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Abstract 

Background Type 1 diabetes mellitus (T1DM) is a prototypic endocrine autoimmune disease resulting 
from an immune-mediated destruction of pancreatic insulin-secreting β cells. A comprehensive immune cell pheno-
type evaluation in T1DM has not been performed thus far at the single-cell level.

Methods In this cross-sectional analysis, we generated a single-cell transcriptomic dataset of peripheral blood 
mononuclear cells (PBMCs) from 46 manifest T1DM (stage 3) cases and 31 matched controls.

Results We surprisingly detected profound alterations in circulatory immune cells (1784 dysregulated genes in 13 
immune cell types), far exceeding the count in the comparator systemic autoimmune disease SLE. Genes upregulated 
in T1DM were involved in WNT signaling, interferon signaling and migration of T/NK cells, antigen presentation by B 
cells, and monocyte activation. A significant fraction of these differentially expressed genes were also altered in T1DM 
pancreatic islets. We used the single-cell data to construct a T1DM metagene z-score (TMZ score) that distinguished 
cases and controls and classified patients into molecular subtypes. This score correlated with known prognostic 
immune markers of T1DM, as well as with drug response in clinical trials.

Conclusions Our study reveals a surprisingly strong systemic dimension at the level of immune cell network 
in T1DM, defines disease-relevant molecular subtypes, and has the potential to guide non-invasive test development 
and patient stratification.
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Background
Type 1 diabetes mellitus (T1DM) is a prototypic 
endocrine autoimmune disease driven by chronic 
inflammatory responses against insulin-secreting 
pancreatic β  cells, leading to insulin deficiency with 
life-long dependence on exogenous insulin treatment 
[1]. The disease is characterized by chronic inflamma-
tion with impaired homeostasis at the level of innate 
and adaptive immune cells. The existing therapies for 
T1DM are still limited in terms of long-term efficacy 
and addressing the underlying pathophysiology [2, 3]. 
Patient heterogeneity has been considered a key factor 
in treatment response [2]. Moreover, data suggest that 
diverse immune cell types and signaling pathways con-
tribute to T1DM pathology [4]. Thus, a comprehensive 
analysis of immune cell phenotypes, cell type-specific 
molecular traits and their potential variation across 
affected individuals is called for [5].

A related challenge is that T1DM-related molecular 
mechanisms are poorly understood in humans. Mecha-
nistic studies are hindered by the fact that pancreatic 
islets, which are the primary target of autoimmune 
attack, are difficult to access in living individuals. How-
ever, multiple lines of evidence indicate that systemic 
immune cell dysregulation, including Treg and NK 
cells, precedes T1DM diagnosis, and is implicated in 
disease pathogenesis and progression [6–12]. Further-
more, fine-mapping of genetic risk factors indicates 
that T1DM-associated risk variants exert a significant 
impact on the transcriptomes of circulating immune 
cells [13–16]. Consequently, non-invasive approaches 
using peripheral blood samples have become an essen-
tial strategy for identification of markers related to the 
progression of the autoimmune disease.

Along this line, immunological studies of T1DM have 
greatly advanced the field, for example by highlighting 
the role of specific, disease-predisposing human leu-
kocyte antigen (HLA) haplotypes [17, 18], by revealing 
insulin, GAD-65, and IA-2A as well as β cells proteins as 
common autoantigens [19–21], and by identifying com-
mon aberrations in cell composition and gene expres-
sion in peripheral immune cells [6, 7, 22–25]. Of note, 
most studies have examined the pre-diabetic molecu-
lar immune signature of first-degree relatives (FDR) of 
T1DM subjects [26]. In contrast to T1DM cases in the 
general population (GP), FDR T1DM subjects exhibit a 
lower age at diagnosis [27] and are enriched for mono-
genic variants of significant impact [28]. Moreover, the 
vast majority of existing molecular analyses are based 
on analysis of bulk samples, which obscures the het-
erogeneity of immune cell types and cell states. Con-
sequently, our understanding of molecular and cellular 

abnormalities in GP T1DM is still limited, as is our 
ability to identify patient subtypes.

Recently, single-cell RNA-seq (scRNA-seq) profiling 
of ex  vivo (cultured) human pancreatic islets shed light 
on cellular-resolution gene expression signatures in 
T1DM [29]. However, since immune cells comprised only 
a minor fraction of cells identified, this study focused 
primarily on endocrine and exocrine cell types. Another 
study of T1DM-related immune cell phenotypes analyzed 
scRNA-seq data from PBMCs of 4 T1DM subjects and 4 
controls and identified IL32-expressing cells as a signa-
ture of T1DM [24]. In view of the current situation, there 
is an unmet need for a more comprehensive analysis of 
immune cells in T1DM.

We hypothesized that T1DM, an organ specific auto-
immune disease, may involve systemic immune pertur-
bation in cell type abundance as well as cell type-specific 
gene expression. In this cross-sectional study, we used 
the technique of scRNA-seq to characterize PBMCs from 
46 islet-cell autoantibody-positive manifest T1DM cases 
(stage 3) and 31 healthy controls matched for age, gender, 
and presence of T1DM-associated risk HLA haplotypes. 
Our analysis revealed shifts in cellular composition as 
well as profound molecular aberrations in 12/14 periph-
eral immune cell types from T1DM subjects. Notably, 
we identified widespread upregulation of genes associ-
ated with immune cell activation, though regulon analy-
sis indicated that this process may be driven by distinct 
transcription factors (TFs) in T, B, and myeloid cells. 
The upregulated and downregulated genes we identi-
fied in PBMC cell types showed significant overlap with 
transcriptome changes in T1DM pancreas, suggesting 
molecular links between systemic and organ-specific 
immune responses [18, 29]. Our differentially expressed 
genes (DEGs) also showed significant overlap with mark-
ers that predict seroconversion (appearance of autoanti-
bodies in peripheral blood) or T1DM onset in high-risk 
individuals. We also used the single-cell data to define 
cell type-specific metagene expression scores segregating 
cases and controls. Importantly, these metagene scores 
were highly correlated across cell types, even though the 
DEG sets were largely non-overlapping. To characterize 
immune variation across the cohort, we therefore aggre-
gated scores across cell types to define a single compos-
ite score for each sample, which we defined as the T1DM 
metagene Z-score (TMZ score). The TMZ score for each 
individual correlated with GAD autoantibody (GADA) 
titer and the number of high-risk HLA haplotypes as well 
as with drug response in interventional clinical trials. 
Finally, we found that DEGs in effector T cells and B cells 
were enriched for T1DM genetic risk.

In summary, our case-control study shows unex-
pectedly strong systemic immune cell dysregulation in 
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T1DM, defines disease-relevant T1DM molecular sub-
types, and has the potential for non-invasive test devel-
opment in T1DM.

Methods
Sample collection and cohort details
European stage 3 T1DM subjects were selected from a 
cohort of 1634 T1D patients from Baden-Wuerttemberg 
in Germany. The healthy controls matched for age, gen-
der, and T1DM risk HLA haplotypes were selected from 
a population-based cohort of more than 8367 subjects, 
again from Baden-Wuerttemberg. To rule out the pres-
ence of an infection or any other inflammatory process, 
we selected subjects with CRP below 1 mg/L (high sen-
sitivity C-reactive protein (hs-CRP); Roche Cobas 6000 
analytical system). BMI was restricted within the range 
from 18.5 to 24.9 kg/m2, i.e., the WHO recommenda-
tion of a normal BMI for Europeans. Additional inclusion 
criteria were as follows: normal aspartate transaminase 
(AST) levels (below 33 units per liter (U/L) and alanine 
transaminase (ALT) levels (below 40 units per liter (U/L), 
normal creatine serum values (below 110 µmol/L for 
men, below 95 µmol/L for women) resulting in normal 
values of the estimated glomerular filtration rate (eGFR), 
normal TSH level (range 0.3–4 mU/l) indicative of nor-
mal thyroid function, TPO antibody negative, normal 
vitamin  B12 serum levels (range between 350 and 900 pg/
ml), normal 25-OH Vit D levels (range between 30 and 
70 µg/l), normal levels of plasma ferritin (ranges between 
50 and 330 ng/mL) as a marker of a normal iron status as 
well as a surrogate marker of inflammation, and normal 
serum zinc levels (range between 70 and 120 µg/dL) to 
show an adequate nutritional status and to rule out prob-
lems absorbing nutrients.

