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Spatial multi-omics: novel tools to study 
the complexity of cardiovascular diseases
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Abstract 

Spatial multi-omic studies have emerged as a promising approach to comprehensively analyze cells in tissues, 
enabling the joint analysis of multiple data modalities like transcriptome, epigenome, proteome, and metabolome 
in parallel or even the same tissue section. This review focuses on the recent advancements in spatial multi-omics 
technologies, including novel data modalities and computational approaches. We discuss the advancements in low-
resolution and high-resolution spatial multi-omics methods which can resolve up to 10,000 of individual molecules 
at subcellular level. By applying and integrating these techniques, researchers have recently gained valuable insights 
into the molecular circuits and mechanisms which govern cell biology along the cardiovascular disease spectrum. 
We provide an overview of current data analysis approaches, with a focus on data integration of multi-omic datasets, 
highlighting strengths and weaknesses of various computational pipelines. These tools play a crucial role in analyz-
ing and interpreting spatial multi-omics datasets, facilitating the discovery of new findings, and enhancing transla-
tional cardiovascular research. Despite nontrivial challenges, such as the need for standardization of experimental 
setups, data analysis, and improved computational tools, the application of spatial multi-omics holds tremendous 
potential in revolutionizing our understanding of human disease processes and the identification of novel biomark-
ers and therapeutic targets. Exciting opportunities lie ahead for the spatial multi-omics field and will likely contribute 
to the advancement of personalized medicine for cardiovascular diseases.

Keywords Spatial multi-omics, Spatial transcriptomics, In situ sequencing, Multiplex in situ FISH, MALDI, Spatial 
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Background
Organs are built from billions of cells and multiple cell 
types. Organ function is dependent on tight control of 
intrinsic and extrinsic stimuli within the tissue microen-
vironment to control cell fate decisions in development, 
health, and disease. The earliest morphometric events of 
an embryo occur at the 8–16 cell stage when compaction 
occurs [1]. Further, cell divisions, activation, and inhibi-
tion of regulators like transcription factors lead to unique 

tissue patterns and organ shapes, which support multi-
ple unique organ functions. Cell-cell communication is 
crucial for maintaining the spatial organization of tissues 
and organs, ensuring the continuity of their functions 
across various distances [2]. In the human heart, the 
proper spatial organization of cells guarantees efficient 
energy conversion leading to synchronous cardiac muscle 
contractions, the rhythm of life.

For many years, anatomists and physiologists have 
focused their studies on cell and tissue morphology using 
approaches like histological staining techniques and elec-
tron microscopy. They identified various spatial features 
of the heart at macroscopic and at the subcellular level 
(e.g., distinct cell-cell contacts of cardiomyocytes, inter-
calated discs (ICD) [3]). While cardiomyocytes make 
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up most of the heart by volume, they are outnumbered 
by a diverse mix of fibroblasts, immune cells, endothe-
lial cells, and mural cells, which form the organ scaffold 
and vascular compartment [4]. This organization is dis-
turbed in disease, often in a similar fashion across car-
diovascular diseases, e.g., in the context of fibrosis or 
tissue inflammation. Examples include the zonation of 
the myocardium into distinct spatial domains of injury 
after myocardial infarction (ischemic zone, border zone, 
and remote zone [4]), vascular calcification initiated at 
different locations in blood vessels [5, 6] and focal seg-
mental glomerulosclerosis (FSGS), and lesions with dis-
tinct spatial organization in fibrotic glomeruli of the 
kidney caused by hypertension [7–9]. Thus, methods are 
needed to shed unbiased insights into the spatial molecu-
lar changes of these localized processes.

Nature methods selected spatial transcriptomics (ST) 
as “method of the year 2020” [10], and since then, sev-
eral studies applied these technologies in cardiovascular 
research. Single-cell and spatial multi-omics studies of 
the heart and kidney exemplify the recent development 
and insights by applying these technologies. While sin-
gle-cell and single-nuclei studies of the human heart in 
health [11, 12] and disease [4, 13–15] have led to valuable 
insights, spatial information was lacking. Spatial biology 
enables researchers to observe and decode these complex 
patterns and communications of cells within their native 
tissue environments. Intrinsically, cells are regulated by 
a complex interplay of molecular regulators on several 
levels, which can be measured with high-throughput 
“omics” technologies. Multiple molecular levels can be 
measured currently with massive throughputs, including 
the genome, transcriptome, proteome, and metabolome. 
In the last few years, several assays have been developed 
to decode these layers on the single-cell level (e.g., single-
cell proteomics, single-cell RNA, or ATAC sequencing). 
As these technologies became more broadly available 
to researchers worldwide, they have led to tremendous 
biological insights into cardiovascular diseases, includ-
ing atherosclerosis [16, 17], vascular calcification [18], 
kidney [19–21], and heart disease [11–13, 15, 22, 23] and 
transformed our understanding of cellular heterogene-
ity, differentiation trajectories, and plasticity. The impact 
of these technologies is highlighted by the initiation of 
consortium-based research projects like the Human Cell 
Atlas (HCA) [24, 25] or the Human BioMolecular Atlas 
Program (HuBMAP) [26], which primarily focus on cre-
ating a comprehensive cellular map of the human body 
detailing the location, function, and characteristics of 
each cell type in the different tissues. However, it has 
become clear that for a comprehensive understanding of 
intrinsic and extrinsic factors which control cell fate deci-
sions in tissues, it is crucial to consider and include spatial 

molecular information. Similarly to the speed of develop-
ment of single-cell assays (from 1 cell [27] to 100,000 s 
with ultrahigh throughput [28, 29] within 10 years), the 
development of spatial technologies has recently gained 
pace, and various technological breakthroughs have led 
to the development of innovative approaches to study 
spatial biology (additionally reviewed here [30–34]). This 
increase in scope has made it possible to assemble spa-
tial multi-omics experiments, opening up new perspec-
tives on cell biology. One of the most pivotal questions 
is which spatial technologies, or combination thereof, 
to utilize for a given biological question. Here we give 
a comprehensive overview of the technological princi-
ples of various spatial technologies, their strengths and 
weaknesses, current and emerging computational strat-
egies to analyze spatial data, challenges, and potential 
future directions of spatial multi-omics in cardiovascular 
disease.

