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Abstract 

Background The occurrence of metabolic syndrome (MetS) and the gut microbiota composition are known to differ 
across ethnicities yet how these three factors are interwoven is unknown. Also, it is unknown what the relative contri‑
bution of the gut microbiota composition is to each MetS component and whether this differs between ethnicities. 
We therefore determined the occurrence of MetS and its components in the multi‑ethnic HELIUS cohort and tested 
the overall and ethnic‑specific associations with the gut microbiota composition.

Methods We included 16,209 treatment naïve participants of the HELIUS study, which were of Dutch, African Suri‑
namese, South‑Asian Surinamese, Ghanaian, Turkish, and Moroccan descent to analyze MetS and its components 
across ethnicities. In a subset (n = 3443), the gut microbiota composition (16S) was associated with MetS outcomes 
using linear and logistic regression models.

Results A differential, often sex‑dependent, prevalence of MetS components and their combinations were observed 
across ethnicities. Increased blood pressure was commonly seen especially in Ghanaians, while South‑Asian Suri‑
namese and Turkish had higher MetS rates in general and were characterized by worse lipid‑related measures. 
Regarding the gut microbiota, when ethnic‑independent associations were assumed, a higher α‑diversity, higher 
abundance of several ASVs (mostly for waist and triglyceride‑related outcomes) and a trophic network of ASVs 
of Ruminococcaceae, Christensenellaceae, and Methanobrevibacter (RCM) bacteria were associated with better MetS 
outcomes. Statistically significant ethnic‑specific associations were however noticed for α‑diversity and the RCM 
trophic network. Associations were significant in the Dutch but not always in all other ethnicities. In Ghanaians, 
a higher α‑diversity and RCM network abundance showed an aberrant positive association with high blood pressure 
measures compared to the other ethnicities. Even though adjustment for socioeconomic status‑, lifestyle‑, and diet‑
related variables often attenuated the effect size and/or the statistical significance of the ethnic‑specific associations, 
an overall similar pattern across outcomes and ethnicities remained.

Conclusions The occurrence of MetS characteristics among ethnicities is heterogeneous. Both ethnic‑independent 
and ethnic‑specific associations were identified between the gut microbiota and MetS outcomes. Across multiple 
ethnicities, a one‑size‑fits‑all approach may thus be reconsidered in regard to both the definition and/or treatment 
of MetS and its relation to the gut microbiota.
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Background
Metabolic syndrome (MetS) is a risk factor for type 
2 diabetes (T2D) and cardiovascular disease (CVD), 
which are increasingly among the main causes of mor-
bidity and mortality worldwide. MetS represents the 
clustering of individual risk factors, including hyper-
tension, central obesity, dysglycemia, and dislipidaemia 
[1, 2]. The exact pathogenic mechanism is not exactly 
known, yet insulin resistance is proposed as the under-
lying factor [2]. Which exact diagnostic criteria should 
be used is still under debate, as is the question whether 
MetS can be considered a single syndrome or repre-
sents multiple syndromes with different cardiovascular 
risk profiles [2–4].

Differences across ethnicities exist in the prevalence of 
MetS itself as well as in the prevalence of the individual 
components that are included in the MetS definition. 
For example, African American people have a higher 
prevalence of hypertension [5], while they suffer less 
often from dyslipidaemia [6] compared to their Cauca-
sian counterparts. Lower cut-offs for central obesity are 
already used for males from South-Asian descent [2]. 
Furthermore, triglyceride levels were not considered to 
be associated with insulin resistance in African Ameri-
cans, and Gurka et al. (2014) mentioned different correla-
tions for the individual components with the underlying 
MetS construct across ethnicities [7, 8]. Next to genetic 
or biological aspects, (self-reported) ethnicity also entails 
societal, behavioral, and environmental factors [9–11]. As 
the prevalence of MetS is often influenced by such fac-
tors, including socioeconomic status, diet, physical activ-
ity, and educational level [1], this often complicates the 
interpretation of health disparities across ethnic groups.

Another environmental factor that is linked to MetS 
and which exhibits a different composition across eth-
nicities is the gut microbiome [12]. The gut microbiome, 
composed of trillions of bacteria, fungi, viruses, and their 
corresponding genes, has previously been proposed to 
be associated with insulin resistance [13]. Several stud-
ies have already identified associations between the gut 
microbiome and MetS and/or its components, which 
are proposed to be established mainly via inflammation 
and metabolism modulation [14, 15]. In addition, a fecal 
microbiota transplantation (FMT) derived from lean 
donors given to obese Dutch males with MetS showed 
a temporarily improvement in insulin sensitivity after 
6  weeks compared to males receiving their own fecal 
microbiota, highlighting the potential therapeutic effect 
of the gut microbiota in MetS [13].

To gain more insight in the effect of ethnicity, includ-
ing rarely studied ethnic minorities, on the occurrence of 
MetS, its individual components, and the combination of 
these risk factors, we used the Healthy Life in Urban Set-
ting (HELIUS) cohort [16, 17] in Amsterdam, the Nether-
lands. Furthermore, we analyzed the link between the gut 
microbiota and MetS and its components in a subgroup 
of this cohort of which gut microbial sequencing data 
was available. Those insights could help to evaluate if a 
one-size-fits-all approach for MetS is still appropriate in 
regard to its definition, treatment, and the role of the gut 
microbiota across different ethnicities.

Methods
Study population
The HELIUS study is an ongoing prospective cohort 
study in Amsterdam, the Netherlands, which at baseline 
included 18–70  years old residents. Participants were 
randomly recruited from the municipal registry, after 
being stratified by their ethnic origin, being of either 
Surinamese, Ghanaian, Turkish, Moroccan, or Dutch 
descent. A detailed description of the study population, 
study design, and rationale are provided elsewhere [16, 
17]. The Academic Medical Center (AMC) Medical Eth-
ics Committee approved the HELIUS study, and all par-
ticipants provided written informed consent.

Of the total 24,789 baseline participants, a number of 
22,165 people participated in the physical examination, 
including collection of biological samples, and filled in 
the questionnaire as described in Snijder et al. [16]. Out 
of these 22,165 participants, we excluded Javanese Suri-
namese (n = 233), other Surinamese (n = 267), and those 
of other/unknown ethnic origin (n = 48) due to insuffi-
cient numbers of these ethnicities. We further excluded 
participants with missing data on the components of 
MetS or participants with diabetes (defined by either 
the use of antidiabetic medication, fasting HbA1c lev-
els ≥ 48  mmol/L or fasting glucose levels ≥ 7.0  mmol/L, 
or with missing values for those criteria), and all partici-
pants on either antihypertensive or antilipidemic medi-
cation or unknown medication usage, leaving 16,209 
participants for the total dataset.

