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Abstract 

Background Chronic kidney disease (CKD) is highly prevalent among Indigenous Australians, especially those 
in remote regions. The Tiwi population has been isolated from mainland Australia for millennia and exhibits unique 
genetic characteristics that distinguish them from other Indigenous and non-Indigenous populations. Notably, 
the rate of end-stage renal disease is up to 20 times greater in this population compared to non-Indigenous popula-
tions. Despite the identification of numerous genetic loci associated with kidney disease through GWAS, the Indig-
enous population such as Tiwi remains severely underrepresented and the increased prevalence of CKD in this 
population may be due to unique disease-causing alleles/genes.

Methods We used albumin-to-creatinine ratio (ACR) and estimated glomerular filtration rate (eGFR) to esti-
mate the prevalence of kidney disease in the Tiwi population (N = 492) in comparison to the UK Biobank (UKBB) 
(N = 134,724) database. We then performed an exploratory factor analysis to identify correlations among 10 CKD-
related phenotypes and identify new multi-phenotype factors. We subsequently conducted a genome-wide asso-
ciation study (GWAS) on all single and multiple phenotype factors using mixed linear regression models, adjusted 
for age, sex, population stratification, and genetic relatedness between individuals.

Results Based on ACR, 20.3% of the population was at severely increased risk of CKD progression and showed 
elevated levels of ACR compared to the UKBB population independent of HbA1c. A GWAS of ACR revealed novel 
association loci in the genes MEG3 (chr14:100812018:T:A), RAB36 (rs11704318), and TIAM2 (rs9689640). Additionally, 
multiple phenotypes GWAS of ACR, eGFR, urine albumin, and serum creatinine identified a novel variant that mapped 
to the gene MEIS2 (chr15:37218869:A:G). Most of the identified variants were found to be either absent or rare 
in the UKBB population.

Conclusions Our study highlights the Tiwi population’s predisposition towards elevated ACR, and the collec-
tion of novel genetic variants associated with kidney function. These associations may prove valuable in the early 
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Background
The quest for the genetic basis of chronic diseases has led 
to the discovery of several genes and loci. Approaches 
such as genome-wide association studies (GWASs) estab-
lished significant associations between genomic vari-
ants and complex traits at the population level with the 
potential to inform diagnosis, preventative health man-
agement, personalized therapy, and clinical outcomes [1, 
2]. However, there is a notable “genomic divide” between 
Indigenous and non-Indigenous populations [3], as those 
who endure the highest burden of chronic diseases ben-
efit the least from advancements in genetic research [4]. 
Indigenous representation in genome-wide association 
studies (GWAS) was estimated at 0.05% in 2016 [5] and 
0.02% in 2019 [6]. Indigenous populations are also con-
spicuously absent from reference variant data and not 
represented in the biobank such as the Genome Aggre-
gation Database (gnomAD) and the UK biobank (UKBB), 
which include global data from 138,632 and 450,000 
individuals, respectively. Australian Indigenous popu-
lations, in particular, are underrepresented in genomic 
studies, including the 0.05% of Native peoples included in 
GWAS datasets [5]. Although global efforts such as the 
Silent Genomes Project (2017) and the Aotearoa Variome 
Project (2019) aim to create background variant data-
bases (BVD) for Indigenous populations in Canada and 
New Zealand, respectively, efforts to include Australian 
Indigenous populations in variant databases are lacking, 
thereby widening the gap in equitable genomic healthcare 
between Indigenous and non-Indigenous Australians.

Chronic Kidney Disease (CKD) is defined as the grad-
ual loss of kidney function over a period of time and is 
diagnosed by an estimated glomerular filtration rate 
(eGFR) of < 60 ml/min/1.73  m2 for ≥ 3 months [7, 8]. It is 
one of the most prevalent chronic diseases affecting more 
than 840 million people globally in 2017, thereby impact-
ing ~ 13.4% of the global population [9]. Although CKD is 
on track to be the 5th leading cause of years of life lost by 
2040 [10], kidney disease has not received ample atten-
tion [9]. Notably, the prevalence of CKD is considerably 
higher in Indigenous populations, with a twofold higher 
rate reported for Indigenous Canadians [11] and 6- and 
eightfold higher rates of end-stage renal disease and non-
dialysis CKD hospitalizations, respectively, for Indig-
enous compared to non-Indigenous Australians [12]. 
Moreover, the age of onset for CKD in Indigenous pop-
ulations is much lower than in other ethnic groups, and 

when combined with limited access to medical services 
and treatments such as dialysis and kidney transplanta-
tion, results in a higher incidence of premature mortality 
in these populations [13].

Over the past decade, genetic research using GWASs 
has revealed more than 600 genes implicated in both 
monogenic disorders and syndromic diseases that impact 
the kidney and urinary tract [14]. The largest trans-ances-
try GWAS meta-analysis for eGFR, which involved over 
a million participants, identified 424 loci, 201 of which 
were novel [15]. A 2019 trans-ethnic GWAS of eGFR in 
280,722 individuals, with replication in 765,289 individu-
als from the Chronic Kidney Disease Genetic (CKDGen) 
Consortium, identified 136 genome-wide significant 
loci and 82 novel variants, as well as 36 novel genes via 
genetically predicted gene expression associated with 
renal function that were not previously identified by 
GWAS [16]. In addition to the identification of loci asso-
ciated with eGFR, GWASs of diverse populations have 
also identified additional loci associated with urinary 
ACR [17, 18], and serum urate levels [19]. The Population 
Architecture using Genomics and Epidemiology (PAGE) 
study, which investigated CKD-associated variants in 
ethnic minority communities in the USA, identified a 
novel variant associated with NMT2 and evidence of 
association with APOL1 [20]. The discovery of APOL1 is 
significant in pointing toward population-specific causes 
of CKD in African Americans [21], who face a higher 
burden of CKD than Europeans. However, with few 
exceptions [16, 20, 22], the proportion of GWAS studies 
and publicly available databases involving underrepre-
sented populations has either plateaued or decreased in 
the last several years [23]. Notably, the lack of available 
reference genomes and databases for Indigenous popula-
tions also limits our ability to study specific CKD-asso-
ciated variants that may have novel interactions in these 
populations, hindering efforts to develop new avenues for 
early diagnosis and treatment.