Spatial multi‑omics technologies at cellular 
resolution
NGS‑sequencing‑based spatial multi‑omics
The current rise of ST accelerated after the development 
of a high-throughput transcriptome-wide assay using 
arrayed oligo-nucleotide barcoded spots by Ståhl et  al. 
in 2016 [35, 36], which formed the basis for the commer-
cialized product called Visium by 10× Genomics. While 
this assay provides high throughput, the resolution is 
currently limited to 55-μm diameter spots arranged in 
a hexagonal array with a 100-μm distance between spot 
centers (see Table 1). Alternative array-based spatial tran-
scriptomic methods have been developed with higher 
resolution and different spot barcoding principles either 
using beads, like Slide-Seq/Slide-SeqV2 [37, 38] or bar-
coded wells with 2-μm resolution-like HDST [39]. These 
technologies aim to close the gaps inherent to dissociated 
single-cell data providing information on the colocaliza-
tion of cell types and cell states, spatial covariance of gene 
expression changes, and defining cellular tissue niches 
and how they change in disease (Fig. 1). Furthermore, this 
information is used to analyze cell-cell communication 
and utilized for machine-learning approaches to link the 
data to the patient’s clinical outcome. In the cardiovas-
cular research space, single-cell and spatial multi-omics 
studies of the heart and kidney exemplify the recent 
development and insights by applying these technologies. 
While single-cell and single-nuclei studies of the human 
heart in health [11, 12] and disease [4, 13–15] have led to 
valuable insights, spatial information was lacking.

In our spatial multi-omic study of human myocardial 
infarction [4], we utilized multi-omic techniques such 
as single-cell gene expression sequencing, chromatin 
accessibility sequencing (scATAC-seq), and ST to build a 
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molecular map of cardiac remodeling, including multiple 
clinical time points. Our study enabled a detailed exami-
nation of unique disease markers by analyzing tissue 
samples collected at various intervals after MI and from 
distinct areas of the heart. Using this approach, we could 
resolve several cardiac cell types in their spatial context 
and the tissue microenvironment. Integrating multi-
modal data facilitated the identification of specific altera-
tions in the transcriptome and epigenome in response to 
ischemic damage, repair, and myocardial remodeling and 
the establishment of gene regulatory networks.

ST approaches combined with other technologies 
have been used by other studies to shed light on tis-
sue remodeling following MI in mice. Using a neonatal 
mouse model and ST, a recent study [40] focusing on 
cardiac regeneration found that the transcription factor 
Nrf1 regulates the oxidative stress response, which pro-
tects the neonatal heart from ischemic injury. Another 
study focused on the border zone (BZ) in mouse models 
found the gene CSRP3 to be critical for the regulation 
of remodeling processes after myocardial infarction and 
identified distinct mechano-sensing genes in the BZ of 
the infarct [41]. Boileau et al. introduced scNaST (single-
cell nanopore spatial transcriptomics), a method targeted 
at the identification of RNA-isoform switches using long-
read sequencing of the myocardium following infarction 
in different regions of the myocardium [42].

In a recent seminal study by Kanemaru et  al., the 
researchers performed spatial multi-omic profiling of 
the human heart, including in a total eight regions [22]. 
The authors used single-cell transcriptome and multi-
ome (RNA+ATAC) profiling to define cellular niches and 
to investigate cell-cell communication, primarily focus-
ing on the cardiac conduction system. In addition, they 
developed a druggable target prediction tool (drug2cell) 
revealing the cardiac cellular targets of GLP-1 analogues. 
This spatial atlas will be of tremendous use for future 
studies involving diseased human heart tissues.

Other studies have utilized spatial transcriptomic 
approaches to decode the inflammatory processes in 
tissue space, e.g., viral myocarditis [43]. Using ST, the 
authors decoded the host response in neonatal mice. 
They observed the molecular basis of how endothelial 
cells mount a potent innate immune response in the 
heart, which is associated with localized stress response 
signatures. Spatial resolution was crucial for these find-
ings, as myocarditis shows distinct zonation and border 
zones with unique inflammatory signatures that could 
potentially be missed in single-cell RNA sequencing 
studies of dissociated tissue. Alternative spatial tran-
scriptomic approaches allow the user to assay selected 
regions of the tissue based on distinct photomasks. UV 
light is then used to release photoactivated linker mole-
cules, which can be sequenced using NGS. This platform 

Table 1 Overview of spatial multi-omics methods. Experimental methods, corresponding instruments, analyte principles, modalities, 
feature scale, and resolution are shown for each category. The cost row offers an estimation on the price per sample and does not 
include initial investment into the device

NGS based 
multi-omics 

Imaging based multi-omics MS- based multi-omics

Spatial non‑
deterministic 
barcoding

Spatial 
deterministic 
barcoding

ISS Multiplex ISH 
– diffraction 
limited

Multiplex 
ISH – non 
diffraction 
limited

Cyclic IF Ion‑labelled 
antibodies

microdissection

Method Visium35,36, 
Slide-
SeqV237,38, 
STEREO-Seq101, 
 HDST39

DBiT-Seq53 HybISS92, FIS-
SEQ, 

MERFISH93, 
 seqFISH94, 
osmFISH, EEL-
FISH, 

FLASH-
PAINT103, 
DNA-PAINT, 
SUM-PAINT104

CODEX72, COMET,  4i70, 
 IBEX71, Immuno-SABER73

IMC68,  MIBI69 Deep Visual 
 Proteomics77,78 
(DVP)

Instrument Sequencer 
(short/long 
read)

Sequencer
(short/long 
read)

microscope 
(epifluores-
cence 
confocal)

microscope 
(epifluores-
cence 
confocal)

microscope 
(confocal, TIRF, 
STED) 

microscope Mass-Spec Laser-micro-
dissection 
microscope + 
Mass-Spec

Analyte prin-
ciples

Barcoded 
primer

Barcoded 
primer

Padlock 
probes

Probe panel Oligo-labeled 
nanobodies

Oligo or IF labeled 
antibodies

Ion-labeled 
antibodies

Tissues markers 
and AI software 
for dissection

Modalities DNA, RNA, 
protein

DNA, RNA, 
protein

DNA, RNA DNA, RNA, 
protein

RNA, protein protein protein protein

Feature scale 10.000s
Protein: 100a

RNA:10.000s
Protein: 100s

1000s cells (1000s)
tissues (100s)

