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Abstract 

Background Age and obesity are dominant risk factors for several common cardiometabolic disorders, and both are 
known to impair adipose tissue function. However, the underlying cellular and genetic factors linking aging and obe-
sity on adipose tissue function have remained elusive. Adipose stem and precursor cells (ASPCs) are an understudied, 
yet crucial adipose cell type due to their deterministic adipocyte differentiation potential, which impacts the capacity 
to store fat in a metabolically healthy manner.

Methods We integrated subcutaneous adipose tissue (SAT) bulk (n=435) and large single-nucleus RNA sequencing 
(n=105) data with the UK Biobank (UKB) (n=391,701) data to study age-obesity interactions originating from ASPCs 
by performing cell-type decomposition, differential expression testing, cell-cell communication analyses, and con-
struction of polygenic risk scores for body mass index (BMI).

Results We found that the SAT ASPC proportions significantly decrease with age in an obesity-dependent way 
consistently in two independent cohorts, both showing that the age dependency of ASPC proportions is abolished 
by obesity. We further identified 76 genes (72 SAT ASPC marker genes and 4 transcription factors regulating ASPC 
marker genes) that are differentially expressed by age in SAT and functionally enriched for developmental processes 
and adipocyte differentiation (i.e., adipogenesis). The 76 age-perturbed ASPC genes include multiple negative regula-
tors of adipogenesis, such as RORA, SMAD3, TWIST2, and ZNF521, form tight clusters of longitudinally co-expressed 
genes during human adipogenesis, and show age-based differences in cellular interactions between ASPCs and adi-
pose cell types. Finally, our genetic data demonstrate that cis-regional variants of these genes interact with age as pre-
dictors of BMI in an obesity-dependent way in the large UKB, while no such gene-age interaction on BMI is observed 
with non-age-dependent ASPC marker genes, thus independently confirming our cellular ASPC results at the biobank 
level.
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Conclusions Overall, we discover that obesity prematurely induces a decrease in ASPC proportions and identify 76 
developmentally important ASPC genes that implicate altered negative regulation of fat cell differentiation as a mech-
anism for aging and directly link aging to obesity via significant cellular and genetic interactions.

Keywords Aging, Obesity, Polygenic risk score (PRS), Adipose stem and precursor cells (ASPCs), Gene-age 
interactions

Background
Aging is a biological process characterized by gradual 
deterioration of physiological systems. Over time, cells 
lose their abilities to proliferate, differentiate, and repair, 
leading to sustained wear and reduced organ perfor-
mance [1]. Transformations also occur at the transcrip-
tional level, with recent studies finding over 30% of genes 
to be differentially expressed (DE) with age in at least one 
of the following tissues: skin, subcutaneous fat, whole 
blood, lymphoblastoid cell lines [2]. For most prevalent 
diseases in the world, age is a dominant risk factor. Yet, 
despite consistent patterns of functional decline, the 
underlying biological and cellular mechanisms involved 
in aging vary across the body and are only partially 
understood [2, 3].

In adipose tissue, aging facilitates a preferential 
increase of the visceral fat depot relative to the subcu-
taneous adipose fat depot, and the rise of low-grade 
inflammation within the tissue [4, 5]. Furthermore, adi-
pogenesis, the central reproductive process during which 
stem cells in the stromal vascular fraction differentiate 
into adipose stem and precursor cells (ASPCs) and sub-
sequently form fat cells (i.e., adipocytes)[6], is known to 
decrease with age [7, 8]. While ASPCs themselves have 
been observed to undergo age-associated transforma-
tions, such as reduced lipid accumulation and a transi-
tion towards a macrophage-like state [9], complex factors 
underlying this decline in adipogenesis, including hor-
monal and micro-environmental alterations, and the 
involvements of specific ASPC genes remain poorly char-
acterized in humans [5, 7–10].

Similar patterns of reproductive decline and tissue 
alterations have been observed in the adipose tissue of 
obese individuals, particularly in those with metabolically 
unhealthy obesity (MUO) [11, 12]. In MUO, the accumu-
lation of excess fat is attributed to hypertrophy, or the 
presence of larger, inflamed adipocytes, which release 
proinflammatory cytokines into the adipose tissue and 
prematurely undergo cellular decline. By comparison, 
the efficient proliferation of smaller, generally well-func-
tioning adipocytes (i.e. hyperplasia) drives metabolically 
healthy obesity (MHO) [13].

Although this decline of adipose tissue in MUO may 
partially be attributed to age, which is a well-known risk 
factor for obesity, the prevalence of obesity is increasing 

across all age groups [14, 15]. Previous studies have found 
general patterns of accelerated aging from obesity, but 
the effects of obesity on aging in not yet middle-aged 
adults, specifically in adipose tissue, remain largely unex-
plored [16, 17]. As ASPCs generate adipocytes, their 
numbers and differentiation capacities directly link to the 
metabolically healthy functions of adipose tissue. Thus, 
cellular composition-based analyses may provide new 
insight on the development of MUO. ASPC proportions 
have been observed to separately decrease with age and 
obesity, but it is not well understood how the two jointly 
affect the cellular percentages of ASPCs [18, 19].

Based on these previous studies [18, 19], we hypoth-
esize that obesity already reduces the ASPC proportions 
in younger obese individuals, thus abolishing the known 
inverse correlation between age and ASPC numbers. To 
this end, we estimated ASPC proportions by integrat-
ing subcutaneous adipose tissue (SAT) bulk and single-
nucleus RNA sequencing (snRNA-seq) data from several 
independent cohorts and tested these ASPC proportions 
for age effects while stratifying by the obesity status. We 
show that ASPC proportions differ by age among the 
normal weight individuals, while this age dependency is 
not seen among the obese individuals, who already at a 
young age have significantly lower ASPC proportions 
than the normal weight young individuals. Thus, our 
study demonstrates the aging effect of obesity on this key 
adipose cell type with adipocyte differentiation potential.

Adipogenesis is modulated by the expression of tran-
scription factors driving the differentiation, such as 
PPARγ and the CEBPs [6]. Many adipocyte differentiat-
ing factors and their co-regulators exhibit altered expres-
sion in adipose tissue in response to age and obesity 
[20–22], suggesting that interactions between age and 
obesity may impact the transcriptomic profiles of ASPCs, 
due to the central role this cell type plays during the adi-
pocyte differentiation (i.e., adipogenesis). To identify 
currently unknown ASPC genes involved in age-obesity 
interactions, we used adipose snRNA-seq data to first 
identify 72 ASPC marker genes and four TFs regulating 
ASPC marker genes that are DE by age in SAT ASPCs. 
We then investigated the longitudinal expression profiles 
and temporal co-expression of these 76 age-DE ASPC 
genes during human SAT ASPC differentiation, and 
how age influences ASPC ligand-receptor interactions 
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between the 76 genes and genes in other adipose cell 
types. To assess the genetic risk contributions in these 
genes, we leveraged biobank data and built regional BMI 
polygenic risk scores (PRSs) in the UK Biobank (UKB), 
and discovered an obesity-dependent gene-age interac-
tions from the variants residing within the cis-regions of 
the age-DE ASPC genes. Overall, our results identify the 
ASPC cell type as a driver of alterations in adipose tissue 
aging in response to obesity.

Methods
Finnish Twin Cohort (FTC) used for estimation of cell‑type 
proportions and differential expression analyses
The Finnish Twin Cohort (FTC) consists of twins 
recruited through multiple longitudinal surveys begin-
ning from 1975 by the Helsinki University Central Hos-
pital, Helsinki, Finland [23–25]. The FTC study design 
was approved by the local ethics committee, and all par-
ticipants gave written informed consent. In our study, we 
examined previously obtained subcutaneous adipose tis-
sue (SAT) bulk and single-nucleus RNA-seq data from a 
total of 50 monozygotic (MZ) twin pairs (total number 
of individuals is n=100) who were BMI-discordant (BMI 
difference≥2.8 kg/m2) [26]. The mean age of these 50 
twin pairs is 45.5 years (SD=17.7 years; 54% female), and 
the mean BMI is 29.1 kg/m2 (SD=5.8 kg/m2). The age of 
this group follows a bimodal distribution in that 56% of 
individuals are below 40 years old, while the remaining 
44% are over 55 years old.

METabolic Syndrome In Men (METSIM) cohort used 
for additional investigation of cell‑type decomposition 
and differential expression analyses
The METabolic Syndrome In Men (METSIM) cohort 
consists of 10,197 Finnish males between the ages of 45 
and 73, recruited through the University of Eastern Fin-
land and Kuopio University Hospital, Kuopio, Finland 
[27]. The study design was approved by the local ethics 
committee, and all participants gave written informed 
consent. Detailed metabolic phenotypes were collected 
for all individuals, including cardiometabolic clinical 
measurements, fasting laboratory tests, and an oral glu-
cose test [27].

To verify our findings from FTC [23–25], we examined 
bulk (n=335) and single-nucleus RNA-seq (n=84, a sub-
set of the 335 individuals) data from SAT samples for a 
subset of randomly selected, unrelated METSIM men 
[27]. The mean age of the 335 men is 54.1 years (SD=4.9 
years) and the mean BMI, 26.8 kg/m2 (SD=3.7 kg/m2). 
The mean age of the 84 men is 55.1 years (SD=4.9 years) 
and the mean BMI, 26.5 kg/m2 (SD=3.8 kg/m2).

UK Biobank (UKB) used for GWAS and construction of BMI 
PRS
The UK Biobank (UKB) includes data collected since 
2006 from 502,617 individuals aged 37 to 73 [28, 29]. 
Samples were collected across 22 different centers, and 
genotyping for over 800,000 variants was performed 
using one of either the Affymetrix or Applied Bio-
systems UK Biobank Axiom genotyping technology. 
Genotypes were then imputed with the Haplotype Ref-
erence Consortium and the merged UK10K and 1000 
Genomes phase 3 reference panel [28, 29]. To account 
for potential confounding from relatedness and pop-
ulation structure, we restricted our analyses to the 
391,701 individuals who were unrelated and of Euro-
pean ancestry. Data from UKB were accessed under 
application 33934.

Processing of snRNA‑seq data from FTC and identification 
of unique ASPC marker genes
SnRNA sequencing was previously performed on SAT 
biopsies of 6 unrelated individuals in FTC [23–25] using 
the 10X Chromium platform [30] and following the 
Single Cell 3′ v2 protocol [26]. These 6 individuals con-
sist of three males and three females, with a mean age 
of 64.8 years (SD=4.6 years) and mean BMI of 26.2 kg/
m2 (SD=3.4 kg/m2). Reads were aligned to the GRCh38 
human genome assembly with GENCODE v38 gene 
annotations [31] and quantified using STARSolo in STAR 
[32, 33] v2.7.3a. Since snRNA-seq captures both pre-
mRNA and exonic RNA, we used the command -soloFea-
tures GeneFull to generate counts for both exonic and 
intronic reads.

In each sample, we filtered out droplets with high 
extranuclear RNA using DIEM [34] filtering, which per-
forms multinomial clustering and fixes low-count drop-
lets as an empty cluster. The samples were then merged 
and processed with Seurat [35]. The merged data set was 
further filtered to only contain genes expressed in 3 or 
more cells and cells containing between 200 and 2500 
detected genes and at most 5% mitochondrial expression. 
We then normalized, scaled, and corrected the counts 
for mitochondrial RNA reads using sctransform [36]. We 
identified 6 clusters in Seurat [35] using the top 15 prin-
cipal components of the data and a resolution of 0.2.