All control subjects were negative for ICA, GADA, 
IA-2A, and ZnT8 antibodies. The T1D subjects were 
positive for at least 2 islet cell autoantibodies. All T1D 
subjects selected were GADA positive [30, 31]. The 
Roche Elecsys C-Peptide assay was used to quantify fast-
ing C-peptide levels in T1D subjects. All T1D subjects 
revealed fasting C-peptide levels below 0.01 ng/mL and 
were therefore considered as “C-peptide negative.” In 
addition, all T1D subjects were requiring insulin doses 
above 0.65 units of insulin per kg body weight per day. 
None of the T1D subjects had evidence of microalbumi-
nuria as a marker of diabetic nephropathy or evidence 
of diabetic retinopathy. In subjects with T1DM, blood 
glucose during the blood collection had to be within the 
range of a predefined target, i.e., 80–140 mg/dl to exclude 
a potential impact of elevated glucose levels, altered 
plasma cortisol and catecholamine levels on immune cell 
counts. Also, HbA1c levels had to label a well-controlled 
diabetes status with a level below 7.5% (DCCT/NGSP; 

corresponding to a level below 58 mmol/mol (IFCC; SI 
unit) [32–34]. Since the counts of lymphocytes as well as 
lymphocyte subsets are known to be influenced by hor-
monal factors and temperature, to achieve pre-analytical 
consistency, the blood collection was only performed in 
the morning (8:00–10:00 am) at a fasting state during 
the seasonal period of spring until autumn. All technical 
procedures and protocols for the recruitment, blood col-
lection, and PBMC isolation were reviewed and approved 
by the Institutional Review Board (IRB) at the Division of 
Endocrinology and Diabetes in Ulm University, Germany 
(IRB no. 299604393R) [35]. Accordingly, PBMCs were 
isolated from approximately 10 ml of heparinised whole 
blood using standard Ficoll-Hypaque density gradient 
centrifugation method. Isolated PBMCs were frozen in 
Fetal bovine serum (FBS) containing 10% dimethylsulfox-
ide (DMSO) and shipped to Genome Institute of Singa-
pore for downstream experiments. The sequence-specific 
oligonucleotide DNA amplification method was utilized 
for HLA class II genotyping using HLA-DRB1, HLA-
DQA1, and HLADQB1 specific primers [36, 37]. Autoan-
tibody assay for detection of two main autoantibodies in 
T1DM (i.e., GADA and IA-2A) was conducted based on 
previously established fluid-phase-antigen-binding assay 
[38]. The clinical information of all samples included in 
current study are summarized in the Additional file  2: 
Table S1-S2.

Sample preparation and scRNA‑seq
Frozen PBMCs samples were thawed in 10 ml of pre-
warmed thawing media (RPMI 1640 supplemented with 
5% human serum, 1% penicillin-streptomycin, and 1% 
glutamine). After centrifugation at 300g, the superna-
tant was removed and cells were resuspended in 10 ml 
of washing media (RPMI 1640 supplemented with 10% 
fetal bovine serum (FBS), 1% penicillin-streptomycin, 
1% glutamine). Cells were washed two times with phos-
phate-buffered saline (PBS) containing 0.04% bovine 
serum albumin (BSA) and filtered through a 5-µm cell 
strainer. The cell concentration and viability were meas-
ured in trypan blue using the Bio Rad  TC20TM Auto-
mated Cell Counter (Bio-Rad). Droplet-based scRNA-seq 
was applied to the cohort samples using the single-cell 3′ 
reagent kit (V2, 10x Genomics), according to the manu-
facturer’s protocol. Single-cell suspensions from four 
samples (two cases and two healthy controls) were mixed 
at the final concentration of 1× 106 cells/ml. Before 
mixing samples, an aliquot of 2 million cells from each 
sample was centrifuged and kept at −  80o C and used for 
DNA extraction and genotyping. Pooled cell suspensions 
were loaded onto the ChromiumTM Controller instru-
ment at the recommended volume required for captur-
ing 16,000 cells per pool. The cDNA amplification and 
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library preparation were performed using the library 
construction kit (10x Genomics). Quality, size distribu-
tion, and quantity of generated cDNA and sequencing 
libraries were confirmed using the High Sensitivity DNA 
kit (Agilent) and Kapa kit (Illumina). After quality con-
trol, pooled libraries were diluted in final concentration 
of 10 nM and were sequenced on Illumina HiSeq 4000 to 
get on average read-depth of 80,000 reads/cell using fol-
lowing chemistry settings: read 1: 26 cycles; i7 index: 8 
cycles; i5 index: 0 cycles; and read 2: 98 cycles.

SNP‑array genotyping
Genomic DNA was extracted from 2 to 3 million PBMCs 
using QIAamp® DNA blood Mini Kit according to the 
manufacturer’s protocol, and samples were genotyped 
using the Illumina Infinium® HTS Assay. The intensity 
data files collected by the Illumina HiScan system were 
analyzed with the Illumina GenomeStudio software, and 
PLINK binary genotyping data were extracted for down-
stream analysis.

Multi‑parametric FACS symphony
An antibody staining panel consisting of 23 markers was 
designed for immunophenotyping of PBMCs populations 
using a variety of fluorochromes with minimum spec-
tral cross-talk. This panel includes 16 lineage markers 
(e.g., CD45, CCR7, CD19, IgD, IgM, IgG, IgE, IgA, CD5, 
CD3, TCRab, TCRgd, CD4, CD8, CD14, and CD16) 
for detecting different populations of B cells (e.g., naïve 
 IgD+/IgM+ B cells or switched  IgG+/IgE+/IgA+ memory 
B cells), T cells  (TCRab+ or  TCRgd+ T cells), and mono-
cytes (e.g., classical and non-classical monocytes). In 
addition, seven markers (e.g., CD20, HLA-DR, CD37, 
CD83, and LAPTM5, CD69, CD78) were selected based 
on the single-cell data for gene expression validations. 
The list of all antibodies used in this experiment as well 
as their corresponding clone, company, and catalogue 
number are listed in Additional file  2: Table  S10. Fro-
zen PBMCs were thawed as described, and aliquots of 
2× 106 cells were used for antibody staining. In order 
to optimize the concentration of each antibody in the 
panel, a single staining titration experiment with differ-
ent concentration of each antibody (1 µl, 2 µl, and 4 µl) 
was performed using aliquots of 1× 106 PBMCs derived 
from a healthy donor. For each antibody, the concentra-
tion at which the signal intensity gained the saturation 
point was selected as the optimal antibody concentra-
tion per million cells (Additional file 2: Table S10). Except 
for CCR7 antibody which required a pre-incubation step 
at 37 °C for 10 min, all other antibodies were incubated 
with cells for 30 min at 4 °C. In order to avoid any cross 
binding between TCR and CD3 antibodies, a sequential 
staining strategy was applied for these antibodies. After 

incubation with fluorescence-conjugated antibodies, the 
cells were washed and re-suspended in buffer solution 
(PBS containing 5% FBS and 2 mM EDTA). The stained 
cells were kept on ice before loading into the FACS sym-
phony machine and data acquisition. The single stained 
files from the optimal antibody concentration were used 
to establish the compensation matrix. Finally, immu-
nophenotyping was performed using the BD Symphony® 
machine for 10 T1DM and 9 healthy samples (independ-
ent validation cohort) and a minimum of 50,000 events 
were acquired per sample (Additional file 1: Fig. S4a).

Processing and clustering of FACS symphony data
The compensated flow cytometry data were gated in 
the FlowJo (V 10.6) software using the standard gat-
ing strategy for selecting cell population, singlets, live, 
and  CD45+ immune cells. The compensated channel 
values of the final population (i.e., live, single,  CD45+ 
cells) from case and control samples were exported as 
CSV files. Next, these files were imported into R, and 
after down-sampling of each sample into 10,000 single 
cells, they were concatenated into a Seurat object (Seu-
rat package V3) containing 190,000 cells. The Seurat 
package functionalities for dimensional reduction using 
the Uniform Manifold Approximation and Projection 
(UMAP) method and the unsupervised graph based 
clustering using the Louvain algorithm were utilized 
to calculate UMAP embeddings and perform unsu-
pervised clustering based on 12 lineage makers includ-
ing CD3, TCRab, TCRgd, CD19, IgD, IgM, IgG, IgE, 
IgA, CD14, CD16, and HLADR (Additional file  1: Fig. 
S4b-c).