For the analysis on the gut microbiota composition, 
we included the subset of the participants from the total 
dataset in whom gut microbiota data were available after 
quality control of this data (see below) [18]. Participants 
who used antibiotics in the past 3 months or of unknown 
use were excluded. A number of 3443 participants were 
finally included in the gut microbiota dataset.
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Baseline data collection
After a positive response, subjects received a confirma-
tion letter of an appointment for a physical examina-
tion and a digital or paper version of the questionnaire 
(depending on the preference of the subject) to fill out at 
home. At the research locations, participants underwent 
a physical examination, during which measurements of 
blood pressure and anthropometric (e.g., weight, height 
and waist circumference) characteristics were obtained. 
Measures of waist circumference, systolic blood pressure, 
and diastolic blood pressure were performed in dupli-
cate and then averaged. Furthermore, participants were 
asked to bring their prescribed medications, which were 
coded according to the Anatomical Therapeutic Chemi-
cal (ATC) classification. Fasting blood samples were 
drawn after an overnight fast and were analyzed by the 
main laboratory department of the Academic Medical 
Center in Amsterdam to determine glucose, lipid (total 
cholesterol, HDL-cholesterol and triglyceride levels), and 
HbA1c profiles. More detailed information about the 
measurements is described elsewhere [19].

Ethnicity
Ethnicity of the participant was defined according to his/
her country of birth as well as that of his/her parents, 
which is currently the most widely accepted and most 
valid assessment of ethnicity in the Netherlands [20]. 
Specifically, a participant is considered to be of non-
Dutch ethnic origin if he/she fulfills either of the follow-
ing criteria: (1) he or she was born in another country 
and has at least one parent born in another country (first 
generation) or (2) he or she was born in the Netherlands 
but both his/her parents were born in another country 
(second generation). Of the Surinamese immigrants in 
the Netherlands, approximately 80% are of either African 
or South-Asian origin. After data collection, Surinamese 
subgroups were classified according to self-reported eth-
nic origin. Participants were considered to be of Dutch 
origin if the person and both parents were born in the 
Netherlands.

Gut microbiota profiling and processing
Stool samples were collected, sequenced, and processed 
as previously described in detail in another study [21]. 
In short, DNA was extracted from the home-collected 
stool samples (n = 6056) after which the V4 region of the 
16S rRNA gene was sequenced on an Illumina MiSeq 
instrument. After merging paired-end reads and quality 
filtering the raw reads with USEARCH [22] (v11.0.667_
i86linux64), an Amplicon Sequence Variant (ASV) 
table was obtained using the UNOISE3 algorithm from 
USEARCH. Taxonomy was assigned with “dada2” [23] 

(v1.12.1) on the SILVA reference database [24] (v.132), 
and a phylogenetic tree was obtained using MAFFT [25, 
26] (v. 7.427) and FastTree [27] (v. 2.1.11). In the end, the 
ASV table was rarefied to 14,932 counts per sample. Out 
of the 6056 sequenced samples, 6032 samples remained 
after the total quality control and were used as starting 
point for the above-described inclusion in our gut micro-
biota cohort.

MetS definition
MetS definition was based on the definition by Alberti 
et  al. [2]. Participants were classified as having MetS, if 
they fulfilled at least 3 of the following criteria:

1) High blood pressure, defined by systolic blood 
pressure ≥ 130  mmHg and/or diastolic blood pres-
sure ≥ 85 mmHg

2) Central obesity, defined by waist circumfer-
ence ≥ 80 cm (in females) or ≥ 90 cm (in males from 
South-Asian Surinamese descent) or ≥ 94  cm (in 
males not from South-Asian Surinamese descent)

3) High triglycerides, defined by triglycerides ≥ 1.7 mmol/L
4) High glucose, defined by glucose ≥ 5.6 mmol/L
5) Low HDL, defined by HDL cholesterol < 1.29 mmol/L 

(in females) or < 1.03 mmol/L (in males)

The same criteria were used during the analysis on the 
individual components of MetS.

Covariates
Apart from age and sex, we considered the following 
covariates obtained via the questionnaire: socioeconomic 
status (highest obtained educational level, occupational 
level and employment status), lifestyle (physical activ-
ity, smoking and alcohol use), and dietary habits (sugar 
intake and fruit intake). In gut microbiota analyses, we 
also took proton pump inhibitor (PPI) use into account, 
as this is a known confounder of the gut microbiota.

The highest educational level obtained in the Neth-
erlands or in the country of origin was categorized as 
higher (higher vocational schooling or university), inter-
mediate (intermediate vocational schooling or intermedi-
ate/higher secondary schooling), lower (lower vocational 
schooling or lower secondary schooling), or elementary 
(never been to school or elementary schooling only). 
Current employment status was indicated as either work-
ing, not in work force, unemployed, or unable to work. 
The categories academic, higher, intermediate, lower, and 
elementary were used to indicate occupational status. For 
the lifestyle-related variables, we used a binary indica-
tor for physical activity (i.e., 30  min of moderate/inten-
sive exercise for at least 5 days a week, which is conform 
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the Dutch Standard for Health exercise) and alcohol use 
(used alcohol in the last 12 months). Smoking was cate-
gorized into yes, former, and never. Since we did not have 
the same Food Frequency Questionnaire for all ethnici-
ties, we derived composite variables as proxies for dietary 
habits. We used regularly fruit intake (yes/no) as a proxy 
for a healthy diet, which was indicated as eating at least 
one piece of fruit for at least 5  days/week. In regard to 
an unhealthy diet, we used the daily ingestion (yes/no) of 
sugar drinks as a proxy. This variable was considered to 
be present if participants responded that they had a daily 
consumption of either fruit juice, tea with sugar, regular 
soft drink, sports drink, fruit syrup, fruit drink, malt beer, 
or coffee with sugar or when a participant consumed 7 of 
those drinks 1 to 6 days a week.

Statistical analysis
Clinical and anthropometric values are summarized as 
mean ± standard deviation or as median (interquartile 
range) for normally and non-normally distributed val-
ues, respectively. Categorical variables are presented with 
either counts or percentages.

For the subsequent analyses, except for analyses on 
combinations of components, all analyses were per-
formed for the binarized outcomes of all MetS com-
ponents and MetS itself as well as on the continuous 
outcomes of the components.

Differences in MetS outcomes across ethnicities were 
assessed with general linear models (GLM) (family “bino-
mial” for binarized outcomes, family “gaussian” for con-
tinuous outcomes). Models were run for the total dataset 
and adjusted for age and sex (male as reference). Statisti-
cal significance of the ethnicity variable (Dutch as refer-
ence) was assessed with the likelihood ratio test (LRT). 
In addition, potential sex-dependent ethnic differences 
in MetS outcomes were tested with the inclusion of an 
interaction term between sex and ethnicity in the pre-
vious model, again using a LRT. To assess the potential 
influence of known confounders on the MetS outcomes, 
the same models were subsequently run with adjustment 
for socioeconomic factors, lifestyle, and dietary habits, 
in which higher educational level, academic occupa-
tional level, working employment status, never smoked, 
no alcohol use, no regular physical activity, no regular 
fruit intake, and no daily sugar drinks intake were set as 
reference.

Differences in prevalence of all possible combinations 
of components across ethnicities were assessed with 
the chi-squared test, performed separately on males 
and females from both the total dataset and MetS only 
subjects.

Analyses on the gut microbiota composition were only 
performed on samples from the gut microbiota dataset. 

