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Abstract 

Background Next‑generation sequencing (NGS) has significantly transformed the landscape of identifying disease‑
causing genes associated with genetic disorders. However, a substantial portion of sequenced patients remains undi‑
agnosed. This may be attributed not only to the challenges posed by harder‑to‑detect variants, such as non‑coding 
and structural variations but also to the existence of variants in genes not previously associated with the patient’s 
clinical phenotype. This study introduces EvORanker, an algorithm that integrates unbiased data from 1,028 eukary‑
otic genomes to link mutated genes to clinical phenotypes.

Methods EvORanker utilizes clinical data, multi‑scale phylogenetic profiling, and other omics data to prioritize dis‑
ease‑associated genes. It was evaluated on solved exomes and simulated genomes, compared with existing methods, 
and applied to 6260 knockout genes with mouse phenotypes lacking human associations. Additionally, EvORanker 
was made accessible as a user‑friendly web tool.

Results In the analyzed exomic cohort, EvORanker accurately identified the “true” disease gene as the top candidate 
in 69% of cases and within the top 5 candidates in 95% of cases, consistent with results from the simulated dataset. 
Notably, EvORanker outperformed existing methods, particularly for poorly annotated genes. In the case of the 6260 
knockout genes with mouse phenotypes, EvORanker linked 41% of these genes to observed human disease pheno‑
types. Furthermore, in two unsolved cases, EvORanker successfully identified DLGAP2 and LPCAT3 as disease candi‑
dates for previously uncharacterized genetic syndromes.

Conclusions We highlight clade‑based phylogenetic profiling as a powerful systematic approach for prioritizing 
potential disease genes. Our study showcases the efficacy of EvORanker in associating poorly annotated genes 
to disease phenotypes observed in patients. The EvORanker server is freely available at https:// ccana vati. shiny apps. io/ 
EvORa nker/.
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Background
The study of Mendelian disorders remains a gold stand-
ard for understanding gene function and linking a gene 
to a particular phenotype [1]. Next-generation sequenc-
ing technologies (NGS) have revolutionized disease-gene 
discovery; however, most human genes are yet to be asso-
ciated with a specific phenotype: Out of ~20,000 human 
genes, only 4900 genes have an associated phenotype 
in Online Mendelian Inheritance in Man (OMIM) (as 
of January 22, 2023) [2]. Analyses of evolutionary con-
straints of human genes and models from mouse genetics 
suggest that the genetic basis of at least 10,000 Mendelian 
disorders awaits discovery [1].

A typical human whole-exome sequencing (WES) or 
whole-genome sequencing (WGS) study yields thou-
sands of single nucleotide variants, indels, and copy 
number variants [3]. After filtering out frequent variants, 
a handful of in silico methods are used to estimate the 
pathogenicity of the variants. These estimates are based 
on evolutionary conservation, genomic position, struc-
tural features, and predicted function (e.g., impact on 
regulatory, splicing, or protein level) [4–7]. However, pri-
oritizing variants solely based on predicted pathogenic-
ity and rarity may not lead to identifying the underlying 
disease-causing gene. Hence, numerous gene-based com-
putational methods have been developed to prioritize 
candidate genes contributing to the patient’s disease phe-
notypes. These methods incorporate patients’ phenotypic 
information and omics datasets such as protein-protein 
interaction, co-expression analysis, cross-species pheno-
typic similarity analysis, and primary literature in order 
to provide users with further hints about genes that merit 
further investigation [8–12]. Recent approaches incor-
porate artificial intelligence for candidate gene diagnosis 
[13, 14]. Nevertheless, the majority of these approaches 
depend on existing data and as such work well on studied 
genes (i.e., the rich get richer phenomenon). However, for 
poorly annotated genes, their performance may decline. 
Within the scope of this research, poorly annotated genes 
are defined as those lacking associations with specific 
phenotypes in the OMIM database [2]. This absence of 
phenotype correlations underscores a scarcity of availa-
ble data pertaining to their characteristics, ontology, and 
interactions [1].

One unbiased approach that can infer novel gene 
function is phylogenetic profiling (PP) [15]. PP iden-
tifies functionally related genes and protein-protein 
interactions using comparative genomics [16, 17]. The 
phylogenetic profile of a gene describes the pattern of 
conservation of its orthologs in a set of genomes [15]. 
Those patterns of conservation of protein sequences 
along evolution reflect protein function [18, 19], interac-
tion with other proteins [17], and the crosstalk between 

the organism and the environment [20]. PP relies on the 
well-established hypothesis that if two or more genes 
share a similar phylogenetic profile, then they may be 
functionally related [15, 21–23]. This can further be 
implemented to annotate uncharacterized genes to a 
putative function based on the similarity of their PP 
with those of well-annotated genes [24]. Previous studies 
using PP have succeeded in identifying new functional 
gene associations, novel disease-causing genes, and new 
pathway components [21, 22, 25, 26].

The phylogenetic profile of a gene was originally 
described as a binary representation of the presence or 
absence of its orthologs across eukaryotic species [15, 27, 
28]. However, applying a binary representation to eukar-
yotes might not fully address the intricacy of eukaryotic 
protein evolution. Across the tree of life, the sequence 
similarity between two orthologs is a complex function 
of their evolutionary distance and the variable selective 
pressures forced upon them. Therefore, several methods 
such as normalized phylogenetic profiling (NPP) have 
been developed [21, 22, 24, 29]. NPP uses a continuous 
metric of conservation, offering an alternative to the 
binary scoring system. NPP has successfully revealed 
novel genes in various pathways and human genetic dis-
eases including cancer [21, 25, 26, 29]. Recently, we found 
that functionally-related genes can show a strong signal 
of correlated evolution within specific clades (e.g., ani-
mals, mammals, plants, fungi) or segments of the tree 
of life. These local co-evolution signals better reflect the 
complexity of pathways and protein evolution. Analyzing 
correlated evolution among genes both across and in part 
of the tree of life hence improves our ability to reveal the 
function of genes in different pathways [24, 29, 30]. This 
“clade-wise” NPP approach was used to identify novel 
DNA repair genes [29, 30] and to map potential drugs for 
MECP2 [31] and ACE2-associated disorders [32].

In this study, we introduce a gene-prioritization 
tool, EvORanker (Ev: Evolution, O: Omics) (Fig.  1). 
EvORanker integrates clade-wise NPP with omics data 
(e.g., protein-protein interaction, and co-expression data) 
obtained from the STRING database [33] to associate a 
gene variant present in a patient with the patient’s pheno-
types. Our primary objective is to establish an unbiased 
framework to resolve unsolved exomes/genomes by link-
ing genes and especially poorly annotated genes to the 
disease phenotype observed in patients. Furthermore, we 
aimed to assess EvORanker’s efficacy in identifying can-
didate disease genes that lack human annotation.

Mouse knockout data serves as a valuable resource for 
comprehending gene function [34]. We, therefore, con-
centrated on genes with knockout phenotypes in mice 
that lack corresponding human annotation and demon-
strate EvOranker’s ability to identify disease candidates 
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with limited information. The results of our analysis 
showed that EvORanker was able to identify disease 
genes that were ranked low by other gene-based meth-
ods, demonstrating the complementarity of EvORanker 
to those of other gene-based tools. Moreover, we 
employed EvORanker to investigate two patients with 
unresolved genetic syndromes. Our analysis revealed 

DLGAP2 and LPCAT3 as potential candidates for dis-
ease-causing genes. Notably, only clade-based NPP anal-
ysis was able to detect LPCAT3 as a disease candidate. 
To enhance its practical utility, we designed EvORanker 
as a user-friendly gene-prioritization web tool that can 
be used by researchers and clinicians studying genetic 
disorders.

