In this study, we introduce a computational framework 
named MAGPIE, which generates pathogenicity scores 
for multi-type variants and simplifies pathogenicity 
classification for millions of candidate genomic vari-
ants. Moreover, MAGPIE is independent of any other 
pathogenic prediction tools, thereby avoiding introduc-
ing biases and circularity. Our approach yields superior 
performance and low missing rates for various types of 
exonic variants in both balanced and imbalanced data-
sets. Besides, MAGPIE also provided an accurate predic-
tion of multi-type rare variants. Furthermore, MAGPIE 
performance remained robust, recovering known patho-
genic variants across different Mendelian diseases. In 
conclusion, with improved prediction accuracy, MAG-
PIE provides a more accessible and accurate prediction of 
multi-type exonic variants for Mendelian disease studies.

Abbreviations
MAGPIE  Multimodal Annotation Generated Pathogenic Impact Evaluator
ClinVar  Clinical variation
AUC   Area under curve
WGS  Whole genome sequencing
WES  Whole exome sequencing
gnomAD  Genome Aggregation Database
ExAC  Exome Aggregation Consortium
ML  Machine learning

DL  Deep learning
OMIM  Online Mendelian Inheritance in Man
HGMD  Human Gene Mutation Database
RNA  Ribonucleic acid
SpliceAI  Splice artificial intelligence
EVE  Evolutionary model of variant effect
CADD  Combined Annotation-Dependent Depletion
DANN  Deleterious Annotation of Genetic Variants using Neural Networks
REVEL  Rare Exome Variant Ensemble Learner
MutPred  Mutation predictor
VEST  Variant effect scoring tool
PROVEAN  Protein Variation Effect Analyzer
PhastCons  Phylogenetic Analysis with Space/Time Models for Conservation 

of Evolutionary Significant Sequences
GBM  Gradient-boosting model
GOSS  Gradient-based one-side sampling
EFB  Exclusive feature bundling
GDI  Gene damage index
LoF  Loss of function
SIFT  Sorting Intolerant From Tolerant
PolyPhen  Polymorphism phenotyping
MetaSVM  Meta-learner support vector machine
MetaLR  Meta-logistic regression
ClinPred  Clinical variant prediction
PrimateAI  Primate artificial intelligence
LIST-S2  Local Identity and Shared Taxa—S2
M-CAP  Mendelian Clinically Applicable Pathogenicity
SIFT4G  Sorting Intolerant From Tolerant for Genomes
SNV  Single-nucleotide variant
AUPRC  Area under the precision-recall curve
AUBPRC  Area under the balanced precision-recall curve
MCC  Matthews correlation coefficient
GWAS  Genome-wide association study
ANNOVAR  Annotation of variants from next-generation sequencing data 

using a reference genome
RVIS  Residual variation intolerance score
LoFtool  Loss of function tool
DS  Delta score
AG  Acceptor gain
AL  Acceptor loss
DG  Donor gain
DL  Donor loss
DP  Delta position
AF  Allele frequency
phyloP  Phylogenetic P-values
SiPhy  SIte-specific PHYlogenetic analysis
AutoFE  Automatic feature engineering
SFS  Separated feature selection
ROC  Receiver operating characteristic

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13073- 023- 01274-4.

Additional file 1: Table S1. Category and proportion of variants in 
independent test set. Table S2. Category and proportion of variants in 
orthogonal validation set. Table S3. Category and proportion of vari-
ants in ACMG guided dataset. Table S4. Feature name and description. 
Table S5. Feature importance of MAGPIE. Table S6. Performance metrics 
in independent test set. Table S7. Performance metrics in orthogonal 
validation set. Table S8. Performance metrics in ACMG guided dataset.