Processing of genotyping data
The binary PLINK genotyping files were exported from 
the Illumina GenomeStudio software and converted into 
the VCF format using the PLINK toolkit [39]. The vcftool 
program [40] was used to filter out insertions/deletions 
(indels), multiallelic SNPs, and sex chromosome vari-
ants. The hg19 human reference genome was used as a 
template in vcftools to correct the reference and alterna-
tive alleles labels in the VCF file and to phase all geno-
types. The Beagle toolkit [41] was utilized to perform 
the genomic imputation according to the human 1000 
genome reference. The imputed variants with low con-
fidence (R2 < 0.9 ) were excluded, and the confidently 
imputed variants were concatenated into the genotyped 
variants. The final VCF file comprising genotyped vari-
ations (750k variants) and confidently imputed variants 
(3.2 million variants) was sorted and used for the demul-
tiplexing of scRNA-seq data at sample level.
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Demultiplexing and quality control of scRNA‑seq data
The overall steps for data processing, quality control, 
and reference-based clustering of PBMCs (n = 186,671) 
are represented in Additional file  1: Fig. S1. The Cell 
Ranger (V2.0) (with hg19 as reference genome) and 
demuxlet tool kits [42] were used to demultiplex paired-
end sequencing FASTQ files at the cell and sample level, 
respectively. As expected, a total of 28,498 cells (aver-
age doublet rate of 15.2%) were detected as cross-sample 
doublets by the demuxlet tool and were removed from 
the dataset (Additional file  1: Fig. S1b, d). To check the 
fidelity of sample assignment by the Demuxlet, sum of 
average natural logarithm (nlog) expression of Y and X 
chromosome genes for cells of each sample were calcu-
lated and shown in a scatter plot, where each dot rep-
resents a sample colored based on the gender status 
obtained from the clinical data. As expected, the cells 
from female donors were clearly separated from cells 
from male donors as the former showed negligible (noise-
floor) expression of Y chromosome genes (Additional 
file  1: Fig. S1c). Genes with low coverage (expressed in 
less than 0.1% of cells) and cells showing higher than 7% 
mitochondrial gene expression were filtered out. Read 
counts were normalized and log transformed using the 
SCTransform normalization method implemented in 
Seurat package (V3.1) [43]. The RCA2 package [44] was 
used to perform reference-based clustering of cells into 
major immune cell types and apply cluster-specific cell 
filtering based on the distribution of number of detected 
genes (NODGs) across immune cell types. Accordingly, 
cells with 750 < NODG < 2500 , 750 < NODG < 2750, 
and 125 < NODG < 1500  were kept within clusters of 
pDCs, HSCs, and platelets, respectively. For rest of RCA 
clusters, cells with 500 < NODG < 2500 were included. 
A total of 19,508 cells were excluded as noisy cells (dead 
cells, debris, potential undetected doublets) (Additional 
file 1: Fig. S1a; Methods). After removing potential dou-
blets and low quality compromised cells, the Doublet-
Finder package [45] was used to detect and exclude 9498 
cells as within-sample doublets (average within-sample 
doublet rate of 6.86%), resulting in a final clean QC-
passed dataset of 129,167 single cells used in the down-
stream re-clustering, cell type annotation, and cleaning.

scRNA‑seq clustering and cell type annotation
Reference-based RCA clustering method supervised by 
a combination of different immune panels from RCA2 
(V2) package [44] was used for clustering of QC-passed 
single-cell PBMCs. The details of reference panels used 
in this study are described as follows: (1) Novershtern 
Panel: including 966 feature genes across 15 PBMC cell 
types (i.e.,  CD4+ T naive,  CD4+ TCM,  CD4+ TEM,  CD8+ 
T naive,  CD8+ TCM,  CD8+ TEM, NK, B-naive, B-SM, 

C-monocyte, NC-monocyte, cDCs, pDCs, platelets, 
HSCs) from the Novershtern et al. study [46]; (2) Nover-
shtern T Cell Panel: including 420 feature genes across 6 
T sub-populations (i.e.,  CD4+ T naive,  CD4+ CM,  CD4+ 
EM,  CD8+ T naive,  CD8+ CM,  CD8+ EM) from the 
Novershtern et  al. study [46]; (3) Monaco TCell Panel: 
including 551 feature genes across 15 T and NK sub-
populations [i.e.,  CD4+ naive,  CD8+ naive,  CD8+ CM, 
 CD8+ EM,  CD8+ T effector (TE), MAIT, NK, T follicu-
lar helper (TFH), T helper 1 (Th1), Th17, Th1/Th17, Th2, 
T-reg, VD2 negative, VD2 positive] from the Monaco, G., 
et al. study [47]; (4) Monaco B Cell Panel: including 436 
feature genes across 5 B sub-populations (i.e., B-naive, 
B non-switch memory (BNSM), BSM, plasmablasts, 
B exhausted (Bex)] from the Monaco, G., et  al. study 
[47]; (5) Monaco Myeloid Panel: including 775 feature 
genes across 5 myeloid sub-populations (i.e., C-mono-
cyte, I-monocyte, NC-monocyte, pDC, cDC) from the 
Monaco, G., et al. study [47]. To perform reference-based 
clustering supervised by the reference panels, the data-
Project function from the RCA2 package was used to pro-
ject log transformed corrected UMI count of each single 
cell into each cell type in the immune reference panels by 
calculating the Pearson correlation coefficient between 
the nlog transformed (SCTransformed normalized cor-
rected UMI counts) vector from scRNA-seq and log10 
expression vector from the reference bulk transcriptome 
across feature genes of the reference panel. This function 
generates the correlation coefficient matrix where each 
row is a cell type in the panel and each column is a sin-
gle cell. After raising to the fourth power and row-wised 
z-transformation, the correlation matrix was used to cal-
culate the correlation-based distance matrix. Next, the 
dataClust function from RCA2 (V2) package, which uses 
the internal dataClust function from fastcluster pack-
age, was used to apply the correlation-based distance 
matrix into average-linkage hierarchical clustering. It 
also takes advantage of the cutreeDynamic function from 
the WGCNA package to define cell clusters within the 
resulting dendrogram. To visualize the correlation-based 
distance matrix in a two-dimensional space, the UMAP 
dimensional reduction technique [48] was applied to the 
correlation-based distance matrix using the computeU-
MAP function from the RCA2 package. RCA clusters 
were annotated based on their correlation with immune 
cell types in each immune panels and expression of the 
canonical markers. Ambiguous RCA clusters with no 
correlation or strong correlation with more than one 
cell type in the panel were excluded from the dataset. 
First, in order to identify the major immune cell types, 
the QC-passed cells were projected into the Novershtern 
Panel resulting in 9 RCA clusters annotated as  CD4+ T, 
 CD8+ T, NK, B cell, monocyte, pDCs, platelets, HSCs, 
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and erythrocytes (Fig. 1b, middle panel; Additional file 1: 
Fig. S2a). T/NK cells were further clustered into 11 T cell 
sub-populations by sequential projection into two T cell 
specific panels. First, T/NK cells were projected into the 
Monaco T Cell Panel where the cells with strong correla-
tion with Treg, MAIT, gamma-delta T (VD2P), and NK 
cells were annotated accordingly and the remaining cells 
were projected into the Novershtern T Cell Panel result-
ing in six T sub-populations annotated as  CD4+ T naive, 
 CD4+ CM,  CD4+ EM,  CD8+ naive,  CD8+ CM,  CD8+ EM 
(Fig.  1b, upper-right panel; Additional file  1: Fig. S2c). 
B cells were projected into the Monaco B Cell Panel to 
identify and annotate three B sub-populations including 
B naive, BSM, and B plasma accordingly (Fig. 1b, upper 
left panel; Additional file  1: Fig. S2d). Likewise, projec-
tion of the monocyte/pDC cells into the Monaco Myeloid 
Panel revealed five myeloid sub-populations including 
C-monocyte, I-monocyte, NC-monocyte, cDC, and pDC 
(Fig. 1b, lower right panel; Additional file 1: Fig. S2e).

Cell composition enrichment analysis at gene expression 
space
To evaluate the enrichment of cells from T1DM patients 
in gene expression space across immune cell types, the 
nearest 50 neighbor cells around each single cell in the 
gene expression principal component analysis (PCA) 
space were collected, and the log2 (fold-change ratio) 
of cells from T1DM samples relative to the cells from 
healthy subjects within nearest 50 neighbor cells was 
measured. These values were visualized for each single 
cell at the UMAP space.

Identifying marker genes of PBMCs’ cell types
To define the marker genes for each immune cell type 
compared with rest of the cells, the negative binomial 
generalized linear model implemented in FindAll-
marker function from seurat package was used, while 
the sequencing library IDs (batch) and the disease sta-
tus (healthy/T1DM) were added as variables to regress 
out. Only genes which were detected in at least 25% of 
the cells in any of the two testing groups were included in 
the model. Genes with average nlog (fold-change) higher 

than 0.25 and FDR q-value less than 0.05 were selected as 
the marker genes for each immune cell type.

Differential cell composition analysis
To identify cell composition aberrations with taking into 
account the effect of independent variables, a multiple 
regression analysis based on the general additive model 
(GAM) was applied using the gam function from the 
mgcv R package [49]. This model benefits from properties 
of both generalized linear (GLM) models and additive 
models [50]. Various independent variables, including 
disease status (T1DM = 1, healthy = 0), sex (male = 1, 
female = 0), number of T1DM risk HLA haplotypes, and 
the GADA titer were included into the model to esti-
mate their effect on predicting the relative proportion 
of immune cell types (% of PBMC). The regression coef-
ficients were estimated by the model and the F test sta-
tistics was applied to compute p-values. By default, the 
relative proportion is considered as Gaussian response. 
In all analysis, the p-value less than 0.05 was considered 
statistically significant.

Pseudo‑bulk differential gene expression analysis
The DESeq2 (v.1.30.1) package was used to perform dif-
ferential gene expression analysis on pseudo-bulk tran-
scriptome profiles of T1DM and healthy samples. First, 
the pseudo-bulk expression matrices were calculated 
by summing UMI counts across cells as suggested by 
DESeq2. The shrunken log2 (fold-change) and standard 
error were measured by the ashr algorithm. Pseudo-bulk 
samples resulting from summing-up of less than 5 cells as 
well as genes that were detected in less than 5% of indi-
viduals were excluded from the analysis. Finally, genes 
with an absolute log2 (fold-change) ≥ log2(1.3) and FDR 
q-value (Benjamini-Hochberg) ≤ 0.05 were defined as 
DEGs.