Fig. 1 Graphical abstract of the EvORanker pipeline. Starting from a list of annotated variants obtained from a patient’s exome/genome sequencing 
data and following variant filtering, a list of predicted patient candidate genes harboring putatively pathogenic variants are input to EvORanker. 
The second input is the HPO terms corresponding to the patient’s phenotypes. The first step of the pipeline is to rank the genes listed in the HPO 
database according to the input HPO terms using the OntologySimilarity tool. If any of the patient candidate genes is a known disease‑causing 
gene or ranked high using OntologySimilarity, then a genetic diagnosis is achieved. If not, then each patient candidate gene in addition 
to the ranked HPO gene list is input into a co‑evolution and STRING‑based algorithm. The algorithm analyzes two lists of genes, the co‑evolving 
and STRING‑interacting genes with each patient candidate gene. A one‑sided Kolmogorov‑Smirnov (K‑S) test is then used to test if the co‑evolving 
and interacting genes rank significantly high within the patient’s phenotype-related genes. The p‑values obtained from running the K‑S test using 
each dataset are combined using Fisher’s combined test. The output is a list of patient candidate genes ranked based on Fisher’s combined test 
p‑values (from more significant to less significant). A disease‑causing candidate is identified among the patient genes where a significant number 
of co‑evolving and/or interacting genes are enriched towards the genes highly related to the patient’s input phenotypes relative to the genes 
that are unrelated
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Methods
The patient exome database
For the purpose of benchmarking EvORanker, we gath-
ered sequencing data of patients who sought clinical 
whole-exome sequencing at Istishari Arab Hospital in 
Ramallah for diagnostic purposes (Additional file  1: 
Table  S1). Each participant presented with a distinct 
clinical anomaly and was referred to Istishari Hospital 
by their respective physicians from various Palestinian 
regions to undergo exome sequencing for the identifica-
tion of genetic causes. We established a database of 109 
patient exomes who had received a known molecular 
diagnosis, some of which have been published [35–37]. 
All of the variants identified to be disease-causing in 
those patients had been reported as pathogenic/likely 
pathogenic in the ClinVar database [38]. The patients 
in this cohort exhibit diverse phenotypes (e.g., skeletal, 
immunological, neurological, and metabolic) (Fig.  2A). 
The majority of the patients were born to consanguine-
ous parents. Each patient had been clinically diagnosed 

with a different rare Mendelian disease (Additional 
file  1: Table  S1), of which 91 followed an autosomal or 
X-linked recessive and 18 followed an autosomal or 
X-linked dominant mode of inheritance. Familial seg-
regation analysis had been performed for each of the 
patients’ families further confirming the diagnosis. In 
addition to the 109 exomes, we applied EvORanker on 
two exomes of patients (II-3, Fig.  10A, II-4, Fig.  11A) 
that had not received a molecular diagnosis. Written 
informed consent was obtained from all participants, or 
their parents, before their inclusion in the study. All the 
study participants, or their parents, provided permission 
to access their medical records.

Simulation of cases with disease‑causing gene variants
We assessed our approach and compared it to other 
methods by simulating scenarios where mutations in dis-
ease-causing genes exist within a genome. VCF files of 
300 individual genomes were downloaded from the 1000 
Genome Project [39], providing a diverse representation 

Fig. 2 Phenotypic diversity in A a cohort of 109 patients from the exome database and B a simulated dataset of 300 individuals with 300 
pathogenic variants from ClinVar inserted into their genomes. The patients exhibit a wide range of phenotypes. Notably, various shared phenotypes, 
especially related to metabolic and neurological diseases, are observed among the patients. Key: ID, intellectual disability; GI, gastrointestinal 
disorders
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of human populations (http:// ftp. 1000g enomes. ebi. ac. 
uk/ vol1/ ftp/ relea se/ 20100 804/) [40]. Variant annotation 
was performed using ANNOVAR [41], and our variant 
filtering pipeline was applied (see Table 1).

For each of the 300 genomes, we introduced exonic or 
splicing pathogenic/likely pathogenic variants from the 
ClinVar database [38], excluding disease genes already 
found in the 109-real exome patient dataset. These 300 
ClinVar variants were randomly selected from genes 
associated with diverse disease phenotypes, including 
complex neoplastic disorders (Fig.  2B). Among these 
variants, 181 followed an autosomal or X-linked reces-
sive mode of inheritance, while 119 variants followed 
a dominant inheritance pattern. In instances where 
the mode of inheritance for a ClinVar pathogenic vari-
ant was uncertain, or if it could be attributed to both 
inheritance modes, or if it was not reported in affected 
patients, we randomly assigned the mode of inherit-
ance. Subsequently, we randomly integrated these 300 
sampled variants into the 300 annotated genomes. This 
process was permutated three times, each time spiking 
each variant of the set of 300 ClinVar variants into dif-
ferent genomes out of the 300. The outcome is a simu-
lation of 900 artificial patients with 300 unique “genetic 
diseases” (Additional file 1: Table S2), each with a sin-
gle mutation in one of 300 genes. This ensured that 
each disease appeared three times in three different 
genomes.

Phenotypic information for each spiked ClinVar gene 
variant was retrieved from the HPO (Human Pheno-
type Ontology) database [46]. Additionally, to evaluate 
the robustness of EvORanker, we conducted validation 
through three independent spike shuffles (Additional 
file 1: Table S2, Additional file 2: Fig. S7).

Genomics and variant‑based prioritization of the patients’ 
exome to map the patient candidate genes
Whole-exome sequencing was performed on the patients 
described in this study using the Truseq Capture Exome 
Kit (Illumina®). The captured and the amplified librar-
ies were sequenced on the Illumina Nextseq500 plat-
form according to the manufacturer’s protocol. Briefly, 
paired-end sequences were obtained at a read length of 
150 bps. Sequence reads were then aligned to the refer-
ence human genome (hg19) using BWA aligner [47]. 
Alignments then underwent preprocessing steps by PCR 
duplicate removal, base quality recalibration, and realign-
ment around indels. The variants were finally called by 
GATK (Genome Analysis Toolkit) [48] and annotated by 
ANNOVAR [41]. For both the patient exomes and simu-
lated genomes, we excluded intronic, untranslated region 
(UTR), and ncRNA variants. Nonsense, frameshift, non-
synonymous, and splice-site variants were prioritized by 
excluding frequent variants based on their minor allele 
frequency in gnomAD and AF_popmax [42] and Istishari 
hospital’s in-house exome database (Table 1). In addition, 
variants predicted to be benign by variant effect predic-
tor tools such as PolyPhen-2 [5] and REVEL [6] were 
excluded from the analysis (Table 1) [49]. For the patient 
exomes, copy number variations were called from the 
exome data using XHMM software [50]. In this study, the 
genes that passed the variant filtering criteria are referred 
to as the patient candidate genes. Co-segregation analy-
sis was performed by Sanger sequencing on an ABI 3130 
Genetic Analyzer (Applied Biosystems). Primers used for 
validation and family segregation of the DLGAP2 variant 
are as follows: Forward: CGG TAG AGA CTG GGA GGA 
TG and Reverse: ACT TAC CTG ACA AAA CAC ACACA. 
Primers used for validation and family segregation of the 

Table 1 Routine variant filtering criteria

Autosomal and X‑linked recessive mode Autosomal and X‑linked dominant mode
Filtering criteria Filtering criteria

1. Variant frequency
 gnomAD [42] <= 0.02 < 0.001

 AF_popmax [42] <= 0.02 < 0.001

 In‑house exome database <= 0.02 < 0.001

2. Splicing and synonymous variants
 dbscSNV_RF_SCORE and dbscSNV_ADA_

SCORE [43]
dbscSNV_RF_SCORE >= 0.5 or dbscSNV_ADA_
SCORE >= 0.5 or SpliceAI >= 0.5

dbscSNV_RF_SCORE >= 0.5 or dbscSNV_
ADA_SCORE >= 0.5 or SpliceAI >= 0.5

 SpliceAI [44]

3. Nonsynonymous variants
 Polyphen2_HDIV_score [5] Polyphen2_HDIV_score >= 0.5 or REVEL score >= 0.5 

or SIFT score <= 0.5
Polyphen2_HDIV_score >= 0.5 or REVEL 
score >= 0.5 or SIFT score <= 0.5 REVEL score [6]

 SIFT score [45]

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20100804/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20100804/
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LPCAT3 variant are as follows: Forward: CGC ATA GGG 
GTG ACA TGG TA and Reverse: TAT GCA TTT TGA CGG 
GCC TG.

Ranking the patient candidate genes according to their 
association with each patient’s disease‑phenotypes
In order to retrieve a list of genes already reported to 
be associated with each patient’s clinical condition, we 
encoded the abnormalities reported in each patient’s 
medical report (Additional file  1: Table  S1) to standard 
HPO terms [46]. The combination of the patient HPO 
terms was then input into the OntologySimilarity pack-
age in R, a semantic similarity-based tool [51], and used 
to identify and rank the genes listed in the HPO data-
base based on their associations with the queried HPO 
terms. According to the recommended parameters in 
the tool’s documentation [51], the semantic similarity 
score was calculated using Lin’s definition of semantic 
similarity in combination with the “best-match-average” 
approach. Additional semantic similarity measures, such 
as the product measure based on Resnik’s similar-
ity expression, were also evaluated, yielding results that 
were nearly identical (Additional file 2: Fig. S1). The out-
put is a ranked list of the 4900 genes listed in the HPO 
database (as of January 2023) scored between zero and 
one (termed HPO-ranked genes). This score is based on 
the degree of similarity between the patient’s set HPO 
terms and the HPO terms annotated to each gene in the 
HPO database. The higher-scoring genes, referred to 
as phenotype-related genes in this study, are defined as 
genes that exhibit stronger associations with the queried 
phenotypes.

Defining an exact threshold for the output of Ontolo-
gySimilarity [51] is challenging. In most cases, it is hard 
to point to a clear threshold that above which the genes 
are “phenotype-related.” Furthermore, such a potential 
threshold is highly dependent on the user-defined HPO 
terms as HPOs are variable in their level of complexity 
and how well they are defined or studied. As such in our 
analysis, the genes were ranked and ordered based on 
their association with the set of input phenotypes, rang-
ing from highly associated to not associated (top to bot-
tom). We utilized a one-sided Kolmogorov-Smirnov test 
to assess the significance of a skewed distribution of co-
evolved (or interacting genes) towards the upper end of 
the ranked genes (see below).