Additional file 2: Fig. S1. Web tool of MAGPIE. Fig. S2. Ablation study of 
MAGPIE. Fig. S3. Significance test on independent test set. Fig. S4. Perfor-
mance of each variant type on orthogonal validation set. Fig. S5. Perfor-
mance evaluation on ACMG guided dataset. Fig. S6. Performance of each 
variant type on ACMG guided dataset. Fig. S7. Threshold test of MAGPIE 
on independent test set when number of pathogenic variants is less than 

https://doi.org/10.1186/s13073-023-01274-4
https://doi.org/10.1186/s13073-023-01274-4


Page 18 of 19Liu et al. Genome Medicine            (2024) 16:3 

benign ones. Fig. S8. Threshold test of MAGPIE on orthogonal validation 
set when the number of pathogenic variants is less than benign. Fig. S9. 
Performance comparison before and after threshold adjustment accord-
ing to FPR control. Fig. S10. MAGPIE running time. Fig. S11. Performance 
comparison in real-world diagnosis.

Acknowledgements
We thank Jinzhao Liang, Xiaoyang Zhao, and Hanying Jia for providing impor-
tant suggestions on data analysis. We thank Dandan Hu, Lin Lv, Asif Ashan, 
Hanying Jia, Xilu Yuan, and Yuxin Gu for providing helpful suggestions for 
manuscript. We thank Dr. Shanshan Pei for helping us come up with the name 
of the tool. We are also thankful for the Core Facilities of Liangzhu Laboratory.

Authors’ contributions
N.S. conceived the project. N.S., S.W., and Y.L. designed the experiment. Y.L. 
processed the data and performed the experiments. N.S., Y.L., and T.Z. devised 
the data analysis. N.S. and S.W. supervised the study. N.Y. and Y.L. built the 
MAGPIE tool website. T.Z., N.S., Y.L. S.W. wrote the manuscript. All authors read 
and approved the final manuscript.

Funding
This work was supported by grants from Liangzhu Laboratory.

Availability of data and materials
Datasets generated and/or analyzed during the current study are publicly 
available in the ClinVar (https:// ftp. ncbi. nlm. nih. gov/ pub/ clinv ar/) [4], Swis-
sProt (https:// ftp. unipr ot. org/ pub/ datab ases/ unipr ot/) [40], gnomAD (https:// 
gnomad. broad insti tute. org/ downl oads/) [1], and ACMG guided dataset 
(https:// doi. org/ 10. 1016/j. gim. 2021. 11. 018) [41]. The datasets supporting the 
conclusions of this article are included within the article and its additional files. 
MAGPIE web-based prediction tool for all nonsynonymous exonic variants is 
available at http:// tools. shenl ab- genom ics. org/ tools/ MAGPIE.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors have submitted a patent application for the method. Other than 
this, the authors declare that they do not have any competing interests.

Received: 14 August 2023   Accepted: 12 December 2023

References
 1. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q, ... 

MacArthur DG. The mutational constraint spectrum quantified from vari-
ation in 141,456 humans. Nature. 2020;581(7809):434–443.

 2. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, ... Exome 
Aggregation Consortium. Analysis of protein-coding genetic variation in 
60,706 humans. Nature. 2016;536(7616):285-291

 3. Cao Y, Li L, Xu M, Feng Z, Sun X, Lu J, ... Wang W. The ChinaMAP analyt-
ics of deep whole genome sequences in 10,588 individuals. Cell Res. 
2020;30(9):717–731.

 4. Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, ... Maglott 
DR. ClinVar: public archive of interpretations of clinically relevant variants. 
Nucleic Acids Res. 2016;44(D1), D862-D868.

 5. Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. 
OMIM. org: Online Mendelian Inheritance in Man (OMIM®), an online 
catalog of human genes and genetic disorders. Nucleic Acids Res. 
2015;43(D1):D789–98.

 6. Stenson PD, Mort M, Ball EV, Evans K, Hayden M, Heywood S, ... Cooper 
DN. The Human Gene Mutation Database: towards a comprehensive 
repository of inherited mutation data for medical research, genetic 
diagnosis and next-generation sequencing studies. Hum Genet. 
2017;136:665–677.

 7. Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein 
function. Nucleic Acids Res. 2003;31(13):3812–4.

 8. Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of 
human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 
2013;76(1):7–20.

 9. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional 
effect of amino acid substitutions and indels. 2012.