The Tiwi Islanders are a genetically distinct Indigenous 
population—are one of the founder populations of Aus-
tralian Aboriginal communities and are thought to have 
remained in relative isolation from mainland peoples 
since the islands they inhabit became separated from the 
mainland by the Clarence Straight 7000–15,000  years 
ago [24, 25]. In a study of renal disease and other co-
morbidities in Australian Aboriginals, the Tiwi people 
exhibited a substantially higher predisposition to CKD 

diagnosis and treatment of renal disease in this underrepresented population. Additionally, further research is needed 
to comprehensively validate the functions of the identified variants/genes.
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compared to other Indigenous populations, which was 
correlated with both age and waist measurements, while 
their risk of hypertension or diabetes is comparable to 
that of other Indigenous groups tested [26]. Additionally, 
kidney disease—is measured by the urinary albumin-to-
creatinine ratio (ACR) which is defined as the ratio of 
urine albumin-to-urine creatinine. ACR was found to be 
significantly heritable in the Tiwi individuals, in which a 
deletion in angiotensin-converting enzyme (ACE) and a 
specific mutation in tumor protein 53 (p53) contributed 
approximately 15% of the total heritability. This study 
further determined that 64% ACR heritability in the Tiwi 
population is attributed to six polymorphisms across four 
candidate genes, highlighting genetic contributions to 
the elevated presence of chronic disease in this popula-
tion [27]. Despite this, very few studies to date have used 
genome-wide approaches to characterizing the genes and 
loci responsible for CKD in the Tiwi population.

The present study represents the most in-depth pheno-
typic and genotypic analysis of the genetic determinants 
of CKD in Indigenous Australians to date. Although one 
GWAS investigation of CKD in a sample of 249 Tiwi indi-
viduals identified eight single nucleotide polymorphisms 
(SNPs), four of which were found to be significantly asso-
ciated with ACR upon re-testing [25]. The Affymetrix 
SNP array 5.0 was used in this study which is more suit-
able for European and West African populations [28] and 
failed to capture the full extent of the variants responsible 
for CKD in the Tiwi cohort owing to its low resolution 
for this population [25]. Thus, to address these gaps and 
further elucidate the genetic underpinnings of CKD in 
the Tiwi people, we utilized clinical and whole-genome 
sequencing data. Our objectives were three-fold: (1) iden-
tify the key markers associated with the kidney disease, 
stratify CKD prognosis, and assess the risk of kidney dis-
ease in the Tiwi cohort using available phenotypes, (2) 
estimate the heritability and perform a GWAS analysis 
for the individual quantitative phenotypes, (3) perform 
a GWAS analysis for multiple phenotypes combined to 
identify the pleiotropic loci. This current research study 
is a significant milestone in the field of scientific enquiry 
to understand the genetic architecture of CKD in the 
underrepresented population.

Methods
Study population and datasets
The whole genome sequence data for this study were 
acquired from blood samples collected from 492 Tiwi 
individuals between 2013 and 2014, representing approx-
imately 40% of Tiwi adults [25]. The associated pheno-
typic profiles include blood pressure, height, weight, 
waist circumference, glycated hemoglobin, diabetes 
diagnosis, serum and urine albumin, serum, and urine 

creatinine, urinary ACR, and eGFR (estimated using 
CKD-EPI 2021  Eq.  [29]). Whole genome sequencing 
(WGS) of the Tiwi cohort was performed in four batches 
using Illumina paired-end sequencing (Illumina Novaseq 
6000; Illumina, Inc., San Diego, CA, USA) with an aver-
age coverage of > 30 × . Both genotypic and phenotypic 
data were available for only 461 of  492 individuals. The 
quality control steps were performed using plink v1.9 and 
include missing genotype rate (–geno 0.02 –mind 0.1), 
Hardy–Weinberg Equilibrium (p > 5*10–8), heterozygo-
sity rate (± 3 standard deviation), and minor allele fre-
quency (–maf 0.05). After quality control (QC) steps, 
samples from 455 individuals and 4.9 million SNPs were 
utilized for the genotype-to-phenotype association. Sub-
sequently, 150,000 whole genome sequences and cor-
responding phenotype data from UK Biobank (UKBB) 
data were used to compare allele frequency and clinical 
data between the Tiwi and the UKBB population, which 
included the following subgroups: African (n = 1320), 
British (n = 124,948), Caribbean (n = 1835), Chinese 
(n = 415), Indian (n = 1772), Irish (n = 3779), and Paki-
stani (n = 654) [30].

Indigenous community consultations
This project has been carried out in consultation and 
ongoing engagement with Tiwi Elders and lead Indig-
enous research experts. The present study adheres to 
all guidelines, such as those of the National Health and 
Medical Research Council (NHMRC), developed to steer 
the ethical conduct of research with Indigenous Aus-
tralian people. The core values of Spirit and Integrity, 
Cultural Continuity, Equity, Reciprocity, Respect, and 
Responsibility have been embedded throughout the pro-
ject. Participants provided consent for genetic samples to 
be used to investigate the causes of CKD at the time of 
collection as previously reported [25]. The current study 
subsequently received the support of the Tiwi Island 
Land Council.

Analysis of phenotypic data
Few missing values were observed in the phenotype data, 
which were assumed to be missing at random. To obtain a 
complete dataset, we utilized the multivariate imputed by 
chained equation (MICE) technique [31] and employed 
R package mice [32]. The complete set of descriptive sta-
tistics associated with these data is given in Additional 
file  1: Table  S1. We used Kidney Disease Improving 
Global Outcomes (KDIGO) nomenclature [8] to cap-
ture the prognosis of CKD using eGFR and ACR. CKD 
is classified into six categories based on eGFR, ranging 
from normal kidney function to kidney failure, as follows: 
G1 (≥ 90; Normal kidney function), G2 (60–89; mild 
loss), G3a (45–59; mild to moderate loss), G3b (30–44; 
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moderate to severe loss), G4 (15–29; severe loss), and G5 
(≤ 15; kidney failure). eGFR levels ≤ 60 or stage ≥ stage G3 
indicate chronic kidney disease. The ACR stratification 
was as follows, stage A1 (< 3 mg/mmol; normal to mildly 
increased risk), stage A2 (3 to 30 mg/mmol; moderately 
increased risk), and stage A3 (> 30  mg/mmol; severely 
increased risk). To demonstrate the extent of kidney dis-
ease within the Tiwi population, we conducted a com-
parison of ACR and eGFR with the UKBB population. To 
ensure comparability between the two populations, we 
narrowed the Tiwi population study cohort to individuals 
between the ages of 37 and 73 for this comparison. This 
comparative cohort includes 279 individuals from the 
Tiwi and all UKBB cohorts divided into different ethnici-
ties as mentioned in the Study populations and datasets 
section. The Kruskal–Wallis test was utilized to examine 
the difference of ACR and eGFR between the Tiwi popu-
lation and various populations in UKBB data. It is impor-
tant to note that this comparison cohort of the Tiwi was 
exclusively utilized to compare phenotypes. Addition-
ally, we utilized ANCOVA (Analysis of Covariance) to 
compare the ACR among various ethnic groups, adjust-
ing for covariates such as HbA1c and age. Subsequently, 
post-hoc analysis was carried out using the Bonferroni 
correction. The ANCOVA is a statistical method used 
for comparing the means of two or more groups while 
accounting for continuous covariates. The ANCOVA 
and post hoc test were carried out using the Anova func-
tion in the R car package [33] and emmeans_test from 
the R rstatix package [34] respectively. We then applied 
the Mann–Whitney U test to assess the statistically sig-
nificant differences in ACR, eGFR, and A1c phenotypes 
between the diabetes and non-diabetes groups. We 
subsequently performed an exploratory factor analysis 
(EFA) to determine the relationship between the pheno-
types, which helped us to identify the underlying hidden 
structure of a set of variables in the data [35]. And scree 
plot was used to decide the optimal number of factors 
required for further analysis. When the factor loadings 
of any variable exceeded 0.30, we considered the vari-
able to be loaded onto that factor. If a variable was loaded 
onto multiple factors and its loadings exceeded 0.30, our 
determination of the factors was based on their correla-
tion with other variables that were already loaded into 
the same factor. If the correlation was greater than ± 0.5, 
the variable remained within the factor; otherwise, the 
variable was allocated to another factor with the next 
highest loadings or a higher correlation with other varia-
bles within that factor. The identified factors were further 
used to define the variable groups for the multi-pheno-
type to-genotype association. A principal component 
analysis (PCA) enabled us to identify the key features that 
account for a significant portion of the variability in the 