Building the EvORanker algorithm
The main goal of EvORanker is to establish a link 
between the patient candidate genes and the patient’s 
phenotype. This link was evaluated based on two differ-
ent sources of data on known and predicted gene func-
tional interactions:, clade-wise phylogenetic profiling, 

and the STRING database [33]. Our working hypoth-
esis is that of the patient candidate genes, the disease-
causing gene would be functionally linked to the genes 
that cause similar phenotypes to those of the patient 
(e.g., the disease-causing gene in a patient with ciliopa-
thy would show significant co-evolution/co-expression/
interaction with cilia genes). We used the 109-patient 
exome and 900-simulated datasets to tune the param-
eters of the algorithm using exclusively phyloge-
netic profiling (PP). Subsequently, we compared and 
eventually integrated the PP-based analysis with the 
STRING-based analysis to maximize the performance 
of EvORanker.

Clade‑based phylogenetic profiling
The normalized phylogenetic profiling (NPP) matrix 
was constructed as previously described [24]. Briefly, a 
matrix of BLASTP scores for all human genes against 
the genomes of 1,028 eukaryotic species was con-
structed. First, the bitscore of each best BLAST hit was 
normalized by the bitscore of the query protein self-hit. 
Then log2 transformation of the normalized bitscore was 
applied. Finally, to avoid any biases due to phylogenetic 
distance, the conservation score was scaled for each 
species to their overall distribution by transforming the 
values in the column (corresponding to a species) into 
z-scores.

Clade‑based analysis
To have a comprehensive mapping of protein-correlated 
evolution, we used 16 representative clades spanning the 
eukaryotic tree as previously described [24, 30]. In addi-
tion to including all eukaryotes, the following clades were 
used: Chordata, Ecdysozoa, Platyhelminthes, Alveolates, 
Stramenopiles, Fungi, Viridiplantae, Mammalia, Archelo-
suria, Arthropoda, Nematoda, Basidiomycota, Ascomy-
cota, Fungi incertae sedis, Liliopsida, and Eudicotyledons 
[24]. These 16 representative clades spanning the eukary-
otic tree show wide coverage (span most of the eukary-
otic tree), mutual exclusivity (preferring non-nested 
clades), and uniformness (similar depth in the tree) in 
clade types (Additional file 2: Fig. S2) [24].

Retrieving coevolving genes for each patient candidate gene
The degree of co-evolution between two genes was evalu-
ated using the Pearson correlation coefficient between 
their respective rows in the NPP matrix. As we dem-
onstrated before [24], for each patient candidate gene, 
we selected the genes with the top 100 correlation coef-
ficients in each clade and ranked them from 1 to 100 
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according to the correlation coefficient in each clade 
where the gene is found to have an ortholog.

Using the Kolmogorov‑Smirnov test to prioritize patient 
candidate genes based on phylogenetic profiling
Per patient exome/simulated genome, we analyzed each 
of the patient candidate genes separately. For each of 
these genes, we determined whether the genes that co-
evolve with it were associated with the patient’s phe-
notype (i.e., the co-evolved genes were significantly 
enriched towards the phenotype-related genes). For that, 
we examined the ranking of the coevolving genes in the 
list of the HPO-ranked genes using a one-tailed, two-sam-
ple Kolmogorov-Smirnov (K-S) test [52].

The K-S test is used to test whether two samples come 
from the same distribution. The K-S D statistic quantifies 
the distance between the empirical cumulative distribu-
tion function (ECDF) of the sample and the cumulative 
distribution function of the reference distribution. Let 
i denote the co-evolving genes and j denote the ranked 
HPO genes.

The null hypothesis: H0:Fi(x) ≥ Fj(x)
The alternative hypothesis: H1:Fi(x) < Fj(x)
The D statistic: D- =  maxx{Fj(x)-Fi(x)} where Fj is the 

ECDF of j and similarity for Fi
The H1 hypothesis for the one-sided K-S test is that the 

cumulative distribution function of the ranking of the 
coevolving genes is enriched within the higher-scoring 
side of HPO-ranked genes (the phenotype-related genes). 
A p-value was computed using the ks.test function in the 
stats package in R [53]. The patient candidate genes were 
finally ranked by the resulting K-S test p-value (from 
more significant to less significant).

Tuning the parameters of the EvORanker phylogenetic 
profiling‑based analysis
We evaluated the performance phylogenetic profiling-
based analysis to identify the “true” disease-causing 
gene using the 109-patient exome and the 900-simulated 
databases. We examined different parameters and cutoff 
values using phylogenetic profiling. We compared dif-
ferent cutoff values of the ranked coevolving genes (top 
10, 25, 50, 75, 100) with each patient candidate gene. In 
both datasets, a threshold of the top 50 coevolved genes 
yielded slightly better accuracy in ranking the “true” 
gene in comparison to the other patient candidate genes 
(Additional file 2: Fig. S3), which we used for the rest of 
the analysis.

Applying the Kolmogorov‑Smirnov test using 
STRING‑interacting genes
In addition to phylogenetic profiling, other known and 
predicted functionally associated genes (protein-protein 

interactions, text mining, and co-expression) were 
retrieved from the STRING database [33]. STRING uses 
a scoring system that reflects the evidence of predicted 
interactions. We included interactions with a combined 
score of at least 0.5, which corresponds to a medium-
confidence network. For each patient exome/simulated 
genome in the datasets, we applied the K-S test. The anal-
ysis was done for each patient candidate gene, with the 
STRING-interacting genes similarly as described above. 
We examined whether a substantial portion of string-
interacting genes were also linked to phenotypes resem-
bling those found in the patient.

The final EvORanker gene prediction scoring system
The two p-values obtained from each K-S test using phy-
logenetic profiling and STRING were finally combined by 
Fisher’s combined probability test [54, 55] (Eq. 1) which 
is the final EvORanker scoring system. Additionally, we 
assessed Simes’ method for combining the p-values, 
which produced similar results (Additional file  2: Fig. 
S1). The Fisher’s combined probability test was computed 
using the combine.test function in the survcomp package 
in R [56].

Applying EvORanker on genes with knockout phenotypes 
in mice that lack corresponding human annotation
A list of 6395 human genes with mouse knockout phe-
notypes but not yet associated with a phenotype in 
humans was compiled from Jackson laboratory’s Mouse 
Genome Informatics (MGI) [57], (downloaded, March 1, 
2023). The knockout mouse gene phenotype terms were 
then mapped to human HPO terms using uPheno ontol-
ogy inter-ontology closest matches obtained from the 
OBO Phenotype Ontology Github repository [58] end-
ing up with 6260 genes with mapped HPO terms. Then, 
for each gene, the corresponding HPO terms and a list of 
randomly sampled genes were input to EvORanker. The 
same data was input to Phenolyzer [59] for comparison. 
We were unable to compare to other tools (e.g., Exome-
Walker or PHIVE) due to the impracticability of simulat-
ing 6,260 × 100 variants in 6,260.vcf files as input.

Tool comparison
We compared EvORanker to the gene prioritization stage 
(second stage) of ExomeWalker and PHIVE algorithms 
[3, 8]. We used the 109-patient exome and 900-simu-
lated benchmarking datasets to compare the tools with 
the same input HPO terms and patient candidate genes. 
We omitted one exome from the exome dataset where 

(1)X2
2k ∼ −2

k

i=1

log(pi)
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a large deletion was identified containing the NPRL3 
gene, leaving us with 108 exomes. We used.vcf files for 
each of the 108 patient exomes and the 900 genomes as 
input for Exomiser which includes ExomeWalker [8] and 
PHIVE [3]. Additionally, we created.yml files containing 
the same HPO terms as input for each patient exome and 
simulated genome.

In vitro splicing analysis
In vitro splicing, minigene assays were carried out as pre-
viously described [60, 61]. Briefly, the genomic sequence 
at chr8:1626251-1627026 (hg19) which includes exon 
9 (417  bp) plus 128 and 231 nucleotides from the 5′ 
and 3′ flanking sequences, respectively, of DLGAP2 
(NM_001346810) was PCR amplified from a DNA sample 
homozygous (II-3, Fig. 10A) and wildtype (II-2, Fig. 10A) 
for the c.2702 A > T variant using gene-specific primers 
designed with embedded XhoI and BamHI restriction 
enzyme recognition sites. After digestion, the PCR frag-
ments were ligated into a pre-constructed pET01 Exon-
trap vector (MoBiTec, Goettingen, Germany). Selected 
colonies were then sequenced to confirm the proper 
orientation of the cloned fragment and identify both 
wild-type and variant colonies. Subsequently, the variant 
and wild-type minigenes were transfected into HEK293 
cells in triplicate, followed by total RNA extraction 48 h 
post-transfection, using the Quick-RNA MiniPrep Plus 
kit (ZYMO Research). cDNA was then synthesized 
using the qScript Flex cDNA synthesis kit (Quanta Bio-
sciences) with a specific primer to the 3′ native exon of 
the pET01 Exontrap vector. Following PCR amplifica-
tion, the products were then visualized on a 1.5% agarose 
gel and were later extracted and then Sanger sequenced. 
The primer sequences used for the PCR amplification 
(XhoI + BamHI) are Forward: AAA-CTC GAG -AAC ACT 
ACC TGC CCT TGA GC, and Reverse: AAA-GGA TCC 
-ACT TAC CTG ACA AAA CAC ACACA.