The diversity of the gut microbiota per participant was 
indicated with several α-diversity indices calculated 
at the ASV level, including Shannon index (R package 
vegan 2.6–4 [28]; function “diversity”), richness (num-
ber of unique ASVs; R package vegan; function “spec-
number”), and Faith’s PD (R package picante v.1.8.2 [29]; 
function “pd”). To assess the effect of α-diversity on MetS 
outcomes, logistic regression (GLM with binomial fam-
ily; for binarized outcomes) and linear regression (GLM 
with gaussian family; for continuous outcome) were 
performed for each diversity index separate (independ-
ent variable). Triglyceride levels were log transformed 
to account for their non-normal distribution. Models 
were adjusted for age, sex, ethnicity, and the interaction 
between sex and ethnicity (if this interaction was sig-
nificant during analyses on the total cohort), assuming 
an ethnic-independent effect of α-diversity (i.e., ethnic-
independent model). To test if the effect of α-diversity on 
the outcomes was different across ethnicities, an interac-
tion term between ethnicity and α-diversity was added to 
the ethnic-independent model and tested for significance 
with a LRT. Those models were considered as baseline 
models (model 1). In addition, additive adjustment for 
socioeconomic factors (model 2; model 1 + socioeco-
nomic), lifestyle-related variables (model 3; i.e., model 
2 + lifestyle), and dietary-related variables (model 4; i.e., 
model 3 + diet) was performed to assess the influence 
of known confounders on the MetS outcomes. We also 
adjusted for PPI use in models 2, 3, and 4, since this is a 
known confounder of the gut microbiome composition. 
Coefficients and standard errors for each ethnicity were 
obtained from the model output, including the coeffi-
cients and variance–covariance matrix, if the interaction 
was significant.

Similar to the α-diversity, we also assessed the effect of 
individual ASVs in regard to MetS outcomes. To account 
for the bias in ethnic sample size, ASVs were included if 
they fulfilled the following criteria in at least one ethnic-
ity, in either males or females: present in > 5% of the sam-
ples and a mean relative abundance > 0.02%. This resulted 
in the inclusion of 604 ASVs. ASVs were included in the 
models as arcsin square-root transformed relative abun-
dance, to account for the non-normality of the distribu-
tion. The same ethnic-independent models (i.e., logistic 
or linear regression, adjusted for age, sex, ethnicity, and 
optionally sex:ethnicity as baseline models, and addi-
tional adjusted for PPI use, socioeconomic, lifestyle, and 
diet variables) were performed for all ASVs (independent 
variable). Per outcome, either binarized or continuous, 
correction for multiple testing was performed using the 
Benjamini–Hochberg correction (p.adjust) [30]. All ASVs 
were also tested for ethnic specific effects by including 
an interaction term between ethnicity and ASV to the 
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ethnic-independent models and tested for significance 
with a LRT. Correction for multiple comparisons was 
performed in a similar manner as described above.

Subsequently, an analysis was performed on the ASVs 
that were significant for at least 3 components (combin-
ing binary and continuous outcomes and considering 
MetS itself as a component) in the ethnic-independent 
models. ASVs were clustered based on their Spearman’s 
correlation, using hierarchical linkage clustering (Euclid-
ian distance, average agglomeration method) with hclust. 
Abundances of ASVs belonging to clusters were summed, 
arcsin square-root transformed, and tested for effects 
on MetS outcomes in the same way as the α-diversity 
measures.

Statistical analyses were performed in R 4.0.3 [31] 
(using RStudio v 1.3.1093). p-values < 0.05 (either BH 
adjusted (ASVs) or unadjusted (other models); either for 
single terms or interaction terms) were considered to be 
statistically significant.

Results
In total, we included 16,209 treatment naïve subjects 
across six ethnicities for whom the characteristics are 
displayed in Table 1.

Heterogeneous and sex‑dependent patterns emerge 
across ethnicities for individual MetS outcomes
Both ethnicity and sex were consistently statistically sig-
nificantly associated with MetS outcomes, indicated by 
MetS itself and both the binarized and continuous out-
comes for the individual components (all p < 2.2 ×  10−16), 
when adjusted for age. In addition, we noticed that dif-
ferences across ethnicities were dependent on sex, indi-
cated by a statistically significant interaction term for all 
outcomes, except the binary outcome high triglycerides 
(Fig. 1A).

Across all ethnicities, MetS occurred the most in par-
ticipants from South-Asian Surinamese and Turkish 
descent in both sexes. However, the lowest prevalence 
of MetS was not specifically linked to one ethnicity. In 
females, the lowest prevalence was found in Dutch, while 
in males, MetS was least frequently observed in African 
Surinamese and Ghanaians. For the latter two ethnic 
groups, in contrast to the other ethnicities, MetS was not 
more prevalent in males than in females. In regard to the 
individual MetS components, generally reflected by both 
binarized and continuous outcomes, in both sexes, blood 
pressure was found to be higher in especially the Ghana-
ians, but also African Surinamese, whereas blood glucose 
and dyslipidemia was higher in South-Asian Surinamese, 
Turkish, and to a lesser extent Moroccans descent popu-
lations. For all ethnicities, these outcomes were in general 
higher in males compared to females. For obesity-related 

outcomes, again a clear sex-dependent difference across 
ethnicities was observed. Females in general had a higher 
prevalence of central obesity than males, but this differ-
ence was most pronounced in Ghanaians where females 
had the highest prevalence across ethnicities, while Gha-
naian (and African Surinamese) males had the lowest 
prevalence across all ethnicities (Fig. 1A).

Taking socioeconomic status-, lifestyle-, and diet-
related variables (known confounders for MetS) into 
account, both ethnicity (all p < 2.2 ×  10−16) and sex (all 
p < 3.5 ×  10−12) remained significant predictors for all 
outcomes. In addition, we noticed in general a similar 
pattern across the ethnicities and sexes as well as the 
sex-dependent differences across ethnicities (Additional 
file 1: Fig. S1).

Combined metabolic risk patterns are heterogeneous 
across ethnicities
Different combinations of individual (binarized) MetS 
components potentially pose different risks for develop-
ing CVD. Prevalence of such combinations was also sig-
nificantly different across ethnicities, both in males and 
in females, as well as in the subset of the participants 
with MetS (chi-square test, all p < 2.2 ×  10−16) (Fig.  1B, 
C). For example, the healthiest combination (i.e., absence 
of all MetS components) occurred most often in the 
Dutch compared to the other ethnicities (Fig.  1B), both 
in males and in females. When focusing on the subset 
of subjects with MetS (Fig.  1C), males most often had 
the combination of central obesity, high blood pres-
sure, and dysglycemia (WBG), as shown in the leftmost 
part of Fig. 1C. However, prevalence of this combination 
was highly different across ethnicities, with an especially 
high occurrence in Ghanaians. In women with MetS, 
either the same WBG combination (Dutch and Ghana-
ian) or the combination central obesity, high blood pres-
sure, and low HDL (WBH) was most common (Turkish 
and Moroccan). In South-Asian and African Surinamese 
females, both WBG and WBH combinations had similar 
prevalence. The least healthy combination (i.e., presence 
of all MetS components together) was highest in Turkish 
males within the male population with MetS compared 
to the other ethnicities, while in the female population 
with MetS, this was highest in Dutch females. For both 
sexes, this prevalence was lowest in Ghanaians.