 10. Li B, Krishnan VG, Mort ME, Xin F, Kamati KK, Cooper DN, ... Radivojac P. 
Automated inference of molecular mechanisms of disease from amino 
acid substitutions. Bioinformatics. 2009;25(21):2744–2750.

 11. Reva B, Antipin Y, Sander C. Predicting the functional impact of 
protein mutations: application to cancer genomics. Nucleic Acids Res. 
2011;39(17):e118–e118.

 12. Shihab HA, Rogers MF, Gough J, Mort M, Cooper DN, Day IN, ... 
Campbell C. An integrative approach to predicting the functional 
effects of non-coding and coding sequence variation. Bioinformatics. 
2015;31(10):1536–1543.

 13. Dong C, Wei P, Jian X, Gibbs R, Boerwinkle E, Wang K, Liu X. Comparison 
and integration of deleteriousness prediction methods for nonsyn-
onymous SNVs in whole exome sequencing studies. Hum Mol Genet. 
2015;24(8):2125–37.

 14. Carter H, Douville C, Stenson PD, Cooper DN, Karchin R. Identifying Men-
delian disease genes with the variant effect scoring tool. BMC Genomics. 
2013;14(3):1–16.

 15. Frazer J, Notin P, Dias M, Gomez A, Min JK, Brock K, ... Marks DS. Disease 
variant prediction with deep generative models of evolutionary data. 
Nature. 2021;599(7883):91–95.

 16. Wu Y, Liu H, Li R, Sun S, Weile J, Roth FP. Improved pathogenic-
ity prediction for rare human missense variants. Am J Hum Genet. 
2021;108(10):1891–906.

 17. Ioannidis NM, Rothstein JH, Pejaver V, Middha S, McDonnell SK, Baheti S, ... 
Sieh W. REVEL: an ensemble method for predicting the pathogenicity of 
rare missense variants. Am J Hum Genet. 2016;99(4):877–885.

 18. Cheng J, Nguyen TYD, Cygan KJ, Çelik MH, Fairbrother WG, Gagneur J. 
MMSplice: modular modeling improves the predictions of genetic variant 
effects on splicing. Genome Biol. 2019;20(1):1–15.

 19. Jaganathan K, Panagiotopoulou SK, McRae JF, Darbandi SF, Knowles D, 
Li YI, ... Farh KKH. Predicting splicing from primary sequence with deep 
learning. Cell. 2019;176(3):535–548.

 20. Rentzsch P, Witten D, Cooper GM, et al. CADD: predicting the deleteri-
ousness of variants throughout the human genome. Nucleic Acids Res. 
2019;47(D1):D886–94.

 21. Quang D, Chen Y, Xie X. DANN: a deep learning approach for annotating 
the pathogenicity of genetic variants. Bioinformatics. 2015;31(5):761–3.

 22. Pejaver V, Urresti J, Lugo-Martinez J, Pagel KA, Lin GN, Nam HJ, ... Radivojac 
P. Inferring the molecular and phenotypic impact of amino acid variants 
with MutPred2. Nat Commun. 2020;11(1):5918.

 23. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, 
... Haussler D. Evolutionarily conserved elements in vertebrate, insect, 
worm, and yeast genomes. Genome Res. 2005;15(8):1034–1050.

 24. Van Rossum G, Drake FL. Python reference manual (Vol. 111). Amsterdam: 
Centrum voor Wiskunde en Informatica; 1995. p. 1–52.

 25. The MathWorks Inc. MATLAB version: 9.13.0 (R2022b), Natick, Massachu-
setts: The MathWorks Inc; 2022.  https:// www. mathw orks. com.

 26. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, ... 
Duchesnay É. Scikit-learn: machine learning in Python. J Mach Learn Res. 
2011;12:2825–2830.

 27. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic 
variants from high-throughput sequencing data. Nucleic Acids Res. 
2010;38(16):e164–e164.

 28. Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and 
characterization. Nat Methods. 2012;9(3):215–6.