Pathway enrichment analysis of T1DM‑associated DEGs
Both over-representation and gene set enrichment analy-
sis (GSEA) were performed using the ClusterProfiler R 
package [51]. The enrichGO function was used to per-
form the over-representation analysis on the list of DEGs 
from each k-mean cluster with the following settings: 

(See figure on next page.)
Fig. 1 Multi-resolution clustering of PBMCs in T1DM. a Schematic representation of the study design for scRNA-seq and multi-parametric FACS 
profiling and data analysis of T1DM patients and healthy controls. b UMAP visualization of single cells in gene expression space. Central UMAP plot: 
low-resolution reference-based clustering to identify the three major immune compartments (T/NK, B, and Mo/DC). Each major cell type was then 
clustered individually at higher resolution, again using reference panels, to define 22 PBMC cell types. CM, central memory; EM, effector memory; 
Treg, regulatory T; MAIT, mucosal-associated invariant T; VD2P, gamma-delta T; NK, natural killer; BSM, B switched memory; C-monocyte, I-monocyte, 
and NC-monocyte: classical, intermediate, and non-classical monocyte; cDC, pDC, conventional, plasmacytoid dendritic cell; HSC, hematopoietic 
stem cell. c UMAP plot showing fold enrichment of T1DM vs healthy cells at each location in gene expression space. Red, blue: enriched, depleted 
in T1DM
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Fig. 1 (See legend on previous page.)
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OrgDb = org.Hs.eg.db, ont = “BP,” pAdjustMethod = 
“BH,” pvalueCutoff = 0.05, qvalueCutoff = 0.05, minGS-
Size = 10, maxGSSize = 500. To perform GSEA analysis 
for each cell type, the gseGO function was applied on the 
list of DEGs ranked by the differential expression score 
(DES) [ |log2(Fold − Change)| × −log10(FDRq-value) ] 
using the following settings: OrgDb = org.Hs.eg.db, ont 
= “BP,” keyType = “ENTREZID,” pAdjustMethod = “BH,” 
pvalueCutoff = 0.05, exponent = 0, nPerm = 10,  000, 
minGSSize = 15, and maxGSSize = 500. The simplify 
function was used to simplify the enriched terms. The 
top 3 significantly enriched terms (ranked by NES) and 
the cell type-specific terms of each cell type were selected 
for visualization.

Single‑cell regulon activity inference and differential 
regulon activity (DAR) analysis
The well-established Single-Cell rEgulatory Network 
Inference and Clustering (SCENIC) algorithm [52] was 
utilized to infer the regulon activity in single-cell PBMCs. 
The SCENIC pipeline with default settings was applied 
on the whole scRNAseq PBMC dataset and the final 
matrix of 260 inferred regulons (rows) with their cor-
responding regulon activity score (RAS) across 117,737 
single cells (columns) was extracted as a Seurat object for 
the downstream analysis. Next, the unpaired Wilcoxon 
test, implemented in the Seurat FindAllmarker function, 
was used to identify the list of marker regulons within 
each immune cell type compared with the rest of the 
immune cells. For each cell type, the significant upregu-
lated regulons [nlog (fold-change) > 0 and FDR q-value 
< 0.05 )] were ranked based on their FDR q-values, and 
the top 5 regulons were selected as the marker regulons 
of that cell type. The same approach was used to identify 
the DARs between T1DM and healthy samples across 
immune cell types. Accordingly, within each cell type, 
all significant upregulated [nlog (fold-change) > 0] and 
downregulated [nlog (fold-change) < 0 ] regulons with 
FDR q-value ≤ 0.05 were selected as DARs in that cell 
type and were ranked based on their FDR q-value.

Gene overlap analysis
The GeneOverlap R package [53] was used to compare 
the level and significance of overlap between upregulated 
and downregulated DEGs of T/NK cells, B cells, and 
monocytes from the current study with reported DEGs 
from previous RNA-seq profiling studies in T1DM. To 
do so, first, the list of up and down regulated DEGs was 
fetched from three studies including (1) longitudinal bulk 
RNA-seq study of FACS-sorted T cells and PBMCs from 
seven genetically at-risk case-control pairs at 3, 6, 12, 
18, 24, and 36 months of age [24]; (2) bulk RNA-seq of 
human pancreatic β  cells isolated from 4 T1DM and 12 

healthy donors [18]; and (3) scRNA-seq of macrophages 
within human cultured islets isolated from 5 T1DM and 
11 healthy donors [29]. The newGOM function from the 
GeneOverlap package was used to apply the Fisher exact 
test and calculate the statistical FDR q-value (Benjamini-
Hochberg) of intersections.

TMZ score analysis
For each cell type, sample-level pseudo-bulk expression 
of DEGs were z-transformed across samples, and TMZ 
score was calculated by the following equation:

where i is the cell type i. The zij and zik represent the 
expression z-score for genes j and k in cell type i, respec-
tively. Finally, Ui and Di indicate the set of upregulated 
and downregulated DEGs in cell type i, respectively. The 
norm notation denotes the size of the set (i.e., the num-
ber of upregulated or downregulated genes in that cell 
type). Lastly, the average TMZ score is simply the mean 
of TMZ score across all cell types.

TMZ score validation method
After TMZ score is calculated as explained, to accom-
modate calculation of TMZ score for bulk RNA-seq from 
other dataset, DEGs coming from each cell types were 
grouped into 3 major cell types namely, T/NK, B, and 
monocytes and 3 TMZ scores were created. The set of 
upregulated and downregulated DEGs from each groups 
were used to measure the TMZ score for bulk RNA-seq 
data like in Fig. 5e and Additional file 1: Fig. S7c. Using 
the predetermined set of genes for each group, the TMZ 
scores are calculated on the bulk expression data. Sub-
sequently, the retrieved TMZ scores are then quantile 
transformed per sample to scale the data to the same dis-
tribution as in the previously calculated TMZ scores in 
our single-cell dataset while preserving its gene expres-
sion ranking. This method of calculation allows for any 
new genetic information coming from only as few as 1 
sample to have its own TMZ score referenced to our T1D 
single-cell expression data.

T1DM GWAS enrichment analysis
T1DM GWAS summary statistics fetched from 
the most recent comprehensive study covering 
61,947,369 genetic variants with 37,652,754 single-
nucleotide polymorphism (SNPs) passed the general 
QC in 520,580 European samples (T1DM = 18,942; 
healthy = 501,638) [54]. T1D-associated DEGs were 
ranked based on differential expression score (DES) 
[ |log2(Fold − Change)| × −log10(FDRq-value) ]. Genes 

TMZi =

j∈Ui

zij

�Ui�
−

k∈Di

zik

�Di�
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with q-value < 0.1 were filtered out and DES of remain-
ing genes were normalized using min-max normalization 
method. Next, for each cell type, the ranked normal-
ized DES values were inputted into CELLECT tool [55] 
to quantify their association with T1DM polygenetic 
GWAS signal (T1DM heritability) using MAGMA covar-
iate analysis [56] with MAGMA window size = 100 kb. 
Thereby, CELLECT identified cell types whose DEGs 
were significantly correlated with T1DM heritability and 
genes that were in the top 200 MAGMA-inferred T1DM 
GWAS genes and top 30 percentile of normalized DES 
were set to be the definition of effector genes listed in 
Fig. 6b.

Results
Reference‑based multi‑resolution clustering of PBMCs 
reveals altered cell populations in T1DM
We leveraged the demuxlet protocol for pooled scRNA-
seq [42] to profile gene expression in single PBMCs 
from stage 3 46 T1DM and 33 healthy samples matched 
for age, gender, and T1DM-associated HLA haplotype 
(Fig. 1a). After strict QC to discard low-quality cells and 
doublets (Methods), we obtained transcriptomic data on 
117,737 PBMCs. All samples were collected from Euro-
pean donors at Ulm University Medical Centre [35]
(Methods). In brief, PBMC samples from fasting blood 
taken from well-controlled insulin-dependent subjects 
with autoimmune diabetes were used in this study. Dis-
ease duration was consistent across the majority of the 
cohort, ranging from 1 to 4 years in 70 percent of sub-
jects. All T1DM cases were negative for C-peptide and 
were undergoing insulin treatment. Thus, none of the 
subjects met the criteria for the partial remission (see 
Methods for details of inclusion and exclusion criteria). 
Detailed clinical information including gender, age at 
blood collection, age at disease onset, GADA titer, and 
T1DM-associated HLA haplotypes is provided in Addi-
tional file 2: Table S1.