Lower α‑diversity is associated with worse metabolic 
outcomes in the total population
The gut microbiota composition has previously been 
shown to be associated with MetS and its individual com-
ponents [15, 32], but this composition is different across 
ethnicities [12]. We hence used a subset of our cohort 
(n = 3443; characteristics displayed in Additional file  2: 
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Table 1 Population characteristics for the total population cohort. Overview of population characteristics for the Dutch, South‑Asian 
Surinamese (SA Surinamese), African Surinamese (Afr Surinamese), Ghanaian, Turkish, and Moroccan, presented separately per sex

Dutch SA Surinamese Afr Surinamese Ghanaian Turkish Moroccan

Males
N 1717 863 1145 570 1301 1257

Age (in years) 44.45 ± 13.35 39.07 ± 12.48 44.91 ± 12.87 43.72 ± 12.05 38.26 ± 11.47 39.68 ± 11.92

Educational level

  Higher (%) 63.9 27.1 20.3 9.5 17.9 20.5

  Intermediate (%) 23.0 36.5 34.8 27.9 30.7 35.2

  Lower (%) 10.4 26.9 38.5 44.4 30.7 22.3

  Elementary (%) 2.3 9.2 5.7 16.3 19.8 20.4

  NA (%) 0.4 0.3 0.7 1.9 0.9 1.5

Occupational level

  Academic (%) 22.9 6.6 2.5 1.2 3.8 2.8

  Higher (%) 37.8 18.3 17.0 3.5 9.9 12.7

  Intermediate (%) 21.0 26.5 23.4 8.8 21.1 22.2

  Lower (%) 11.4 32.1 38.8 26.5 41.7 38.7

   Elementary (%) 0.9 5.9 8.6 45.4 10.4 12.8

  NA (%) 6.1 10.5 9.7 14.6 13.1 10.8

Employment status

  Working (%) 79.6 70.2 67.8 72.3 70.4 69.9

  Not in workforce (%) 12.1 9.4 7.9 6.8 7.3 7.0

   Unemployed (%) 5.8 13.8 16.9 15.6 14.7 15.4

  Unfit for work (%) 2.3 5.1 6.0 3.3 5.9 7.2

  NA (%) 0.2 1.5 1.3 1.9 1.7 0.6

Smoking

  Yes (%) 26.0 40.0 45.3 8.1 42.1 27.3

  Never (%) 36.2 45.1 37.3 79.5 34.7 48.8

  Former (%) 37.8 14.6 16.9 11.8 22.5 23.4

  NA (%) 0.1 0.3 0.4 0.7 0.7 0.5

Alcohol

  Yes (%) 95.0 69.9 80.1 53.9 36.7 14.2

  No (%) 5.0 29.8 19.1 45.1 62.4 85.2

  NA (%) 0 0.3 0.8 1.1 0.9 0.6

Physical activity

  Yes (%) 72.5 55.7 69.1 62.1 49.7 54.4

  No (%) 27.4 43.9 30.8 37.9 50.0 45.3

  NA (%) 0.1 0.3 0.1 0 0.4 0.2

SugarDrinks

  Yes (%) 49.7 67.4 70.8 49.5 69.5 74.3

  No (%) 50.1 32.1 28.1 48.1 29.0 25.1

  NA (%) 0.2 0.5 1.0 2.5 1.5 0.6

Fruit intake

  Yes (%) 56.6 39.9 40.2 34.0 43.0 39.6

  No (%) 43.3 60.0 59.3 64.9 56.3 59.4

  NA (%) 0.1 0.1 0.5 1.1 0.7 0.7

PPI use

  Yes (%) 3.4 3.9 3.5 2.5 7.5 6.6

MetSyn = yes (%) 20.6 29.2 15.4 13.3 32.4 24.4

Central obesity = yes (%) 37.8 51.1 31.3 31.9 55.0 48.0

High glucose = yes (%) 29.7 34.1 24.3 22.6 28.1 31.8
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Table 1 (continued)

Dutch SA Surinamese Afr Surinamese Ghanaian Turkish Moroccan

High blood pressure = yes (%) 43.5 42.3 54.5 63.5 41.5 38.2

Low HDL = yes (%) 11.2 27.2 11.5 7.0 33.1 25.9

High triglycerides = yes (%) 14.5 19.6 7.2 4.4 25.1 14.1

Waist circumference (in cm) 91.90 ± 10.60 90.79 ± 11.76 89.68 ± 11.40 89.19 ± 10.16 95.54 ± 11.48 93.73 ± 10.94

Fasting glucose (in mmol/L) 5.34 ± 0.47 5.42 ± 0.47 5.25 ± 0.47 5.21 ± 0.48 5.35 ± 0.45 5.38 ± 0.48

SBP (in mmHg) 127.9 ± 14.7 126.6 ± 14.2 131.3 ± 16.5 135.4 ± 17.1 125.6 ± 12.8 125.6 ± 13.1

DBP (in mmHg) 80.3 ± 9.6 80.9 ± 10.0 82.9 ± 10.5 85.4 ± 11.4 80.3 ± 9.3 78.3 ± 8.8

HDL (in mmol/L) 1.41 ± 0.36 1.20 ± 0.32 1.40 ± 0.38 1.52 ± 0.43 1.15 ± 0.30 1.20 ± 0.30

Triglycerides (in mmol/L) 0.9 [0.63–1.32] 1.05 [0.72–1.47] 0.75 [0.52–1.1] 0.68 [0.49–0.96] 1.09 [0.73–1.71] 0.9 [0.63–1.33]

Females
N 2113 1113 1615 925 1571 2019

Age (in years) 43.59 ± 13.79 41.31 ± 12.51 43.57 ± 12.16 40.23 ± 10.80 37.14 ± 11.14 36.97 ± 12.02