data and are used to capture the pleiotropic loci in asso-
ciation with clinical data. PCA was performed on the set 
of phenotypes uncovered in the factor analysis, and only 
principal components (PCs) with an eigenvalue > 1 were 
used for association analysis. These computed PCs were 
used as an output variable within the frame of the GWAS 
analysis. Factor analysis and PCA were performed using 
the R package FactomineR [36]. The function factanal 
was used to perform factor analysis with varimax rota-
tion and five factors, while the function PCA adjusted 
for age and sex was used for PCA analysis. Next, we esti-
mated the SNP heritability (h2

SNP
) for all individual traits 

and calculated PCs using Genome-wide Complex Trait 
Analysis (GCTA v1.93.2) –reml function [37]. Before esti-
mating heritability, we log-transformed the skewed vari-
ables to reduce the skewness present in the phenotypes. 
GWAS was performed only on the traits with significant 
heritability (p < 0.05). The entire pipeline of phenotype 
data analysis is shown in Fig. 1.

Genome‑wide association analysis
The mixed-level linear model was performed for the 
traits (individual and phenotype PCs) to account for the 
cryptic relatedness (genetic relationship matrix (GRM)) 
between the individuals and other fixed covariates such 
as age, and gender to determine the association between 
the genotype and phenotype. To account for popula-
tion stratification, genotype PCs were performed using 
PLINK v1.9 [28, 38], and the top two PCs were added as 
a covariate in the linear mixed model. We performed this 
model using the –mlma-loco function of GCTA v1.93.2. 
This GCTA-LOCO approach provides a more robust 
estimate by excluding the tested SNPs from calculat-
ing the GRM to avoid the loss of power and also helps 
to reduce the risk of false positives and false negatives in 
the association analysis [39]. We employed the mixed-
level linear model to account for the substantial degree 
of relatedness among Tiwi individuals. For instance, the 
identity by descent (IBD) estimates showed that 45.2% 
of the individuals shared 1st-degree relations, while only 
21.8% of the study cohort consisted of unrelated indi-
viduals. Genetic loci that passed the genome-wide sig-
nificance p-value threshold of 5 ×  10−8 with a cluster of 
at least two nearby linkage disequilibrium (LD) variants 
with p < 1 ×  10−5 was considered statistically significant 
and investigated further in this study. The Manhattan plot 
was used to visualize the distribution of association of the 
genetic variant across the genomes. To assess the signifi-
cance of genetic association in GWAS results, we utilized 
a QQ plot to compare the observed distribution of p-val-
ues to the expected distribution under a null model of no 
association. A deviation from the diagonal would indicate 
the presence of systematic error or bias in the association 
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test. Genotype PC was involved in the model to account 
for the potential population stratification and correction 
factor lambda (λ) was estimated to check the presence of 
other sources of systematic error (λ = 1 indicates there is 
no population stratification and systematic error, λ < 1 or 
λ > 1 indicates that there is presence of population strati-
fication and sources of systematic error). Additionally, 
we performed a conditional and joint association (cojo) 
analysis to capture the independent signal associated 
with each phenotype using the –cojo-slct from the GCTA 
v1.93.2 tool, uses stepwise model regression to mitigate 
high SNP dependency and identify LD-independent 
SNPs with an LD r2 < 0.1 [40].

We used ANNOVAR (version 2021Jul28) [41] to func-
tionally annotate the identified loci. ANNOVAR is widely 
used to functionally annotate SNPs, indels (insertions 
and deletions), and copy number variation (CNVs) using 
up-to-date information from a wide variety of genomic 
databases and algorithms. We used the GWAS Cata-
log [42], Open Target Genetics [43], Type 2 Diabetes 
Knowledge Portal [44], Human Protein Atlas [45], and 
Harmonizome [46] to elucidate the roles of genes or vari-
ants associated with phenotypes in the present study. In 
addition, we assessed the extent of linkage disequilibrium 
(LD) for independent significant SNPs and obtained the 
high LD (> 0.25) variants. We then compared the above 
variants against the kidney eQTL results from Liu et al., 
[47] which encompassed eQTL outcomes for human kid-
neys (N = 686) and over a million significant SNP-gene 

pairs (FDR < 0.01) identified through a meta-analysis of 
four eQTL studies. Lastly, we compared the distribution 
of allele frequency to the control (i.e., UKBB) cohort to 
determine the extent of identified variants in other ethnic 
populations.

Results
ACR indicates that a significant proportion 
of the population is prone to kidney disease and has high 
heritability.
We used the key markers of kidney function eGFR and 
ACR to stratify CKD prognosis and assess the risk of kid-
ney disease. Based on the eGFR (< 60  ml/min/1.73  m2) 
threshold for chronic kidney disease, our findings indi-
cate that 5.7% (95% CI [3.8%, 8.1%], p < 0.001) of the study 
population exhibited signs of renal disease. In contrast, 
individuals in the Tiwi cohort with an ACR > 30  mg/
mmol account for 20.3% of the population and are at 
high risk of CKD (Additional file 1: Table S2). Based on 
these two markers, we found that 20.9% (95% CI [17.4%, 
24.8%], p < 0.001) of the Tiwi cohort was at high risk for 
developing CKD (Additional file 1: Table S2). From this 
sub-cohort of 21%, 44% exhibited HbA1c (hemoglobin 
A1c) levels above the diabetes-definition threshold of 
6.5% and 35% had pre-diabetic definition levels (5.7% to 
6.4%).