Cell types were assigned to the clusters using SingleR 
[37]. We used SAT snRNA-seq data from 15 individu-
als [38], where clusters were manually annotated based 
on their marker genes, and the Database for Immune 
Cell Expression [39], which is included with SingleR 
[37], as reference datasets. We identified five broad 
cell types: adipocytes, ASPCs, myeloid cells, vascular 
cells, and T cells.
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To identify unique ASPC marker genes, we first 
determined the marker genes for all five cell types. We 
used the FindAllMarkers function from Seurat [35] 
with default parameters and only.pos=TRUE to per-
form Wilcoxon rank sum tests and identify genes DE 
and upregulated for each cell type. Genes with a Bon-
ferroni-adjusted p-value<0.05 were considered cell-
type markers. We then removed ASPC marker genes 
that were also identified as markers for other cell types 
from the ASPC marker gene set.

Alignment and gene quantification of bulk adipose tissue 
RNA expression data in FTC
Bulk RNA sequencing to read length of 75bp had pre-
viously been performed on SAT biopsies for 50 MZ, 
BMI-discordant twin pairs from FTC (n=100) [23–
25] using the Illumina HiSeq2000 platform and Illu-
mina Stranded mRNA preparation [26]. Read quality 
was first assessed using FastQC [40]. We aligned the 
paired-end bulk RNA-seq reads to the GRCh38 human 
genome assembly with GENCODE v38 annotations 
[31] using STAR [32] v2.7.8a with the two-pass method 
and default options. We then counted fragments at the 
gene level against the GRCh38 genome assembly with 
featureCounts [41] v2.0.2. Only uniquely mapped reads 
were retained. Technical metrics for the reads were 
obtained with the CollectRnaSeqMetrics command 
from Picard Tools v2.13.2 [42].

Cell‑type decomposition in bulk expression data from SAT
We estimated the cell-type proportions in processed 
SAT bulk expression data from the 50 twin pairs (n=100) 
from FTC [23–25] using the reference-based approach of 
Bisque with default parameters. Briefly, we used Bisque 
[43] to first train a reference expression profile from 
annotated SAT snRNA-seq data from 6 individuals out 
of the 50 pairs. The count matrices of bulk samples were 
then decomposed with the trained reference.

To assess cell-type proportion differences, we first 
grouped the individuals by age, BMI status, and sex. We 
based our age grouping on the bimodal age distribution 
of this subset, so that the individuals of age below 40 
years were classified as younger, and the rest, who were 
all over 55 years, were classified as older. Because these 
individuals are BMI-discordant twins, we created our 
BMI status groups by classifying the lower BMI twin per 
pair as lower BMI and higher BMI twin as higher BMI. 
We performed two-sided Wilcoxon tests to compare 
the cell-type proportions between the 2 groups, using 
Wilcoxon p-value<0.05 as the threshold for a significant 
difference.

SnRNA‑seq of SAT biopsies from METSIM
For snRNA-seq, we processed SAT biopsies that were 
snap-frozen and stored in −80°C. A total of 84 sam-
ples [44] from the bulk SAT RNA-seq METSIM cohort 
(n=335) [27] were used for snRNA-seq. To increase sam-
ple size while reducing cost, we multiplexed 4 samples 
into a single channel and assigned nuclei to individuals 
using genotype data (see below). To perform snRNA-seq, 
we first isolated nuclei from frozen tissue. Adipose tis-
sue was minced over dry ice and placed into lysis buffer 
(0.1% IGEPAL, 10 mM Tris-HCl, 10 mM NaCl, 3 mM 
 MgCl2 in nuclease-free water). The tissue lysate was fil-
tered through a 30-μm MACS SmartStrainer, further fil-
tered with PBS, and centrifuged 500×g for 5 min at 4°C. 
The pellet was suspended in wash buffer (1.0% BSA in 
1× PBS) and further filtered with a 40-μm FlowMi tip 
strainer. The nuclei were centrifuged, re-suspended in 
wash buffer, and immediately processed for library con-
struction using the 10X Chromium v3.1 kit . Single-cell 
libraries were then sequenced on an Illumina NovaSeq at 
a target depth of 400 million reads per library.

Alignment of METSIM snRNA‑seq data
To align reads to the genome, we used STARSolo in 
STAR [32, 33] v2.7.9a, aligning against the GRCh38 
human genome and GENCODE v26 gene annotations 
[31]. We included the CellRanger4 adapter trimming to 
remove polyA tails and TSO adapters. Gene expression 
was estimated from unique molecular identifier (UMI) 
counts against the full gene (including exons and introns).

To remove empty droplets and only keep those with 
nuclei, we ran DIEM [34] filtering. As cytoplasmic ambi-
ent RNA consists of a greater percentage of spliced 
RNA than nuclear RNA, we ran clustering on spliced, 
unspliced, and ambiguous UMI counts. Gene-UMI 
counts for spliced, unspliced, and ambiguous were com-
bined into a single matrix as input. Then, we ran DIEM 
[34] with 10 clusters and added a prior count of 1 to the 
cluster and gene probabilities. Additional low-count clus-
ters were assigned as empty clusters as well, and droplets 
belonging to the fixed and assigned empty clusters were 
removed.

As samples from four individuals were pooled together 
into one 10X channel for sequencing, we ran demuxlet 
[45] after sequencing to de-multiplex the nuclei to their 
individual sample IDs using the individuals’ genome-
wide variant data prior to performing any analysis. Thus, 
the origin of each nucleus was traced back to one of the 
4 individuals using the variants landing in the expressed 
regions detected in the snRNA-seq data and compar-
ing those with the DNA-sample-based genotype data 
that we also had available for all of these individuals. The 
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demuxlet tool [45] was run with default options, match-
ing the UMI alleles against the hard-coded genotypes of 
the 4 samples in the corresponding run. Droplets with a 
singlet to doublet likelihood ratio greater than or equal to 
2 were assigned as singlets.

Clustering of METSIM snRNA‑seq data
Before clustering, we further filtered and normalized the 
nuclei UMI count data. First, we removed droplets with 
less than 200 genes detected, over 5% of mitochondrial 
and over 1% of hemoglobin UMIs. Normalization for 
UMI depth was performed with sctransform [36]. As 
hemoglobin and mitochondrial transcripts represent 
extranuclear RNAs exogenous to the nuclei, we removed 
these genes from the list of variable genes used in clus-
tering. To cluster the nuclei, we performed canonical 
correlation analysis (CCA) on the sctransform [36] nor-
malized UMIs, as implemented in Seurat [35]. To reduce 
computational time, we selected 8 random samples as 
references for anchor pairing. For dimensionality reduc-
tion, we ran principal component analysis (PCA) on the 
corrected, integrated counts. Finally, to determine clus-
ters, we ran the FindNeighbors and FindClusters Seurat 
[35] functions, using default parameters and the Louvain 
algorithm on 50 PCs. For visualization, we ran UMAP on 
the same set of PCs.

For cell-type identification, we first identified upregu-
lated genes in each cluster using Seurat [35]. UMI counts 
were scaled to sum to 1000 per droplet and then log-
transformed. Wilcoxon tests were run to assess statistical 
significance, and we considered significantly upregulated 
genes (Wilcoxon p<0.05) with a  log2-fold change of at 
least 0.1 as cell-type markers. For cell-type identifica-
tion, we manually curated assignments based on known 
markers.

Additional investigation of ASPC proportion differences 
in METSIM
We used independent SAT expression data (n=335) 
from METSIM [27] to further investigate the differ-
ences observed in ASPC proportions in FTC. Reads of 
length 50bp were previously generated on the Illumina 
HiSeq2000 platform using the TruSeq unstranded library 
[46, 47]. We first aligned the reads to the hg19 genome 
assembly with STAR [32] v2.5.2 using the two-pass 
method and default options. Technical metrics were gen-
erated using the CollectRnaSeqMetrics command from 
Picard Tools v2.9.0 [42]. We filtered reads to remove 
those aligned to the mitochondrial genome, which have 
been shown to correlate with technical factors and 
expression of autosomal genes [26] and only retained 
uniquely mapped reads [38]. Gene counts were then cal-
culated using featureCounts [41] v2.0.2.

We used the reference-based approach of Bisque [43] 
to perform cell-type decomposition on the 335 bulk sam-
ples, using the annotated snRNA-seq data from 84 of the 
335 individuals [44] as the reference. As METSIM is an 
all-male cohort, we only performed comparisons by age 
and BMI status. We defined normal weight as BMI<25, 
overweight as 25≤BMI<30, and obese as BMI≥30. For 
our age groups, we used age below the 25th percentile 
(age≤51) and above the 75th percentile (age>58) as cut-
points for younger and older respectively.

Correlating ASPC proportions with body composition
We assessed the relationship between the estimated 
ASPC proportions and fat mass and fat-free mass, as 
measured by impedance, in METSIM [27], using Spear-
man’s correlation and Spearman’s p<0.05 as the signifi-
cance threshold. We tested the correlations four times: 
without any adjustments, adjusting for age, adjusting for 
BMI, and adjusting for both age and BMI. Proportions 
were centered and scaled to a mean of zero with unit 
variance, and outcomes were normalized by a rank-based 
inverse normal-transform.

Motif enrichment analysis for SAT ASPC marker genes
We identified enriched transcriptional motifs in the pro-
moter regions of each SAT ASPC marker gene using the 
findMotifs function of HOMER (Hypergeometric Opti-
mization of Motif EnRichment) [48]. We specified 2 kb 
upstream and 1 kb downstream of the transcription start 
site (TSS) as the promoter region for each gene.

Testing for DE by age in ASPCs
We tested the unique SAT ASPC marker genes and the 
TFs for which HOMER identified enriched motifs for DE 
by age in ASPCs, excluding the TFs identified as marker 
genes for other cell types. To increase the power of our 
testing, we used similarly processed and annotated SAT 
snRNA-seq data from 15 individuals [38, 49], 7 of whom 
had taken part in the FTC study [23–25] and 8 in the 
CRYO study [50, 51] for our testing. This 15-individual 
data set includes 10 females and 5 males, and the age 
ranges from 21 to 48 years with a mean age of 32.7 years 
(SD=7.1 years).

To test for DE by age, we compared gene expression 
levels between those below (n=8) and above (n=7) the 
median age of 34 years. We used the FindMarkers func-
tion in Seurat [35] with default arguments and logfc.
threshold=0 to perform a Wilcoxon rank sum test for 
each ASPC marker gene and associated TF. Testing was 
limited to the droplets annotated as ASPCs, and the 
obtained p-values were adjusted for multiple testing with 
the Bonferroni method, using adjusted p<0.05 as the sig-
nificance threshold.
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We validated our DE results by similarly testing the 
significant genes for DE (p-adjusted<0.05) by age in the 
independent snRNA-seq data from SAT of 84 MET-
SIM [27] individuals [44]. Leveraging the larger sam-
ple size of the METSIM cohort, we focused our DE 
analyses between the men whose ages fell in the lowest 
(age≤51 years, n=21) or uppermost quartiles (age>58 
years, n=21). We performed three sets of tests: a BMI 
status-stratified testing, using BMI cut points for normal 
weight (BMI<25), overweight (25≤BMI<30), and obese 
(BMI≥30); an obesity-status-stratified testing, in which 
we considered BMI≥30 as obese and BMI<30 as non-
obese; and a combined testing with all METSIM partici-
pants. p-values were adjusted for multiple testing using 
FDR<0.1.

Protein‑protein interaction and biological pathway 
analyses
We separately examined the 76 age-DE SAT ASPC genes 
and the remaining 79 non-age-DE SAT ASPC marker 
genes for protein-protein interactions using StringDB 
[52] and enrichment of associated biological processes 
using Webgestalt [53]. For the age-DE ASPC genes, we 
assessed relations between all 76 genes together, as well 
as separately examined the functional and physical rela-
tions between the 61 upregulated genes and 15 down-
regulated genes. We then subclustered the constructed 
protein interaction graph into individual networks using 
the mcl software [54] with an inflation parameter of 3.0, 
as in a previous study [55].