Data analysis and figure creation
All data in this study were analyzed using R software [53]. 
The EvORanker web interface was created using the R 
Shiny package [62]. The majority of the figures were cre-
ated using R software. Figures 9D and 10D were created 
using Cytoscape v3.9.1 [63].

Results
Overview
In this work, we developed EvORanker, a phylogenetic 
profiling-based algorithm, to identify disease-causing 
genes. To optimize and evaluate the performance of 
EvORanker, we employed three different approaches: 
(1) analyzing a private cohort of well phenotypically 
characterized patients with rare diseases; (2) simulating 

a dataset of 900 patients with 300 unique “genetic dis-
eases”—by spiking disease-causing mutations into real 
genomes; (3) evaluating EvORanker’s ability to identify 
human disease candidate genes using genes with knock-
out phenotypes in mice that lack corresponding human 
annotation. We demonstrate the contribution of clade-
based phylogenetic profiling (PP) to the improved predic-
tion of the disease-causing gene. This unbiased approach 
was compared and integrated with gene interaction data 
obtained from the STRING database [33]. To evaluate 
the potential for bias in disease-gene prediction, we com-
pared well-annotated genes to recently published ones. 
Finally, EvORanker was compared to other gene-based 
prioritization tools and applied to two unresolved exomes 
to demonstrate its efficacy in disease gene discovery.

Benchmarking EvORanker using an exome‑patient dataset
We analyzed an in-house database of 109 patient exomes 
with a genetic diagnosis. The patients suffer from various 
rare hereditary diseases, exhibiting diverse phenotype 
groups (e.g., skeletal, immunological, neurological, and 
metabolic diseases) (Fig.  2A). The dataset included 91 
recessive and 18 dominant gene variants that explained 
the patients’ phenotype (Additional file 1: Table S1). All 
these variants are reported to be pathogenic/likely patho-
genic in the ClinVar database [38] and co-segregated with 
the phenotype in each corresponding family. The dataset 
includes 108 unique known disease genes (the CLCN1 
gene appears twice, once as autosomal recessive and once 
as autosomal dominant). For each patient in the exome 
dataset, we encoded each of the clinical abnormalities 
found in the patient’s medical record into Human Phe-
notype Ontology (HPO) [46] terms (Additional file  1: 
Table S1).

Benchmarking EvORanker using a simulated dataset
Next, we aimed to assess our ability to identify disease-
causing mutations in simulated data. Simulating genetic 
diseases can be achieved by introducing pathogenic 
mutations into genomic data from an unaffected indi-
vidual. To accomplish this, we utilized 300 unaffected 
genomes sourced from the 1000 Genome Project [39] 
as a benchmark for our evaluations. To introduce patho-
genicity, we randomly integrated 300 distinct pathogenic/
likely pathogenic variants from the ClinVar database [38] 
into the annotated genomes. These ClinVar variants are 
associated with genes showcasing diverse phenotypes 
including complex neoplastic disorders (Fig.  2B). Of 
these variants, 181 followed an autosomal or X-linked 
recessive mode of inheritance, while 119 variants fol-
lowed a dominant inheritance pattern (Additional file 1: 
Table S2). Phenotypic information for each spiked Clin-
Var gene variant was obtained from the HPO database 
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(Additional file  1: Table  S2) and was assigned to the 
respective “patient.” We conducted this process thrice, 
simulating a total of 900 artificial patients with 300 dif-
ferent genetic diseases. Each pathogenic mutation was 
inserted into three distinct genomes.

Ranking genes based on each patient’s set of phenotypes
Using each set of patient HPO terms, we calculated the 
semantic similarity score [51] (see the “Methods” sec-
tion) for each gene in the HPO database [46]. The output 
is a list of genes scored from lower association to higher 
association with the patient’s set of HPO terms (which 
we term the phenotype-related genes).

Retrieving the patient’s candidate genes
We applied our routine variant filtering criteria [35, 36] 
to the annotated variants for each of the 109 exomes and 
simulated genomes (Table 1). After variant filtering, each 
exome/genome contained gene variants that are con-
sidered to be pathogenic and predicted to affect protein 
function (we term the genes in which these variants were 
observed as patient candidate genes). In autosomal and 
X-linked recessive cases, each patient harbored 11–80 
homozygous/hemizygous or compound heterozygous 
deleterious variants, while 80–170 heterozygous/hemizy-
gous deleterious variants were observed in autosomal 
and X-linked dominant cases (Additional file 2: Fig. S4). 
We confirmed that all the “true” causative variants passed 
the filtering criteria and remained within the gene variant 
list for each patient exome.

Using multi‑clade phylogenetic profiling to rank the patient’s 
candidate genes according to the patient’s phenotype
Our working hypothesis is that out of all the patient 
candidate genes, the one responsible for the disease 
will be associated (e.g., co-evolved) with other genes 
that are known to be associated with the disease (phe-
notype-related gene). For each patient candidate gene, 
we obtained a list of 50 co-evolved genes that exhibit a 
strong correlation based on global and local co-evolu-
tion signatures across 1028 eukaryotic species (details in 
the “Methods” section) [24]. For each patient candidate 
gene, we retrieved the top co-evolving genes in 16 clades 
(Chordata, Ecdysozoa, Platyhelminthes, Alveolates, Stra-
menopiles, Fungi, Viridiplantae, Mammalia, Archelosu-
ria, Arthropoda, Nematoda, Basidiomycota, Ascomycota, 
Fungi incertae sedis, Liliopsida, and Eudicotyledons) 
(Additional file 2: Fig. S2). The output per patient candi-
date gene is a table of genes that are strongly co-evolved 
with it in each clade in addition to all Eukaryotes.

To determine which of the patient candidate genes is 
most likely linked to the patient’s disease phenotype, we 
evaluated the intersection between the co-evolved genes 

and the phenotype-ranked genes using a one-sided Kol-
mogorov-Smirnov (K-S) test (Fig. 1). A significant p-value 
is obtained if the co-evolving genes rank high within 
the phenotype-related genes. For each patient exome/
simulated genome in our dataset, we ranked the patient 
candidate genes based on the resulting p-value, with the 
most significant p-value ranked first. By analyzing the 
co-evolved genes across the 16 clades in addition to all 
Eukaryotes, the “true” disease-causing gene was ranked 
as the top gene in 46% of the autosomal and X-linked 
recessive cases and within the top 5 in 72% (Fig.  3). In 
autosomal and X-linked dominant cases, the “true” 
gene was ranked as the top gene in 50% of the cases and 
within the top 10 genes in 78%. These results surpass 
those obtained from using only the co-evolving genes 
across Eukaryotes or within the Animalia clades (Chor-
data, Mammalia, Archelosauria, Ecdysozoa, Nematoda, 
Arthropoda, and Platyhelminthes) (Fig.  3). This indi-
cates the added value of incorporating all 16 clades in the 
analysis. The same analysis was applied on the simulated 
genomes, yielding results consistent with those obtained 
from the real exome dataset (Fig. 3).

Phylogenetic profiling analysis in different evolutionary 
scales improves the prediction of the disease‑causing gene
We then aimed to assess the contribution of each of 
the 16 clades, in addition to all Eukaryota, towards the 
prediction of the “true” disease-causing gene. Using the 
109 patient exomes, this was accomplished by focusing 
on the genes that obtained a significant p-value (< 0.05) 
through co-evolution analysis totaling 71 identified 
genes. We applied the K-S test to these 71 genes using 
the co-evolving genes within each clade. Results showed 
that each clade outperformed others in at least one case, 
thus highlighting the importance of combining informa-
tion from different clades to enhance the performance of 
EvORanker (Fig. 4). Interestingly, the Fungi Incertae Sedis 
clade outperformed other clades in 14% (10/71) of the 
cases, followed by Chordata, Ascomycota, Arthropoda, 
and Eukaryota, each outperforming others in 10% of the 
cases (Additional file  2: Fig. S5). Taken together, these 
results emphasize that clades differentially specialize in 
detecting functional interactions in different pathways 
[24, 29, 30].