We next compared ACR and eGFR between the Tiwi 
cohort with the UKBB population. To ensure compara-
bility between the two populations, we narrowed down 

Fig. 1 Methodology pipeline for data analysis. It involves missing data imputation, estimating the disease prevalence using ACR and eGFR, 
the relationship between the phenotypes, heritability estimation, and GWAS analysis. The phenotype data analysis was performed using R software 
v4.0.3, and heritability and GWAS analysis was performed using GCTA v1.93.2 functions –reml and –mlma-loco respectively
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the Tiwi population study cohort to individuals aged 
between 37 and 73. We observed significantly higher 
ACR values in the Tiwi cohort (p < 2.2e − 16), indicating 
an increased risk of developing end-stage kidney disease 
compared to the UKBB population (Fig. 2). In particular, 
the median (Q1, Q3) for ACR in the Tiwi cohort was 5.77 
(1.2, 42.5) which was significantly higher than the British 
(1.1 (0.7, 2.1)). A stage classification of ACR in the Tiwi 
and UKBB populations revealed that a remarkably higher 
proportion of the Tiwi (29.4%) are at severely increased 
risk of developing CKD compared to other ethnic popu-
lations (British 1.35%, Caribbean 2.45%, African 2.27%, 
Irish 1.88%, Chinese 2.40%, Indian 3.83%, and Pakistani 
3.7%) (Fig. 2b). Upon further investigation, the ANCOVA 
analysis revealed a significant difference in ACR among 
ethnic groups while adjusting for HbA1c levels. And the 
F-ratio was 273.2 with the significance value was less 
than 0.001. The post-hoc test further indicated a signifi-
cant difference between the Tiwi and other ethnic groups 
(p < 0.001). In contrast, we observed no significant dif-
ferences in eGFR between the Tiwi and UKBB cohorts. 
These findings indicate that ACR is a potential early bio-
marker for identifying individuals at high risk of renal 
disease in the Tiwi community.

SNP-based heritability was estimated for both ACR and 
eGFR. The logarithmic value of ACR was found to have 
a heritability of 52.6% (95% CI [34.3, 70.9%], p < 0.001) 

indicating ~ 1/2 of the variance of ACR in this population 
is influenced by genetic factors, and was the highest of all 
kidney-related phenotypes (Additional file  1: Table  S3). 
In contrast, the least heritability was observed for eGFR 
(20.5%; 95% CI [3.7–36.8%], p < 0.001). This heritabil-
ity warrants GWASs of these phenotypes to search for 
genetic markers of kidney disease.

Identification of multiple phenotype factors contributing 
to renal dysfunction
Using an exploratory factor analysis, we retained five 
factors based on the scree plot and utilized them for 
further analysis. Factor 1 was loaded with weight, 
waist, body mass index, HbA1c, and serum albumin, 
and accounted for 18% of the total variance. Other 
than serum albumin, Factor 1 did not exhibit a direct 
relationship to kidney disease. On the other hand, 
Factor 2 encompassed well-established kidney mark-
ers, such as eGFR, ACR, serum creatinine, and urine 
albumin, with respective factor loadings of − 0.58, 0.87, 
0.73, and 0.88. Factor 2 accounted for approximately 
17% of the total variance (Additional file  1: Table  S4 
and Figure S1). Notably, Factor 2 displayed a positive 
association with all phenotypes, except for eGFR. The 
elevated levels of ACR, urine albumin, serum creati-
nine, and reduced eGFR levels are indicators of renal 
dysfunction. Our GWAS analysis focused primarily on 

Fig. 2 a Comparison of ACR between populations—Represent the comparison of urinary Albumin-to-creatinine ratio (ACR) between the Tiwi 
and control UK Biobank populations and the Kruskal–Wallis test was performed to compare the median ACR between the population. Log 
transformation was applied to ACR values for visualization. And stars on the plot represent the significance level (**** −  < 0.0001). b Proportion 
of ACR between population—Compare the proportion of ACR stages between the population. Individuals in stage 1 have less to moderate risk, 
stage 2 has moderate to severe risk, and stage 3 has a severely increased risk of developing CKD
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the combination of these four renal phenotypes. Fur-
thermore, urine osmolality (factor loading = 0.76) and 
urine creatinine (factor loading = 0.97) were strongly 
associated with Factor 3, which was also associated 
with  kidney function. However, unlike Factor 2, Fac-
tor 3 did not exhibit diagnostic value on its own. For 
instance, urine creatinine and urine osmolality are 
used to standardize the assay results for urinary dilu-
tion and do not serve as indicators of kidney disease. 
Blood pressure variables including systolic and dias-
tolic blood pressure were strongly associated with 
Factor 4, with factor loadings of 0.79 and 0.78, respec-
tively. Uric acid and height were associated with Fac-
tor 5, with corresponding loadings of 0.37 and 0.99 
respectively. Factor score loadings and the grouping 
of the phenotypes are given in the Additional file  1: 
Table S4.

Following the identification of Factor 2 via EFA, we 
performed a PCA for kidney function traits (i.e., Fac-
tor 2). These primary traits (i.e., ACR, eGFR, urine 
albumin, and serum creatinine) of Factor 2 produced 
4 PCs in total. The first PC (CGAA_PC_1), with an 
eigenvalue > 1, accounted for 70.9% of the total vari-
ance present in the phenotype data. The remaining 
PCs (i.e., CGAA_PC_2, CGAA_PC_3, and CGAA_
PC_4) exhibited eigenvalues < 1 and were not con-
sidered for further analysis. In line with the factor 
analysis, PC1 exhibited significantly positive asso-
ciations with ACR (r = 0.86; p < 0.001), serum creati-
nine (r = 0.86; p < 0.001), and urine albumin (r = 0.88, 
e < 0.001), and a significantly negative correlation with 
eGFR (r =  − 0.77; p < 0.001) (Table  1). Low eGFR and 
high levels of ACR, creatinine, and albumin are indi-
cators of reduced kidney function and potential renal 
dysfunction. Heritability for CGAA_PC_1 was found 
to be 0.21 (p < 0.001) after adjusting for age and gender. 
GWAS was subsequently performed for CGAA_PC_1 
to elucidate the collective impact of these primary 
traits on genotype data.

ACR identifies population‑specific alleles and exhibits 
different genomic architecture
As ACR was determined to be the most heritable com-
ponent, a GWAS was performed for ACR to identify 
associated variants in individuals at high risk for kid-
ney disease in the population. We used a mixed-linear 
model to adjust for age, sex, and population structure 
(i.e., genotypes PC1 and PC2) as fixed factors, with 
genomic relatedness and other SNPs as random factors. 
The significance levels of the SNPs associated with ACR 
throughout the genome are shown in Fig. 3a. The GWAS 
analysis of ACR revealed a genomic inflation (λ) of 1.004, 
suggesting no significant inflation at the association level. 
This indicates that the observed significant associations 
are unlikely to be attributed to chance, population strati-
fication, or systematic biases (Fig. 3b).