12 (theoreti-
cally 10.000s)

1-200 1-50 unlimited

Resolution 1-55 µm,
Stereo-seq: 
200 nm

10 µm Diffraction 
limited 

Diffraction 
limited

Sub-5 nm Diffraction limited 100 nm-1µm 5-10 µm (cellular 
level)

Costs +++ ++ ++++ ++++ + + - ++ ++ ++
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is called digital spatial profiling (DSP) or GeoMX (from 
NanoString). Researchers have recently used it to shed 
light on the human immune landscape in cardiac sar-
coidosis, a lethal inflammation of the human heart [44]. 
The spatial measurement enabled them to find a novel 
marker of multinucleated giant cells and identify patterns 
in the location of several immune cells throughout the 
granuloma.

Based on transcriptomic data alone, the differentiation 
of naïve or mature immune cells is generally challeng-
ing, but additional protein markers such as CD45RO/
CD45RA commonly used in FACS can significantly 
aid the identification of the correct immune cell state. 
Recently, spatial transcriptomics technologies have been 
developed to include protein information from a panel of 
selected antibodies similar to CITE-Seq [45] in single-cell 
RNA sequencing. In SPOTS [46], oligo-labeled antibod-
ies are applied on the tissue section with a unique ID and 
UMI sequence, allowing for a quantitative assessment of 
the protein expression in addition to a measurement of 
the whole transcriptome. SM-Omics [47] is another ST 
approach which combines the capture of released RNA 
on an array with an oligo-label antibody staining strategy. 
Library generation is automated with the help of a pipet-
ting robot, which scales up library generation to nearly 
96 libraries in a little over 2 days, albeit at a resolution of 
only 100 μm.

Similar to spatial protein expression analysis, Llorens-
Bobadilla et al. have recently adapted their ST approach 
to measure open chromatin information using spatial 
ATAC-Seq [48].

Another interesting development has been the combi-
nation of spatial transcriptomics and expansion micros-
copy called Ex-ST [49]. By embedding the tissue in 
swellable gel and expanding it up to 2.5-fold, the authors 
were able to reach a near single-cell resolution and also 
increased the capture efficiency of lowly expressed genes. 
A key innovation of this protocol is the use of two dif-
ferent poly-T oligos with different melting temperatures. 
In scRNA-seq, technologies, like SMART-Seq total [50] 
or VASA-Seq [51], extended measurements from just 
mRNA to all other RNA species like miRNAs, lnc-RNAs, 
and non-host RNA, like viral transcripts, by enzymatic 
polyadenylation. Analogous, a spatial total RNA sequenc-
ing (STRS) method has been recently developed [52].

While the technologies described above rely on the 
diffusion of reverse-transcribed transcripts onto immo-
bilized oligo-dT-nucleotides barcodes, in DBiT-Seq 
[53], microfluidic channels in PDMS chips are used to 
actively flow the barcodes on the tissue (see Table  1). 
Sequential barcoding in the reverse transcription (bar-
code A) and ligation step (barcode B) is used to individ-
ually and deterministically barcode tissue pixels using 

DNA-oligos. This method has been recently adapted to 
measure spatial ATAC-seq profiles [54] and co-profil-
ing of RNA and ATAC or other epigenetic features like 
histone modifications in the same tissue section [55] 
as well as proteomics [56]  (Fig.  1). In 2022, this tech-
nology was highlighted with other spatial multi-omics 
methods as one of “seven technologies to watch in 
2022” [57]. The resolution of DBiT-Seq is determined 
by the diameter of the PDMS-chip channels, which 
range from 10 to 50 μm, thus reaching near single-cell 
resolution. The versatility of this approach, especially 
in regard to multi-omics, is remarkable and could in 
theory be extended to other modalities like 3D genome 
organization [58], APEX-seq [59], or higher throughput 
as demonstrated recently [60].

Kishi et  al. presented another innovative barcoding 
strategy combining in  situ barcoding and ex situ NGS 
sequencing called Light-seq [61]. A unique combina-
tion of technologies allowed the authors to specifically 
target a very rare cell type, dopaminergic amacrine 
cells (DAC cells) of the mouse retina, which otherwise 
would be very difficult to capture. Another distinguish-
ing feature, compared to all other spatial methods, is 
that it leaves the original sample intact, opening several 
opportunities for further downstream analysis using 
other omics. Furthermore, this technology might be 
extended to analyze the proteome or epigenome.

An exciting development for single-cell [62–64] and 
spatial transcriptomics [65] has been the recent adap-
tation to formalin-fixed paraffin-embedded (FFPE) tis-
sues. Several challenges had to be overcome, including 
the development of FPPE-specific nuclei isolation pro-
tocols [64] and strategies to handle RNA cross-linking 
and RNA degradation typical to FPPE tissue stored at 
room temperature. The 10× Visium workflow, originally 
designed for cryo tissue, was adapted to the FFPE tissue 
workflow by the inclusion of three pairs of probes for 
each target mRNA. The assay measures mRNA tran-
scriptome wide and can be refined by the spike-in of 
custom probes. Since FFPE samples are the gold stand-
ard for tissue preservation for pathologists (mostly due 
to their excellent ability to preserve tissue morphology) 
and FFPE tissue is widely accessible, the development 
of these approaches is particularly promising. Clinical 
data of these samples are usually available, thus ena-
bling the study of larger retrospective cohorts with 
detailed metadata. A recent study combined the probe 
panel Visium FFPE workflow with low-quality fresh-
frozen samples (FF), which led to great improvements 
in data quality and even made it possible to spatially 
profile cartilage and bone tissues in mice [66], signify-
ing light at the end of the tunnel for the processing of 
these challenging samples.
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Non‑NGS‑based spatial multi‑omics
While transcriptome information is widely used to model 
protein expression dynamics, the genome-wide cor-
relation between mRNA and protein is estimated to be 
only around 40% [60, 61]. Furthermore, the transcrip-
tome alone cannot provide information about processes 
induced by posttranslational protein modifications, 
which can have important effects on cell biology. Com-
pared to the transcripts, resolving the proteome at sin-
gle-cell resolution or in tissues is much more challenging. 
Cells typically contain 30,000× more protein molecules 
than mRNA molecules [67], and proteins are very hetero-
geneous in size and structure and, unlike nucleic acids, 
cannot be amplified. This has limited the multiplexing 
and throughput of spatial proteome measurements. Nev-
ertheless, enormous progress has been made in generat-
ing multiplex proteomics datasets from tissues.