Educational level

 Higher (%) 64.8 26.8 28.7 5.9 16.3 18.6

 Intermediate (%) 20.5 32.0 41.7 23.0 32.5 36.7

 Lower (%) 11.7 30.6 25.8 37.0 19.7 16.4

 Elementary (%) 2.4 10.0 3.0 32.0 30.4 27.7

 NA (%) 0.5 0.6 0.9 2.1 1.1 0.6

Occupational level

 Academic (%) 19.4 5.3 2.8 0.6 3.3 2.4

 Higher (%) 38.1 16.2 20.6 2.6 9.2 12.4

 Intermediate (%) 20.9 31.4 39.4 8.4 19.4 23.2

 Lower (%) 13.4 27.3 22.8 18.3 22.5 17.1

 Elementary (%) 1.7 7.6 3.9 52.2 15.1 10.4

 NA (%) 6.6 12.1 10.3 17.8 30.4 34.5

Employment status

 Working (%) 75.9 65.9 67.5 56.0 44.1 42.0

 Not in workforce (%) 15.8 14.3 11.0 8.5 33.2 37.6

 Unemployed (%) 5.4 12.6 14.1 25.0 14.1 14.1

 Unfit for work (%) 2.6 6.5 6.7 7.4 7.1 5.2

 NA (%) 0.3 0.8 0.8 3.1 1.5 1.1

Smoking

 Yes (%) 23.2 21.1 25.6 2.2 30.7 6.2

 Never (%) 40.3 67.7 58.3 93.1 57.2 90.0

 Former (%) 36.1 10.9 15.7 4.1 11.6 3.5

 NA (%) 0.3 0.3 0.4 0.6 0.4 0.2

Alcohol

 Yes (%) 89.9 53.5 68.3 44.1 14.6 4.6

 No (%) 9.9 46.2 31.5 54.6 84.9 95.1

 NA (%) 0.2 0.3 0.2 1.3 0.5 0.3

Physical activity

 Yes (%) 78.2 46.3 54.4 46.3 35.2 39.7

 No (%) 21.7 53.5 45.5 53.6 64.7 60.1

 NA (%) 0.1 0.3 0.1 0.1 0.1 0.1

SugarDrinks

 Yes (%) 34.4 57.3 56.2 53.7 56.3 61.1

 No (%) 65.1 41.1 42.3 42.7 42.0 37.5

 NA (%) 0.5 1.6 1.5 3.6 1.7 1.3
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Table  S1) to study associations between the gut micro-
biota composition and MetS and its binarized and con-
tinuous individual components. In regard to α-diversity, 
when we assumed the same effect across ethnicities 
on MetS outcomes, a statistically significant lower 
α-diversity was associated with worse MetS outcomes 
after adjusting for age, sex, and ethnicity (including the 
interaction term between sex and ethnicity if necessary, 
i.e., baseline model) (Additional file 3: Table S2). This was 
consistent for all outcomes, both binarized and continu-
ous, when the Shannon index (combining evenness and 
richness) and Faith’s phylogenetic diversity (FaithPD) (a 
measure for phylogenic diversity; not for the binarized 
version of glucose) were considered. In models additively 
adding socioeconomic status (model 2)-, lifestyle (model 
3)-, and diet (model 4)-related variables, the directions 
of associations between α-diversity and the MetS out-
comes remained the same, although the effect size was 
often attenuated. Furthermore, statistically significant 
associations remained significant for all outcomes in 
both α-diversity indicators, except for glucose, DBP (only 
FaithPD), and the binarized versions of HDL, central 
obesity, and glucose (Fig. 2 and Additional file 1: Fig. S2). 
A statistically significant lower richness was only consist-
ently observed for both triglyceride outcomes as well as 
for MetS itself and continuous HDL and waist circumfer-
ence outcomes (Additional file 1: Fig. S3), which, except 
for MetS, remained statistically significant after adjust-
ing for the socioeconomic status-, lifestyle-, and diet-
related variables. Thus, in general, a lower α-diversity 

was associated with worse MetS outcomes when an 
ethnic-independent effect of α-diversity was assumed, 
sometimes even after adjusting for socioeconomic sta-
tus-, lifestyle-, and diet-related variables, especially for 
triglycerides.

Divergent associations of α‑diversity with metabolic 
outcomes across ethnicities
Even though an ethnic-independent effect of α-diversity 
was statistically significant, the addition of an interac-
tion term in the baseline model (i.e., model 1) showed 
that the association of α-diversity, represented by the 
Shannon index, and MetS differed across ethnicities 
for most continuous components (except for glucose) 
and MetS itself (Fig.  2, Additional file  3: Table  S2). In 
Dutch, who have the highest α-diversity in general 
(Additional file  1: Fig. S4), a higher α-diversity was 
significantly associated with better MetS outcomes in 
regard to all components, but this was not always the 
case for all other ethnicities, although the direction of 
the effect was often similar. An aberrant opposing pat-
tern was observed for Ghanaians in relation to blood 
pressure outcomes and triglycerides. In contrast to 
the other ethnicities, the Shannon index was signifi-
cantly positively associated with blood pressure, and 
no significant association was found with triglycerides. 
Although the overall significant interaction between all 
ethnicities and α-diversity did not remain statistically 
significant after the addition of socioeconomic status-, 
lifestyle-, and diet-related variables for most outcomes 

Table 1 (continued)

Dutch SA Surinamese Afr Surinamese Ghanaian Turkish Moroccan

Fruit intake

 Yes (%) 70.5 52.7 50.5 33.8 54.7 49.3

 No (%) 29.3 46.5 48.9 65.0 44.6 49.8

 NA (%) 0.2 0.8 0.6 1.2 0.7 0.9

PPI use

 Yes (%) 3.5 5.7 4.6 2.7 10.0 7.4

MetSyn = yes (%) 9.0 20.6 14.9 13.5 18.0 15.0

Central obesity = yes (%) 56.4 68.9 74.1 80.8 72.6 72.7

High glucose = yes (%) 11.4 17.7 11.8 11.5 11.2 14.1

High blood pressure = yes (%) 19.2 26.6 39.0 45.8 18.0 15.6

Low HDL = yes (%) 12.7 33.8 21.2 15.8 36.4 33.5

High triglycerides = yes (%) 5.2 8.5 2.0 1.3 9.9 4.5

Waist circumference (in cm) 83.77 ± 11.50 86.83 ± 12.97 89.68 ± 14.11 91.47 ± 13.05 89.29 ± 13.82 89.75 ± 14.00

Fasting glucose (in mmol/L) 5.02 ± 0.45 5.13 ± 0.49 5.00 ± 0.46 4.99 ± 0.47 5.03 ± 0.44 5.05 ± 0.47

SBP (in mmHg) 118.2 ± 14.7 120.4 ± 16.9 125.0 ± 16.9 129.4 ± 18.5 116.5 ± 13.8 115.7 ± 13.7

DBP (in mmHg) 73.2 ± 8.9 75.7 ± 9.9 78.3 ± 10.5 80.4 ± 10.9 73.4 ± 8.9 71.3 ± 8.4

HDL (in mmol/L) 1.76 ± 0.44 1.48 ± 0.38 1.63 ± 0.43 1.69 ± 0.43 1.45 ± 0.36 1.46 ± 0.34

Triglycerides (in mmol/L) 0.71 [0.5–0.99] 0.81 [0.6–1.14] 0.63 [0.46–0.87] 0.54 [0.41–0.73] 0.82 [0.56–1.19] 0.67 [0.46–0.99]
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(except for MetS itself ) (Fig.  2), Ghanaians still had a 
significantly different association between the Shannon 
index and the previously mentioned MetS outcomes 
compared to the Dutch reference group. Furthermore, 
the general patterns across ethnicities remained similar.

Overall, statistically significant interactions between 
α-diversity and ethnicity were less frequently observed 
for the binarized versions and for the other α-diversity 
measures, but if significant (mainly central obesity and 
blood pressure related), often with the same patterns as 
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Fig. 1 Overview of the occurrence of the metabolic syndrome (MetS)‑related measures in the total population (n = 16,209). A Predicted outcomes 
(with 95% CI) for the (logistic) regression models with each outcome measure predicted on age, sex, ethnicity, and (except for HighTri) sex:ethnicity. 
Values are provided for a 40 years old person from the different groups. p‑values for the interaction term (tested with a likelihood ratio test) 
in the model are stated. The left column represents the binarized outcomes; the right column represents the continuous outcomes. B Prevalence 
of each possible combination of individual (binarized) metabolic syndrome components for the total population indicated per sex and ethnicity, 
not adjusted for age. The components present in each specific combination are indicated by the black dots in the left part of the figure. The 
proportion of subjects with a particular combination within each group is indicated by the bars on the right part of the figure. W = central obesity, 
B = high blood pressure, H = low HDL, T = high triglycerides, G = high glucose. C Prevalence of each possible combination of individual (binarized) 
metabolic syndrome components for the MetS population indicated per sex and ethnicity, not adjusted for age. The components present in each 
specific combination are indicated by the black dots in the bottom part of the figure. The proportion of subjects with a particular combination 
is indicated by the bars at the top part of the figure. W = central obesity, B = high blood pressure, H = low HDL, T = high triglycerides, G = high glucose
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for the Shannon index (Fig.  2, Additional file  1: Fig. S2 
and S3, Additional file 3: Table S2).