Assessment of age‑DE SAT ASPC genes in the visceral fat 
depot
To test whether the identified 76 age-DE SAT ASPC 
genes also show differences by age in ASPCs in the vis-
ceral fat tissue (VAT), we first downloaded publicly 
available single-nucleus RNA-seq data from 10 human 
visceral fat samples [56]. We performed DE testing on the 
76 age-DE SAT ASPC genes between the individuals with 
age below (n=4) and above (n=6) the median age (41 
years) similarly as in the SAT snRNA-seq datasets. We 
adjusted the p-values using FDR<0.05. We then tested 
the genes which showed consistent DE by age in both fat 
depots (adjusted p-value<0.05 and the same direction of 
expression change with age in both the SAT and VAT 
snRNA-seq cohorts) for enrichment of biological pro-
cesses using Webgestalt [53].

Correlating expression of the age‑DE and non‑age‑DE SAT 
ASPC genes with metabolic phenotypes
We identified targeted outcomes for the 76 age-DE SAT 
ASPC genes and 79 non-age-DE ASPC marker genes by 
performing differential expression analyses for each set 

with the following key cardiometabolic phenotypes in 
METSIM [27]: BMI, waist-to-hip ratio (WHR), waist-to-
hip ratio adjusted for BMI (WHRadjBMI), Homeostatic 
Model Assessment for Insulin Resistance (HOMAIR) 
Index, Matsuda index, fasting insulin, total triglycerides, 
total cholesterol, LDL cholesterol, interleukin-1 receptor 
antagonist (IL1RA), interleukin 1 beta (IL1B), C-reactive 
protein (CRP), alanine aminotransferase (ALT), systolic 
blood pressure, and fasting plasma glucose. We tested 
each outcome three times: without any adjustments, 
adjusting for only age, and adjusting only for BMI. To 
assess DE, we used bulk SAT RNA-seq data from 335 
METSIM participants [46, 47]. To quantify transcript 
RNA abundance, we used Kallisto [57], which imple-
ments pseudoalignment to the transcriptome. The tran-
scriptome index was created using GRCh38 GENCODE 
v26 transcript sequences [31]. Pseudoalignment was per-
formed with default parameters. To obtain read and tran-
script per million (TPM) counts for genes, we summed 
the transcript isoform values of a gene for each sample. 
To perform DE testing across the metabolic traits, we 
used edgeR [58], including RIN, batch, and the first PC as 
covariates in the DE model. Kallisto [57] read counts per 
gene were rounded to integer values as required by nega-
tive binomial value of edgeR [58]. Finally, p-values were 
adjusted for multiple testing using FDR<0.05.

Assay for transposase accessible chromatin 
(ATAC)‑sequencing in human primary preadipocytes 
and data processing
We previously performed ATAC-sequencing on ASPCs 
isolated from the SAT biopsies of 9 twin pairs from FTC 
[23–25, 59]. As described earlier [59], we isolated the 
preadipocytes from the SVF fraction and followed the 
Omni-ATAC protocol. Libraries were sequenced on an 
Illumina HiSeq 4000 to produce an average of 45,021,302 
(SD=8,419,051) reads. Sequencing reads were processed 
according to the ENCODE ATAC-seq Data Standards 
and Processing Pipeline. We first aligned reads to the 
hg19 genome using Bowtie2 [60] v2.2.9 with the follow-
ing parameters: -k 4 -X 2000 –local. We then filtered 
out unpaired mapped reads and reads with MAPQ<30 
as assessed by SAMtools [61], and only retained the 
uniquely mapped reads from the autosomes.

To call peaks, we used MACS2 [62] v2.2.7.1 and 
retained peaks with FDR<0.05. Peaks in blacklisted 
regions and those with fewer than one peak (bin) count 
per million mapped reads (BPM) in more than 10% of 
samples were filtered out. The  log2-transformed peak 
TPMs were then corrected for family ID (as a random 
effect), age, sex, and fraction of reads in peaks (FriP), 
using the lme4 v1.1 R package [63].
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Differentiation of human primary SAT preadipocytes
Cryopreserved human primary white SAT preadipo-
cytes (Zen-Bio catalog # SP-F-2, lot L120116E) were 
seeded into PromoCell Pad growth medium (PromoCell 
C-27410) with 1% Gibco Penicillin-Streptomycin (Ther-
moFisher 15140122) and cultured according to Pro-
moCell Pad culturing protocols. Cells were maintained 
in a monolayer culture at 37°C and 5%  CO2. Cells were 
propagated for the full experiment and not cultured 
beyond 5 passages.

The plating and differentiation of cells were staggered 
such that timepoints 1d, 2d, and 4d were collected at the 
same time, and timepoints 7d and 14d were collected at 
the same time. The 0d (ASPCs) timepoint was collected 
separately. To induce adipogenesis, cells were plated at 
confluency into 12-well plates for RNA-seq (4 isogenic 
biological replicates per time point) and the following 
day, adipogenesis was initiated using preadipocyte dif-
ferentiation medium (PromoCell C-27436). The 1d and 
2d timepoints were collected before any further media 
changes. For all other differentiation timepoints, 72 h 
after the preadipocyte differentiation medium was added, 
it was replaced with adipocyte nutrition medium (Pro-
moCell C-27438), following PromoCell ASPC differentia-
tion protocols.

Bulk SAT RNA sequencing and processing of differentiating 
preadipocytes
For the RNA collection, cells were washed with PBS 
once and then lysed with TriZOL (Invitrogen 15596026), 
and RNA was purified using Direct-Zol RNA Mini-Prep 
(Zymo Research R2061). Libraries were prepared using 
the Illumina TruSeq Stranded mRNA kit and sequenced 
on one lane of an Illumina NovaSeq S1 flowcell to pro-
duce an average of 42 million (SD=5 million) reads per 
sample.

We aligned the reads to the GRCh38 genome with 
GENCODE [31] v39 annotations using STAR [32] 
v.2.7.10a. The two-pass method was used to account for 
novel splice junctions. We filtered the aligned reads to 
exclude reads mapped to the mitochondrial genome [26] 
or multiple transcripts [38]. We then used featureCounts 
[41] v2.0.3 to perform read summarization at the gene 
level. To verify the quality of the reads, we obtained qual-
ity control metrics for the RNA-seq data using FastQC 
[40] and Picard Tools v2.25 [42]. As an additional QC, we 
performed a PCA and observed the samples to form dis-
tinct clusters by timepoint (Additional file 1: Fig. S7).

Testing the age‑DE SAT ASPC genes for longitudinal DE 
and temporal co‑expression during human adipogenesis
To assess the behavior during adipogenesis of the 76 age-
DE SAT ASPC genes, we performed a longitudinal DE 

analysis using ImpulseDE2 [64] on the processed bulk 
expression data of the primary human preadipocytes 
in which we induced a 14-day differentiation [65]. We 
used the runImpulseDE2 function in case-only mode to 
first fits impulse models to the expression trajectories 
of each gene across the 14 days and then evaluate DE by 
performing log-likelihood ratio tests on each impulse 
model. p-values were adjusted for multiple testing using 
FDR<0.05.

To cluster the genes into subgroups based on their lon-
gitudinal expression patterns across the 6 timepoints, we 
used DPGP [66] with the following parameters: --clus-
ter_uncertainty_estimate --check_convergence –check_
burnin_convergence –true_times –alpha 2.0 -n 3000.

Identification of ASPC ligand‑receptor interactions
To determine ASPC ligand-receptor interactions, we 
first separated the SAT snRNA-seq data [38, 49] of the 
younger (n=8) and older (n=7) individuals using the 
annotated Seurat object into files containing the log-nor-
malized counts and cell-type annotations per droplet per 
age group. On each file, we then ran the statistical anal-
ysis approach of CellphoneDB v4.0.0 [67] with default 
parameters to identify cell-cell interactions. After filter-
ing the results to only include the interactions involving 
the age-DE SAT ASPC genes and ASPC cell type as at 
least one of the interacting cell types, we adjusted p-val-
ues for multiple testing using FDR<0.05. To compare the 
interaction scores, we used a paired, one-sided Wilcoxon 
test with Wilcoxon p<0.05 as the significance threshold, 
where we paired by interaction name, partners, ligand 
cell type, and receiver cell type and tested each partner 
cell type separately.

Construction of PRS for BMI
Using the PRS guidelines outlined in [68], we developed 
polygenic risk scores (PRS) for BMI in males, females, 
and all unrelated Europeans from UKB [28, 29]. To 
ensure the normality of our trait in all groups, we inverse 
normal transformed each trait in two different ways: first 
in all individuals, and then for the males and the females 
separately.

We partitioned the cohort into 2 distinct groups: a 
base group for generating GWAS summary statistics, 
and a testing group for developing and applying the PRS 
model using penalized regression with summary statis-
tics via lassosum [69] (see below). After evaluating the 
predictive power of various partitions with AVENGEME 
[70, 71], we split the cohort in half such that each group 
contained 50% to optimize the power in both PRS and 
PRS-age analyses. To prevent overfitting when applying 
the model, we used the split-validation approach, which 
further trains the polygenic risk score model on one half 
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of the testing data before applying the new, optimized 
model to the other half. We partitioned the males and 
females separately so that the ratio of males to females 
was consistent across both groups.

BMI GWAS in UKB
We obtained summary statistics for our traits of inter-
est by performing genome-wide association studies 
(GWASs) in the male (n=90,045), female (n=105,818), 
and all individual (n=195,863) base groups. The analyses 
were conducted using the linear-mixed model approach 
implemented by BOLT-LMM v2.3.6 [72], where the top 
20 genetic principal components, testing center, genotyp-
ing array, and for the overall group, sex, were included 
as covariates. For each base group, we performed two 
GWASs: one with only these covariates and another in 
which age and  age2 were included as additional covari-
ates. We excluded variants with MAF<1% and INFO<0.8 
from the summary statistics.

Building the BMI PRS model
We built the BMI PRS models using summary statistics 
from the BMI GWAS and genotype data from the test-
ing groups (nmales= 88,988, nfemales=104,614). The testing 
genotype data were filtered with plink v1.9 [73] to remove 
variants that were missing in 1% or more subjects, had 
MAF < 0.01, or violated Hardy Weinberg Equilibrium. 
We also removed individuals who were either miss-
ing more than 1% of genotypes, or exhibited extremely 
high or low heterozygosity, using the default values, as 
described earlier [68], to determine heterozygosity.

To construct the BMI PRS model, we used lassosum 
[69] to create a penalized linear regression model using 
the summary statistics and to optimize the model by 
training on the testing data. No p-value or linkage dis-
equilibrium (LD) cutoffs were applied as they were not 
required for the penalized-based approach of lassosum 
[69]. Instead, to account for bias from LD, we supplied an 
external LD panel for hg19 and the European population 
[74]. Separate models were developed using all variants 
in the genome (i.e., the genome-wide BMI PRS), using 
just the variants in the cis-regions (within ±500 kb) of the 
74 age-DE SAT ASPC genes located on autosomal chro-
mosomes (i.e., the age-DE regional BMI PRS), and using 
just the variants in the cis-regions of the 78 non-age-DE 
SAT ASPC marker genes located on autosomal chromo-
somes (i.e., the non-age-DE regional BMI PRS).

We used the split-validation approach in lassosum [69] 
to apply the created models on the quality-controlled 
genotype data of the testing group and generate PRSs. 
Briefly, in the split-validation approach, the testing data 
are first split into two halves, and the existing PRS model 
is further optimized by training on one half before being 

applied to the other half. A second set of PRSs is then 
generated by switching on which half is being trained. 
The final scores are obtained by standardizing the two 
results.