Phylogenetic profiling is complementary to other existing 
omics datasets
NPP represents an unbiased approach that can anno-
tate gene function independently of the literature. 
We sought to evaluate whether clade-wise NPP could 
identify disease-associated genes that are overlooked 
by other existing omics. For that, we chose to use the 
STRING database since it integrates information on 
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protein associations from multiple sources, including 
interaction experiments, known complexes and path-
ways, scientific literature, co-expression studies, and 
conserved genomic context [33]. We conducted a com-
parison between the NPP and STRING-based analysis 

[33] using both the patient exome and simulated data-
sets (Fig.  5). NPP outperformed STRING in 29/109 
(27%) of the cases, whereas STRING outperformed 
NPP in 50/109 (46%) of the cases (Fig.  5, Additional 
file 2: Fig. S6).

Fig. 3 Using clades improves the performance of EvORanker phylogenetic profiling‑based analysis. For each patient candidate gene list 
in the 109‑patient exome and the 900‑simulated genomes datasets (300 unique genetic disorders), we compared the accuracy of the phylogenetic 
profiling‑based algorithm by retrieving the top 50 coevolved genes with each patient candidate gene across all Eukaryotes versus: (1) using all 
16 clades where the query gene has an ortholog in addition to Eukaryotes. (2) Across only Animalia clades (Chordata, Mammalia, Archelosauria, 
Ecdysozoa, Nematoda, Arthropoda, and Platyhelminthes). Performance was measured by examining the ranking of the “true” disease‑causing gene 
relative to the other patient candidate genes. The upper bar plot shows results for the autosomal and X‑linked recessive cases for the real‑exome 
dataset (left) and the simulated dataset (right). The simulated dataset contains 181 unique recessive cases and 119 unique dominant cases. The 
results present a compilation of three separate independent shuffles totaling 900 simulations. The lower bar plot shows results for the autosomal 
and X‑linked dominant cases. The y‑axis indicates the tested clades, and the x‑axis indicates the percentage of cases where the “true” disease gene 
was ranked at the top or within the top 3 or top 5 genes relative to the other candidate genes in recessive cases. In dominant cases, the percentage 
is for the “true” gene being ranked at the top or within the top 10 genes. Overall, the best performance of ranking the “true” causative gene 
was achieved by merging together the co‑evolving genes within all clades (the 16 clades in addition to all Eukaryota) in both datasets

Fig. 4 Each of the 16 clades in addition to Eukaryota contributes to the correct identification of the disease‑causing gene. Each column 
in the heatmap represents a clade while each row represents the “true” disease‑causing gene in a patient exome from the 109‑exome patient 
dataset. Only the genes that achieved an overall significant K‑S test p‑value (< 0.05) using the co‑evolution analysis are displayed (71 cases). Each 
entry in the heatmap is colored by the ‑log 10 of the K‑S test p‑value that was run on each clade separately. The entries colored in red represent 
the significant p‑values (> ‑log10(0.05)). Light grey entries indicate non‑significant p‑values. Entries, where the gene is not found to have an ortholog 
in a certain clade, are colored off‑white. The rows are clustered according to the p‑values. The column on the left indicates the combined ‑log10 
of the p‑value obtained by running the K‑S test after merging together the coevolving genes across the clades. In four cases (HUWE1, COL3A1, 
MYO7A, and CYP21A2), a significant p‑value was obtained by none of the clades, but a significant combined p‑value was still achieved by merging 
the co‑evolving genes from all the clades

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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Considering the presence of complementarity of co-
evolution and the STRING-based analysis, we integrated 
the two datasets by combining their respective p-values 
using Fisher’s combined probability test [54]. This com-
bined scoring system, which we termed EvORanker, 
yielded the highest accuracy in comparison to each data-
set alone (Fig.  5). Using the exome dataset, we showed 
that integrating NPP and STRING improved the results 
by 43% compared to NPP alone and by 30% compared 
to STRING alone (Additional file  2: Fig. S6). Overall, 
in autosomal and X-linked recessive cases, EvORanker 
ranked the “true” disease-causing gene as the top gene 
in 63/91 (69%) and within the top 5 genes in 86/91 (95%) 
cases (Fig. 5). In autosomal and X-linked dominant cases, 
the “true” gene was ranked as the top gene in 12/18 
(67%) cases and among the top 10 genes in 17/18 (95%) 
(Fig. 5). On the other hand, the “true” disease genes did 
not achieve high scores in a total of 6/109 (5.5%) of the 
exomes (within the top 5 for recessive diseases and within 
the top 10 for dominant diseases); 5/91 recessive cases, 
and 1/18 dominant cases (Additional file 2: Fig. S6).

We observed similar trends when analyzing the simu-
lated dataset, providing further validation and affirming 

the consistency of our findings (Fig. 5). In autosomal and 
X-linked recessive cases within the simulated dataset, 
EvORanker ranked the “true” disease-causing gene as 
the top gene in 75% of cases and within the top 5 in 96% 
of cases. Conversely, for autosomal and X-linked domi-
nant cases, the “true” gene held the top position in 55% 
of cases and was within the top 10 in 85% of cases. This 
parallel in results strongly underscores the robustness 
of EvORanker across both real and simulated datasets. 
Furthermore, to validate the stability of our method, we 
conducted three independent spike shuffles, consistently 
yielding coherent and reliable results (Additional file  2: 
Fig. S7).

Performance of phylogenetic profiling versus STRING 
on new gene entries (2020–2022)
As STRING is based on publicly available data, it is 
suited to identify well-researched genes. We hypoth-
esized that STRING performance would be better the 
more information it has accrued over time and that our 
unbiased PP approach would have a particular advantage 
for genes that have not been extensively characterized. 
To test this hypothesis, we compared the performance of 

Fig. 5 Comparative performance of NPP, STRING, and EvORanker using the 109‑patient exome and the simulated datasets. The performance 
of each dataset was measured by examining the ranking of the “true” disease‑causing gene relative to the other genes in each exome/genome 
in both datasets. The upper bar plot shows results for the autosomal and X‑linked recessive cases for the real‑exome dataset (left) and the simulated 
dataset (right), The simulated dataset contains 181 unique recessive cases and 119 unique dominant cases. The results present a compilation 
of three separate independent shuffles totaling 900 simulations. The lower bar plot shows results for the autosomal and X‑linked dominant cases. 
The y‑axis indicates the tested datasets: NPP (using the top 50 coevolved genes), STRING versions 9.1, 11.5, and EvORanker (combining NPP 
and the newer version of STRING). The x‑axis indicates the percentage of cases where the “true” disease gene was ranked at the top, or within the 
top 3 or top 5 genes relative to the other candidate genes in recessive cases. In dominant cases, the percentage is for the “true” gene being ranked 
at the top or within the top 10 genes. Overall, the best performance was achieved using the combined approach (EvORanker) in both datasets
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STRING version v.11.5 [33] with that of the older version 
STRING v.9.1 [64] (Fig.  5). We found that the perfor-
mance of the newer version was indeed better than that 
of the older version. Furthermore, the performance of 
STRING v11.5 decreased dramatically for genes that only 
recently became associated with disease. For example, 
the performance of STRING in ranking the “true” disease 
gene within the top 5 is around 85% for genes identified 
by the end of 2015 compared to 29% for genes identi-
fied between 2016–2020 (Fig. 6, Additional file 2: Fig. S8).

We then evaluated the performance of NPP and 
STRING on newly discovered or recently published 
genes. We retrieved a list of 94 new gene entries that 
were added to the most recent version of the HPO data-
base (2022) compared to an older version (2020) (Addi-
tional file  1: Table  S3). We then applied the K-S test 
separately using NPP and STRING and the HPO terms 
associated with each gene as input. We found that for 
those genes newly associated with human phenotypes, 
the K-S test yielded significant p-values using NPP in 45% 
of the genes compared to 38% using STRING (Fig.  7A, 
B). These results emphasize the success of phylogenetic 
profiling in predicting the phenotype associations of 
newly discovered or less studied genes and highlight the 
complementarity observed when comparing these two 
datasets.

Performance of EvORanker on genes with knockout 
phenotypes in mice that lack corresponding human 
annotation
We aimed to assess EvORanker’s capability to identify 
disease candidate genes that lack a known phenotype 

association in humans but possess mouse orthologs 
linked to phenotypes. Specifically, we aimed to iden-
tify human genes without established phenotype links, 
yet having a corresponding mouse ortholog with a phe-
notype association. These genes were considered as the 
“true” disease gene candidates for the purpose of this 
evaluation. We compiled a list of 6260 human ortholog 
genes with mouse knockout phenotypes, yet not asso-
ciated with a phenotype in humans. For each of these 
genes, we input a set of HPOs mapped from the respec-
tive mouse knockout phenotypes. The goal was to evalu-
ate EvORanker’s ability to correctly pinpoint the “true” 
disease gene candidate in comparison to 100 randomly 
sampled human genes. The same dataset was used as 
input for Phenolyzer [59] for comparative analysis.