The SNP that is most significantly associated 
with ACR—14:100812018 (AF = 5.14%; b = 0.857; 
p = 1.76 ×  10−10) is in region 14q32.2 and mapped to the 
oncogenic long non-coding RNA (lncRNA) gene MEG3 
(maternally expressed imprinted gene 3). Upon further 
investigation, we found that this novel variant was absent 
in all UKBB cohorts (i.e., British, Caribbean, African, Chi-
nese, Indian, Irish, and Pakistani). Additionally, we iden-
tified another SNP—rs9689640 (AF = 94.70%; b =  − 0.874; 
p = 6.47 ×  10−9) in genomic region 6q25.2, which mapped 
to an intronic region of the T-cell lymphoma invasion 
and metastasis 2 gene (TIAM2). The allelic frequency 
of this variant was remarkably high in the Tiwi popula-
tion (AF = 94.70%). Similar frequencies were observed in 
the African (96.2%) and Caribbean (93.3%) populations, 
whereas the frequency in other populations was substan-
tially lower (i.e., British: 77.42%, Chinese: 65.03%, Indian: 
67.33%, and Irish: 76.04%) (Additional file 1: Table S5).

In addition, we observed another significant SNP—
rs11704318 (AF = 6.40%; b = 0.792; p = 4.26 ×  10−9) in 
the genomic region 22q11.23 which belongs to 3`UTR 
of RAB36 gene. The gene RAB36 a member of the RAS 
oncogene family is believed to be involved in protein 

Table 1 Loading score, significant correlation coefficient with phenotype, heritability estimates, and corresponding measures of 
significance

* -reported significant correlation only
# -statistically significant

SE standard error, % var percentage of variance explained

PC Eigen value % var Correlation  coefficient* Heritability

Urine albumin Serum creatinine ACR eGFR h2 (SE) p‑value

CGAA_PC_1 2.84 70.95 0.88 0.86 0.86  − 0.77 0.21 (0.083) 3.41 ×  10−4#

CGAA_PC_2 0.65 16.10 0.32  − 0.23 0.41 0.57 0.15 (0.086) 1.28 ×  10−2

CGAA_PC_3 0.32 8.02  − 0.19 0.45 - 0.29 0.00 (0.07)  > 0.05

CGAA_PC_4 0.19 4.92 0.30 -  − 0.31 - 0.17 (0.082) 6.39 ×  10−3#
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transport and enables the guanisine-5′-triphosphate 
(GTP) binding activity and GTPase activity. This variant 
was found to be significantly more abundant in the Tiwi 
(6.40%) in comparison to the UKBB population (i.e., Brit-
ish 0.20%, Caribbean 0.04%, African 0%, Chinese 0.78%, 
Indian 0.32%, Irish 0.28%, and Pakistani 0.42%) (Addi-
tional file  1: Table  S5). The independent SNPs that sur-
pass the genome-wide significance level (p < 5 ×  10−8) are 
given in Table  2, while SNPs that pass the nominal sig-
nificance level (p < 1e − 5) can be found in the Additional 
file  2. We subsequently conducted a comparison of the 
effect size (beta coefficients) of established genome-wide 
significant variants associated with ACR in the Tiwi pop-
ulation with other GWAS findings listed in the GWAS 
Catalog [42]. As a result, we observed that the aver-
age absolute difference in beta coefficients between the 
Tiwi population and other populations was 0.027, with a 
standard deviation of 0.053 (Fig. 4). For further examina-
tion, we verified the co-localization of our independent 

SNPs with high LD (> 0.25) SNPs in the kidney eQTL 
result reported by Liu et  al. [47]. Our investigation did 
not reveal any corresponding matches, suggesting a lack 
of association between identified genetic variants and 
gene expression in the kidney. For instance, the first inde-
pendent variant (chr14:100812018:T:A) in the MEG3 
gene, exhibited a high LD with 127 nearby variants, none 
of which were found in the kidney eQTL results. This 
pattern also held for the remaining identified variant as 
well.

Multiple phenotype association reveals the presence 
of pleiotropic loci
We carried out a GWAS on the traits (i.e., PCs) identi-
fied in the present study to capture the pleiotropic effect 
locus, which is the combined impact of multiple pheno-
types (i.e., ACR, eGFR, urine albumin, and serum cre-
atinine) on genotype. The GWAS accounted for sex, age, 
population stratification, and cryptic relatedness. The 

Fig. 3 a Manhattan plot for the phenotype albumin-to-creatinine ratio (ACR). The red dashed line indicates the genome-wide significance 
threshold (p < 5e − 8), while the blue dashed line indicates the nominal significance level (p < 1e − 5). b) The QQ plot for the trait ACR. The genomic 
inflation factor (λ) is equal to 1.004 (i.e., mostly equal to 1) and indicates that the significant variant is not due to chance and thus could be 
considered a causal variant for the kidney functional trait

Table 2 Genome-wide significant independent loci (p < 5e − 8) associated with the albumin-to-creatinine ratio (ACR) phenotype

a Variants do not have rsIDs are given a ID in the format Chr:Pos:Ref:Alt

IDa Chr Position Alt allele Allele frequency Effect size Std. error p Nearest gene

Chr14:100812018:T:A 14 100812018 A 0.051 0.857 0.134 1.76 ×  10−10 MEG3

rs11704318 22 23164355 G 0.064 0.792 0.135 4.62 ×  10−9 RAB36

rs9689640 6 154966925 C 0.947  − 0.874 0.151 6.47 ×  10−9 TIAM2
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first PC (CGAA_PC_1) exhibited association peaks that 
exceeded the genome-wide statistical significance thresh-
old (p < 5 ×  10−8). The two most significant peaks are 
located on chromosome 15q14 and at the end of chromo-
some 4p12 (Table  3 and Fig.  5a). The QQ plot (Fig.  5b) 
for this trait further demonstrates that the significant 
variants observed might be owing to the trait effect and 
not due to chance. Figure 6 shows the regional associa-
tion plot for the region of interest on chromosome 15, 
and indicates that there is a cluster of SNPs with high LD 
that pass either genome-wide or nominal significance 
levels, thereby leading to the discovery of independ-
ent SNP Chr15:37218869:A:G (AF = 6.15%; beta = 1.25; 
p = 1.71 ×  10−8). This novel variant is in an intergenic 
region approximately 117  kb upstream of the protein-
coding gene MEIS2 (Meis Homeobox 2). The next closest 
protein-coding gene to the SNP is more than 500 kb away 
downstream of MEIS2. Furthermore, this variant is com-
pletely absent in the UKBB populations (Additional file 1: 
Table S5).

Lastly, the GWAS of the CGAA_PC_1 also identified 
the SNP rs1425534646, which lies 242  kb downstream 

from the protein-coding gene CWH43 located in the 
genomic region of 4p12. This gene is predicted to be 
involved in glycosylphosphatidylinositol anchor bio-
synthetic processes, which are lipid anchors for many 
cell surface proteins and are integral components of cell 
membranes. A small number of variants (rs11725397; 
beta = 0.0018, p = 4 ×  10−12) in this gene are related to 
eGFR in the European population and this variant is 
approximately 287 kb away from the lead SNPs [15]. The 
SNP that surpasses the nominal significant level is given 
in Additional file 3.