Several ASVs are robustly associated with metabolic 
indicators
At the individual ASV level, ethnic-independent associa-
tions were also identified with MetS and all its individual 

components in the baseline models (Fig. 3 and Additional 
file 4: Table S3), after correction for multiple comparison 
with FDR. Most statistically significant hits were identi-
fied for the continuous values of the components, mostly 
belonging to triglycerides, followed by waist circumfer-
ence. Several ASVs showed a robust association pattern, 
indicated by the same direction of associations across 

Systolic Bloodpressure (mmHg) Diastolic Bloodpressure (mmHg) High Bloodpressure (B) == Yes Metabolic Syndrome (M) == Yes

High Triglycerides (T) == Yes Low HDL (H) == Yes High Glucose (G) == Yes Central Obesity (W) == Yes
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Fig. 2 Overview of the effects of the Shannon index with 95% CI and p‑values in the (logistic) regression models on MetS outcomes. For each 
model, each outcome measure was predicted with Shannon, sex, ethnicity (Dutch as reference), and sex:ethnicity (except high triglycerides) 
and additional covariates. Those models represent the ethnic‑independent effect (i.e., total model). In addition, the effect per ethnicity is provided, 
which is derived from the model with an additional interaction term between ethnicity and Shannon. Significance (p < 0.05; Sign_p) of this 
overall interaction term, assessed via LRT, is indicated by line type, as well as the significance of the overall effect of the Shannon index in the total 
model. Analyses were performed on the subcohort (n = 3443) with microbiota data. For the binarized variables, logistic regression was performed 
and its effect is indicated by LogOdds ratio, while the others were analyzed with a linear regression model and their effect is indicated 
by the coefficients in the model. Effects per ethnicity were calculated based on the coefficients and standard errors obtained from the int 
model output, including the coefficients and variance–covariance matrix. Covariates included in models: model 1: age; model 2: model 1 + PPI 
use + socioeconomic status; model 3: model 2 + lifestyle; model 4: model 3 + diet

Fig. 3 Overview of the (ethnic‑independent) individual ASV analysis per MetS‑related outcome (dependent variable), using (logistic) regression 
models. Models were run with the arcsin squared‑root transformed ASV abundance as an independent variable and adjusted for age, sex, ethnicity 
(Dutch as reference), and sex:ethnicity (except for HighTri). Models and FDR correction was applied per outcome (either binarized or continuous). 
Analyses were performed on the subcohort (n = 3443) with microbiota data. A Overview of the number of significant ASVs (FDR corrected p < 0.05) 
per outcome (either binarized or continuous). Color indicates if the ASV is significant only for the continuous outcome, only for the binarized 
outcome or for both. For both SBP and DBP, High Bloodpressure =  = Yes is used as binarized outcome. B Overview of the number of significant 
ASVs per grouping of components. Per component, ASVs were selected for the combined outcome if it was significant for the binarized and/
or continuous outcome. For blood pressure, SBP and DBP are taken together. M = metabolic syndrome, W = waist circumference, B = blood 
pressure, H = HDL, T = (log transformed) triglycerides, G = glucose. C Overview of a subset of the significant ASVs that were significant for at least 3 
components, using the combined indication from B and using MetS itself as a separate component. For HDL, the direction of association is inverted, 
to make it more consistent with a healthier phenotype. p‑values, direction of coefficients, taxonomical family of the ASV, and the mean relative 
abundance (%) and prevalence (%) are indicated per ASV

(See figure on next page.)
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multiple components and/or consistently being associ-
ated with both the binarized and continuous version of 
the component (Fig.  3A, B). In the subset of ASVs that 
were significant for at least 3 different components, a 
relatively small set of ASVs assigned to Lachnoclostrid-
ium and Agathobacter was associated with worse MetS 
outcomes, while a larger set of ASVs, commonly of the 
Ruminococcaceae, Lachnospiraceae, and Christensenel-
laceae families, was mostly associated with better MetS 
outcomes (Fig.  3C). Although the number of ASVs that 
were statistically significant for at least 3 different com-
ponents reduced greatly in models additionally adjusted 
for socioeconomic status-, lifestyle-, and diet-related 
covariates (model 4), we observed the same pattern for 
the abovementioned families (Additional file  1: Fig. S5 
and Additional file 5: Table S4).

ASVs robustly associated with metabolic indicators belong 
to the RCM trophic network, which is negatively associated 
with MetS outcomes in the total population
During subsequent hierarchical clustering analysis on 
the subset of statistically significant ASVs in the baseline 
models (Fig. 3C), we recognized that several of the Rumi-
nococcaceae and Christensenellaceae ASVs belonged to 
the Ruminococcaceae, Christensenellaceae, and Methano-
brevibacter (RCM) trophic network, previously identified 
by others [32, 33] (Additional file  1: Fig. S6). Interest-
ingly, around half of the ASVs belonging to this network 
remained significant after adjustment for socioeconomic 
status-, lifestyle-, and diet-related covariates (model 4) 
(Additional file 1: Fig. S5).

Analysis on the transformed summed abundance of all 
ASVs in this RCM trophic network showed that it was 
also consistently associated with better MetS outcomes 
if the effect was assumed to be similar across all ethnici-
ties (Additional file 1: Fig. S7, Additional file 6: Table S5) 
in the baseline models (i.e., model 1) but, in general, also 
after adjusting for socioeconomic status (model 2), life-
style (model 3), and diet (model 4) variables, although 
the effect size was slightly attenuated. Importantly, this 
cluster was also highly correlated with the Shannon index 
(Pearson correlation = 0.71).

Effects of RCM on several MetS outcomes are 
ethnic‑dependent
Only a small proportion of the tested individual ASVs 
had a statistically significantly different effect across 
ethnicities on metabolic outcomes in the baseline mod-
els after correction for multiple comparisons (FDR). 
Those were mainly related to central obesity and MetS 
itself (Additional file  1: Fig. S8). However, remarkably, 
several of those ASVs were part of the previously men-
tioned RCM trophic network. Subsequent analysis on 

the transformed summed RCM abundance showed that 
its effect on various of the MetS outcomes differed across 
ethnicities, indicated by statistically significant interac-
tion terms, except for the binarized triglyceride compo-
nent (Additional file 1: Fig. S7; Additional file 6: Table S5) 
in the baseline models. Similar as for the Shannon index, 
in Dutch, the association of higher abundance with better 
MetS outcomes was significant for all outcomes, and in 
the Ghanaians, the relation to SBP and DBP was positive 
again. In the South-Asian Surinamese, the RCM trophic 
network was not associated with any of the outcomes at 
all but also not very abundant (Additional file 1: Fig. S4), 
while in Turkish, Moroccan, and African Surinamese, it 
was significant for some of the outcomes, including the 
continuous version of triglycerides and waist circumfer-
ence. Remarkably, hierarchically adding socioeconomic 
status-, lifestyle-, and diet-related variables to the base-
line model did not affect the statistical significance or 
pattern of the overall interaction between ethnicity and 
the RCM trophic network for half of the MetS outcomes.