Antibody-based multiplexed imaging technologies 
have been available before NGS-based spatial assays 
relying on mass cytometry for IMC-Cytof [68] or MIBI-
TOF [69] but have only recently increased in throughput 
(larger field of view > 1  cm2) and complexity (> 10–50 
markers) (see Table  1). The development of fluores-
cence-based technologies such as 4i [70] and IBEX [71] 
and DNA-oligo labels in the case of CODEX [72] and 
Immuno-SABER [73] has made spatial proteomics more 

approachable, as researchers do not need access to MS 
instruments.

A major challenge in antibody-based proteomics is val-
idating the antibody specificity and ensuring that it is not 
influenced after the conjugation step with fluorophores 
or DNA. Another approach to enable unbiased single-
cell or spatial proteomics is based on highly sensitive LC-
MS-based proteomics (reviewed here [67, 74–76]), which 
has been adapted to spatial proteomics as deep visual 
proteomics (DVP) [77, 78]. DVP combines laser-capture 
microdissection of distinct cell types from tissue and per-
forms MS proteomics of the collected tissues extending 
bulk proteomics of the human heart [79] with cell type 
and spatially resolved information in the near future.

Recent developments of transgenic mice have enabled 
metabolic labeling of proteins using Cre-recombinase-
induced expression of a mutant methionyl-tRNA syn-
thetase [80, 81] from a given cell population. Combined 
with unbiased MS-proteomic approaches, this might be 
well suited to resolve the cell secretome or for the dis-
covery of novel biomarkers, which otherwise might be 
missed in proteomics of isolated cells.

Spatial metabolomics has reached 5–10 μm resolution 
and has been recently applied to study cell-type-specific 
dynamics of metabolism in kidney repair [82]. Every 
year, 13 million people suffer from AKI and increased 

Fig. 1 NGS-based spatial multi-omics. a Schematic of nondeterministic barcoding for spatial transcriptomics. Either barcoded spots (e.g., Visium) 
or beads (Slide-Seq) are used in an array to capture released reverse-transcribed RNA on a glass slide. Spatial multi-omic datasets can be generated 
using data integration with different single-cell methods. b Schematic of deterministic barcoding which utilizes PDMS chips with microchannels 
to barcode the tissue in two rounds. Several omic layers can be derived from the same tissue section including transcriptomics, proteomics, 
and epigenomics
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cardiovascular risk burden [83]. The kidney tubules can 
regenerate following AKI; in most patients, the injury 
resolves via adaptive regeneration [84]. How this process 
is molecularly wired is unknown, yet the importance of 
metabolic factors contributing to this process is widely 
recognized. MALDI-MSI-based metabolomics combined 
with 13C-labeled nutrients allowed the authors to study 
the dynamics of metabolic changes at subcellular resolu-
tion. They subsequently used multiplexed immunofluo-
rescence microscopy to identify cell types which seemed 
unnecessary, as cell types could be differentiated just 
based on the lipid profiles.

One area where spatial metabolomics might offer great 
value is research targeting the protective effect of SGLT2 
inhibition in renal proximal tubular cells. Inhibition of 
SGLT2 in the proximal tubule demonstrated a remark-
ably beneficial effect on survival in patients suffering 
from cardiovascular disease, including heart and kidney 
disease [85]. Secondary molecular changes are however 
not well understood. Spatial metabolomics can elucidate 
this potent pathway and potentially lead to novel targets.

Additional developments and progress in spatial metab-
olomics have been recently reviewed here [86, 87]. The 
correct metabolite annotation of MS data remains a par-
ticular challenge. Resources like www. metas pace2 020. eu 
offer a powerful platform for annotating and sharing meta-
bolic MS datasets.

A combination of spatial multiplexed IF imaging and 
spatial metabolomics has recently been established to 
investigate myeloid cell heterogeneity in atheroscle-
rotic plaques [88], shedding light on plaque myeloid 
phenotypes.

One recent approach demonstrated the measurement 
of metabolites or other arbitrary targets based on NGS 
structure-switching aptamers [89], which are constructed 
to release barcodes upon contact with the target mol-
ecules in single-cell RNA sequencing assays. Follow-up 
studies on this interesting strategy must be performed 
to determine how scalable these approaches are. While 
certainly not on the immediate horizon, single-molecule 
protein sequencing might be combined with MS and 
antibody-based multiplex imaging approaches to shed 
light on the proteome at unprecedented resolution. A 
recent review [90] is included here for completion.

Spatial multi‑omics technologies 
at single‑molecular resolution
Several approaches have been developed which allow 
in  situ sequencing (ISS) or imaging-based fluorescence 
in situ hybridization (FISH) of RNA, DNA, or proteins. In 
ISS, mRNA is labeled with specific nucleotide sequences 
called padlock probes [91], which are then sequenced 
with rolling circle amplification to increase the specificity 

of fluorophore binding (see Table 1). HybISS [92], or the 
commercialized version by 10× Genomics (Xenium), 
enables the detection of 100–1000 targets at subcellular 
resolution, including the detection of mutations. In gen-
eral, these approaches have a very high sensitivity allow-
ing them to detect lowly expressed genes.

FISH-based technologies like MERFISH [93] or 
SeqFISH+ [94] encoding probes are designed based on a 
binary barcoding scheme, which allows for error correc-
tion during the readout of the fluorescent barcode (see 
Table  1). These methods have been recently developed 
to measure open chromatin [94] and simultaneously 
3D genome, proteome, and transcriptome [95]. The 
measurement of high-resolution transcriptomics using 
MERFISH in > 50–100 μm section has recently been 
proposed [96].