Association between CKD and diabetes
The prevalence of diabetes is estimated to be 24.39% 
(95% CI [20.57, 28.66]) in the Tiwi population. A signifi-
cant difference in the glycaemic indicator HbA1c was 
observed between the diabetic and non-diabetic cohorts 
(p < 0.05). However, it is worth noting that the average 
HbA1c value of the non-diabetic cohort falls within the 
pre-diabetic range (Table  4). In addition, we correlated 
HbA1c levels with kidney biomarkers. HbA1c exhib-
ited a positive correlation with ACR (r = 0.44, p < 0.05) 

Fig. 4 Beta difference of known genome-wide significant variant associated with ACR between the Tiwi and published GWAS results 
from the GWAS Catalog. The beta difference is the absolute difference between the Tiwi and published results. The red-colored bar indicates 
the beta difference is greater than the mean beta difference (0.027), while the gray color represents the beta difference is less than the mean beta 
difference

Table 3 Genome-wide independent loci (p < 5e − 8) that are significantly associated with the multi-phenotype traits (i.e., CGAA_PC_1: 
ACR, eGFR, urine albumin, and serum creatinine)

a Variants do not have rsIDs are given a ID in the format Chr:Pos:Ref:Alt

IDa Chr Position Alt allele Allele frequency Effect size Std. error p Nearest gene

rs1425534646 4 49304522 A 0.051 1.257 0.218 8.27 ×  10–9 CWH43 (242 kb)

Chr15:37218869:A:G 15 37218869 G 0.062 1.252 0.222 1.71 ×  10–8 MEIS2 (117 kb)
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indicating a correspondence of high blood glucose and 
albuminuria. Conversely, HbA1c displayed a negative 
correlation with eGFR, exhibiting the inverse relationship 
between glycaemic control and renal function (r =  − 0.31, 
p < 0.05). To provide further insight into these differential 
relationships, we examined the differences in ACR and 

eGFR among diabetes and non-diabetes groups, as out-
lined in Table 4. Notably, the median eGFR levels in both 
diabetic and non-diabetic groups exceeded 90, indicating 
normal kidney function. However, more concerning is 
ACR levels were more concerning, and there was a huge 
disparity in the diabetic group. Individuals with diabetes 

Fig. 5 a Manhattan plot for the first PCA components in multiple phenotype analysis, i.e., CGAA PC 1. The Red dashed line indicates 
the genome-wide significance (p < 5e − 8), while the blue dashed line indicates the nominal significance level (p < 1e − 5). b The QQ plot for the trait 
CGAA PC 1. The genomic inflation factor (λ) is equal to 1.01 (mostly equal to 1) which shows that the significant variant is not due to chance, it 
might act as a causal variant for the given traits

Fig. 6 Regional association plot for the associated region on chromosome 15q14. The significance level is given on the y-axis and the genomic 
region is on the x-axis. The lead SNP was indicated using the violet color and pairwise LD between the tagging SNP and other SNP is indicated 
by color
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exhibited significantly higher ACR values, which indi-
cates the presence of albuminuria and early signs of kid-
ney damage. In addition, we conducted a GWAS analysis 
for HbA1c  (h2 = 0.117, 95% CI [0.00, 2.72], p = 0.044) and 
diabetes status. Unlike the ACR, no significant hits were 
identified for either of these diabetic phenotypes. Fur-
thermore, to establish a connection between diabetes and 
renal disease, we investigated the association between the 
identified risk SNPs and HbA1c GWAS results. However, 
no statistically significant association was found. For 
instance, the risk variant chr15:37218869:G:A identified 
in multiple phenotype analysis (CGAA_PC_1) located 
near the MEIS2 gene (b = 0.24, std.error = 0.13, p = 0.061) 
tends to increase HbA1c levels but did not reach either 
genome-wide or nominal significance (Additional file  1: 
Table S6).

Discussion
The present study is the largest genetic study in this 
underrepresented Indigenous population to date. We 
combined collected clinical data with WGS techniques to 
elucidate the underlying genetic mechanisms of CKD in 
this underrepresented population. As a result, we found 
that a high proportion of the Tiwi population  is at high 
risk for CKD using ACR compared to the UKBB popula-
tion and that ACR levels could serve as a biomarker to 
identify high-risk individuals. Furthermore, the noted 
disparity in ACR between the Tiwi and other ethnic 
groups remained independent of HbA1c levels and thus 
glycemic control. We also show that Tiwi may be geneti-
cally predisposed to high ACR levels and found several 
genetic variants associated with kidney function that are 
novel to the Tiwi population. Our findings also indicate 
that the genetic architecture for ACR in this population 
is notably different from that observed in other popula-
tions. Furthermore, our examination of multiple traits 
revealed a novel pleiotropic locus in the MEIS2 gene. 
In the present study, we aimed to identify both clini-
cal and genetic factors associated with renal function/

dysfunction using approximately 20% of the total Tiwi 
population. Despite the prevalence of CKD in the Tiwi 
people, there has been limited research on the genetics of 
kidney disease in this population. Previous studies have 
indicated that renal disease is highly heritable in Aborigi-
nal Australians, suggesting that some individuals may be 
inherently susceptible to the disease [25, 27]. Here, we 
found that ACR has a high degree of heritability (52%), 
while a previous study on Indigenous Australians found 
that ACR explained 64% of heritability [27]. Addition-
ally, as we found that ACR was positively correlated with 
urine albumin and serum creatinine, and negatively cor-
related with eGFR, we performed a GWAS for ACR and 
a collective impact of kidney phenotype that included 
ACR, eGFR, urine albumin, and serum creatinine (multi-
phenotype). As a result, we identified three SNPs that 
were independently associated with the single measure 
ACR and two SNPs that were independently associated 
with the collective impact of multiple phenotypes. Fur-
thermore, we identified a population-specific variant 
associated with renal function, which significantly differs 
in allele frequency compared to UKBB populations.