Discussion
In this study, we explored the ethnic specific occurrence 
of MetS and its individual components in metabolically 
untreated individuals from six different ethnicities, liv-
ing in Amsterdam (The Netherlands), as well as the asso-
ciation between the gut microbiota composition and the 
different MetS outcomes in a subset of those individu-
als. Therefore, this study contributes to the still ongo-
ing debate if the same conclusions can be drawn across 
different ethnicities in regard to MetS definition, occur-
rence pattern, and the role of the gut microbiota.

We showed that both binary and continuous indica-
tors of the MetS components, as well as the prevalence 
of certain combinations of components, showed differ-
ences across ethnicities and were often sex-dependent. In 
regard to the gut microbiota composition, a small num-
ber of ASVs was found to be associated with worse MetS 
outcomes. However, higher abundance of most other 
ASVs, as well as a higher α-diversity, and a higher abun-
dance of the RCM trophic network (previously associated 
with low BMI, low triglyceride levels and positively with 
α-diversity [32–34]) were robustly associated with better 
MetS outcomes, when ethnic-independent effects were 
assumed and often even after adjustment for known con-
founders of MetS. This was especially true in regard to 
waist and triglyceride-related measures. However, statis-
tically significant ethnic-specific effects of the gut micro-
biota were noticed on several outcomes for especially 
the Shannon index and the RCM cluster. Associations of 
higher α-diversity and higher RCM network abundance 
with better MetS outcomes were often significant in the 
Dutch, but not always in all other ethnicities, although 



Page 13 of 17Balvers et al. Genome Medicine           (2024) 16:41  

the direction was often similar. However, in Ghanaians, 
the Shannon index and RCM cluster showed an aber-
rant positive relation with blood pressure outcomes as 
compared to the other ethnicities. Although statistically 
significant overall interactions between gut microbiota 
and ethnicities were often less (or not) significant after 
adjustment for known confounders of MetS, aberrant 
associations were still observed for Ghanaians compared 
to the Dutch for some outcomes and patterns across eth-
nicities remained similar.

A differential, often sex-dependent, prevalence of MetS, 
its components, and their combinations were observed 
across ethnicities. Subjects from African descent (espe-
cially Ghanaian, but also African Surinamese) had higher 
values for blood pressure on average, while South-Asian 
Surinamese, Turkish, and to a lesser extent Moroccan had 
higher MetS rates and in general fared worse in regard to 
lipid-related measures. Several other studies have simi-
larly noted differences across ethnicities for MetS and/
or its components, including studies performed on our 
cohort [35, 36]. Although direct comparisons across 
cohorts are often difficult due to different diagnostic and 
inclusion criteria, South-Asian Surinamese are often 
mentioned to be more dyslipidemic compared to Cauca-
sian Europeans, while in African Americans, high blood 
pressure is more common and contradictory also low tri-
glyceride levels [6, 37–39]. Others have similarly reported 
on the sex-dependent ethnic heterogeneity across Afri-
can Surinamese, South-Asian Surinamese, and Europe-
ans [40, 41], especially for central obesity and MetS. In 
addition, although ethnic differences were not investi-
gated, differences in the prevalence of specific combina-
tions within European countries [3] and sexes [42] were 
previously recognized, and it was suggested that the risk 
for mortality or CVD is combination-dependent [4, 43, 
44]. This might indicate that the definition of MetS actu-
ally combines different types of metabolic dysfunction 
and that from a pathophysiologic point of view, MetS is 
not a homogeneous syndrome, as suggested by Guize 
et al. [43]. Alternatively, if MetS is a single syndrome, it 
could also imply that different components have different 
weights in regard to MetS, dependent on sex or ethnicity, 
as suggested by Gurka et al. [8]. They for example men-
tion that triglycerides were less correlated with MetS in 
African Americans compared to Hispanics or European 
Americans. Whether the current diagnostic criteria, or 
specific combinations of factors, are equally effective 
across ethnicities and sexes in identifying patients at risk 
for T2D or CVD remains thus to be further investigated.

Analysis on both the α-diversity and individual ASV 
level showed that various gut microbiota indicators 
were robustly associated with multiple MetS compo-
nents when an ethnic-independent effect was assumed. 

Several of these robustly associated ASVs belonged to 
the RCM trophic network, which was highly correlated 
with the α-diversity. Other studies, mainly with Cauca-
sian subjects, frequently make the same connection of 
high α-diversity generally being negatively associated 
with MetS risk factors [14, 15, 32, 45–48], yet associa-
tions between specific taxa and MetS or its components 
are often less consistent across studies, although Chris-
tensenellaceae is often mentioned [48]. However, when 
regarding these reported taxa from a (trophic-network) 
cluster like approach, the similarities between stud-
ies become more apparent. For example, in the Finn-
ish METSIM cohort, a similar cluster of co-occurring 
OTUs, represented by OTUs from Christensenellaceae, 
Ruminococcaceae, Tenericutes, and Methanobrevi-
bacter, was identified and positively associated with 
glutamine, acetate, and polyunsaturated fatty acids 
but negatively with triglycerides, glycerol, and glycA 
[32]. A similar analysis on the supplemental data of a 
Korean cohort reveals the exact same RCM cluster to 
be correlated with these MetS components [49]. Other 
studies also mentioned negative associations between 
Christensenellaceae, Ruminococcaceae, Methanobrevi-
bacter, and Tenericutes with MetS and/or its compo-
nents [33, 46, 48, 50]. The study of Ruaud et al. (2020) 
shows that this cooccurrence between Christensenel-
laceae and Methanobrevibacter is functional rather 
than just due to shared environmental preferences [51]. 
The  H2 that is produced by Christensenellaceae spe-
cies by fermentation is used as a substrate for metha-
nogenesis by Methanobrevibacter species, indicative of 
cross-feeding. Furthermore, they showed that Metha-
nobrevibacter smithii shifted the metabolic output of 
Christensenella minuta towards more acetate and  H2 
production and less butyrate, which hypothetically 
might result in less energy availability for the host and 
an accompanying lower BMI. This is also consistent 
with the positive association with acetate observed in 
the METSIM cohort. Clustering of Christensenellaceae, 
often considered to be the hub in those networks, with 
other taxa might also be due to its capability to pro-
duce  H2 and acetate by providing substrates for other 
hydrogenotrophs or butyrate producers, including sev-
eral Ruminococcaceae and Roseburia [52]. A high abun-
dance of this RCM cluster thus seems to be indicative 
of the presence of a highly diverse trophic-network 
that seems to be related to a metabolically healthy host 
phenotype of which many of the between species and 
between host metabolic interactions have yet to be fully 
understood. Further research is needed to understand 
the exact mechanisms, including the potential medi-
ating role of a high fiber and protein diet, with which 
Christensenellaceae has also been associated [53]. 
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Many species that are part of the RCM cluster are how-
ever currently still uncultured making functional char-
acterization of the cluster a prolonged challenge.

In addition to the RCM cluster, we identified several 
other (clusters of ) taxa that were related to multiple 
MetS components that have been found by others as 
well [14, 15, 32, 46, 48]. This might indicate a common 
mechanism that either protects from or could contrib-
ute to the development of (parts of ) MetS. Asnicar et al. 
(2021) for example show that Haemophilus parainflu-
enzae and Turicibacter sanguinis were, similarly to our 
study, related to health [14]. Asnicar also found several 
other bacterial groups typically associated with the 
Bacteroides(2) enterotype, like Flavonifractor plautii, 
Ruminococcus gnavus, and several Clostridia to be part 
of the disease cluster, similar to many of the ASVs iden-
tified in our “risk cluster” such as Flavonifractor plautii 
and ASVs assigned to Lachnoclostridium, Agathobacter, 
Sutterella, Tyzzerella_3, and Collinsella aerofaciens.