To minimize batch effects in jointly clustering and 
annotating cells, we applied a reference-based cluster-
ing method, Reference Component Analysis version 2 
(RCA2, Methods) [44, 57]. First, using a reference panel 
of transcriptomes of major immune cell types [46], we 

identified and annotated nine high-level cell clusters that 
were well separated in gene expression space (Fig.  1b, 
middle panel, Additional file 1: Fig. S2a):  CD4+ T,  CD8+ 
T, NK, B, monocyte/conventional dendritic cells (Mo/
cDC), plasmacytoid dendritic cells (pDCs), hematopoi-
etic stem cells (HSCs), erythrocytes, and platelets. We 
excluded the three least abundant clusters (HSC, plate-
let and erythrocyte) and sought to identify sub-popu-
lations within the abundant cell types by first merging 
them into three immune compartments: T/NK, B, and 
Mo/DC (Mo/cDC plus pDC). Then, in a second, high-
resolution round of cell type annotation, we clustered 
cells from each of the three compartments separately 
using additional reference panels (Methods), resulting in 
a total of 22 cell types, 21 of which could be annotated 
using canonical markers (Fig.  1b; Supp. Fig. Additional 
file 1: Fig. S2b-e, i; Methods). All clusters contained cells 
from all samples and pooled batches, suggesting that the 
clustering was mainly driven by biological differences 
between cell types rather than batch effects or sample 
specificity (Additional file 1: Fig. S2f, g).

Next, we investigated the enrichment of immune cells 
from T1DM patients relative to healthy controls at each 
location in gene expression space (Fig.  1c; Additional 
file  1: Fig. S3a, e, i; Methods). We observed depletion 
of Treg and  CD4+ EM cells, as well as enrichment of 
 CD8+ naive T cells, C-monocytes, and NC-monocytes in 
T1DM (Fig. 1c, Additional file 1: Fig. S2h). These results 
suggest that there could be systematic compositional 
changes in circulating immune cells in T1DM, particu-
larly at the level of cell sub-populations.

Cell composition changes of peripheral immune cells 
in T1DM
To systematically investigate cellular composition aberra-
tions of peripheral immune cells in T1DM, we used lin-
ear multiple regression analysis with sex [58] and number 
of T1DM risk HLA haplotypes as confounders and cell 
type proportion (% of total PBMCs) as the dependent 
variable (Methods).

First, we examined compositional changes at the lowest 
level of resolution, by focusing on two broad compart-
ments: lymphoid and Mo/cDC (Fig.  2a). Interestingly, 

Fig. 2 Cell composition alterations of peripheral immune cells in T1DM. a Bar plot of coefficients from multiple regression analysis of lymphocyte 
and Mo/cDC cell proportion (fraction of total PBMCs) against disease status, sex, and number of T1DM risk HLA haplotypes: 46 T1DM and 31 healthy 
samples. Error bars: standard error. b Same as a, for the 18 most abundant PBMC sub-populations, as well as the proportion ratios  CD4+ EM/Treg 
and  CD8+ EM/Treg. For easier visualization, the smaller values are multiplied by 10 (indicated with a superscript above the cell type label). c Cell 
composition changes from an independent multi-parametric FACS study of lymphoid cell types in T1DM [25]. Cell types that showed significant 
changes in both relative percentage and absolute cell count are shown. P-values from the original study: Mann-Whitney test. d Similar to b, 
on T1DM subjects alone, with GADA titer included as an additional independent variable. #p ≤ 0.09 , *p ≤ 0.05 , **p ≤ 0.01 , ***p ≤ 0.001

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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the proportion of Mo/cDC cells increased significantly in 
T1DM, while the proportion of lymphoid cells decreased. 
Note that these two compartments together account for 
the vast majority of PBMCs, and thus one would expect 
that their relative proportions would shift in opposite 
directions. The Mo/cDC proportion was also signifi-
cantly higher in male subjects, independent of T1DM 
status [58].

Next, we examined T1DM-associated composition 
changes at higher resolution, for the 18 most abundant 
PBMC sub-populations (Fig. 2b). Compared to controls, 
we noticed significant aberrations in the proportion 
of 5 immune cell types.  CD4+ EM cells were strongly 
depleted in T1DM PBMCs, perhaps due to their recruit-
ment to the para-pancreatic lymph nodes and pancreatic 
islets where they are shown to establish immunological 
synapses with antigen presenting cells (i.e., pDCs, B cells, 
and β  cells) and mediate the inflammatory responses 
against β cells autoantigens [59–61]. Defects in immune 
suppressing function of Tregs have been reported in 
T1DM and other autoimmune disease [62–64]. Consist-
ently, our scRNA-seq data revealed significant decrease 
in relative proportion of Tregs in PBMCs of T1DM 
patients (Fig.  2b), suggesting that, in addition to func-
tional changes in Tregs, a reduction in their abundance 
could potentially contribute to the loss of peripheral 
tolerance in T1DM. Interestingly, in line with previous 
studies reporting higher ratio of naive/effector T cells 
in peripheral blood of T1DM patients [25, 61], we also 
identified enrichment of  CD8+ naive T cells in PBMCs 
of T1DM patients (Fig.  2b). This observation supports 
the extensive literature showing a crucial role for  CD8+ 
T cells in destructing of βcells during T1DM pathogen-
esis [61, 65–67]. Finally, we observed a higher proportion 
of C-monocytes and pDCs in peripheral blood of T1DM 
patients (Fig.  2b). We note that some of these T1DM-
associated cell population changes may overlap those 
associated with aging [68].

We also examined the ratio of  CD4+ and  CD8+ EM 
cells to Treg cells, as a measure of T cell activation. Inter-
estingly, both ratios were significantly elevated in T1DM 
(Fig. 2b). Consistent with previous studies [58], sex was 
again a significant confounding factor for multiple PBMC 
sub-populations. However, the number of HLA risk hap-
lotypes had no significant effect.

Consistently, our multi-parametric FACS profiling of 
190,000 cells from of 10 stage 3 T1DM and 9 healthy 
samples (10,000 cells per sample) (Additional file 1: Fig. 
S4a-c; Methods) validated the depletion of  CD4+ T cells 
in T1DM (p-value = 0.037, Additional file 1: Fig. S4d-e). 
Likewise, it showed a trend towards higher proportions 
of  CD8+ T and C-monocyte cells (Additional file  1: 
Fig. S4d-e). The cell composition shifts observed in our 

analysis were also supported by an independent multi-
parametric FACS study [25] of B and T lymphocytes in 
T1DM. Consistently again, this study reported signifi-
cant depletion of  CD4+ early, late, and terminally differ-
entiated EM (TEMRA) T cells as well as activated Tregs 
(Fig.  2c). Enrichment of  CD8+ naive T cells in T1DM 
was also supported. These results from FACS profiling 
validate and support our conclusions from scRNA-seq 
that specific peripheral cell proportions are signifi-
cantly altered in T1DM. Nevertheless, our scRNA-seq 
results encompass a far larger set of markers than can 
be analyzed using low-plex methods such as FACS.

We then examined the consistency of our results 
from single-cell analysis of peripheral immune cells 
with previously reported cell composition changes in 
relevant tissues, namely T1DM pancreas and para-pan-
creatic lymph nodes. In line with our own finding that 
Treg cells were depleted in T1DM peripheral blood, 
depletion of this cell type was reported as a key feature 
of para-pancreatic lymph nodes in stage 3 T1DM [63]. 
Furthermore, two independent imaging mass cytom-
etry studies revealed an excess of macrophages in stage 
3 T1DM pancreatic islets, which may relate to the 
excess of circulating C-monocytes and NC-monocytes 
observed in our study. In contrast to the depletion of 
 CD4+ EM T cells in circulation, the overlapping  CD4+ 
helper T cell population was enriched in T1DM islets, 
suggesting recruitment of these cells to pancreas in the 
disease state [69, 70].

We also investigated concordant signatures between 
PBMC cell composition changes in organ-specific (mani-
fest T1DM, our study) and systemic autoimmune dis-
ease (established systemic lupus erythematosus (SLE)) 
[71]. In both T1DM and SLE, the ratio of lymphocytes 
to Mo/cDC cells was reduced relative to controls. Along 
the same lines, C-monocytes were enriched in both auto-
immune diseases (Additional file  1: Fig. S5a). However, 
there were also notable differences. For example,  CD4+ 
naive T cells were depleted in SLE, whereas we observed 
depletion of Treg and  CD4+ EM T cells in T1DM. Simi-
larly, we observed enrichment of  CD8+ naive T cells 
and pDCs in T1DM, but no corresponding shifts were 
observed in SLE. Thus, the systemic shifts in cell com-
position we observed in the organ-specific autoimmune 
disease T1DM were similar in some respects to, but also 
substantially different from, those seen in SLE.