As we found that 5.7% of the Tiwi individuals in the 
present study had eGFR < 60 mL/min/1.73  m2, we believe 
that using the standard eGFR threshold for kidney dis-
ease (i.e., eGFR < 60 mL/min/1.73  m2) underestimates the 
prevalence of renal disease in the Tiwi community. This 
is in concordance with previous findings [12, 25, 48], in 
which individuals exhibit a severe kidney impairment 
before experiencing a decline in eGFR levels, resulting 
in the late-stage manifestation of advanced renal disease 
progression in the Tiwi population [49]. Additionally, not 
only did the Tiwi population in the present study exhibit 
significantly higher ACR than the UKBB population inde-
pendent of HbA1c levels, ACR also exhibited a remark-
ably higher heritability in comparison to eGFR and other 
phenotypes. The disparity between the high degree of 
albuminuria and the lower prevalence of CKD estimated 
by eGFR may be attributed to the higher occurrence of 
early-stage kidney disease, where kidneys maintain fil-
tration but become more permeable to albumin, leading 
to albuminuria [49]. This likely reflects the hyperperfu-
sion of still functioning glomeruli in the presence of an 
ongoing paucity or loss of other glomeruli. As the com-
pensatory hyperperfusion reaches its limits, eGFR expe-
riences a sharp decline, resulting in a late manifestation 
of the CKD process. Thus, ACR could be a more reliable 
marker for identifying high-risk individuals in the earlier 
stages of kidney disease, in agreement with previous find-
ings in Indigenous Australians [25, 49, 50]. As diabetes 
is a risk factor for CKD, there is an inverse relationship 
between the HbA1c and eGFR and a positive relationship 
between ACR and HbA1c. The individuals with higher 

Table 4 Comparison of established kidney markers (ACR and 
eGFR) and HbA1c among the diabetes/non-diabetes group. A 
Mann–Whitney U test was used to assess statistical significance 
between the groups

* statistically significant; Q1: 1st quartile; Q3: 3rd quartile

Traits Diabetes—median (Q1, Q3) p‑value

Yes (n = 111) No (n = 344)

ACR (mg/mmol) 30.88 (5.19, 95.34) 1.25 (0.52, 6.59)  < 0.001*

eGFR (ml/min/1.73 
 m2)

102.26 (77.12, 
113.19)

109.84 (96.84, 
120.49)

 < 0.001*

HbA1c (%) 7.30 (6.60, 10.05) 5.70 (5.50, 5.90)  < 0.001*
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HbA1c, have an elevated ACR value and declined eGFR 
values, reflecting reduced kidney function. Furthermore, 
notable distinctions in ACR and eGFR were observed 
between diabetic and non-diabetic cohorts. Neverthe-
less, the comparison of eGFR between the diabetes and 
non-diabetes cohorts revealed no clinical significance. 
In both cohorts, eGFR values surpassed 90, indicative of 
normal kidney functions. These relationships underscore 
the importance of glycaemic control in preserving kidney 
health in these populations.

To elucidate the relationship between the genotype 
and phenotype in CKD, we carried out the GWAS study 
for the phenotype ACR and a multi-phenotypic GWAS 
that included ACR, eGFR, urine albumin, and serum 
creatinine. The GWAS for the phenotype ACR identi-
fied a highly significant novel SNP in the lncRNA tumor 
suppressor gene MEG3, which was absent in all UKBB 
cohorts. The gene MEG3 is known to be a significant 
mediator of ischemia–reperfusion injury (IRI)-induced 
acute kidney injury (AKI), where it is upregulated in 
the renal cortex in IRI mice and exacerbates IR-induced 
AKI [51]. Furthermore, suppressing MEG3 expression 
inhibited the apoptosis of proximal tubular cells, res-
cued elevated levels of serum blood urea nitrogen (BUN) 
and creatinine, and decreased the number of damaged 
tubules following IRI [51]. The MEG3 gene also controls 
the pyroptosis of tubular epithelial cells, which is critical 
in sepsis-related acute kidney damage [52] induces the 
accumulation of p53 protein and selectively regulates the 
expression of p53 target genes [53]. It is also notewor-
thy that p53 polymorphisms are directly associated with 
ACR (p = 0.01) in Indigenous Australians living in the 
East Arnhem region of Australia [27, 50]. Nevertheless, 
these populations share a geographic similarity with the 
Tiwi individuals as they all are from the Northern Terri-
tory, Australia. This study also found that the p53 geno-
type is also associated with increasing HbA1c (p = 0.01) 
but independent of ACR. These findings suggest that 
MEG3 may play a role in the pathogenesis of kidney dis-
eases such as AKI and CKD. Owing to the complexity of 
kidney disease, it is tempting to speculate the detailed 
function of renal disease-associated variants present in 
this MEG3 gene; however, further research will be nec-
essary to elucidate the role of MEG3 in CKD in the Tiwi 
population.

The next independent SNP associated with ACR lies in 
the intronic region of the TIAM2 gene in chromosome 
6q25.2. TIAM2 encodes a guanine nucleotide exchange 
factor that plays a role in activating RHO-GTPases, is an 
upstream regulator in the Rac pathway, and is involved 
in cellular proliferation, cellular migration, and invasion 
in multiple types of cancer [54, 55]. This gene is also is 
expressed in kidney tissue, particularly in proximal 

tubular and B-cells, and believed to play an important 
role in neural cell development [45]. This variant is sig-
nificantly more prevalent in the Tiwi population com-
pared to British, Irish, and Indian subpopulations of the 
UKBB cohort, although it was similar in African and 
Caribbean subpopulations. This SNP (rs9689640) was 
found to exhibit glomerular-specific differential expres-
sion [56] and was associated with end-stage renal disease 
(OR = 0.9085, p = 0.024) in large-scale GWAS studies of 
mixed ancestry, as well as in comparison of end-stage 
renal disease vs macroalbuminuria (OR = 0.883, p = 0.022) 
[57, 58]. The beta coefficients from the Sandholm et  al. 
study results were consistent with our findings and serve 
as a protective factor. In addition, a GWAS research 
including 1700 people of European origin discovered that 
this polymorphism was linked to diabetic retinopathy 
(OR = 1.296, p = 2.9 ×  10−5) [59]. Furthermore, accord-
ing to the Harmonizome database, there appears to be a 
functional connection between TIAM2 and kidney dis-
ease [46]. This association has been assigned a relative 
strength of approximately 1.104, which was calculated 
using standardized empirical p-values derived from pub-
licly available association databases [46]. Therefore, we 
hypothesized that the TIAM2-associated variant identi-
fied in this population potentially contributes to regulat-
ing kidney function or pathogenesis of kidney disease.

The GWAS of the phenotype ACR also implicated a 
locus in the 3ʹUTR region of RAB36, a member of the 
RAS oncogene family. This variant was significantly 
associated with coronary artery disease (OR = 0.8663, 
p = 0.0038) in a previous GWAS study of over a million 
individuals [60] and has also been shown to be correlated 
with kidney disease and cardiovascular disease (CVD) 
[61, 62]. These previous findings indicate that this variant 
could potentially have an indirect impact on the patho-
genesis of kidney disease. Additionally, this gene is pre-
dicted to be involved in the metabolism of proteins and 
vesicle-mediated transport. RAB36 has also been shown 
to be highly expressed in all of the tissues assayed, most 
notably in the testis and brain, and is observed to prog-
nostic factor in multiple cancer lines, particularly in 
renal cancer [45]. Coronary heart disease is a well-known 
independent risk factor for the progression of CKD to 
end-stage renal disease. In terms of cardiovascular dis-
eases and renal disease progression, patients with coro-
nary artery disease and diabetic nephropathy fall into the 
extremely susceptible group [61]. The Australia Institute 
of Health and Welfare (AIHW) has reported that Indig-
enous adults experience higher rates of CVD compared 
to non-Indigenous adults, with rates of 27% and 21%, 
respectively. Furthermore, the disparity of CVD rates 
between the Indigenous and non-Indigenous popula-
tions tends to increase as individuals age [63]. Thus, we 
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hypothesize that kidney disease in the Tiwi cohort may 
have been affected indirectly via altered RAB36 expres-
sion or a RAB36 gene product. Furthermore, we com-
pared the obtained GWAS results for ACR with known 
variants reported in the GWAS Catalog, this analysis 
revealed that none of the known kidney-associated vari-
ants attained either genome-wide or nominal significance 
levels. Additionally, we did not obtain any correspond-
ing matches against the eQTL comparison, indicating a 
unique genetic architecture for kidney disease in the Tiwi 
population that differs significantly from other popula-
tions or is possibly attributed to the limited sample size 
and statistical power.