Assessment of the generated BMI PRSs for interaction 
with age
We used the generated genome-wide BMI PRS and the 
two regional BMI PRSs (built using the variants in the 
cis-regions of the age-DE SAT ASPC genes and of the 
non-age-DE ASPC marker genes) to test for PRS-age 
interactions on BMI in the unrelated Europeans from 
UKB [28, 29]. The BMI trait was first adjusted for the top 
20 genetic PCs, testing center, genotyping array, and sex, 
and normalized through a rank-based inverse-normal 
transformation. We tested for a PRS-age interaction by 
creating the following model:

Adjusted BMI ~ Age + PRS + PRS × Age
We tested for interactions for all individuals using all 

three of the overall PRSs. For the genome-wide and age-DE 
regional BMI PRSs, we additionally examined the males and 
females separately using the respective sex-specific PRSs. To 
investigate obesity-related effects, we evaluated the inter-
actions separately in the normal BMI (BMI<25) and obese 
(BMI≥30) individuals. To account for differences in the age 
distributions between the normal BMI and obese individu-
als, we performed frequency matching of the normal BMI 
and obese individuals by age year in males and females sepa-
rately. This matching ensured consistency in the age dis-
tributions of the normal BMI and obese individuals while 
minimizing power loss. In each model, we performed Wald 
tests to assess the significance of the reported coefficients, 
with Wald-p<0.05 as the significance threshold.

To further evaluate the observed significance of the 
age-DE regional PRS interaction with age, we compared 
the age-DE regional PRS to the background genome by 
permuting the genome 10,000 times. In each permu-
tation, we built regional BMI PRSs from 74 randomly 
selected autosomal genes and tested the created score 
for a significant PRS-Age interaction in BMI in the 
obese individuals of UKB (n=45,203). We evaluated sig-
nificance by the ranking p-value observed in the original 
regional PRS (built using the variants in the cis-regions 
of the 74 autosomal age-DE ASPC genes) relative to the 
p-values observed in the 10,000 permutations, using 
ranking >95th percentile for significance.

Identifying cis‑regional variants interacting with age 
on BMI
In our single-variant interaction analysis, we assessed the 
variants in the cis-regions (±500 kb) of the age-DE ASPC 
genes for interactions with age on BMI by building the 
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following model and performing a Wald-test on the Vari-
ant × Age coefficient for each variant separately:

Adjusted BMI ~ Variant + Age + Variant × Age
Here, the variant term corresponded to the number 

of copies of the allele positively associated with BMI in 
our non-age-adjusted BMI GWAS. To increase power, 
we limited testing to the variants which showed nominal 
significance in our non-age-adjusted BMI GWAS, passed 
LD-clumping with plink [73] v1.9, using an r2 cutoff of 
0.1 and window of 250kb, and landed within ASPC open 
chromatin regions [59]. We furthermore examined only 
the same obese individuals who were included for the 
PRS-age interaction analysis. p-values were adjusted for 
multiple testing using Bonferroni <0.05.

Results
Obesity perturbs age‑dependent changes in ASPC 
proportions
Although age and obesity have been independently shown 
to reduce ASPC proportions, the mechanisms by which 
the two interact to impact ASPC abundance are largely 
unexplored. To investigate the connection between age, 
obesity, and cellular composition in adipose tissue, we 
estimated the proportions of the main cell types in bulk 
subcutaneous adipose tissue (SAT) expression data from 
50 BMI-discordant MZ twin pairs in FTC [23–25] (see 
“Methods”). We created a reference expression profile by 
clustering SAT snRNA-seq data from 6 individuals of the 
50 pairs [26] and assigning five main adipose cell types 
to the clusters (Fig.  1a). We then used reference-based 
Bisque [43] with the annotated SAT snRNA-seq data (see 
“Methods”) to obtain proportion estimates for these 5 
main cell types in the 50 pairs (Additional file 2: Table S1). 
We assessed whether there are differences in the esti-
mated cell-type proportions with age, using 40 years of 
age as the cut point between the younger and older group 
due to the bimodal age distribution in FTC (Fig. 1b; Addi-
tional file 2: Table S2), and randomly selecting one indi-
vidual per twin pair to account for the twin status. We 
observed significantly higher (Wilcoxon p=3.8×10−3) 
ASPC proportions in the younger individuals (n=28) than 
in the older individuals (n=22) (Fig. 1b), which is consist-
ent with previous studies [18].

We explored whether BMI influences these age-
dependent changes in ASPC proportions. As the cohort 
consists of BMI-discordant MZ twins, we separated the 
twins into a lower BMI group consisting of the lower 
BMI twin per pair (n=50) and higher BMI group consist-
ing of the higher BMI twin per pair (n=50). In each BMI 
status group, we compared ASPC proportions by age. In 
the lower BMI group, we found ASPC proportions to be 
significantly decreased with age (Wilcoxon p=6.4×10−3), 
but no such difference was observed in the higher BMI 

group (Fig. 1c; Table 1). To determine whether these age 
and obesity-based ASPC changes were sex-specific, we 
repeated our BMI status-stratified comparisons of ASPC 
proportions by age in the males and females separately. 
Both the lower BMI males (n=23) and lower BMI females 
(n=27) showed reduced ASPC proportions with age 
(Additional file 1: Fig. S1c, d); however, the stronger sig-
nificance in females suggests that the joint effect of BMI 
and age on ASPC proportions may be more pronounced 
in the females.

Additional investigation of the age and BMI‑dependent 
differences in ASPC proportions
To elucidate the physiological implications of higher 
ASPC proportions and further examine the age and 
BMI-dependent ASPC proportion differences that we 
identified in FTC, we estimated the proportions of the 
SAT cell types (Additional file  2: Table  S3) in bulk adi-
pose expression data of 335 individuals [46, 47] from 
the all-male METSIM cohort [27] (see “Methods”) using 
reference-based Bisque [43] with snRNA data from 84 
[44] of the 335 individuals. Leveraging the larger sam-
ple size and detailed phenotypes available in METSIM, 
we first correlated the ASPC proportions with fat and 
fat-free mass, which quantify the accumulation of fat 
mass related to adipose tissue and lean mass or non-
adipose mass, respectively. We observed ASPC propor-
tions to correlate negatively with fat mass (Spearman’s 
ρ=−0.16, p=3.3×10−3) and in turn positively with fat-
free mass (Spearman’s ρ=0.16, p=3.1×10−3). These cor-
relations remained significant after adjusting for age (pfat 

mass= 0.017, pfat-free mass=0.016), BMI (pfat mass= 2.1×10−3, 
pfat-free mass=2.1×10−3), or both BMI and age (pfat mass= 
0.019, pfat-free mass=0.019). As reduced fat mass links to 
decreased risk against cardiovascular disease [75], these 
findings suggest a metabolic benefit to increased ASPC 
proportions.

Next, we partitioned the METSIM cohort by BMI to 
create a normal BMI, overweight, and obese group (see 
“Methods”), and in each of the three groups, we then 
tested for differences in ASPC proportions between the 
individuals in the lowest and highest age quartile. We 
found that the change in ASPC proportions with age in 
METSIM was affected by BMI in the same way as in the 
FTC cohort. In more detail, among the normal BMI men 
(n=48), the men in the youngest age quartile had higher 
ASPC proportions (Wilcoxon p=0.043) than the men in 
the oldest age quartile. We detected no significant dif-
ferences in ASPC proportions in the overweight (n=80) 
or obese (n=37) METSIM men (Wilcoxon p>0.05) 
(Fig.  1d; Table  1). Down sampling the numbers of indi-
viduals to match sample sizes between the younger and 
older groups preserved the observed ASPC proportion 
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differences in FTC and METSIM (Additional file  2: 
Table  S4). The reduced significance of the difference in 
the normal BMI METSIM individuals when compared to 
FTC is also consistent with our sex-based analyses, given 
that METSIM consists only of males.

To determine whether there existed differences in 
ASPC proportions attributed to obesity and impacted 
by age, we compared the ASPC proportions between 
the normal BMI and obese individuals in the adipose 
bulk RNA-seq data of METSIM, testing separately in the 
individuals in the youngest and oldest age quartile. We 
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Fig. 1 Comparisons of SAT cell-type proportion estimates by age and BMI status indicate that ASPC proportions decrease with age, and this 
difference is abolished by obesity. a Uniform Manifold Approximation and Projection (UMAP) visualization of 12,564 nuclei from SAT samples of 6 
individuals from the Finnish Twin Cohort (FTC), colored by cell type. We assigned clusters to 5 major adipose cell types. b Boxplots comparing 
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and above 40 years of age (n=22) show a significant difference in ASPC proportions by age. The 40-year cutpoint was selected due to the bimodal 
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Page 11 of 24Kar et al. Genome Medicine           (2024) 16:19  

observed that in the youngest age quartile group (n=46), 
the normal BMI men had significantly higher ASPC pro-
portions than the obese men (Wilcoxon p=0.026) while 
no such significant difference was observed in the oldest 
age quartile group (n=39) (Wilcoxon p>0.05) (Fig. 1e).

Taken together, we see a metabolically likely beneficial 
higher ASPC abundance in young, normal BMI individu-
als that decreases with both age and obesity.

Seventy‑six SAT ASPC genes are DE by age
Since cell proliferation and differentiation are ultimately 
controlled by gene expression changes [6], and aging is 
known to alter gene expression in adipose tissue [3], we 
investigated transcriptomic changes in ASPCs resulting 
from age. We identified 151 unique SAT ASPC marker 
genes (Additional file 3: Table S5) in the SAT snRNA-seq 
data from 6 individuals of FTC [23–25] (Fig. 1a), and used 
HOMER [48] to find 21 transcriptional motifs enriched 
in the promoter regions of these SAT ASPC marker 
genes (Additional file 2: Table S6, S7). We evaluated these 
unique ASPC marker genes and the transcription factor 
(TF) genes observed at the enriched motifs for DE by age 
in ASPCs (Additional file  3: Table  S5; Additional file  2: 
Table S6, S7). To increase the sample size of the ASPC DE 
analysis, we performed the DE testing in an independent 
snRNA-seq data set of 15 individuals [38, 49] from the 
FTC [23–25] and CRYO [50, 51] cohorts and compared 
gene expression between the younger and older individu-
als (see “Methods”). Of the 151 SAT ASPC marker genes 
and 21 TFs tested, 72 ASPC marker genes and 4 TFs 
(SMAD3, STAT5A, STAT6, TWIST2) regulating ASPC 
marker genes were significantly DE (adjP<0.05) between 

the two age groups, and most of these 76 age-DE ASPC 
genes (80.3%) significantly increased in expression with 
age (Additional file 3: Table S8).

Verification of age‑DE SAT ASPC genes in METSIM
To corroborate the findings from our DE testing, we 
assessed whether these 76 DE genes were also DE by age in 
ASPCs in SAT snRNA-seq data [44] between the individu-
als in the lowest (n=21) and highest (n=21) age quartiles 
from the METSIM [27] cohort. Considering the older age 
distribution in the METSIM cohort than in our discovery 
cohort (see the “Methods”) and the absence of females in 
the METSIM cohort, we found it encouraging that despite 
these differences, 31 (41%) of the 76 genes were also DE 
(FDR<0.1) in ASPCs from METSIM (Additional file  2: 
Table S9). When we then used the larger sample size of the 
METSIM cohort to evaluate whether BMI impacted the 
age-based DE in the SAT ASPC marker genes, we observed 
a similar effect as with age-based ASPC proportion differ-
ences seen in FTC and METSIM (Fig.  1c,d). Within the 
individuals without obesity (BMI<30), 37 (49%) of the 76 
genes exhibited significant DE, i.e., passed FDR<0.1 in 
the same direction as in the discovery cohort (Additional 
file  2: Table  S10). We furthermore found 26 genes to be 
significantly DE by age (FDR<0.1) with the same direc-
tion as in the 15-sample dataset in the normal BMI group 
(BMI<25), while no such DE genes were observed in either 
the overweight (25≤BMI<30) or obese (BMI≥30) BMI 
groups. Thus, consistent with the influence of BMI on age 
differences in ASPC proportions in FTC and METSIM, we 
see that obesity perturbs aging expression patterns in SAT 
ASPCs marker genes.