EvORanker yielded significant p-values for 41% of the 
tested genes (Fig.  8A). Moreover, both EvORanker and 
Phenolyzer ranked the “true gene” among the top 10 in 
16% of the cases (Fig. 8B). Notably, EvORanker identified 
genes that Phenolyzer failed to identify, and vice versa, 
highlighting the complementarity of the tools (Additional 
file 2: Fig. S9).

Tool comparison
Using the 109-exome and simulated datasets, we com-
pared the performance of EvORanker to the gene-pri-
oritization stage of ExomeWalker [8] and PHIVE [3]. 
ExomeWalker prioritizes genes based on protein-protein 
interaction, while PHIVE uses mouse phenotypic data. 
To ensure a fair comparison, we chose to compare to 
ExomeWalker [8] and PHIVE [3] because both adopt a 
similar strategy to EvORanker. Unlike Phenolyzer [59], 

Fig. 6 The effect of years elapsed on the performance of NPP versus STRING, using the 109‑patient exome dataset. The x‑axis indicates the calendar 
years (divided into 5‑year windows) in which a gene was described to be associated with a disease phenotype. The y‑axis indicates the percentage 
of “true” disease genes that ranked at the top (top 1) relative to the other patient candidate using NPP (red bars) or STRING (blue bars)
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these methods do not rely on pre-existing knowledge 
about known disease genes. The comparison was per-
formed using the exome and simulated datasets with the 

same input HPO terms. However, since ExomeWalker 
and PHIVE are not well-suited for CNV analysis, we 
omitted from this analysis one exome where the causative 

Fig. 7 Comparison of NPP versus STRING for genes with recent (2020–2022) annotation. A The x‑axis indicates ‑log(10) p‑values obtained 
from running the K‑S test using NPP. The y‑axis indicates ‑log(10) p‑values obtained from running the K‑S test using the STRING dataset. The red 
dots represent the genes where NPP performed better than STRING, while the blue dots indicate the opposite. The marginal histogram indicates 
the distribution of the ‑log(10) p‑values of both datasets. The correlation score between the two datasets is 0.046, suggesting that the two datasets 
exhibit a complex relationship, where a subset of the data displays complementarity, while another subset shows correlation. B Density distribution 
of the ‑log(10) p‑values obtained from the K‑S test using the NPP, STRING, and both (combined). Significance was calculated using the Wilcoxon test 
(*p‑value < 0.05, **p‑value < 0.01; ns, nonsignificant). Combining NPP and STRING achieved significantly more significant results that either approach 
alone

Fig. 8 EvORanker’s performance in identifying candidate disease genes using mouse knockout genes without corresponding human annotation. A 
The graph shows the percentage of genes with mouse knockout phenotypes that were tested for significant p‑values using EvORanker. Out of 6260 
genes, 41% showed significant p‑values. B Comparison of EvORanker and Phenolyzer [49] in identifying true disease gene candidates. The graph 
shows the count of genes with mouse knockout phenotypes and their respective ranking, each in comparison to 100 randomly sampled genes 
by EvORanker and Phenolyzer. Among the tested genes, 16% were ranked in the top 10 by both tools
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variant was a large deletion encompassing the NPRL3 
gene. The results of the 108-exome dataset showed that 
EvORanker outperformed either one or both Exome-
Walker and PHIVE in 74% (80/108) of the cases and out-
performed both tools in 30% (32/108) of the cases (Fig. 9, 
Additional file 2: Fig. S10). On the other hand, either one 
or both of the other tools outperformed EvORanker in 
20% (22/108) of the cases (Additional file 2: Fig. S10). For 
the simulated dataset, EvORanker outperformed both 
ExomeWalker and PHIVE (Fig. 9).

Solving the unsolved: candidate genes in reanalysis 
of patient exomes
We then initiated the application of EvORanker to iden-
tify novel disease-causing candidate genes in families 
with negative clinical exome results. To illustrate its 
effectiveness, we present two cases where we successfully 
resolved previously unsolved exomes.

Family 1
We utilized EvORanker to analyze the exome data of a 
patient with an undiagnosed neurodevelopmental disor-
der for which no disease-causing variant was identified. 
The patient and one of her siblings displayed symptoms 
of global psychomotor delay, dysphasia, and attention-
deficit hyperactivity disorder (ADHD) (Fig.  10A). By 

employing the previously described analysis steps and 
inputting the HPO terms HP:0001263, HP:0002357, 
HP:0000752, and HP:0000736, EvORanker prioritized 
DLGAP2 as the top candidate gene (Fig.  10B). Further 
analysis revealed a strong correlation between DLGAP2 
and several genes related to similar phenotypes to that 
of the patient, such as GRIN2A, NLGN1, CNTNAP2, 
SRPX2, SYNGAP1, GABRA5, DLG3, SATB1, PTCHD1, 
ARHGEF6, and NLGN4X (Fig. 10C, D, Additional file 2: 
Fig. S11). These “phenotype-related” genes were signifi-
cantly enriched within the top co-evolving and STRING-
interacting genes with DLGAP2 (combined Fisher 
p-value = 1.65 ×  10−6) (Fig.  10C, Additional file  2: Fig. 
S11). Additionally, DLGAP2 was ranked as the top gene 
by both PHIVE [3] and ExomeWalker [8] but ranked 10th 
by Phenolyzer tool [59].

The high ranking of DLGAP2 by EvORanker 
prompted us to further research the DLGAP2 vari-
ant. The DLGAP2 variant (NM_001346810:c.A2702T, 
p.Glu901Val) is strongly conserved and not found in 
the gnomAD population frequency database [42] nor 
in our in-house database. Both affected siblings were 
homozygous for the variant, and it was the only vari-
ant that co-segregated with the phenotype in the fam-
ily (Fig.  10A). The variant is positioned on the third 
nucleotide preceding the splice donor site within exon 

Fig. 9 EvORanker outperforms two other algorithms (ExomeWalker and PHIVE). The performance of each algorithm in the 108‑exome dataset 
and the simulated dataset (shuffled three times) was measured by examining the ranking of the “true” disease‑causing gene relative to the other 
patient genes. The upper bar plot shows results for the autosomal and X‑linked recessive cases for the real‑exome dataset (left) and the simulated 
dataset (right). The simulated dataset contains 181 unique recessive cases and 119 unique dominant cases. The results present a compilation 
of three separate independent shuffles totaling 900 simulations. The lower bar plot shows results for the autosomal and X‑linked dominant cases. 
The y‑axis indicates the tested algorithms, and the x‑axis indicates the percentage of cases where the “true” disease gene was ranked at the top 
or within the top 5 genes relative to the other candidate genes in recessive cases. In dominant cases, the percentage indicates whether the “true” 
gene was ranked at the top or within the top 10 genes. EvORanker outperformed ExomeWalker and PHIVE in both recessive and dominant diseases 
in both datasets
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9 (out of 12 exons) of the DLGAP2 gene. It is predicted 
to alter gene splicing by different prediction tools (e.g., 
SpliceAI [44]). Since the DLGAP2 gene is minimally 
expressed in whole blood, a minigene splicing assay 
was performed to assess the effect of the c.A2702T 
variant on gene splicing (Additional file  2: Fig. S12). 
The minigene assay results showed that the variant 
led to the activation of a cryptic splice site and aber-
rant splicing (Additional file 2: Fig. S12). Sequencing of 
the RT-PCR product of the mutant construct showed a 

4-bp deletion (GAAA del) (Chr8:1,626,792–1,626,795), 
resulting in a frameshift and premature termination 
after 59 codons (Additional file 2: Fig. S12).

Family 2
We applied EvORanker to the exome data of a patient 
diagnosed with a multisystem disease including fail-
ure to thrive, recurring abdominal pain, chronic diar-
rhea, skeletal muscle wasting, elevated liver enzymes, 
and high levels of creatine kinase (Fig. 11A). The patient 