The multi-ethnic HELIUS study made it possible to 
look at potential ethnic-specific associations between 
the gut microbiota composition and MetS and its com-
ponents. Statistically significant interactions between 
ethnicity and the gut microbiota indicators were par-
ticularly profound in regard to the Shannon diversity 
index and the RCM trophic network. Especially for 
Ghanaians, we identified an aberrant positive relation-
ship with those indicators and blood pressure in the 
baseline models. While the overall significance of the 
interaction across ethnicities was not statistically sig-
nificant anymore for the Shannon index after adjusting 
for additional confounders, the Ghanaians still had a 
significantly different effect size compared to the Dutch 
population. We can only speculate about the mecha-
nisms behind these observations. We theorize that this 
aberrant association with hypertension might in part be 
linked with the fact that population of African descent 
are more salt-sensitive [54] and therefore could have a 
different etiology of hypertension. However, another 
study performed in 655 participants from Ghana, South 
Africa, Jamaica, and the USA with African ancestry 
did show a negative association between the Shannon 
index and hypertension in participants from Ghana 
and South Africa [45]. We similarly did not observe 
this same pattern in African Surinamese hinting that 
more factors than just genetics may be of importance 
including environmental ones. It could be that we have 
missed important confounders to include in our mod-
els, that the current confounders are not representative 
enough, or that the relationship between the current 
confounders and the MetS outcomes are not as impor-
tant for the Ghanaians. Further research may shed light 
on those potential explanations.

Apart from the aberrant blood pressure pattern, sta-
tistically significantly different associations between eth-
nicity and α-diversity and/or the RCM trophic network 
abundance were also shown for other MetS components 
and MetS itself. Although not always explicitly tested for 
an interaction effect, other studies also mention potential 
ethnic differences in associations between the gut micro-
biome and, especially, central obesity-related measures. 
In two small studies comparing either African Americans 
or East Asians to European Americans, it was suggested 
that low α-diversity was more consistently related to high 
BMI in European Americans [55, 56]. Furthermore, the 
relation between Christensenellaceae and waist circum-
ference might apply only to specific populations, as it was 
significantly associated in a Danish cohort, but not in an 
equally sized South Indian cohort [57]. We do not yet 
understand the mechanisms behind these ethnic discrep-
ancies. It might be that in some ethnicities this cluster 
does not have the right (dietary) environment, by either 
missing important input metabolites or that important 
(intermediate) metabolites produced within this cluster 
are converted by other species into less beneficial metab-
olites. Since we did notice that the statistically signifi-
cance of the overall interaction between ethnicity and the 
gut microbiota, in particular the Shannon index, on MetS 
outcomes was often not preserved after correction for 
known confounders of MetS (i.e., socioeconomic status-, 
lifestyle-, and diet-related variables), those confound-
ers might indeed partly explain the observed differences. 
However, this could also be due to a lack of power since 
the Dutch constituted around a third of the total popu-
lation with microbiota data. Genetic difference between 
ethnicities is bound to play a role but microbial compo-
sitional differences, such as a very low of abundance of 
the RCM trophic network as was here observed in South-
Asian Surinamese, could in addition be behind some of 
the differential responses. Lastly, it is possible that this is 
a reflection of MetS heterogeneity as was also observed 
in the total cohort. These considerations are relevant, as 
more research is being focused on treatments aimed at 
altering the gut microbiome, for example fecal microbial 
transplants (FMTs) and/or simply dietary interventions. 
This might indicate that treatment needs to be tailored 
for each ethnicity individually. Additionally, the conclu-
sions that are drawn from cohorts of European descent 
may not hold true for other populations, which is of 
importance considering that the vast majority of clini-
cal trials are conducted on majority European descent 
cohorts.

Our study has several unique strengths. We included 
multiple ethnic minorities living in the same geographic 
area with a comparatively large sample size, includ-
ing ethnicities that are rarely studied. Furthermore, we 



Page 15 of 17Balvers et al. Genome Medicine           (2024) 16:41  

combined different levels of gut microbiota analyses 
(both summary statistics and individual ASVs) that were 
linked to each other and allowed us to look at it from a 
more holistic point of view. In addition, we analyzed both 
MetS itself as well as all its individual components (both 
binarized and continuous outcomes) that are part of the 
MetS definition. Lastly, instead of running the analyses 
separate per ethnicity, we included interaction terms in 
order to preserve power. In terms of limitations, having 
unequal sample sizes per ethnicity, especially in regard 
to the microbiota data, is not ideal as this might have 
resulted in a bias towards associations in the Dutch in the 
ethnic-independent analyses or that the number of inter-
actions was underestimated. Furthermore, while different 
effects of the microbial composition were identified, we 
did not look at the potential function of the microbiome. 
As several different bacteria can have the same function-
ality, it could be that the relations at the functional level 
might be either more similar or even more divergent. As 
is the case with all cross-sectional studies, causal conclu-
sions cannot be made. Since socioeconomic status, life-
style, and diet could influence both the gut microbiota 
and the MetS outcomes considered here, we investigated 
their effect in additional models. However, those indica-
tors, especially the diet-related indicators, are just proxies 
of those constructs, which potentially did not adequately 
capture the influence of those factors on the MetS out-
comes. Indeed, as ethnicity is a complex construct, and 
might partly cover these factors, it is difficult to truly sep-
arate those effects from ethnic specific effects. Lastly, we 
included a relatively healthy study population by exclud-
ing participants on medication relating to MetS, which 
might have introduced some bias as exclusion due to 
medication usage was not equal across ethnicities. How-
ever, this also prevented potential confounders obfuscat-
ing results, as metformin for example is known to affect 
the gut microbiome composition [58].

Conclusions
In conclusion, we showed that the prevalence of MetS 
itself, its individual components, and combinations 
thereof are different across ethnicities and are often 
sex-dependent. Furthermore, gut microbiota composi-
tion indicators (i.e., α-diversity, individual ASVs and the 
RCM trophic network), which differ across ethnicities, 
are mostly associated with better MetS outcomes if an 
ethnic-independent effect is assumed. However, statisti-
cally significant ethnic-dependent associations with MetS 
outcomes were observed for α-diversity and the RCM 
trophic network. In particular, a higher diversity was sig-
nificantly associated with better MetS outcomes in Dutch 
and sometimes other ethnicities, whereas in Ghanaians, 
it associated with high blood pressure outcomes. Even 

though adjustment for socioeconomic status-, lifestyle-, 
and diet-related variables often attenuated the effect size 
and/or the statistical significance of the ethnic-specific 
associations, an overall similar pattern across outcomes 
and ethnicities remained. These findings highlight the 
complex heterogeneous nature of MetS itself and the 
need for more research in its occurrence and effective-
ness in different ethnicities as well as the potential contri-
bution of the gut microbiota to this disease.
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is indicated as a LogOdds ratio, while the others were analyzed with a lin‑
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