In general, both ISS- and FISH-based methods require 
the selection of a limited number of targets to form a 
probe panel a priori. Computational approaches like 
spapros [97] and others [98, 99] provide a workflow to 
identify these genes based on reference single-cell RNA 
sequencing data.

Several other technologies are available: CosMx [100] 
(NanoString), and Molecular Cartography (Resolve Bio-
sciences). However, an independent benchmark that 
compares sensitivity, specificity, and other performance 
metrics has not been carried out.

Unbiased ST methods at subcellular resolution have 
been developed recently, such as Stereo-Seq [101] and 
SeqScope [101]. While these approaches allow subcel-
lular resolution transcriptomics  (e.g., 220-nm diameter 
size for Stereo-Seq), assignment of signals to  specific 
cells is potentially more challenging, as cell boundary 
stains  are not available and diffusion dynamics might 
affect the measurement.  It remains to be seen how accu-
rately these spatial assays perform  compared to other 
in situ approaches.

These technologies enable additional insights into sub-
cellular spatial localization of molecules, e.g., between 
the nucleus or cytoplasm, to gain insights on transcrip-
tional dynamics of cell states. They have not been exten-
sively applied in cardiovascular research since they are 
quite novel and just starting to be accessible to more 
researchers worldwide.

While these technologies have already reached an 
astonishing resolution, recent developments of DNA-
PAINT approaches like FLASH-PAINT [102] or 
SUM-PAINT [103] and the development of Ångström-
resolution fluorescence microscopy (RESI) [104] might 
lead to even further increases in multiplexed detection 
of biomolecules at nanometer ranges. Particularly, the 
combination of these DNA-imager-based approaches 
with DNA-based protein-binding aptamers [105] 

http://www.metaspace2020.eu
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(SOMAmers) might open the possibility to profile 1000 
s of proteins in  situ below the diffraction limit at single 
protein resolution in the future.

Computational approaches for spatial multi‑omics
New experimental designs also require innovative 
approaches for data analysis. Adding the spatial dimen-
sion to multi-omic data sets poses significant challenges 
but empowers existing analysis tools and opens entirely 
new ways of understanding tissue biology. In this section, 
we will discuss data analysis strategies and key challenges 
of working with multi-omic spatial datasets. For a more 
in-depth technical perspective, readers are directed to 
additional recent reviews on this topic [106–108] and the 
community resources at www. sc- best- pract ices. org and 
https:// lmweb er. org/ BestP racti cesST.

Computational workflows are dependent on the tech-
nology that produced the data, but there is significant 
overlap in the processing of the different modalities. The 
objective of these workflows is similar: to link the signal 
recorded by the instrument, be that a fluorescent inten-
sity or barcode, the sequence of reverse-transcribed 
RNA, or the m/z value of an ion back to a spatial location 
in the tissue. Technologies with cellular resolution are 
then able to assign signals to individual cells in a process 
known as cell segmentation.

Cell segmentation
Cellular segmentation of tissues is often improved by 
combining the primary readout with additional stains, 
such as DAPI staining of nuclei and or the cell borders 
with anti-cadherin antibodies or similar compounds. 
In imaging-based approaches like FISH, ISS, or multi-
plexed immunofluorescence, these measurements can 
be acquired simultaneously with the main measure-
ment, but even measurements that do not require a 
microscope like NGS-based Stereo-seq [109] or MALDI 
measurements [110] are often co-registered with sepa-
rately acquired microscopic images. To assign the meas-
ured signal to biological entities like cells or nuclei, the 
positions of the entities need to be extracted from the 
image in a process known as instance segmentation of 
cells. This step is critical, as misassignment of the signal 
can contaminate the measurement with cells which pre-
sent a mix of signals originating from different cell types 
or can entirely hide difficult-to-segment entitles from 
downstream processing. Deep-learning-based segmen-
tation algorithms like Cellpose 2.0 [111], Mesmer [112], 
and Segment Anything [113] have shown superior per-
formance to more traditional algorithms like watershed 
[114] but are highly sensitive to cell diameter and shape. 
This is problematic, as tissues like the heart are com-
posed of cells with vastly different morphology. Human 

cardiomyocytes are cylindrically shaped with an approxi-
mate length and diameter of around 100 μm and 20 μm, 
respectively [115], which is much larger than interstitial 
or immune cells for example. Furthermore, they can be 
multinucleated [116] and vary in shape based on the sec-
tioning of the tissue and disease progression [117]. This 
poses significant difficulties for deep-learning algorithms, 
which were not trained on a large corpus of heart data, 
necessitating fine-tuning. A promising direction for cell 
segmentation is the probabilistic assignment of signals 
with tools like Baysor [118], ClusterMap [119], or Spar-
cle [120], which employ statistical models which judge 
the likelihood of transcripts originating from the same 
cell. In technologies where cellular resolution is impossi-
ble, the signal is instead assigned to regions of interest or 
binned into tiles representing the resolution limit (Fig. 2).

The result of this processing is an entity-by-signal-
by-position matrix compatible with a variety of down-
stream analysis workflows. Ecosystems that process 
spatial multi-omics data in a standardized way are just 
beginning to emerge. Of note are SpatialData [121], Spa-
tialExperiment [122], GiottoData [123], and SeuratOb-
ject [124], which offer data containers that can store the 
diverse data generated by spatial-omics experiments. 
This infrastructure is critical to unify the heterogeneous 
data from different technology-specific vendor formats 
and the various images, tables, and polygons that a single 
experiment can generate and makes the development of 
analysis algorithms that “plug-and-play” possible.