Table 1 Comparisons of SAT ASPC proportions by age in the BMI status-stratified groups indicate significant differences by age in the 
lower/normal BMI individuals

A Finnish Twin Cohort (FTC) or METabolic Syndrome In Men (METSIM) cohort
B The BMI status group used for comparisons of ASPC proportions by age
C Number of individuals in the younger group
D Number of individuals in the older group
E Mean ± standard deviation (SD) of ASPC proportions
F Wilcoxon test statistic between the ASPC proportions in the young and old individuals
G Wilcoxon test p-value between the ASPC proportions in the young and old individuals

CohortA GroupB Nyoung
C Nold

D Mean ASPC proportion ± 
SDE of young

Mean ASPC proportion 
± SD of old

W statisticF p‑valueG

FTC Lower BMI 28 22 0.230 ± 0.008 0.227 ± 0.011 409 0.0064

FTC Higher BMI 28 22 0.225 ± 0.019 0.220 ± 0.014 373 0.1133

METSIM Normal BMI 27 21 0.095 ± 0.007 0.090 ± 0.007 371 0.0431

METSIM Overweight 46 34 0.091 ± 0.008 0.091 ± 0.008 808 0.8051

METSIM Obese 19 18 0.091 ± 0.005 0.092 ± 0.006 96 0.3581
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Age‑DE SAT ASPC genes and non‑age‑DE ASPC marker 
genes show distinct functional profiles
To functionally characterize the aging signatures in 
SAT ASPC gene expression, we next compared the 76 
age-DE ASPC genes against the 79 non-age-DE ASPC 
marker genes. We observed significant enrichment for 
protein-protein interactions using the database STRING 
[52] among both gene sets (page-DE=1.11×10−16, pnon-

age-DE<1×10−16), indicating the presence of biologically 
meaningful interactions. Within the age-DE genes, we 
found the significant PPI-enrichment to be driven by 
the 61 age-upregulated genes (p=8.88×10−16) since no 
significant enrichment was detected among the 15 age-
DE genes downregulated by age (Additional file  1: Fig. 
S2a). We observed that the 61 genes showed significant 
enrichment (FDR<0.05) for the negative regulation of 
fat cell differentiation GO biological process (5 genes), 
and for age (10 genes), body weights and measures (33 
genes, including 8 of the age-associated genes and 4 of 
the genes implicated in negative regulation of fat cell dif-
ferentiation), and abnormal blood glucose homeostasis 
(7 genes) from the Human Phenotype Ontology database 
(Additional file 1: Fig. S2b). Within the observed protein 
network of these age-upregulated genes, we also identi-
fied 6 subclusters. Two of these six subclusters showed 
significant enrichment (FDR<0.05) for cell structure and 
elasticity, while two other subclusters were significantly 
enriched (FDR<0.05) for inflammatory responses and 

interleukin signaling (Additional file 1: Fig. S3). Thus, the 
61 ASPC marker genes upregulated by age also seem to 
contain interacting networks of genes of molecular and 
clinical significance related to aging and obesity.

To identify the key functional pathways among the 
age-DE genes and how they differ from the non-age-
DE genes, we searched for overrepresented biological 
processes in each gene sets using WebGestalt [53]. We 
found significant enrichments (FDR<0.05) for multiple 
organ and tissue developmental and differentiation-
related functional pathways for the age-DE SAT ASPC 
genes, whereas for the non-age-DE ASPC marker 
genes, the most enriched pathways involved cellular 
structure and motility (Fig.  2). Moreover, the age-DE 
genes were uniquely and most highly enriched for neg-
ative regulation of fat cell differentiation (i.e. adipogen-
esis) (Fig.  2; Additional file  3: Table  S11, S12). When 
we then assessed the up- and downregulated age-DE 
genes separately, we observed that the 61 age-DE genes, 
which increase their expression with age, drive these 
enrichments, including the highest enrichment for adi-
pogenic inhibition. No significant enrichments were 
detected for the downregulated genes. Together, these 
differences in functional pathways indicate that the 76 
age-DE genes include the more developmentally ori-
ented subset of the SAT ASPC marker genes that also 
impacts regulation of adipogenesis.

Fig. 2 The 76 age-DE SAT ASPC genes show differences in functional pathways compared to the 79 non-age-DE ASPC marker genes. Dot plots 
compare the top 10 most significantly (FDR<0.05) enriched biological pathways for the 76 age-DE SAT ASPC genes (colored blue) and top 
79 non-age-DE ASPC marker genes (colored orange). Each dot represents a significantly enriched pathway, where the size of dot represents 
the enrichment ratio. The remaining pathways of the 76 age-DE ASPC genes and 79 non-age-DE ASPC marker genes are shown in Additional file 3: 
Table S11 and S12, respectively
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As adipose tissue function and plasticity are impor-
tant for cardiometabolic health [11], we determined 
which cardiometabolic traits are correlated with the 
age-DE genes compared to the non-age-DE genes by 
using bulk SAT RNA-seq data from 335 individuals 
in METSIM [47] and performing DE analysis with 16 
key obesity and related cardiometabolic phenotypes 
using FDR<0.05 for significance (see “Methods”). We 
observed generally similar association patterns within 

the two gene sets, with phenotypes related to insulin 
sensitivity and obesity (HOMAIR, Matsuda index, fast-
ing insulin) ranking among the highest for the numbers 
of DE genes in both gene sets (Fig. 3; Additional file 3: 
Table  S13, S14). Adjusting for age or BMI, which are 
known to correlate with many of the outcomes, resulted 
in smaller numbers of associations but still preserved 
the main association patterns in each gene set (Addi-
tional file 1: Fig. S4).

Fig. 3 Age-DE SAT ASPC genes and non-age-DE ASPC marker genes show association patterns with many metabolic traits. Heatmaps compare 
the associations between the bulk expression of individuals genes in METSIM (n=335) and all tested metabolic phenotypes, for the 76 age-DE SAT 
ASPC genes (top) and 79 non-age-DE (bottom) ASPC marker genes. Traits and genes are both shown in decreasing order of number of significant 
correlations, as assessed by a Wilcoxon rank sum test. For each gene, we colored significantly associated traits (FDR<0.05) by directionality 
of the association, where a positive  log2 fold change in gene expression represents a positive association. Red indicates a positive correlation, 
blue indicates a negative correlation, and genes colored black showed no significant correlations. Genes and outcomes which had no significant 
associations (FDR<0.05) were omitted. Below the heatmaps, we tabulate the proportions of genes per gene set that show significant associations 
with each metabolic trait
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A large, functionally relevant subset of the age‑DE SAT 
ASPC genes are also DE by age in ASPCs from the visceral 
fat depot
As ASPCs are a key cell type in the visceral fat depot, 
which itself plays important roles in obesity and aging, 
we next investigated the 76 age-DE SAT ASPC genes 
for DE by age in the visceral adipose tissue (VAT). Using 
the publicly available single-nucleus RNA-seq data from 
10 human VAT samples [56], we found that despite the 
smaller sample size of this VAT cohort (n=10), 36 (47.4%) 
of the 76 age-DE SAT ASPC genes show significant DE 
by age (FDR<0.05) in the same direction as in the 15 
SAT samples (Additional file 3: Table S15). Next, we con-
ducted a functional enrichment analysis with these 36 
genes using Webgestalt [53] and observed that similarly 
as the 76 genes, these 36 genes also showed significant 
enrichment (FDR<0.05) for multiple developmental and 
differentiation-related pathways, and shared 8 significant 
pathways in common with the 76 age-DE SAT ASPC 
genes (Additional file 3: Table S11, S16).

To better understand the clinical significance of these 
age DE gene findings in both fat depots, we also searched 
for genetic support for involvement of these 76 age-DE 
SAT genes and 36 age-DE VAT genes in the diseases and 
traits using the Human Genetic Evidence (HuGE) scor-
ing [76], available in the Common Metabolic Diseases 
Knowledge Portal. We found that 41 of the 76 (54%) and 
22 of the 36 (61%) age-DE ASPC genes have HuGE scores 
with very strong or higher evidence (HuGE score≥30) for 
diabetes, lipid-related, or anthropomorphic outcomes, 
thus suggesting that lifelong genetic predisposition to 
obesity or metabolic disease may have already induced 
similar gene expression changes in ASPCs that typically 
occur during aging. Together, these results suggest that 
of the 76 age-DE SAT ASPC genes, a substantial subset 
(47.4%) is also DE by age in VAT, and that both age-DE 
ASPC gene sets are important for adipose tissue develop-
ment and overall metabolic health.

Longitudinal expression profiles of the 76 age‑DE SAT 
ASPC genes identify seven temporally co‑expressed gene 
subgroups during adipogenesis
We hypothesized that because the 76 age-DE genes are 
notably expressed in SAT ASPCs and enriched for reg-
ulation of fat cell differentiation, which is the key dif-
ferentiation process in the fat tissue and declines and 
undergoes dysfunction with age [7, 8, 10, 21], these 
genes may link to changes in metabolic health via adi-
pogenesis. Accordingly, we examined the behavior of 
the 76 genes during SAT ASPC differentiation. We used 
4 isogenic biological replicates of human primary SAT 
ASPCs, in which we induced a 14-day adipocyte differen-
tiation, extracted RNA at 6 adipogenesis timepoints and 

performed bulk RNA-seq with the 4 samples at the 6 adi-
pogenesis timepoints over 14 days [65] (see “Methods”). 
Using ImpulseDE2 [64] to test the genes for DE across 
the 6 timepoints, we found 75 genes (99%) to be signifi-
cantly DE during adipogenesis (FDR<0.05), supporting 
the notion that the expression of these genes significantly 
change during ASPC differentiation (Fig.  4; Additional 
file 3: Table S17).

We also observed that the impulse models showed sim-
ilar longitudinal patterns between the expression profiles 
of several genes. This suggested that many of these genes 
may be co-expressed, commonly regulated, or function-
ally associated via shared pathways or TFs. We therefore 
used the DPGP tool [66] that clustered the genes into 7 
subgroups based on their gene longitudinal co-expres-
sion patterns during the 14-day differentiation (Fig.  4; 
Additional file 3: Table S18).

Using EnrichR [77–79], we observed that 5 of the 
7 subgroups (groups 1, 2, 3, 4, and 5) are significantly 
enriched (FDR<0.05) for the binding sites of adipogenesis 
and aging-linked TFs as reported in the human subset of 
the ChIP Enrichment Analysis (CHEA) 2022 database 
[80] (Additional file 2: Table S19): ZNF217 [81] in groups 
1 and 2; SOX2 [82, 83] in groups 2 and 4; TCF4 [84] in 
groups 3 and 5; CTBP-1/2 [85] and KDM2B [86] in group 
4; and TCF21 [87] in group 5. Noteworthy, subgroup 1 
contains multiple previously established key negative reg-
ulators of fat cell differentiation: SMAD Family Member 
3 (SMAD3), Twist Family bHLH Transcription Factor 2 
(TWIST2), and RAR Related Orphan Receptor A (RORA) 
[88–90]. Subgroup 1 also shows significant (FDR<0.05) 
enrichment for beta-catenin binding, a cellular mecha-
nism repressing adipogenesis [91], using WebGestalt 
[53]. Thus, transcriptional regulation of adipogenesis and 
functional relatedness may drive the similarities in lon-
gitudinal gene expression patterns among the 76 age-DE 
genes during fat cell differentiation.