The multi-phenotype GWAS analysis (i.e., CGAA_
PC_1) computed using phenotypes including eGFR, 
ACR, serum creatinine, and urine albumin implicated 
a novel variant located in an intergenic region approxi-
mately 117  kb upstream of the protein-coding gene 
MEIS2. Interestingly, while this variant lacked sufficient 
statistical power to attain the level of genome-wide sig-
nificance in the individual phenotype GWAS analysis, it 
did achieve genome-wide significance when examined 
in the context of multiple phenotype GWAS analyses. 
MEIS2 encodes a homeobox protein belonging to the 
three amino acid loop extension family of homeodomain-
containing transcription factors and important regula-
tors of cell proliferation during development. MEIS2 is 
highly expressed in the glomeruli tissue of the kidney as 
compared to the tubulous [45] and has also been shown 
to play a significant role in the formation of new blood 
vessels [64]. This gene acts as a candidate marker gene 
for mesangial cell in mice, which is in the interpapil-
lary space and regulate the glomerular filtration rate 
[65]. The transcription factor MEIS2 also plays a role in 
disorders such as cardiac defects and intellectual dis-
ability [66, 67]. Furthermore, a GWAS demonstrated that 
MEIS2 variants were associated with triglycerides using 
a mixed ancestry of millions of individuals [68, 69], as 
triglycerides are known to be one of the major risk fac-
tors for CKD. In particular, individuals with high tri-
glycerides were 1.5 times more likely to experience loss 
in renal function, even after adjusting for factors such as 
sex, race, age, systolic blood pressure, diabetes status, and 
type of blood pressure medication taken [70]. MEIS2 has 
also been shown to be associated with increasing let-7 
family members in differentiating or aging nephron pro-
genitor cells and is strongly upregulated in nephron pro-
genitors and the renal stroma during kidney development 
[71]. Lastly, MEIS1 is a paralog of MEIS2 and is known to 
code for a protein analogous to MEIS2 in both mice and 
humans [72]. MEIS1 is highly expressed in the stroma 
and myofibroblasts of mouse and human kidneys and is 
upregulated in kidney myofibroblasts as a function of age 

and IRI, although it was not necessary for normal kid-
ney function or the development of fibrosis [73]. MEIS1, 
along with VEGFR-2, was significantly downregulated 
in early-stage kidney cancer tissues compared to adja-
cent normal tissues [74]. Additionally, MEIS1 was also 
downregulated in a variety of tumors, where downregula-
tion was linked to the immune infiltration level of can-
cer patients and low expression predicted poor overall 
survival in kidney renal clear cell carcinoma and various 
other cancers [60]. Although there is no direct associa-
tion between kidney function and the paralogs MEIS1 
and MEIS2, however, these genes appear to be expressed 
in kidney tissues and play a role in kidney development. 
Additionally, we examined the effect size and significance 
levels of identified risk SNPs linked to HbA1c levels, none 
of the risk variants reached either genome-wide or nomi-
nal significance. Despite the absence of statistical sig-
nificance, it is noteworthy that the effect sizes of HbA1c, 
influenced by the risk SNPs, remained consistent with 
those observed for the SNPs identified via GWAS of mul-
tiple traits. These findings highlight the lack of relevance 
and influence of the SNPs on HbA1c levels. We note that 
the lack of significance may be attributed to the statistical 
power or limited sample size. Further functional studies 
will be necessary to determine their role in kidney func-
tion and its associated functions.

Limitations of our study include the relatively low sam-
ple size and it is possible that some SNPs did not reach 
genome-wide significance in the GWAS. Secondly, Vali-
dation for the GWAS can be achieved through replica-
tion analysis on a similar cohort. However, in this case, 
the distinct genomic characteristics of the Tiwi cohort 
make it challenging to conduct such a replication analy-
sis. Finally, our GWAS analysis did not account for envi-
ronmental factors. However, our study provides valuable 
insights into the genetic basis of the phenotype of inter-
est. Future research that incorporates environmental data 
could further elucidate the interplay between genetics 
and environment in the development of this phenotype.

Conclusions
In conclusion, our study demonstrates that ACR serves 
as a reliable predictive marker for CKD risk in the Tiwi 
population and that the Tiwi population carries a popu-
lation-specific CKD allele, warranting further research to 
elucidate the functional significance of this variant. The 
discovery of Tiwi-specific novel associations for several 
genes using ACR as a marker and the pleiotropic effect 
in the region 15q14 (MEIS2) using multiple phenotypes 
indicate the need for further genetic studies in this popu-
lation. The identification of novel variants offers a poten-
tial means of screening individuals in this population 
to identify those at risk of kidney disease. Our results 
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emphasize the significance of investigating population-
specific genetic variations in underrepresented commu-
nities, which could play a crucial role in understanding 
disease susceptibility and developing personalized medi-
cine approaches. Combining genomic data with corre-
sponding clinical data represents an invaluable resource 
that can be harnessed to improve health for all Indig-
enous Australian populations while providing a roadmap 
addressing inequities in care access for this underrepre-
sented population.
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considered for the multiple phenotype GWAS association analysis and are 
indicated using different colors. Table S5. Allele Frequency in the UKBB 
population for independent SNPs and Tiwi population. Table S6. Effect 
size of HbA1c GWAS with identified risk SNPs. Figure S1. Correlation 
heatmap plot for the available phenotypes in the clinical data. The color 
was given based on the absolute correlation value. The right-side stacked 
bar chart represents the factor loading score observed in EFA The x-axis of 
the plot represents the factor loading scores.

Additional file 2: Table S5a. This table contains the variants which pass 
the nominal significance levels (p<1e-05) for the variable urinary Albumin-
to-creatine ratio (ACR) and its annotation which includes consequences of 
the variant, mapped gene, beta coefficients direction (incline/decline).

Additional file 3: Table S5b. This table contains the variants which pass 
the nominal significance levels (p<1e-05) for the variable CGAA_PC_1 
(multiple phenotype PCA factor) and its annotation which includes 

consequences of the variant, mapped gene, beta coeffecients direction 
(incline/decline).
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