Integration of multi‑omic datasets
To unlock the synergy of multi-omic measurements, 
integrating the datasets with each other is necessary. 
This is a nontrivial task as the data generated by differ-
ent modalities exist in entirely different feature spaces. 
When talking about integration, it is important to differ-
entiate several scenarios. Argelaguet et al. [125] proposed 
three categories of integration tasks: Horizontal integra-
tion is used when the same modality is measured across 
different samples. An example could be the measure-
ment of the spatial transcriptome across multiple myo-
cardial infarction samples. Vertical integration describes 
the integration of measurements in the same cells, such 
as co-profiling of the epigenome and transcriptome in 
DBiT-seq. The most challenging case is diagonal inte-
gration. Here, neither the cells nor features are shared 
across datasets, and integration instead relies on a strong 
biological signal that can be captured with different 
modalities independently from each other. When apply-
ing MALDI and spatial transcriptomics to alternating 
sections of the heart, neither the features nor, depending 
on the thickness of the slice, the cells are shared between 
experiments.

http://www.sc-best-practices.org
https://lmweber.org/BestPracticesST
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A special case, often referred to as imputation, is the 
enrichment of targeted spatial transcriptomics with 
whole transcriptome sc-RNAseq reference data. These 
measurements, which are often restricted to 500 or fewer 
species of RNA, can thus be virtually extended to cover 
the whole transcriptome. This task is comparatively eas-
ier, as the concordance between spatial RNA measure-
ments and single-cell RNA seems to mostly hold across 
genes [126, 127]. Notable software packages in this 
domain are Tangram [128], gimVI [129], and ENVI [130].

One approach for horizontal integration is the genera-
tion of a common coordinate framework, a shared coor-
dinate system across measurements [131–133]. Based on 
common landmarks, and distinct morphological features 
of tissues, slices are morphed and aligned to overlap in 
space. With enough measurements, this system can then 
be used to construct entire 3D organs [134, 135].

In vertical and diagonal integration tasks, the collected 
data needs to be projected into a common latent space to 
minimize various distance metrics. In general, algorithms 
developed for single-cell experiments like GLUE [136], 
Seurat WNN [137], or totalVI [138] could be applied to 
spatial experiments; however, this would dissociate cells 
from their spatial context and ignores the cellular neigh-
borhood, which is highly informative for integration 
tasks. A new class of tools developed specifically for the 
integration of spatial experiments has recently come into 
focus. Moscot [139] formulates integration as an opti-
mal transport problem, encoding the Euclidean distance 
among spatial locations, MaxFuse [140] applies graph-
smoothing to the input data and iteratively matches 
modalities after co-embedding, while SpatialGlue [141] 
employs a graph neural network (GNN) and uses an 
attention aggregation layer to integrate constructed spa-
tial proximity and feature graphs (Fig. 2).

While these tools show promise, it is important to 
note that as of the time of this article’s publication, sev-
eral tools have not undergone peer review. An independ-
ent benchmark of spatial-omics integration algorithms is 
urgently needed and would help scientists in their choice 
of integration strategy and inform their experimental 
designs.

A well-integrated dataset is very powerful for a lot of 
common downstream analysis tasks. Cell typing is much 
improved when information about both transcriptome 
and proteome is available, as cells like NK-cells, which 
play a major role in inflammatory heart disease [142, 
143], are notoriously hard to classify based solely on 
their low transcript counts. The combination of epige-
nome and transcriptome reveals clear links between gene 
expression and transcription factor binding and ena-
bles the construction of gene regulatory networks, e.g. 
the recently develop SCENIC+ tool [144], across spatial 

domains like the border zone of myocardial infarction [4] 
or pacemaker cells [22].

In heart disease, inflammatory and fibrotic responses 
are not randomly located in the tissue but possess spe-
cific motifs or principles. In MI, ANKRD1 and NPPB 
show a gradient across the border zone of the infarct [4], 
and the epicardium has been shown to contain distinct 
niches of plasma B cells [22].

A variety of tools have been tailored to facilitate simi-
lar discoveries. Analogous to the conventional processing 
of single-cell experiments, it is possible to create lower 
dimensional representations of spatial data to identify 
trends across cells. MEFISTO [145], SpatialPCA [146], 
and GraphST [147] allow for the identification of clus-
ters of cells not only based on the measured signal but 
also based on the tissue niche and the surrounding types 
of cells, leading to a more fine-grained understanding of 
tissue structure principles. Another branch of tools like 
SPARK [148], SpaGCN [149], or SpatialDE [149, 150] 
investigates patterns in feature expression across the 
region of interest, often with additional functionality like 
pseudo-time analysis in the case of SpaceFlow [149–151] 
or the detection of patterns across consecutive slices in 
STAGATE [152] (Fig. 2).

With the introduction of spatial omics with subcellu-
lar resolution, this search for patterns is not limited to a 
macroscopic view of tissue composition but can also be 
extended to structures inside cells. The cellular location 
of proteins is often disturbed in disease like in familial 
atrial fibrillation, for example, which is caused by a muta-
tion that impedes HSP70 import [153]. The role of RNA 
localization remains poorly understood but has been 
implicated in developmental processes [154] and dis-
eases like Huntington’s disease [155]. Recently published 
tools like Bento [156], FishFactor [157], and SPRAWL 
[158] analyze the position of RNA inside cells and try to 
identify subcellular compartments and principles of tran-
scripts across the cytoplasm and nucleus (Fig. 2).

Cell morphology is another resource that remains 
underutilized in the analysis of spatial datasets. Car-
diomyocytes and fibroblasts are known to change 
their cellular phenotype and morphology in response 
to stress, such as hypertrophy, elongation, or thick-
ening [117]. These features offer valuable insight into 
cell state that could be integrated with existing omics 
measurements. Cajal is an algorithm that transfers cell 
shapes into a latent space that can be integrated with 
genomic readout [159].

Cell‑cell interaction in space
Cells in the heart are engaged in intense cross talk with 
their cellular niche. G-protein-coupled receptors, ion 
channels, and their paracrine and autocrine signaling are 



Page 9 of 17Kiessling and Kuppe  Genome Medicine           (2024) 16:14  

only some examples of critical communication circuits in 
the development of heart disease [160–162]. These pro-
cesses can be studied on the transcriptional level based 
on the expression of key receptor and ligand proteins and 
curated databases that collect matched receptors and 
ligands. Until recently, programs had to rely on dissoci-
ated single-cell data for this task. This is however prob-
lematic, as most forms of cell-cell communication are 
short ranged and very much dependent on the spatial tis-
sue organization.