The 76 age‑DE SAT ASPC genes show differences 
in the strength of cell‑cell interactions by age
As intercellular communication plays important roles 
throughout the process of adipogenesis [92], we next 
investigated differences by age in the ASPC ligand-
receptor interactions involving the 76 age-DE SAT ASPC 
genes, using CellphoneDB [67] to identify and compare 
the significant ASPC-cell communications in the younger 
and older individuals of the SAT snRNA-seq cohort 
[49] (see “Methods”). We found significantly (Wilcoxon 
p<0.05) stronger cell-cell interactions in the adipose tis-
sue of older individuals compared to the younger individ-
uals, with the most significant differences being observed 
within ASPCs; between ASPCs and adipocytes; between 
ASPCs and T cells; and between ASPCs and perivascular 
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cells, respectively (Additional file  2: Table  S20). When 
we then ranked the cell-cell ligand-receptor interactions 
by the difference in strength in the older versus younger 
individuals to identify the key age-differing interactions, 
we observed that 7 of the top 10 interactions with great-
est increase in interaction strength in the older indi-
viduals involved the age-DE SAT ASPC marker gene 
and adipogenesis repressor, RORA (Additional file  3: 
Table S21). These results suggest that age affects the cel-
lular interactions of this well-known adipogenesis regula-
tor TF, RORA.

Age interacts with the regional polygenic risk score (PRS) 
of the age‑DE genes in obese individuals
We next searched for a genetic relationship between 
local variants in the ASPC gene regions, age, and BMI 
in the unrelated Europeans from UKB [28, 29] and com-
pared those to the results conducted similarly but with 
the genome-wide variants. We constructed the follow-
ing PRSs for BMI in UKB: a genome-wide PRS gener-
ated using all variants in the genome, and regional PRSs 
generated using the variants in the cis-regions of the 

age-DE SAT ASPC genes and non-age DE ASPC marker 
genes (see “Methods”). Because we were interested in 
understanding aging-related mechanisms on BMI, the 
PRSs were built using GWASs without age adjustments 
(Additional file 1: Fig. S5a,b). In line with the previously 
created BMI PRSs [93], the genome-wide PRS explained 
10.59% of variation in BMI whereas the age-DE and non-
age-DE regional PRSs, which both included far fewer 
variants, explained 0.455 and 0.548%, respectively (Addi-
tional file 2: Table S22).

To search for genetic variants interacting with age, 
we created linear models consisting of age, PRS, and an 
interaction term between the age and PRS on BMI, exam-
ining separately the outcomes of normal BMI (n=45,203) 
and obesity (n=45,203). Intriguingly, we observed the 
age-DE regional PRS to have a significant negative  
interaction effect (β=−5.29×10−3, Wald-p=9.50×10−3) on 
BMI in the individuals with obesity, while no significant 
interaction with age on BMI was seen for the non-age-
DE regional PRS (Fig. 5a, b; Additional file 2: Table S23). 
These results suggest the genetic risk from cis-regional 
variants of the age-DE ASPC genes on BMI is interacting 

Fig. 4 Longitudinal expression profiles of the age-DE SAT ASPC genes discover seven temporally co-expressed gene subgroups 
during adipogenesis. Plots of gene expression against time show the scaled predicted gene counts against the number of days elapsed 
since the start of the human SAT preadipocyte differentiation experiment. The predicted counts of each gene and gene groupings were obtained 
using DPGP, which fitted Gaussian models to each gene and performed clustering on the temporal expression data
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with age in obese individuals. To formally confirm and 
further characterize this potential regional BMI PRS-age 
interaction in the obese individuals (Fig. 5a), we then per-
formed a permutation analysis to evaluate whether such 
a significant PRS-age interaction on BMI was expected 
of regional PRSs built from randomly selected genes of 
the same size. Out of 10,000 regional PRSs, each con-
structed from the cis-regions of randomly selected gene 
sets of the same size as used to build the age-DE ASPC 
gene PRS, we observed only 5.3% to show significant 
PRS-age interactions (Wald-p<0.05) and only 0.98% to 
have a p-value below that of the age-DE ASPC gene PRS 
(Wald-p<9.50×10−3). These permutation results further 
show that in the obese individuals, age interacts with the 
regional BMI PRSs built using the cis-regional variants of 
the age-DE ASPC genes.

Given the heterogeneity of obesity [13], we next exam-
ined this identified age-DE regional PRS interaction 
for relation to metabolic disease.  We first  stratified the 
individuals with obesity in UKB into groups with MUO 
and MHO using two different MHO criteria,  Meigs a 
criteria [94] and NCEP ATPIII criteria [95], and then 
separately evaluated the identified age-DE regional 
BMI PRS for an age interaction on BMI in each obesity 
group. Importantly, we found that under both definitions 

of MHO, only the individuals with MUO showed a sig-
nificant PRS-age interaction (pMeigs=5.29×10−3, pNCEP 

ATPIII=6.84×10−3). We additionally stratified the obese 
individuals by type 2 diabetes (T2D) and observed that 
only the obese individuals with T2D showed a signifi-
cant PRS-age interaction (p=8.29×10−4), in line with the 
MUO results. Taken together, these results suggest that 
the original regional PRS-age interaction on BMI that we 
observed in the obese individuals (Fig.  5a) is driven by 
individuals with MUO.

Sex‑specific analysis of the regional PRS‑age interactions
Because we observed the ASPC proportion differences 
to be more significant in the females than in the males 
(Additional file 1: Fig. S1c, d), we also assessed whether 
the observed interactions between these genes, age, and 
obesity depended on sex by constructing the genome-
wide and age-DE regional PRSs for the males (n=88,988) 
and females (n=104,614) separately with sex-specific 
summary statistics. We again separated the normal 
BMI and obese individuals in each sex and tested for 
the significance of the BMI PRS-age interaction term in 
a linear model for both the genome-wide and age-DE 
regional BMI PRSs. Similarly as in all obese individuals 
(Fig. 5a), the regional BMI PRS had a significant negative 

Fig. 5 Age and the regional BMI polygenic risk score (PRS) comprising the local cis variants of the age-DE SAT ASPC genes interact negatively 
on BMI in obese individuals. Forest plots compare the 95% confidence intervals for the standardized estimated coefficient (β) of the age and BMI 
PRS interaction term in the linear model BMI ~ age + PRS + PRS × age between the genome-wide PRS, which includes all variants in the genome 
and a regional PRS, which includes the variants in the cis-regions of the (a) age-DE SAT ASPC genes and (b) non-age-DE ASPC marker genes. 
We separated the normal BMI (BMI<25) (n=45,203) and obese (BMI≥30) (n=45,203) individuals in UKB, and within each BMI group, evaluated 
the interaction term between age and the regional and genome-wide BMI PRSs. Each dot represents the mean estimate, and the horizontal bars 
denote the 95% confidence intervals of the estimate. Asterisks indicate that the age and PRS interaction term is significant in the model, as assessed 
by a Wald-test. Significance thresholds for p-values: *p <0.05, **p <0.01, and ***p <0.001
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interaction in the obese females (Wald-p=7.68×10−3) 
(Additional file  1: Fig. S6; Additional file  2: Table  S23), 
while no such significant interaction was observed in 
males (Wald-p>0.05). To investigate the effect of meno-
pause on the observed regional PRS-age interaction, we 
tested the females in each BMI group by their reported 
menopause status, and observed that the regional PRS 
significantly negatively interacts with age in only the 
obese women already past menopause (Wald-p=0.038).

Cis‑regional variants of the age‑DE SAT ASPC genes 
which reside within ASPC open chromatin contribute 
to interactions with age on BMI
To identify the individual variants which negatively inter-
act with age on BMI, thus underlying the regional PRS 
interaction results, we performed interaction testing at 
the single-variant level using the same obese individuals 
(n=45,203) in UKB for whom we observed the signifi-
cant regional BMI PRS-age interaction. To limit multiple 
testing, we focused our analyses on the independent, 
regulatory variants with the strongest main effects on 
BMI, thus testing only the LD-clumped cis-regional 
variants of the age-DE SAT ASPC genes that showed 
nominally significant (p<0.05) effects on BMI in the non-
age-adjusted GWASs and landed within open chroma-
tin regions of ASPCs[59]. The open chromatin regions 
were determined by ATAC-seq of human primary SAT 
ASPCs [59] (see “Methods”). Of the 124 variants tested, 
the variant rs1755493, which is located near the gene 
CFD, showed a significant negative interaction with age 
on BMI (Bonferroni-adjusted p<0.05). We found 3 addi-
tional SNPs with negative interactions passing nominal 
significance (p<0.05): rs11631777, located near the gene 
RORA; rs113282909, located near the gene APOD; and 
rs17834271, located near the gene SERPINF1 (Additional 
file 2: Table S24). Taken together, our regional BMI PRS 
and single-variant analysis results provide genetic evi-
dence connecting these 76 age-DE genes to gene-age 
interaction effects on BMI in individuals with obesity.

Overall, our integrative omics results identify the 
human ASPC cell type as a driver of alterations in adi-
pose tissue aging in response to obesity and discover 
76 such developmentally important SAT ASPC genes 
enriched for negative regulation of adipogenesis and 
impacted by both aging and obesity.

Discussion
Age is a key risk factor for many cardiometabolic disor-
ders, partly due to the critical metabolic function of adi-
pose tissue that decreases over time [4–6, 8, 10]. Similar 
loss of function has also been observed in the adipose 
tissue of younger individuals with obesity [11–13]; how-
ever, it is not well understood how these responses to age 

and obesity relate to one another at the cell-type level in 
adipose tissue. In addition to being the precursors to fat 
cells, ASPCs undergo dramatic structural transforma-
tions in metabolically unhealthy obesity [4, 5, 9], making 
ASPC abundance and transcriptomic profiles noteworthy 
indicators of adipose tissue health. In this study, we used 
bulk and snRNA-seq data from SAT to show that young, 
normal weight individuals exhibit a high ASPC abun-
dance which decreases with age. Of note, we observed 
that obese individuals do not exhibit this age-dependent 
abundance of ASPCs; rather, young, obese individuals 
already exhibit decreased SAT ASPC proportions when 
compared to young, normal weight individuals. We also 
observed a negative correlation between fat mass and 
ASPC proportions. As reduced fat mass has been con-
nected to decreased risk of cardiovascular disease [75], 
our results suggest that the observed higher ASPC abun-
dance we see in the young, lower BMI individuals may be 
metabolically beneficial. We then identify 76 such SAT 
ASPC genes DE by age that are enriched for multiple 
developmental processes and negative regulation of adi-
pogenesis; alter gene expression levels during SAT ASPC 
differentiation; have stronger cell-cell interactions in the 
older than younger individuals; and contain regional 
DNA variants that interact with age on BMI in obese 
individuals in UKB. Taken together, this discovered set of 
76 SAT ASPC genes implicates altered negative regula-
tion of fat cell differentiation as a mechanism for aging 
and links obesity and aging via significant cellular and 
genetic interactions.

Despite being a main cell type in adipose tissue and 
directly linking to adipocyte abundance, human ASPCs 
are less investigated in bulk adipose decompositions, 
generally due to sparse reference data for the ASPC cell 
type [96]. Most previous studies on ASPC abundance 
rely on in  vitro data [7, 8, 18, 19], which are under-
powered to test for multi-variable effects. In our study, 
we integrated bulk SAT RNA-seq data with annotated 
snRNA-seq data from the same cohorts and with over-
lapping samples, to create robust adipose gene expres-
sion references, which we then used to accurately 
estimate ASPC proportions in the bulk SAT RNA-seq 
data. Leveraging the larger sample sizes and age distri-
butions in the bulk expression datasets, we identified 
different aging patterns in adipose cellular composition 
based on the BMI status. The reduction of ASPC abun-
dance with age has been detected in various mice and 
human cell line studies [18, 97]; however, here, we show 
the difference to be driven by the normal weight individ-
uals by comparing them against the obese individuals. 
In a previous study examining ASPCs in adult women, 
the proportion of ASPCs in the stromal vascular fraction 
(SVF) of adipose tissue was found to be greater in the 
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normal weight women compared to the obese women, 
although age dependencies were not explored. The study 
also noted that the adipocytes of the obese women were 
larger in volume and lower in numbers, thus implying an 
inverse relationship between ASPC abundance and fat 
mass [19], in line with our study that observed a direct 
inverse correlation between fat mass and ASPC propor-
tions. Fat mass is also known to increase with age [98]. 
Thus, the findings of our study take the field forward by 
investigating the effects of age and obesity together on 
ASPCs and indicate that obesity prematurely induces the 
decrease in ASPC proportions that typically gradually 
occurs during aging in normal weight individuals.