 29. Nounou MN, Bakshi BR, Goel PK, Shen X. Bayesian principal component 
analysis. J Chemom. 2002;16(11):576–95.

https://ftp.ncbi.nlm.nih.gov/pub/clinvar/
https://ftp.uniprot.org/pub/databases/uniprot/
https://gnomad.broadinstitute.org/downloads/
https://gnomad.broadinstitute.org/downloads/
https://doi.org/10.1016/j.gim.2021.11.018
http://tools.shenlab-genomics.org/tools/MAGPIE
https://www.mathworks.com


Page 19 of 19Liu et al. Genome Medicine            (2024) 16:3  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 30. Zhang T, Zhang Z, Fan Z, Luo H, Liu F, Cao W, Li J. OpenFE: automated 
feature generation beyond expert-level performance. 2022. arXiv preprint 
arXiv: 2211. 12507.

 31. Alirezaie N, Kernohan KD, Hartley T, Majewski J, Hocking TD. ClinPred: 
prediction tool to identify disease-relevant nonsynonymous single-
nucleotide variants. Am J Hum Genet. 2018;103(4):474–83.

 32. Jagadeesh KA, Wenger AM, Berger MJ, Guturu H, Stenson PD, Cooper 
DN, ... Bejerano G. M-CAP eliminates a majority of variants of uncer-
tain significance in clinical exomes at high sensitivity. Nat Genet. 
2016;48(12):1581–1586.

 33. Sundaram L, Gao H, Padigepati SR, McRae JF, Li Y, Kosmicki JA, ... Farh 
KKH. Predicting the clinical impact of human mutation with deep neural 
networks. Nat Genet. 2018;50(8):1161–1170.

 34. Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC. SIFT missense predictions 
for genomes. Nat Protoc. 2016;11(1):1–9.

 35. Malhis N, Jacobson M, Jones SJ, Gsponer J. LIST-S2: taxonomy based sort-
ing of deleterious missense mutations across species. Nucleic Acids Res. 
2020;48(W1):W154–61.

 36. Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: 
mutation prediction for the deep-sequencing age. Nat Methods. 
2014;11(4):361–2.

 37. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, ... Liu TY. LightGBM: a 
highly efficient gradient boosting decision tree. Adv Neural Inform 
Process Syst. 2017;30.

 38. Itan Y, Shang L, Boisson B, Patin E, Bolze A, Moncada-Vélez M, ... Casanova 
JL. The human gene damage index as a gene-level approach to prioritiz-
ing exome variants. Proc Natl Acad Sci. 2015;112(44):13615–13620.

 39. Dietz HC, Pyeritz RE. Mutations in the human gene for fibrillin-1 (FBN1) 
in the Marfan syndrome and related disorders. Hum Mol Genet. 
1995;4(suppl_1):1799–809.

 40. Bairoch A, Apweiler R. The SWISS-PROT protein sequence database 
and its supplement TrEMBL in 2000. Nucleic Acids Res. 2000;28(1):45–8. 
https:// doi. org/ 10. 1093/ nar/ 28.1. 45.

 41. Wilcox EH, Sarmady M, Wulf B, Wright MW, Rehm HL, Biesecker LG, Abou 
Tayoun AN. Evaluating the impact of in silico predictors on clinical variant 
classification. Genet Med. 2022;24(4):924–30.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/2211.12507
https://doi.org/10.1093/nar/28.1.45

	MAGPIE: accurate pathogenic prediction for multiple variant types using machine learning approach
	Abstract 
	Background
	Methods
	Data preparation
	MAGPIE framework
	Feature annotation
	Feature engineering and selection
	Model training
	Evaluate and compare models by multiple metrics
	Feature importance
	Website

	Results
	MAGPIE overview
	MAGPIE is interpretable
	MAGPIE outperforms existing methods across multiple conditions
	MAGPIE achieves high performance in multiple mutation types
	MAGPIE achieves the best performance on additional orthogonal datasets
	Assessing MAGPIE performance with varying threshold
	MAGPIE prediction on gene mutations that cause Mendelian diseases

	Discussion
	Conclusions
	Anchor 23
	Acknowledgements
	References