Next, we analyzed the association of cell composition 
in T1DM with sex and two clinical features: number of 
HLA risk haplotypes and GADA titer. We found a posi-
tive correlation between GADA titer and the proportion 
of MAIT (p = 0.026) and CD4 TEM cells (p = 0.086), 
suggesting a possible role for these cell types in GAD 
autoimmunity (Fig. 2d).
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Cell type‑specific gene expression changes of peripheral 
immune cells in T1DM
To identify transcriptome aberrations in peripheral 
immune cell types in T1DM, we performed pseudo-
bulk differential gene expression analysis between the 
46 cases and 31 control samples using DEseq2 [72] 
(Methods). Since we observed high overlap between 
DEGs of naive, CM, and EM T sub-populations within 
 CD4+ T cells (data not shown), we merged these three 
sub-populations into a single  CD4+ T cluster. The same 
approach was used to collapse cell sub-populations 
within  CD8+ T cells. Remarkably, 1784 genes were 
identified as differentially expressed in at least one cell 
type ( |log2(Fold − Change)| ≥ log2(1.3) ; FDR q-value 
≤ 0.1 ), comprising 1093 upregulated and 691 down-
regulated DEGs (Fig.  3a; Additional file  1: Fig. S3b, f, j; 
Additional file  1: Fig. S6a; Additional file  2: Table  S3). 
Our FACS panel for validating cell composition shifts 
included 8 of these DEGs, all of which showed protein 
expression changes in a direction consistent with tran-
scriptome analysis, with 3/8 also showing statistical sig-
nificance (Additional file  1: Fig. S4f ). Interestingly, NK, 
Treg,  CD8+ T cells comprised the top three cell types in 
terms of number of DEGs in T1DM (Fig. 3b), and > 300 
genes were upregulated in each of these cell types. This 
indicates long-lasting systemic immune aberrations after 
type 1 disease manifestation, most prominently (though 
not exclusively) in cytotoxic cells and Treg cells that 
modulate their activity.

To identify gene modules among T1DM-associated 
DEGs, we clustered them by their cell type-specific log2 
(fold-change) profile using k-means. This yielded 8 major 
DEG modules, most of which were preferentially altered 
in specific cell types. We annotated DEG clusters based 
on their most significantly enriched GO terms (Fig.  3c, 
Additional file 2: Table S4) (Methods). Notably, all three 
major cell lineages showed upregulation of the corre-
sponding activation markers: “T cell activation” in T 
cells (cluster 6), “antigen presentation via MHC class II” 
in B cells (cluster 3), and “activation of innate immune 
responses” in myeloid cells (cluster 1). Consistently, 

gene set enrichment analyses (GSEA) of DEGs in each 
cell type (Methods) highlighted the enrichment of sev-
eral overlapping biological terms including “cell activa-
tion” enriched in upregulated DEGs of most immune 
cell types and “processing and presentation of peptide 
antigens” enriched in up-DEGs of B cells. Furthermore, 
we observed significant association of T/NK up-DEGs 
with the term “cell migration” (Fig. 3d, Additional file 2: 
Table S5-S6). These results imply broad immune activa-
tion responses across PBMC cell lineages. However, the 
corresponding sets of DEGs were not entirely the same 
in T/NK, B, and monocyte populations (Additional file 2: 
Table  S5-S6). These observations may suggest higher 
migratory potential of T/NK cells in T1DM, which may 
explain their active recruitment to the pancreatic islets 
and parapancreatic lymph nodes [63, 69, 70].

Next, we compared systemic transcriptomic aber-
rations in organ-specific (T1DM) and systemic (SLE) 
autoimmune diseases [71]. Interestingly, peripheral lym-
phoid and myeloid DEGs in T1DM significantly over-
lapped with the corresponding SLE DEGs (Additional 
file 1: Fig. S5b). These overlapping DEGs imply a shared 
loss of immune cell homeostasis in the two autoimmune 
diseases. For example, interferon gamma response genes 
were enriched in shared up-DEGs of T/NK cells, and 
myeloid cell activation genes were enriched in shared 
monocyte up-DEGs (Additional file 1: Fig. S5c, d, Addi-
tional file  2: Table  S7). However, some functional per-
turbations appeared to be specific to T1DM up-DEGs, 
such as antigen processing and presentation capacity 
by B cells, driven by over-expression of a MHC class II 
cluster including HLA-DM, HLA-DO, HLA-DRB1, HLA-
DQB1/HLA-DQA1, CD74, and CTSS [Fig. 3d; Additional 
file  1: Fig. S6b; [71]]. Thus, these results suggest sig-
nificant similarities in the systemic immune response in 
T1DM and SLE, but also notable differences.

We then leveraged the SCENIC algorithm [52] (Meth-
ods) to identify transcription factors (TFs) that may con-
tribute to gene and pathway dysregulation in T1DM. As 
a positive control, we first confirmed that the regulons 
(target genes) of canonical cell type marker TFs were 

(See figure on next page.)
Fig. 3 Cell type-specific gene expression changes in T1DM. a Total number of unique upregulated and downregulated DEGs in 14 peripheral 
immune cell types: 46 T1DM samples vs. 31 healthy. b Bar plot representing the number of DEGs within each cell type, with colored segments 
indicating the number of cell types that share the same DEG. c Heatmap of T1DM vs healthy log2 (fold-change) of 1784 DEGs ( 691+ 1093 ) across all 
immune cell types. Genes are clustered by their fold-change vectors using k-means. Each gene cluster is annotated by the most significantly 
enriched Gene Ontology (GO) term. d Gene set enrichment analysis (GSEA): dot plot of top shared and cell type-specific biological processes 
enriched in DEGs of each PBMC cell type, colored by normalized enrichment score (NES). Dot size: −log10 (FDR q-value). e Differential regulon 
activity: heatmap of transcription factor regulons with increased or decreased activity in T1DM (union of top 5 regulons in each of the 13 peripheral 
immune cell types). Color indicates −log10 (FDR q-value) of regulons upregulated (yellow) and downregulated (purple) in T1DM. f Overlap 
between GSEA leading-edge genes and significantly differential regulons in 6 peripheral cell types. Color indicates −log10 (FDR q-value) of overlap 
(Fisher’s exact test)
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Fig. 3 (See legend on previous page.)
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upregulated in their corresponding cell types (Additional 
file 1: Fig. S6c; Methods). We then identified differentially 
active regulons (DARs) in T1DM versus healthy controls 
across the 13 immune cell types (Methods). We detected 
123 significantly altered regulons (60 up, 63 down; FDR 
q-value ≤ 0.05 ) in at least one immune cell type (Addi-
tional file 1: Fig. S6d; Additional file 2: Table S9). Notably, 
we identified several instances of cell type-specific regu-
lon activation in T1DM: TCF7, LEF1, ETS1, and KLF2 
in T/NK cells, MEF2C and PCX5 in B cells, and IRF5 in 
monocytes (Fig. 3e, orange; Additional file 1: Fig. S3c, g, 
k). To identify the TFs contributing to dysregulation of 
specific functional categories, we intersected the corre-
sponding regulons with leading-edge DEGs of enriched 
GSEA terms in each immune cell type (Methods). This 
analysis revealed that distinct TFs may drive cell activa-
tion in each cell type: TCF7, LEF1, and ETS1 in T/NK 
cells, IRF5 in monocytes, and PAX5 and MEF2C in B cells 
(Fig. 3f; Additional file 1: Fig. S3d, h, i). Furthermore, we 
identified KLF2 as the master TF driving upregulation 
of cell migration genes in T/NK cells (Fig. 3f; Additional 
file  1: Fig. S3d) [73, 74]. Analysis of the signaling path-
ways upstream of these TFs that orchestrate T1DM-asso-
ciated immune cell phenotypes may reveal new insights 
into the pathobiology of this autoimmune disease.

Overlap with prognostic expression signatures 
and transcriptome changes in T1DM pancreas
We hypothesized that some of the systemically altered 
immune cell genes in long-term T1DM could be per-
turbed even before disease onset. We therefore exam-
ined prognostic markers of seroconversion and T1DM 
onset previously identified in PBMCs of genetically at-
risk infants [24] (Methods). Remarkably, these prognos-
tic markers were significantly enriched for overlap with 
our T/NK up-DEGs (Fig.  4a, b). The overlapping genes 
were prominently associated with cytokine production 
and cytokine-mediated signaling (TXK, HLA-F, ANXA1, 
IL32, FCER1G, IL7R, CARD8, CPNE1, BTN3A2, and 
CD8B), suggesting that they may be involved in pro-
duction and secretion of inflammatory cytokines by T/
NK cells in the pre-disease state (Fig.  4c; Additional 

file  2: Table  S8). In summary, numerous transcriptome 
aberrations of circulating immune cells in young adults 
with T1DM reflect continuation of pathogenic immune 
activation processes present at earlier stages of disease 
development.