Fig. 10 EvORanker identifies DLGAP2 as a novel gene underlying a neurodevelopmental phenotype. A Pedigree: In a consanguineous family 
affected children have psychomotor delay and dysphasia, hyperactivity, and poor attention span. Shown is the segregation of the DLGAP2 
NM_001346810:c.A2702T, p.Glu901Val variant. N, normal allele; V, variant allele. B EvORanker results: DLGAP2 is ranked as the top candidate relative 
to the other patient candidates. The x‑axis indicates the proband (patient II‑3), and the y‑axis indicates the EvORanker ‑log(10) p‑value obtained 
from running the K‑S test using the co‑evolved and STRING‑interacting genes with each patient gene. Red dots indicate significant p‑values, 
and dark blue dots indicate non‑significant p‑values. DLGAP2 was the only gene that co‑segregated with the phenotype in family 1. C One‑sided, 
two‑sample Kolmogorov–Smirnov model. The x‑axis indicates the semantic similarity score obtained by the OntologySimilarity tool in relation 
to the patient’s (II‑3, family 1) phenotypes (HP:0001263, HP:0002357, HP:0000752, HP:0000736). The y‑axis indicates the cumulative distribution. 
The orange line corresponds to the empirical distribution of all genes listed in the HPO database, ranked according to semantic similarity. 
The red line represents the empirical distribution of the genes coevolved with DLGAP2, and the blue line represents the empirical distribution 
of the genes interacting with DLGAP2 based on STRING. The red dashed line indicates the D statistic representing the maximum vertical distance 
between the empirical cumulative distribution functions of the HPO‑ranked genes and the genes coevolved with DLGAP2. The blue dashed line 
indicates the D statistic measured by the distance between the empirical cumulative distribution functions of the HPO‑ranked genes and the genes 
interacting with DLGAP2 based on STRING. Both coevolution and STRING‑based analysis yielded significant p‑values corresponding to the D 
statistic. D Coevolution and STRING‑based subnetwork showing the patient’s phenotype‑related genes coevolving with the DLGAP2 gene. The dark 
grey node in the network indicates DLGAP2 and the light grey nodes represent the phenotype‑related genes. The black edges represent STRING 
interactions, and the colored edges represent the clade where two genes co‑evolve. The network exhibits a group of phenotype‑related correlated 
genes that have not been identified by the STRING database (EHMT1, IL1RAPL1, SATB2, GABRA5, SRPX2, SEMA3E, CACNG2)
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is of consanguineous parentage and is the sole affected 
individual in the family (Fig.  11A). Using HPO terms 
corresponding to the patient’s phenotype (HP:0001508, 
HP:0002910, HP:0002574, HP:0002028, HP:0003236, 
HP:0003202), EvORanker prioritized LPCAT3 as the 
top patient candidate gene (Fig.  11B). LPCAT3 demon-
strated strong coevolution signals with genes related to 
the patient’s phenotype (PYGL, DLD, TXNRD2, COG8, 
SUCLG1, MVK, SMAD4, CPT1A) in the plant (Vir-
idiplantae and Eudicotyledons), Mammalia, and Fungi 

kingdoms (Fig.  11C, D, Additional file  2: Figs. S13, S14 
and S15). The genes that showed the strongest coevolu-
tion with LPCAT3 were significantly enriched within 
the phenotype-related genes (p-value = 7.93 ×  10−15) 
(Fig.  10C, Additional file  2: Fig. S13). Conversely, the 
genes that interacted with LPCAT3 through STRING 
did not exhibit significant enrichment within the phe-
notype-related genes (p-value = 0.53) (Fig.  10C, Addi-
tional file  2: Fig. S13). Despite this, LPCAT3 still had 
the most significant p-value among all candidates based 

Fig. 11 EvORanker identifies LPCAT3 as a novel gene underlying a multisystem disorder. A Pedigree of a consanguineous family. The affected 
son has failure to thrive, chronic diarrhea with recurrent abdominal pain, muscle atrophy, elevated liver enzymes, and high creatine kinase 
levels. Shown is the segregation of the LPCAT3 NM_005768:c.G939A, p.Trp313Ter variant. N, normal allele; V, variant allele. B EvORanker results: 
LPCAT3 is ranked as the top candidate relative to other candidate genes. The x‑axis indicates the proband (patient II‑4), and the y‑axis indicates 
the combined ‑log10 p‑value obtained from running the K‑S test using the co‑evolved and STRING‑interacting genes with each patient gene. 
Red dots indicate significant p‑values, and dark blue dots indicate non‑significant p‑values. LPCAT3 was the only gene that co‑segregated 
with the phenotype in family 2. C One‑sided, two‑sample Kolmogorov–Smirnov model. The x‑axis indicates the semantic similarity score obtained 
by the OntologySimilarity tool in relation to the patient’s (II‑4, family 2) phenotypes (HP:0001508, HP:0002910, HP:0002574, HP:0002028, HP:0003236, 
HP:0003202). The y‑axis indicates the cumulative distribution. The orange line corresponds to the empirical distribution of all genes listed in the HPO 
database, ranked according to semantic similarity. The red line indicates the empirical distribution of the genes coevolved with LPCAT3, and the blue 
line indicates the empirical distribution of the genes interacting with LPCAT3 based on STRING. The red dashed line indicates the D statistic 
representing the maximum vertical distance between the empirical cumulative distribution functions of the HPO‑ranked genes and the genes 
coevolved with LPCAT3. The blue dashed line indicates the D statistic measured by the distance between the empirical cumulative distribution 
functions of the HPO‑ranked genes and the genes interacting with LPCAT3 based on STRING. Only coevolution‑based analysis yielded significant 
p‑values corresponding to the D statistic. D Coevolution and STRING‑based subnetwork showing the patient’s phenotype‑related genes coevolving 
with the LPCAT3 gene. The yellow node in the network indicates LPCAT3 and the light grey nodes represent the phenotype‑related genes. The black 
edges represent STRING interactions, and the colored edges represent the clade where two genes co‑evolve. We demonstrate that our clade‑wise 
NPP approach uncovered correlations between LPCAT3 and phenotype-related genes that were not captured by STRING
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on the combined EvORanker score (Fisher combined 
p-value = 1.42 ×  10−13). LPCAT3 was ranked third by 
ExomeWalker [8], excluded by PHIVE [3] and ranked 8th 
by Phenolyzer [59]. The proband (II-4) was homozygous 
for a truncating variant in exon 9 of the LPCAT3 gene 
(NM_005768:c.G939A, p.W313X) (Fig.  11A). This vari-
ant was not found in the gnomAD population frequency 
database [42] nor in our in-house database. The LPCAT3 
variant was the only variant among the patient candidate 
genes that co-segregated with the phenotype in the family 
(Fig. 11A).

Complete knockout of LPCAT3 in mice results in pre-
mature death. However, tissue-specific knockouts in the 
liver and intestines have been documented, with the lat-
ter causing impaired growth and abnormal enterocyte 
morphology along with enterocyte lipid accumulation 
(Rong et al., 2015). Liver-specific knockouts in mice dis-
play a decrease in plasma triglycerides and an occurrence 
of hepatosteatosis (Rong et  al., 2015). The patient from 
family 2 demonstrated anomalies in both the intestine 
and liver. Duodenal biopsies showed nodular lesions in 
the duodenal bulb and the descending portion of the duo-
denum with atrophic mucosa suggestive of severe enter-
opathy. Fragments of duodenal mucosa showed partial 
villous blunting with a mild increase of lamina propria 
lymphoplasmacytic cell infiltrate. Liver enzymes revealed 
a reduced ratio of aspartate aminotransferase (AST)/ala-
nine aminotransferase (ALT) ratio, suggesting fatty liver 
disease, along with reduced plasma triglycerides (34 mg/
dL) and HDL levels (27.1 mg/dL). These findings suggest 
LPCAT3 as a potential causative gene for the disease in 
the proband of this family.

EvORanker web tool
The EvORanker web tool (https:// ccana vati. shiny apps. io/ 
EvORa nker/) is an easy-to-use and user-friendly decision 
support tool built for geneticists and researchers in the 
NGS field (Additional file 2: Fig. S16). The user submits 
a set of HPO terms describing the patient’s medical con-
dition and the patient’s candidate genes, preferably genes 
that survived variant filtering. The algorithm then per-
forms the aforementioned analyses and returns the out-
puts in two stages:

(1) Step 1: If the queried gene is already listed in the 
HPO database, a semantic similarity score (ranging 
from 0 to 1) reflecting the similarity of the gene’s 
associated HPO terms to the user’s input HPO 
terms is calculated using the OntologySimilarity 
package [51] and is indicated in a table output in 
the “Step 1: Semantic Similarity-based Prioritiza-
tion” tab.

(2) Step 2: In the case where none of the queried genes 
are listed in the HPO dataset or where none had a 
high or sufficient semantic similarity score (i.e., a 
non-diagnostic case), the user can navigate to co-
evolution and STRING-based gene prioritization. 
The output is a table containing each queried gene 
and the corresponding EvORanker p-value. The 
EvORanker p-value is the result of Fisher’s com-
bined test obtained by integration of multi-clade 
phylogenetic profiling and STRING-based analysis 
as described above.

EvORanker also provides useful visualizations of 
the results, including a bar plot of the ranked genes by 
EvORanker, and a co-evolution and STRING subnet-
work generated upon click of any queried gene in the 
“Step 2” results table. The network highlights the HPO-
related genes co-evolving with the query gene in addition 
to edges representing STRING interactions. Addition-
ally, the user can retrieve more detailed co-evolutionary 
information including the clade where every two genes 
co-evolve, the co-evolutionary rank of the HPO-related 
genes with each query gene, and can inspect gene enrich-
ment results of the coevolving genes and STRING-inter-
acting genes with each query gene. The web interface is 
available at the following link: https:// ccana vati. shiny 
apps. io/ EvORa nker/. Recognizing the need to analyze a 
larger number of genes than recommended for the web 
tool due to memory constraints, we have established a 
GitHub repository (https:// github. com/ ccana vati/ EvoRa 
nker) [65]. This repository allows users to access the tool 
and input an expanded number of genes, accommodating 
their requirements.