We used our annotated adipose snRNA-seq data to 
characterize the aging profiles in ASPCs and show that 
aging induces substantial, transcriptomic changes in 
ASPCs, which may link to the age-related decline of adi-
pogenesis [7, 8, 10]. We identified 72 ASPC marker genes, 
which comprise nearly one half of the ASPC marker gene 
population (47.7%), and 4 associated TFs, which are DE 
by age. These 76 genes are enriched for multiple organ 
and tissue development-related pathways and negative 
regulation of fat cell differentiation. Furthermore, par-
ticularly among the genes upregulated with age, which 
comprised the majority (80%) of the gene set, we found 
a high enrichment of inter-gene relations, which we 
decomposed into distinct subnetworks associated with 
collagen and inflammatory functions, respectfully. As 
the hallmarks of aging adipose tissue are increased fibro-
sis and inflammation promoted by immune dysfunc-
tion [4, 5, 9, 10], these detected enrichments suggest the 
upregulated genes as potentially important modulators 
underlying the aging induced changes in adipose tissue. 
Indeed, we also observed these age-upregulated genes to 
be linked to adipogenic inhibition, aging, and metabolic 
measurements, the latter two of which were dominated 
by those genes implicated for the negative regulation of 
fat cell differentiation. Among the upregulated age-DE 
genes is ZNF521, a master regulator of adipogenesis, 
whose repression is critical for adipogenesis, and the 
inhibition of which has been shown to trigger adipogenic 
commitment [99, 100]. The knockdown of CCDC80, the 
most downregulated gene during human adipogenesis in 
our study, has been previously shown to impact multiple 
key genes of adipose tissue function, including the major 
TF of adipogenesis, SREBPF1 [101].

By using 6-timepoint bulk RNA-seq data from a 14-day 
SAT ASPC differentiation experiment, we then extended 
relevance of adipogenesis to the set of 76 age-DE SAT 
ASPC genes, demonstrating the gene expression of nearly 
all (99%) of these genes to significantly change during 
the ASPC differentiation. We recognize that the changes 
observed during adipogenesis do not necessarily imply 

direct involvement in the differentiation process, but 
rather, only confirm the process as of biological interest 
for this gene set. This conclusion is also supported by the 
fact the non-age DE SAT ASPC marker genes were not 
enriched for negative regulation of fat cell differentiation. 
After performing clustering on the longitudinal expres-
sion data, we identified coordinated gene subgroups, 
which indicated temporal co-expression, common tran-
scriptional regulation, or functional overlap linked to 
the longitudinal expression patterns of these genes dur-
ing adipogenesis. In our identified subgroups, group 1 is 
of particular interest as it contains several genes previ-
ously reported to regulate adipogenesis (RORA, TWIST2, 
SMAD3, CCN5) [88–90, 102]. Additionally, this group 
showed significant enrichment for beta-catenin binding, 
a critical intercellular mechanism, through which Wnt-
signaling acts to repress adipogenesis. Taken together, 
given the known decline of adipogenesis with age [7, 8, 
10, 91], our findings provide direct candidate regulators 
of age-dependent adipogenesis in humans.

While the 76 age-DE genes were discovered in data 
originating from the subcutaneous fat depot, our study 
also links 36 of them to the aging ASPC profiles in the 
visceral fat depot. The visceral fat depot has been found 
as highly relevant for both aging and obesity, growing dis-
proportionately compared to the subcutaneous fat depot 
in response to either [4, 5]. Overall, we found nearly half 
of these age-DE SAT ASPC genes to also undergo simi-
lar expression changes with age in VAT and showed 
that these genes DE in both fat depots retain the devel-
opmental and differentiation-related functional enrich-
ments observed in the original age-DE SAT ASPC gene 
set. These shared functional enrichments, coupled with 
the high presence of metabolic disease-associated genes, 
suggest the presence of some coordination in the aging 
response relevant for metabolic health across the two 
main human fat depots.

In bulk SAT RNA-seq data from METSIM, we observed 
not only consistent differences in the ASPC proportions 
with age and obesity, but also significant associations 
between the expression of SAT ASPC genes and the key 
obesity and related cardiometabolic phenotypes. The 
most associated phenotypes were obesity and insulin sen-
sitivity traits, in line with the established contributions of 
ASPC transcriptomic profiles to the dysmetabolic adi-
pose tissue states observed in obese and type 2 diabetic 
individuals [59, 103]. Moreover, although we lacked suf-
ficient power to examine obesity effects on the aging pat-
terns of the ASPC genes in our discovery cohort, we were 
able to show a BMI-dependency in the DE consistency of 
the 76 age-DE SAT ASPC genes in METSIM. Consistent 
with the observed proportion differences, we found obe-
sity to weaken the age-based gene expression changes in 
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ASPCs. Thus, our findings support the identified ASPC 
genes as likely effectors of interactions between age and 
obesogenic cardiometabolic disorders.

Since the effects from interactions between genetic 
and environmental factors are typically relatively small 
[104], and further limited by the burdens of multiple test-
ing, even cohorts as large as the UKB may lack adequate 
power for the detection of GxE effects with individual 
variants. In our study, using a regional PRS to represent 
the genetic signals across these age-DE SAT ASPC genes, 
we were able to identify a novel obesity-specific nega-
tive interaction between age and the regional BMI PRS. 
We found that the cis-regions of the age-DE genes are 
involved in unique gene-age interactions on BMI in obese 
individuals, thus showing that the presence of obesity 
may influence how these genes change their signals with 
age. Noteworthy, our interaction result was further con-
firmed by our permutation analysis of similarly sized ran-
dom gene sets from the genome, and no interaction was 
observed with the regional PRS of the non-age-DE ASPC 
marker genes. Our single-variant analysis detected only 
one statistically significant variant with the same direc-
tionality of the interaction as seen in the regional PRS 
interaction analysis. This proposes that regional PRSs 
may provide a more powerful method for the discovery 
of novel multi-locus GxEs, which are often indiscernible 
at the single-variant level due to small effect sizes and 
multiple testing. Moreover, we discovered the negative 
gene-age interactions to stem from the obese individuals 
with MUO and T2D and not be observed in those obese 
individuals without MUO or T2D. These findings sup-
port not only the growing evidence of strong heterogene-
ity underlying obesity [13], but are also in line with our 
observed cardiometabolic trait associations in METSIM 
and enrichments for metabolic disease-associated genes.

Through our assessments of ligand-receptor interac-
tions between ASPCs and other SAT cell types, we dis-
cover the TF RORA to result in the largest intercellular 
association differences, specifically greater in the older 
group. RORA is known to negatively regulate adipogen-
esis by targeting the key TFs driving the differentiation 
[88, 89], but to the best of our knowledge, its responses to 
age have not been previously well studied in the ASPC cell 
type. Here, our ligand-receptor assessments revealed an 
age dependency in cholesterol-based intercellular com-
munications involving RORA between ASPCs and multi-
ple SAT cell types, strengthened in the older individuals. 
As RORA plays inhibitory roles in cholesterol metabo-
lism through a transcriptional network overlapping with 
its adipogenic inhibition [105, 106], its upregulated and 
increased intercellular interactions with age suggest a pos-
sible mechanism behind age-based dysfunction in adipose 
tissue. We also found that RORA is upregulated with age 

in ASPCs and that during SAT ASPC differentiation, the 
longitudinal expression of RORA temporally clusters with 
multiple other adipogenesis regulators, which together 
show significant enrichment for the inhibitory mecha-
nism of adipogenesis via beta-catenin binding [91]. Fur-
thermore, variant rs11631777, residing within an ASPC 
ATAC-seq peak in the cis-region of RORA, showed a neg-
ative interaction with age on BMI. Together, our converg-
ing results propose RORA as an important intercellular 
effector in adipose tissue of aging and its interactions with 
obesity.

Although our study provides insight on the impact of 
obesity on adipose tissue aging, there are several limita-
tions to consider. The lack of completely controlled con-
ditions, typical for any human observational study, may 
make our findings susceptible to other unaccounted envi-
ronmental factors. Our analyses were also conducted 
using the imputed genome-wide SNP data in the Euro-
pean unrelated subset of UKB and the Finns in FTC, 
CRYO, and METSIM, meaning that our findings can-
not be generalized to other ethnicities and that no rare 
variants were included in our study. In addition, neither 
METSIM nor UKB span full age ranges. Thus, cohorts 
with even larger age and BMI ranges are needed to more 
precisely study aging and obesity-driven behaviors in adi-
pose tissue. Lastly, although evaluating the expression 
of the 76 genes in differentiating human primary ASPCs 
enabled us to identify their expression patterns associ-
ated with adipogenesis, we recognize the limitation that 
we were unable to directly profile ASPCs from the indi-
viduals used in the rest of our study and instead utilized 
commercially available human primary SAT ASPCs. In 
the future, it would be important to conduct differentia-
tion experiments in ASPCs isolated from old and young 
adults to further understand the age-dependent role that 
each of these genes plays in ASPC differentiation.

Conclusions
In conclusion, using snRNA-seq to estimate the main 
adipose cell-type proportions in bulk RNA-seq, we dis-
cover a metabolically favorable abundance in normal 
weight/control individuals’ ASPC proportions which 
decreases with age and is obstructed by obesity. We iden-
tify 76 developmentally important age-DE SAT ASPC 
genes, which we show to be linked to negative regulation 
of adipogenesis and age-dependent cellular interactions, 
centering around the TF RORA. We also demonstrate 
that the BMI effects of the cis variants residing around 
these differentially expressed ASPC genes are impacted 
by interactions with age in UKB. Together, our results 
identify the ASPC cell type as a driver of alterations in 
adipose tissue aging in response to obesity.
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Additional file 1: Fig. S1. Estimated SAT cell-type proportions in the 
Finnish Twin Cohort (FTC) differ by age, BMI status, and sex. (a) Boxplots 
compare the scaled cell-type proportion estimates in bulk SAT RNA-seq 
data from FTC by the BMI status (nlower BMI=50, nhigher BMI=50). The 
lower BMI twin per pair was classified as lower BMI for the pair and the 
higher BMI twin as higher BMI for the pair. (b) Boxplots compare the 
scaled cell-type proportion estimates from FTC between males (n=46) 
and females (n=54). (c,d) Boxplots compare the SAT ASPC proportions 
by age within the BMI status groups in (c) females (nbelow 40=34, nover 
40=20) and (d) males (nbelow 40=22, nover 40=24) from FTC. (a-d) 
Asterisks denote a significant difference in cell-type proportions between 
the colored groups as assessed by a Wilcoxon test. Significance thresholds 
for p-values:*p <0.05, **p <0.01, and ***p<0.001. Fig. S2. The 76 age-DE 
SAT ASPC genes contain protein interaction networks with significant 
enrichments for age, metabolic outcomes, and adipose tissue develop-
ment. (a,b) The inter-gene relations between (a) the 76 age-DE SAT ASPC 
genes and (b) 61 age-upregulated SAT ASPC genes are visualized as a 
knowledge graph. (a, b) Each node indicates a gene, and each edge 
indicates a relation connecting a set of genes, where edges are colored 
by relation type as follows: from a curated database (cyan), experimentally 
determined (magenta), gene cooccurrence (blue), co-expression (black), 
protein homology (lavender). (b) We shade the gene nodes in networks 
significantly enriched for key pathways and phenotypes of interest as 
follows:  body weights and measures (blue), age (red), lipid or lipoprotein 
measurement (green), abnormal glucose homeostasis (yellow), regulation 
of fat cell differentiation (magenta). The enrichment results are reported in 
the panel. Fig. S3. Clustering of the protein interaction network induced 
by the upregulated age-DE SAT ASPC genes identifies six subnetworks of 
inter-gene relations. (a-f ) The clusters derived from the protein network 