Next, we asked whether the peripheral gene expression 
changes in T1DM were also reflected in the affected tis-
sue, namely pancreatic islet cells [18, 29]. Indeed, T1DM 
versus healthy DEGs in pancreatic β cells and pancreatic 
macrophages were highly enriched in peripheral up-
DEGs of all three PBMC lineages (Fig.  4a, b). Consist-
ently, the DEGs shared by pancreatic β  cells and PBMC 
were enriched for roles in lymphocyte (e.g.,  ZFP36L2, 
HLA-E, ITGB2, LGALS1, TNFRSF1B) and myeloid 
(e.g.,  CD14, CTSC, LYZ, FGR, LGALS9) cell activa-
tion and antigen presentation by B cells (e.g., CD74 and 
several HLA genes) (Fig.  4c, orange; Additional file  2: 
Table  S8). Importantly, 9 of the overlapping genes have 
genetic associations with T1DM risk: GPSM3, HLA-
DMB, HLA-DPA1, HLA-DPB1, HLA-DRA, HLA-DRB1, 
HLA-F, LST1, RPL41. These results suggest significant 
similarity between dysregulated genes and pathways in 
circulatory immune cells and pancreatic islets in T1DM 
and support the relevance of systemic immune changes 
to the pathophysiology of T1DM pancreas.

Transcriptome aberrations of peripheral immune cells 
define clinically relevant T1DM subtypes
We then asked if the expression of T1DM-associated 
DEGs could be used to define patient subtypes. First, 
in each cell type of each sample, we summarized the 
pseudo-bulk expression levels of the corresponding 
DEGs into a single TMZ score (Methods). As expected, 
this score largely segregated cases and controls. Remark-
ably, despite substantial differences between the 13 cell 
type-specific DEG sets, the corresponding 13 TMZ score 
were highly correlated (Pearson correlation coefficient 
> 0.9 ; Additional file  1: Fig. S7a). This result suggests 
that, in any individual sample, the 13 T1DM-associated 
molecular programs are activated to approximately the 
same extent (after z-score normalization). Thus, all 13 
cell types are equally indicative of the strength of the 

Fig. 4 Overlap with prognostic expression signature and transcriptome changes in T1DM pancreas. a Overlap between T1DM versus healthy 
DEGs in PBMC cell types (this study) and prognostic markers and DEGs identified in other T1DM studies. Kallionpaa et al.: prognostic markers 
of seroconversion and T1DM onset. Russell et al., Fasolino et al.: T1DM versus healthy DEGs in primary pancreatic β cells, cultured pancreatic 
macrophages. Statistical significance of overlap [Fisher’s exact test, −log10 (FDR q-value)] is indicated, with number of overlapping genes 
in parentheses. b Gene Ontology (GO) enrichment analysis: dot plot of biological processes enriched in overlapping up-DEGs in a colored 
by −log10 (FDR q-value). T/NK::SeroConv: T/NK DEGs that overlap prognostic markers of seroconversion in T cells or PBMCs (n = 20); T1DM onset: 
union of prognostic markers of T1DM onset in T cell and PBMCs; PanBeta: DEGs of pancreatic β cells; PanMac: DEGs of pancreatic macrophages. Dot 
size: percentage of total DEGs in the given GO term. c Heatmap of differential expression (DE) scores [ |log2(Fold − Change)| × −log10(FDRq-value) ] 
for union of overlapping up-DEGs in a. DEGs are clustered by k-means into seven clusters (C1-7)

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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systemic immune alteration in T1DM. We then clustered 
samples by their 13-dimensional TMZ score vectors into 
three groups to define molecular subtypes of T1DM rep-
resenting high, intermediate, and low systemic immune 
response, respectively (Fig. 5a).

As expected, almost all healthy controls (29/31) 
belonged to the low-response T1DM subtype. Intrigu-
ingly, 13/46 T1DM cases were also assigned to the same 
subtype suggesting that a subset of diagnosed individuals 

may have relatively low systemic immune response, 
towards the upper end of healthy range (Fig.  5a). On 
the other hand, the intermediate- and high-responding 
subtypes were almost exclusively T1DM cases (33/35). 
Of note, the high-response group included one healthy 
control participant (Fig.  5a, red box). Remarkably, this 
participant was subsequently diagnosed with T1DM, 4 
years after blood collection. Although anecdotal, this 
observation raises the possibility that systemic immune 

Fig. 5 Transcriptome aberrations of peripheral immune cells define T1DM endotype. a TMZ score summarizing pseudo-bulk expression 
of T1DM-associated DEGs in each of 13 immune cell types: 46 T1DM and 31 Healthy. Samples were clustered by their TMZ score profiles using 
k-means. Missing values indicate insufficient cell count. b Bar plot of coefficients from multiple regression analysis of TMZ score against gender, 
GADA titer, and number of T1DM risk HLA haplotypes: 46 T1DM samples. Cell types avg: average of z-score across all cell types. Error bars: standard 
error. c Scatterplot showing the association of TMZ score with GADA titer across 46 T1DM samples. p-value: Spearman rank correlation. d Box plot 
representing TMZ score variation within each T1DM risk haplotype category. p-value: Kruskal-Wallis one-way ANOVA. e Effect of verapamil treatment 
[75] for 24 h versus untreated controls on TMZ score of human cultured islets. p-value: paired t-test. b, e #p ≤ 0.1 , *p ≤ 0.05 , **p ≤ 0.01
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alterations may precede the development of insulin-
dependence. Overall, these results suggest that T1DM 
associated DEGs of peripheral immune cells could be 
used to define molecular subtypes of T1DM.

Next, we asked if the observed variation in TMZ score 
across patients could be associated with two widely used 
clinical parameters: the number of T1DM risk haplo-
types and GADA titer. Multiple linear regression analysis 
(Methods) revealed significant association of GADA titer 
as well as T1DM risk HLA haplotypes with TMZ score 
(Fig.  5b–d; Additional file  1: Fig. S7b). However, when 
we included age at diagnosis as an additional independ-
ent variable in the regression model for TMZ score, we 
did not find any significant association with this covariate 
(Additional file 1: Fig. S7b). This result could potentially 
be attributable to the fact that subjects with early onset 
T1DM (onset below 13 years) represented only a minor-
ity of our cohort (14/46, 30%).

Encouraged by the correspondence to clinical param-
eters, we asked if the TMZ score could be perturbed by 
treatment with immunomodulatory drugs in a non-anti-
gen-specific manner. Specifically, we hypothesized that 
these drugs may reduce the TMZ score, i.e., they could 
move the immune profile of afflicted individuals closer 
to that of healthy controls. To test this hypothesis, we 
calculated TMZ score using bulk PBMCs transcriptome 
data from clinical trials for three drugs, namely tepli-
zumab (anti-CD3) [76], abatacept (CTLA4 ig) [77], and 
rituximab (anti-CD20) [78] (Methods). In addition, we 
examined bulk transcriptome data from cultured pan-
creatic islets treated with verapamil [75, 79], relative to 
untreated controls. Verapamil, a drug that improved 
mixed-meal-stimulated C-peptide area under the curve 
and reduced the insulin requirement in a phase II trial 
[79], also reduced the TMZ score based on monocyte 
DEGs and had a marginally significant effect on the 
overall TMZ score (Fig. 5e; Additional file 1: Fig. S7c-e). 
While teplizumab had no detectable influence on the 
TMZ score, long-term treatment with abatacept, a drug 
designed to suppress T cell response, reduced the T/
NK cell TMZ score. Rituximab, a drug targeting B cells, 
strongly reduced the B cell TMZ score on day 26, 4 days 
after the last dose was administered. These results sug-
gest that the TMZ score could potentially be used to 

monitor drug response in pre-clinical and clinical T1DM 
studies and also as a readout in high-throughput screens.

Cell type‑specific DEGs enriched for T1DM genetic risk
It is possible that some of the systemic immune DEGs 
detected in our single-cell analysis could be a conse-
quence of chronic hyperglycemia, rather than linked 
to stage 3 T1DM. To prioritize cell types whose differ-
ential expression associates with disease causation, we 
used the CELLECT tool [55] to correlate the T1DM risk 
scores of genes (inferred from GWAS summary statistics 
[52]) with their cell type specific differential expression 
in T1DM versus healthy (Methods). This analysis high-
lighted DEGs in adaptive immune cell types as signifi-
cantly enriched for T1DM genetic risk. DEGs in B naive 
cells showed the highest association with T1DM herit-
ability, driven almost exclusively by multiple risk variants 
of strong effect in the HLA locus (Fig. 6a upper panel, b). 
This result indicates the crucial role of antigen presenta-
tion by B cells in T1DM pathogenesis [80].

To identify cell types associated with T1DM genetic 
risk in the rest of genome, we excluded the HLA locus 
and repeated the CELLECT analysis. In this case, DEGs 
in effector T cells  (CD8+ T, MAIT, and VD2p) emerged 
as significantly enriched for T1DM heritability: PTPN22, 
KLRG1, ICAM3, CLECC2D, CDC37, CD69, CD3G, and 
IL7R (Fig. 6a lower panel, b). This result strengthens the 
evidence for the pathogenic role of effector T cells in 
T1DM [10, 60, 65–67, 81].

Also, we observed that 9 of the cell type-specific 
DEGs in T1DM GWAS loci belong to cell type-specific 
regulons driving upregulation of cell activation or cell 
migration genes displayed in Fig. 3f (Fig. 6b). These con-
nections suggest that some of the genes influenced by 
T1DM-causing genetic variants may also be perturbed at 
the regulon level. In other words, these genes may repre-
sent convergence of cis- and trans-regulatory alterations 
at certain gene loci in T1DM.