Discussion
Clinical elucidation of genetic variants in connection to 
a patient’s phenotype is a time-consuming and costly ele-
ment in the genomic diagnosis of rare genetic diseases. 
To address this issue, several computational algorithms 
have been developed over the years to prioritize candi-
date genes based on the patient’s phenotype using dif-
ferent sources of information, such as protein-protein 
interactions, data mining, and gene expression [3, 8–10, 
12–14]. Nevertheless, although PP was successfully 
used to identify novel disease genes [25, 26, 29, 30, 66], 
we are not aware of any tool that systematically utilizes 
clade-based phylogenetic profiling to prioritize patient 
candidate genes. Herein, we described EvORanker, an 
algorithm that employs multi-scale phylogenetic profil-
ing and gene interaction data from the STRING database 
[33] to analyze “unsolved” WES/WGS cases in search of 
novel genetic causes of disease. This algorithm integrates 

https://ccanavati.shinyapps.io/EvORanker/
https://ccanavati.shinyapps.io/EvORanker/
https://ccanavati.shinyapps.io/EvORanker/
https://ccanavati.shinyapps.io/EvORanker/
https://github.com/ccanavati/EvoRanker
https://github.com/ccanavati/EvoRanker
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unbiased comparative genomic analysis with publicly 
available gene data, including function and interactions.

Multi-scale phylogenetic profiling is particu-
larly valuable for identifying disease associations for 
poorly annotated genes. The ability to conduct analy-
sis of every gene independently of existing knowledge 
expands the scope of disease-gene discovery. This is 
particularly important in light of the “rich get richer” 
phenomenon, where genes that have already been stud-
ied receive disproportionate attention, while poorly 
annotated genes are often overlooked. Among the 6260 
tested knockout genes that exhibit a phenotype in mice 
and have an ortholog in humans, EvORanker was able 
to link 41% of these genes to the disease phenotype 
observed in mice (Fig.  8, Additional file  2: S9). This 
highlights the potential of EvORanker to discover new 
disease genes and expand our understanding of disease 
mechanisms.

Furthermore, our study demonstrates the power of our 
multi-clade concept in capturing co-evolution, as shown 
by our ability to more effectively identify the “true” dis-
ease-causing genes across multiple clades, beyond just 
Eukaryota or Animalia clades (Figs.  3 and 4, Additional 
file 2: Fig. S5). This is aligned with the notion that multi-
clade phylogenetic profiling-based methods more effec-
tively capture co-evolution [29, 30]. Importantly, our 
clade-wise NPP approach revealed correlations between 
genes that could not be anticipated using other omics 
(Fig. 11C, D, Additional file 2: Fig. S13). The integration 
of NPP with STRING leads to increased efficiency of 
EvORanker (Fig. 5), especially for newly annotated genes, 
and highlights the complementarity of these two data-
sets. In future studies, we may contemplate incorporat-
ing additional datasets into the algorithm, such as mouse 
and zebrafish knockout data, and other sources for pro-
tein-protein interaction networks, by utilizing similar 
concepts.

We benchmarked our tool using both real patient 
exome data, in addition to simulated data. The utiliza-
tion of actual patient data enhances the translational 
potential of our findings and underscores the clinical 
relevance of our tool. EvORanker ranked the “true” gene 
within the top 5 in 95% of the patient-exome dataset. 
On the other hand, failed to rank the “true” gene within 
the top 5 for recessive diseases and within the top 10 for 
dominant diseases in 6/109 exomes. Further investigation 
revealed that in 3 of those cases (TBL1XR1, NHLRC2, 
ADGRG1), the HPO terms used as input into the algo-
rithm were both insufficient and non-specific (Additional 
file 1: Table S1). This highlights the importance of precise 
selection of HPO terms to achieve accurate results. Nota-
bly, our results remained consistent across both the real-
patient and simulation datasets, further validating the 

practical utility and effectiveness of our tool in real-world 
applications.

We applied EvORanker on two unresolved exomes in 
which previous clinical whole exome sequencing (WES) 
did not identify a known genetic cause. In the first case 
(family 1), the DLGAP2 gene was ranked as the top can-
didate for a proband with a neurodevelopmental disorder 
(Fig. 10B). DLGAP2 plays a role in the molecular organi-
zation of neuronal synapses and neuronal cell signaling 
[67]. The pathogenicity of the NM_001346810:c.A2702T, 
p.Glu901Val variant observed in DLGAP2 was validated 
by demonstrating its effect on splicing (Additional file 2: 
Fig. S12). Homozygous knockout mice for DLGAP2 
exhibit novelty-induced hyperactivity, increased aggres-
sion, impaired reverse learning, decreased dendritic spine 
density, and synaptopathy [68] providing further support 
for the association of DLGAP2 with the patient’s pheno-
type. Furthermore, DLGAP2 was hypothesized to be a 
strong candidate for neurodevelopmental and behavioral 
phenotypes observed in patients harboring 8p23.2-pter 
microdeletions including DLGAP2 and four other genes 
[69]. Notably, our analysis using NPP revealed a group 
of DLGAP2-associated genes not detected by STRING 
(Fig.  10D), providing new avenues for investigating the 
role of DLGAP2 in the nervous system.

In the second “unsolved” exome, only NPP ranked the 
LPCAT3 gene as the top candidate (family 2, Fig.  11C, 
Additional file 2: Fig. S13). This ranking of LPCAT3 was 
achieved by the detection of novel functional associa-
tions with phenotype-related genes based on co-evolu-
tion (PYGL, DLD, TXNRD2, COG8, SUCLG1, MVK, 
SMAD4, CPT1A) (Fig.  11D). These phenotype-related 
genes showed significant coevolution with LPCAT3 in 
the clades of Viridiplantae, Eudicotyledons, Mamma-
lia, and Fungi (Fig. 11D, Additional file 2: Figs. S11 and 
S14), pointing towards novel associations not captured 
by STRING [33]. These findings are supported by phe-
notypic similarities between the patient and liver and 
intestinal knockout mice [70], including failure to thrive, 
enteropathy, and low levels of triglycerides and high-den-
sity lipoprotein. LPCAT3 nullizygous mice exhibit post-
natal death [70], making it difficult to study the global 
effects of LPCAT3 knockdown. Although a recent report 
linked LPCAT3 overexpression to skeletal muscle myo-
pathy [71], further research is needed to understand the 
role and mechanism of LPCAT3 in this condition. Taken 
together, these results underscore the potential of clade-
based NPP to predict functional associations with phe-
notype-relevant genes. Further validation in additional 
patients with variants in these genes is warranted to con-
firm their roles as novel disease-associated genes. Subse-
quent functional validation studies are crucial to better 
understand the mechanisms of disease pathogenesis.
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EvORanker is entirely gene-based, making it adaptable 
to various sequencing experiments and accessible for users 
with minimal computational knowledge. In addition to 
providing a ranked gene list, EvORanker offers the ability 
to explore evolutionary and STRING-based gene networks 
across multiple clades. A recommended strategy for users is 
to first examine the ranking of genes based on the Ontolo-
gySimilarity semantic similarity score [51], in the event that 
one of the candidate genes is already listed in the HPO data-
base. If not, the user can then evaluate the ranking of genes 
based on the EvORanker score, where a novel association 
between the gene and input phenotypes may be discovered. 
The EvORanker server is freely available at https:// ccana 
vati. shiny apps. io/ EvORa nker/, which will be updated on a 
regular basis. We also created a GitHub repository (https:// 
github. com/ ccana vati/ EvoRa nker) [65] which allows users 
to access the tool and input an expanded number of genes.

Conclusions
In summary, our work introduces EvORanker as a 
powerful tool in the genomic diagnostic landscape. 
By integrating multi-scale phylogenetic profiling and 
STRING-based gene interaction data, EvORanker offers 
a unique and effective approach to prioritize candidate 
genes in “unsolved” cases identified through whole-
exome and whole-genome sequencing. Our validation 
using real patient exome data and simulation data dem-
onstrates EvORanker’s robust capability to consistently 
prioritize the “true” gene, showcasing its reliability and 
translational potential in research applications.

The effectiveness of EvORanker in identifying candi-
date disease genes, as demonstrated by the identification 
of DLGAP2 and LPCAT3 in previously unresolved cases, 
highlights its potential to contribute to our understand-
ing of disease mechanisms. Moreover, its adaptability, 
user-friendly interface, and accessibility without exten-
sive computational expertise make EvORanker a valu-
able asset for researchers. As we navigate the intricate 
landscape of rare genetic diseases, EvORanker stands as 
a promising tool, offering not only a ranked gene list but 
also insights into STRING-based and evolutionary gene 
networks across multiple clades. We believe that the 
adoption of EvORanker will contribute significantly to 
advancing genomic diagnostics in the pursuit of unrave-
ling the genetic mysteries underlying rare diseases.
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