A new generation of algorithms combines receptor-
ligand analysis with the position of molecules to inves-
tigate these key processes  (Fig.  2). NCEM [163] and 
CLARIFY [164] are neural networks which model gene 
expression as a function of their spatial neighborhood, 
SpatialDM [165] applies bivariate Moran’s statistics, and 
COMMOT [166] is based on collective optimal trans-
port. It remains to be seen which approach yields the 
most biologically relevant information, as no compara-
tive benchmarking has been published so far.

Design considerations for spatial multi‑omic 
experiments
Before starting a spatial multi-omic experiment, several 
key questions have to be addressed by the researcher to 
inform the choice of technology and the design of the 

experiment. On the one hand, these are imposed by the 
research question. The choice of which modalities to 
measure and at what resolution cannot be answered by 
a general guide but must be made on a project-to-project 
basis. As an example, rare cells, like neuronal cells or 
pericytes, would best be studied with a high-resolution 
technique, as detection might not be possible in lower 
resolution measurements which conflate multiple cells 
into spots. The analysis of lowly expressed genes like 
transcription factors is best served by approaches with 
maximal sensitivity, such as ISS or ISH.

Experiments can in general be divided into exploratory 
investigations that aim to generate hypotheses and con-
firmatory experiments that aim to prove a well-designed 
research question. Generally speaking, methods with 
a larger feature scale such as NGS-based multi-omics 
and microdissection MS lend themselves well to an 
exploratory setting, while more targeted approaches like 
imaging-based multi-omics and ion-label MS shine in 
confirming well-defined research questions.

On the other hand, the current technical limitations of 
the technologies and budgetary considerations must also 
inform the choice of method. Spatial multi-omics experi-
ments are costly and complex to establish and should 
only be employed in settings where a clear zonation of 
the tissue is expected. Almost all technologies require 

Fig. 2 Overview of key areas of analysis enabled by spatial multi-omics and example software implementations. Gene expression in tissues 
is not random but forms characteristic spatial patterns. Preserving the spatial context allows for the analysis of cell-cell interaction at different 
length scales. Imaging-based technologies enable the extraction of further features like cell morphology or sub-cellular structures but require 
well-optimized cell segmentation. A key area of software development is spatial data integration
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the procurement of additional devices and access to spe-
cialized facilities like NGS and mass spectrometry core 
facilities. Community established technologies such as 
DBiT-seq and HybISS are generally more affordable than 
their commercial counterparts, which offer convenience 
and a support structure at a surcharge. Comparing the 
initial investment required, spatial deterministic barcod-
ing ranks at the lower end, as a house vacuum and PDMS 
chip are easily accessible. Spatial nondeterministic bar-
coding, ISS, diffraction-limited multiplex ISH, and cyclic 
IF fall in the medium price range, while multiplex ISH 
beyond the diffraction limit and MS-based multi-omics 
fall into the upper price segment, driven by the high cost 
of super resolution microscopy and a mass spectrometry 
+ laser-microdissection setup, respectively. The upkeep 
costs of the devices and the cost per area of tissue (shown 
in Table 1) warrant further consideration.

The measurement area varies wildly between technol-
ogies from a range of  mm2 up to 13.2 cm × 13.2 cm in 
the case of Stereo-seq. This not only limits what kind of 
samples can be measured but also has a direct effect on 
analysis. It has been shown, for example, that tumor sam-
ples which contain a large number of heterogeneous cell 
states require a high number of FOV for adequate analy-
sis [167].

Not all technologies are compatible with all samples. 
While they are more widely available, samples preserved 
in FFPE can be more challenging to assay as these sam-
ples tend to suffer from increased RNA fragmentation 
and increased modifications of proteins and metabolites. 
A further consideration is the species of interest. Spatial 
multi-omic methods can in principle be applied to any 
kind tissue, but hybridization-based technologies such as 
Visium v2 or Xenium rely on the construction of probes, 
which are only available for human and mouse samples 
currently.

After a technology has been chosen, it is generally nec-
essary to optimize the processing of samples. Different tis-
sues can be more or less challenging and require different 
treatment, owing to factors such as ease of permeabiliza-
tion, resistance to proteinase, or increased autofluores-
cence. These pilot experiments can then also be used to 
inform the overall design of a study. In silico tissue genera-
tion tools are able to probabilistically create spatial multi-
omic data based on prior knowledge [167–169]. These 
artificial datasets can then be used in a power analysis 
to determine necessary FOV sizes, number of views, and 
replicates to answer the research question.

Challenges of spatial multi‑omics
Experimental challenges
Many experimental challenges exist for spatial multi-
omics. As with single-cell RNA sequencing, standardized 

sample preparation is key for successful experiments 
and high data quality. Especially for the handling of tis-
sues, standardized protocols need to be followed for tis-
sue sampling, fixation, freezing, and tissue sectioning. 
Protocols such as FixNCut [170] are based on Lomant’s 
reagent/DSP or treatments with VivoFix [171] reversible 
fixate tissues before dissociation, which limits artifacts 
induced by temperature and enzymatic digestions and 
preserves RNA integrity. A guide on how different tissues 
should be handled for each spatial multi-omics technol-
ogy is currently lacking but would greatly increase repro-
ducibility in the field.

For antibody-based multiplexed imaging methods, 
the specificity of a given antibody panel is a potential 
concern. While established and validated antibody pan-
els are available from commercial vendors (e.g., from 
Akoya Biosciences for CODEX), they are associated 
with increased costs. In cases where custom antibodies 
or antibody combinations are necessary, their validation 
can be time-consuming, and antibody specificity can 
often remain unclear. Community efforts like the recent 
establishment of organ mapping antibody panels, OMAP 
[172], are needed to guide antibody selection and ensure 
high reproducibility.

An open question in the field of array-based spa-
tial transcriptomics is the effect of diffusion artifacts. 
Especially, high-resolution array-based approaches like 
Stereo-Seq with 220-nm pixel resolution [109, 173] or 
Seq-Scope [101] might be affected by diffusion artifacts, 
and it is unclear if this problem might apply for future 
developments of array-based ST approaches with higher 
resolution (like Visium-HD). Aided mobilization of the 
barcoded nucleotides using electrophoresis, like in EEL-
FISH [174], might mitigate this problem.