of the 61 age-upregulated SAT ASPC genes are visualized as individual 
knowledge graphs. Each node indicates a gene, and each edge indicates 
a relation connecting a set of genes, where edges are colored by rela-
tion type as follows: from a curated database (cyan), experimentally 
determined (magenta), gene co-occurrence (blue), co-expression (black), 
protein homology (lavender). Fig. S4. Age and BMI influence association 
patterns between metabolic phenotypes and the bulk expression of both 
the age-DE ASPC genes and non-age-DE ASPC marker genes in the bulk 
SAT RNA-seq data from the METSIM cohort (n=335). Heatmaps display 
significant associations (FDR<0.05) between metabolic outcomes and 
the bulk expression of (a, b) the 76 age-DE ASPC genes and (c, d) the 79 
non-age-DE ASPC marker genes. Each outcome has been adjusted for 
(a, c) age or (b, d) BMI. (a-d) Gene-outcome pairs are color-coded based 
on directionality and significance: red indicates a positive correlation, 
blue indicates a negative correlation, and white represents no significant 
correlation. Significance was assessed by a Wilcoxon rank sum test and 
a positive log2 fold change in gene expression with the outcome was 
defined as a positive association. We excluded genes and outcomes not 
identified in any significant gene-outcome pair. Below the panels, a table 
summarizes the proportions of genes per gene set that show significant 
associations with each adjusted outcome. Abbreviations are as follows: 
BMI indicates body mass index; HOMAIR Homeostatic Model Assessment 
for Insulin Resistance; C-reactive protein; IL1RA interleukin-1 receptor 
antagonist; ALT alanine transaminase; WHR waist-to-hip ratio; WHRadjBMI 
waist-to-hip ratio adjusted for BMI; and IL1b Interleukin-1 beta. Fig. S5. 
Age adjustments minimally alter the results of BMI GWASs and predictive 
performance of BMI PRSs in the UK Biobank. (a,b) A Miamiplot visualizes 
the effect of age adjustment on the summary level results of BMI GWAS 
using unrelated European individuals from UKB. Variants in the cis-regions 
of the age-DE ASPC genes are plotted by chromosomal position against 
the -log10(p-value) from BMI GWASs conducted with (a) only males 
(n=90,045) and (c) only females (n=105,818). The bottom panel reports 
the BMI GWAS where age and age2 were included as covariates, while 
in the BMI GWAS for the top panel, no age-related term was used as a 
covariate. A horizontal line marks the genome-wide significance threshold 
(p=5x10-8). (c) Paired bar plots compare the proportion of obese individu-
als (BMI>=30) in each PRS decile between the age-adjusted and non-age 
adjusted genome-wide BMI PRSs created using unrelated European 
individuals from the UKB (n=193,602). The error bars represent the 95% 
confidence intervals of the proportions. Fig. S6. Sex-stratified PRSs 
identify sex-specific effects on BMI and on age-obesity interactions in the 
cis-regions of the age-DE ASPC genes in the UK Biobank. (a,b) Forest plots 
compare the 95% confidence intervals for the standardized estimated 
coefficient (β) of the age and BMI PRS interaction term using the regional 
and genome-wide PRSs constructed for the (a) males (n=88,988) and (b) 
females (n=104,614) in UKB. We separated the normal BMI (BMI<25) and 
obese (BMI>=30) individuals in each sex. Asterisks indicate that the age 
and BMI PRS interaction term is significant in the model, as assessed by 
a Wald-test. Significance thresholds for p-values: *p <0.05, **p <0.01, and 
***p <0.001. Fig. S7. PCA analysis of SAT adipogenesis time point data 
shows clustering by the timepoint. Biplot compares the first and second 
principal component (PC) of the expression data of each sample from the 
SAT ASPC differentiation experiment (nsamples=24, i.e. one sample in 4 
isogenic biological replicates in six time points). We colored points by the 
time elapsed between the start of the experiment and when the sample 
was taken. PCs were calculated using the log2- transformed transcripts 
per million.

Additional file 2: Table S1. Summary of the estimated proportions of the 
5 major subcutaneous adipose tissue cell-types in FTC (n=100). Table S2. 
Wilcoxon tests comparing proportions of the 5 major subcutaneous 
adipose tissue cell-types between the unrelated individuals below 
(n=28) and above 40 years old (n=22) in FTC. Table S3. Summary of 
the estimated proportions of the 20 major subcutaneous adipose tissue 
subcell-types/cell-types in METSIM (n=335). Table S4. Down sampling 
the numbers of individuals to match sample sizes between the younger 
and older groups preserves the observed SAT ASPC proportion differences 
in FTC and METSIM (see Table 1). Table S5. ASPC marker genes from SAT 
snRNA-seq data of 6 individuals in FTC (see the excel file Additional file 3: 
Table S5.xlsx). Table S6. Known motifs from HOMER enriched in promoter 
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regions of the 151 unique SAT ASPC marker genes. Table S7. Motifs 
determined by de novo motif discovery in HOMER to be significantly 
enriched (p<1x10-10) in the promoter regions of the 151 unique SAT 
ASPC marker genes. Table S8. Seventy-six SAT ASPC genes (i.e. 72 
ASPC marker genes and four transcription factor genes regulating 
ASPC marker genes) are significantly differentially expressed (DE) by 
age (FDR<0.05) using the ASPC data from the SAT snRNA-seq cohort 
(n=15) (see the excel file Additional file 3: Table S8.xlsx). Table S9. Our 
additional analysis in the independent METSIM cohort shows that 41% 
of the 76 age-DE SAT ASPC genes exhibit consistent DE (FDR<0.1 and 
the same direction as in the discovery snRNA-seq cohort) in the ASPCs 
from the subcutaneous adipose snRNA-seq data of the youngest and 
oldest age quartiles of the METSIM cohort. Table S10. Our additional 
analysis in the independent METSIM cohort shows that 49% of the 76 
age-DE SAT ASPC genes exhibit consistent DE (FDR<0.1 and the same 
direction of effect as in the discovery cohort) in the ASPCs from the 
subcutaneous adipose snRNA-seq data of nonobese (BMI<30) individu-
als from the METSIM cohort (n=38).Table S11. The pathway tool Web-
Gestalt identifies significantly (FDR<0.05) overrepresented develop-
mental and differentiation-related Gene Ontology biological processes 
within the 76 age-DE SAT ASPC genes (see the excel file Additional 
file 3: Table S11.xlsx). Table S12. The pathway tool WebGestalt identifies 
significantly (FDR<0.05) overrepresented Gene Ontology biological 
processes within the 79 non-age-DE SAT ASPC genes (see the excel 
file Additional file 3: Table S12.xlsx). Table S13. Significant correla-
tions (FDR<0.05) between the expression of the 76 age-DE SAT ASPC 
genes and cardiometabolic phenotypes using subcutaneous adipose 
bulk RNA-seq data from METSIM (n=335) (see the excel file Additional 
file 3: Table S13.xlsx). Table S14. Significant correlations (FDR<0.05) 
between the expression of the 79 non-age-DE SAT ASPC marker genes 
and cardiometabolic phenotypes using subcutaneous adipose bulk 
RNA-seq data from METSIM (n=335) (see the excel file Additional 
file 3: Table S14.xlsx). Table S15. Nearly half (47.4%) of the 76 age-DE 
SAT ASPC genes show significant DE by age (FDR<0.05 in the same 
direction as in the SAT snRNA-seq cohort) in VAT ASPCs from a publicly 
available VAT snRNA-seq data of 10 individuals (see the excel file Addi-
tional file 3: Table S15.xlsx). Table S16. The pathway tool WebGestalt 
identifies significantly (FDR<0.05) overrepresented Gene Ontology (GO) 
biological processes within the 36 age-DE ASPC marker genes with 
consistent DE across ASPCs from the SAT and VAT fat depots (see the 
excel file Additional file 3: Table S16.xlsx). Table S17. Seventy-five of the 
76 age-DE SAT ASPC genes are DE across the 6 measured timepoints 
during a 14-day SAT ASPC differentiation (i.e. adipogenesis) experi-
ment (see the excel file Additional file 3: Table S17.xlsx). Table S18. 
Clustering of the age-DE SAT ASPC genes by their expression profiles 
during a 14-day SAT ASPC differentiation (i.e. adipogenesis) experiment 
(see the excel file Additional file 3: Table S18.xlsx). Table S19. Gene set 
enrichment analysis using EnrichR and the human subset of the ChIP 
Enrichment Analysis (CHEA) 2022 database identifies 5 subgroups sig-
nificantly enriched for common transcription factor targets. Table S20. 
Intercellular interactions involving the 76 age-DE SAT ASPC genes are 
significantly stronger (p<0.05) in the older individuals of the adipose 
snRNA-seq cohort compared to the younger individuals. Table S21. 
Interactions involving the gene RORAshow the largest differences in 
strength between the younger and older individuals (see the excel file 
Additional file 3: Table S21.xlsx). Table S22. Variance in body mass index 
(BMI) explained by the genome-wide and regional polygenic risk scores 
(PRSs). Table S23. Estimated effect of the interaction between the age-
DE regional BMI PRS and age on BMI in the individuals with normal BMI 
(BMI<25) and in the obese individuals (BMI>=30) in the UK Biobank. 
Table S24. Local variants within the age-DE SAT ASPC genes landing 
in ASPC open chromatin regions interact with age on BMI in obese 
individuals of the UK Biobank (n=45,203).

Additional file 3: Table S5. ASPC marker genes from SAT snRNA-seq 
data of 6 individuals in FTC. Table S8. Seventy-six SAT ASPC genes (i.e. 
72 ASPC marker genes and four transcription factor genes regulating 
ASPC marker genes) are significantly differentially expressed (DE) by 
age (FDR<0.05) using the ASPC data from the SAT snRNA-seq cohort 
(n=15). Table S11. The pathway tool WebGestalt identifies significantly 

(FDR<0.05) overrepresented developmental and differentiation-related 
Gene Ontology biological processes within the 76 age-DE SAT ASPC 
genes. Table S12. The pathway tool WebGestalt identifies significantly 
(FDR<0.05) overrepresented Gene Ontology biological processes within 
the 79 non-age-DE SAT ASPC genes. Table S13. Significant correlations 
(FDR<0.05) between the expression of the 76 age-DE SAT ASPC genes and 
cardiometabolic phenotypes using subcutaneous adipose bulk RNA-seq 
data from METSIM (n=335). Table S14. Significant correlations (FDR<0.05) 
between the expression of the 79 non-age-DE SAT ASPC marker genes 
and cardiometabolic phenotypes using subcutaneous adipose bulk 
RNA-seq data from METSIM (n=335). Table S15. Nearly half (47.4%) of 
the 76 age-DE SAT ASPC genes show significant DE by age (FDR<0.05 in 
the same direction as in the SAT snRNA-seq cohort) in VAT ASPCs from a 
publicly available VAT snRNA-seq data of 10 individuals. Table S16. The 
pathway tool WebGestalt identifies significantly (FDR<0.05) overrepre-
sented Gene Ontology (GO) biological processes within the 36 age-DE 
ASPC marker genes with consistent DE across ASPCs from the SAT and 
VAT fat depots. Table S17. Seventy-five of the 76 age-DE SAT ASPC genes 
are all DE across the 6 measured timepoints during a 14-day SAT ASPC 
differentiation (i.e. adipogenesis) experiment. Table S18. Clustering of the 
age-DE SAT ASPC genes by their expression profiles during a 14-day SAT 
ASPC differentiation (i.e. adipogenesis) experiment.
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