Furthermore, it is unclear how to best select the neces-
sary samples and sample numbers and/or size of the field 
of view (FOV) for a cohort or study to accurately capture 
the targeted biological processes. Several in silico tis-
sue spatial multi-omics generation pipelines have been 
established [168, 175] to explore this question. However, 
this might still not lead to the desired result if the tissue 
does not include the targeted process in the first place. 
Another approach could be to use machine learning 
methods like pathomics [176] on large-scale digital histo-
logical data, which highlights areas of interest for a given 
group of diseases and maximizes the amount of informa-
tion which can be derived from spatial experiments.

Computational challenges
Spatial multi-omics data analysis presents various chal-
lenges that the field will need to eventually overcome. 
Cell segmentation remains challenging for all imaging-
based approaches, as discussed above. It is often unclear 
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which algorithm produces the best result, as the genera-
tion of ground truth for performance evaluation relies on 
tedious manual annotation of the target tissue. Further-
more, the performance of segmentation algorithms is 
highly tissue and disease-state dependent. A pipeline that 
ranks the performance of several tools compared to prior 
knowledge of the tissue of interest might help alleviate 
this key problem.

Data integration is another key area where improve-
ments need to be made. At the moment, the parallel 
measurement of multiple modalities of the same cells 
in a “true” multi-omic experiment is very limited, and 
researchers instead rely on algorithms that diagonally 
integrate separate measurements or impute missing data. 
This emphasizes the importance of reliable integration. It 
is necessary to scrutinize integrated datasets for biologi-
cal plausibility, especially as a recent review of transcrip-
tomics integration methods found that no tool reached 
a Pearson correlation coefficient of more than 0.5 com-
pared to ground truth [177]. Multi-omic integration is 
likely even more challenging as the link between datasets 
is weaker. One possible way forward might be the crea-
tion of foundation models for spatial multi-omics, ana-
logues to efforts in natural language processing [178], 
and single-cell transcriptomics [179–181]. These models, 
trained on a large corpus of spatial and single-cell multi-
omic datasets, might be able to deconvolute underlying 
patterns necessary for successful integrations.

Lastly, spatial multi-omics experiments are challeng-
ing just based on the amount of data generated. An 
imaging-based spatial transcriptomics measurement can 
generate around 5 TB of raw data (e.g., MERFISH, own 
experience), necessitating a robust data storage strategy 
to which many academic laboratories might not have 
access. Research is collaborative, and sharing generated 
data with publications is a key pillar of reproducible sci-
ence. In the case of spatial multi-omics, the large data 
volumes and the diversity of generated data between 
high-resolution images, sequencing data, and tabular 
information hinder this. Multiple platforms have been 
established to facilitate the sharing of data and easy in-
browser viewing of datasets [182–187]. However, these 
repositories remain underused, with every website only 
containing a small subset of published data. Ideally, scien-
tific journals would require sharing of data in a digestible 
and convenient fashion as offered by these data stores.

Future perspectives
In the future, multi-omics technology at spatial sin-
gle-cell resolution will revolutionize our understand-
ing of cell biology. Anticipated advancements include 

enhanced throughput, cost reductions, and integra-
tion of more modalities per assay with improvements 
in sensitivity and specificity. The construction of 3D 
tissue maps by predicting molecular features from 
histopathology may be a powerful approach [188]. 
Current challenges, such as comprehensive mutation 
profiling at single-cell level and co-detection of epi-
genomic features, will most likely be overcome soon, 
as demonstrated in recent publications [189]. Current 
proteome assays will need to evolve from antibody-
based techniques to unbiased, low-input methods, 
as exemplified recently in the DVP workflow [77] or 
based on protein-binding DNA aptamers (SOMAm-
ers, e.g., SOMALogic). Spatial assays that will allow 
us to decode the cell-cell interactions based on the co-
detection of ligands and receptors on the protein level 
will be crucial to enhance the CCC modeling. Enhanc-
ing computational accuracy of data extraction from 
each molecular layer and integrative analyses across 
modalities will be crucial and will further improve pre-
dictive modeling like a weather forecast of biological 
events in tissues (e.g., acceleration of inflammation or 
fibrotic processes or metastasis in cancer). Addition-
ally, one can predict a rise in the combination of gene-
editing experiments and spatial multi-omics. Similar 
to single-cell-based CRISPR screenings, these assays 
can be implemented in  vivo or in  vitro in organoids 
or bioprinted constructs and spatial gene or drug per-
turbations consequences analyzed, thus extending the 
functional analysis toolbox (Fig. 3).

While several barcoding technologies exist to uncover 
the hierarchical structure or lineage tree of cellular dif-
ferentiation on single-cell level, we expect that these 
technologies will be more employed in tissues like in 
intMEMOIR [190] to uncover hierarchical tissue maps. 
These might also be applied to human tissue based on 
somatic mutations or mutational signatures from mito-
chondria [191] or leveraging clonotype information 
from, e.g., the TCR of T cells. Furthermore, they may 
be combined with other digital recording systems for 
biological events [192, 193], further refining insights for 
biological time traveling in tissues. While these systems 
can be genetically introduced in vivo, one can also fore-
see a combination with in  vitro models in which they 
can be more easily scaled to larger throughput. For data 
analysis, we envision that large-scale foundation mod-
els, which have been recently employed for the analysis 
of single-cell RNA sequencing data, will spur advance-
ments in spatial multi-omics data analysis in a diverse 
range of downstream tasks, including data integration, 
cell-type annotation spatial gene expression analysis, 
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and perturbation prediction, e.g., from drug and genetic 
perturbations and gene network inference. Together, 
these advancements in spatial multi-omics technolo-
gies and computational approaches are set to enhance 
our understanding of biology in health and disease and 
enhance the identification of markers for diagnostic 
and prognostic evaluation of cardiovascular diseases 
and novel therapeutic targets for personalized medicine 
(Fig. 3).
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