Taken together, our GWAS integrative analysis high-
lights candidate cell types and corresponding DEGs that 
may mediate T1DM genetic risk in HLA and non-HLA 
loci. These genes could be targeted for functional assays 
in the corresponding cell types to investigate molecular 
mechanisms of T1DM pathogenesis.

Fig. 6 Cell type-specific DEGs enriched for T1DM genetic risk. a Significance of association between cell type-specific DEGs and T1DM risk loci. 
Upper panel: entire genome, lower panel: non-HLA loci. FDR q-values: Benjamini-Hochberg correction. b Heatmap of cell type-specific differential 
expression score (DES) of genes in T1DM GWAS loci. Gene within the upper 30th percentile of DES that also rank within top 200 in the genome 
by T1DM genetic risk score are shown. Genetic risk scores [ −log10 (MAGMA p-value)] of individual genes are shown by the bar plot on the right. 
Black: DEGs, gray: upstream transcription factors inferred by regulon analysis

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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Discussion
We have constructed a cohort-scale single data set of 
peripheral immune cell states in T1DM as a resource 
to characterize systemic immune dysregulation in this 
prototypic endocrine organ-specific autoimmune dis-
ease. A key strength of our study is the use of single-
cell transcriptome profiling of an autoimmune disease 
cohort, which provided sufficient resolution to detect 
cell type-specific molecular traits associated with 
T1DM. This approach also facilitated cross-validation 
of our results with T1DM markers found in diseased 
pancreatic tissue as well as circulating markers from 
single-cell analysis of SLE. Nevertheless, our study has 
some limitations. Firstly, this has been a cross-sectional 
study covering Stage 3 T1DM only. However, we note 
that the cross-sectional markers we identified from 
single-cell analysis showed significant overlap with pre-
viously detected prognostic markers. Secondly, we did 
not address signatures of auto-reactive T and B cells in 
T1DM.

In this study we detected a large number of DEGs 
between T1DM and control PBMCs (1784 DEGs across 
13 cell types), indicating profound systemic immune 
aberrations in this organ-specific autoimmune disease 
(Fig.  3a, b). Remarkably, this was almost six-fold larger 
than the DEG set detected by scRNA-seq in the systemic 
autoimmune disease SLE (302 DEGs across 11 immune 
cell types, [71]). This increase could reflect an unex-
pectedly large systemic dimension to T1DM. We also 
identified substantial overlap in transcriptome changes 
between T1DM and SLE, including shared upregulation 
of cell activation genes in lymphoid and myeloid line-
ages [82–84]. This may further support the notion of a 
major systemic dimension to T1DM. These findings are 
in line with the observation that individuals diagnosed 
with T1DM are at greater risk of subsequently develop-
ing other autoimmune diseases such as celiac disease 
(small intestine) [85, 86], autoimmune gastritis [87, 88], 
autoimmune adrenalitis (Addison’s disease) [89], and 
quite common autoimmune thyroiditis (thyroid) [90, 91]. 
The negative clinical impact of the persistence of such 
immune cell changes is also evident as recurrent autoim-
munity after pancreas or islet cell transplantation [92]. 
Immunosuppression is thus required to control immedi-
ate (re)activation of autoreactivity. Along the same lines, 
a large population-scale analysis showed that persistent 
immune activation and/or low-grade inflammation in 
T1DM appears to substantially increase the risk of car-
diovascular disease in autoimmune diabetes subjects 
(hazard ratio:2.36), to a similar extent as SLE (hazard 
ratio:2.82) [93]. Our results, taken together with these 
epidemiological findings, make a case for expanding the 
scope of mechanistic studies of T1DM by examining 

systemic immunopathology and functional impairment 
in additional organs besides the pancreas.

Despite substantial overlaps between peripheral 
immune changes in T1DM and SLE, perturbation of 
antigen presentation by B cells (upregulation of MHC 
class II antigen/peptide presentation genes including 
HLA-DR and -DQ), was specific to T1DM (Fig. 3d; Addi-
tional file 1: Fig. S6b; [71]). In type 1 diabetes, it is well 
known that autoantigen presentation to CD4(+) T cells 
via MHC class II molecules plays a key role in the dis-
ease process [94–97]. This finding adds to the evidence 
from non-obese diabetic (NOD) mice [80, 98] supporting 
a key role for B cells as antigen presenting cells (APCs) in 
T1DM. Similarly, upregulation of cell migration genes in 
T/NK cells appears to be specific to T1DM (Fig. 3d; [71]). 
These results indicate qualitative differences between the 
systemic components of T1DM and SLE, and suggest 
that broader characterization of the peripheral immune 
aberrations of diverse autoimmune diseases could lead to 
new molecular assays for diagnosis and clinical monitor-
ing. For instance, our T1DM-associated DEGs included a 
significant number of known prognostic markers of sero-
conversion and T1DM disease onset (Fig. 4a, c).

Remarkably, we observed significant overlap between 
the transcriptome aberrations of peripheral immune 
cells and those observed in pancreatic β  cells and mac-
rophages in T1DM (Fig.  4a, c). This result suggests sig-
nificant sharing of molecular mechanisms between 
peripheral immune cells and the relevant target tissue(s) 
[99]. Thus, our results provide further motivation for 
developing therapeutic strategies aimed at reversing the 
pathology of both pancreatic beta cells and circulating 
immune cells in T1DM [99–101].

Regulon analysis highlighted candidate master TFs 
driving cell type-specific changes in key functional pro-
grams in T1DM (Fig.  3e, f ). Multiple lines of evidence 
support a role for these TFs in the pathophysiology of 
the corresponding cell types. For example, the WNT-
pathway mediators TCF7 and LEF1, which we identified 
as drivers of T/NK cell activation, are known to play a 
key role in maintenance of a Th17 stem-like population 
which can either give rise to effector Th17 cells or differ-
entiate into highly tissue destructive Th17/Th1-like cells 
[10, 81, 102]. In addition, we identified IRF5 as a poten-
tial driver of monocyte hyperactivation in T1DM. Con-
sistently, genetic variants in this locus are associated with 
hyper-activation and functional aberrations of mono-
cytes in T1DM and other systemic autoimmune disease 
such as SLE and Sjögren’s syndrome [103–106]. Lastly, 
our results indicate that MEF2C, a TF necessary for B cell 
survival and proliferation upon stimulation of antigen 
receptor [107] may also drive the abovementioned upreg-
ulation of antigen presentation genes in B cells. Targeting 
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WNT [108, 109], interferon [110, 111], or other signaling 
pathways mediated by the identified master TFs could 
represent a promising avenue for therapeutics develop-
ment in T1DM.

A key observation from our data is substantial het-
erogeneity across patients in the degree of T1DM-asso-
ciated transcriptomic change (TMZ score). The clinical 
relevance of this heterogeneity is supported by the fact 
that the TMZ score showed significant correlation with 
GADA titer and number of HLA risk haplotypes, both 
of which are commonly used to infer disease risk [17, 19, 
21] (Fig. 5). We therefore used the TMZ score to classify 
participants into high, intermediate, and low immune-
responding molecular subtypes. As evidence for the 
relevance of this classification, the lone healthy subject 
assigned to the “high” subtype developed T1DM subse-
quently, 4 years after blood sampling. Lastly, analysis of 
transcriptomic response to drug treatment in vitro and in 
clinical trials revealed reductions in the TMZ score that 
were consistent with the mechanism of action and clini-
cal response (Fig. 5e; Additional file 1: Fig. S7c-e). These 
results lay a foundation for further studies of the TMZ 
score as a readout in high-throughput screens, as a tool 
for T1DM patient stratification, and as an indicator of 
treatment response.

It should be noted that our dataset does not encompass 
the entire spectrum of autoimmune diabetes subtypes or 
endotypes (young-onset T1DM, adult-onset T1DM, as 
well as latent autoimmune diabetes of adults and other 
potential variants). Recognizing this limitation is crucial 
for a nuanced understanding of autoimmune diabetes 
and its various manifestations, emphasizing the need for 
future studies in a larger cohort, across a range of dis-
ease durations, to examine the temporal dynamics of this 
signature.

An additional constraint inherent in our study pertains 
to the absence of quantification of stimulated C-peptide 
levels in patients, thereby precluding the definitive exclu-
sion of individuals identified as micro-secretors with 
retained C-peptide. We did, however, exclude T1D sub-
jects with a “positive” fasting C-peptide level. We note 
that the sensitivity of the C-peptide assay does not com-
promise the substantive findings and primary conclu-
sions derived from our investigation.

Conclusions
In summary, our study provides a comprehensive char-
acterization of systemic immune dysregulation in type 1 
diabetes mellitus (T1DM) by constructing a large-scale 
single-cell dataset of peripheral immune cell states. Our 
findings reveal profound systemic immune aberrations 
in T1DM, suggesting an unexpectedly large systemic 
dimension to the disease, with a remarkable six-fold 

increase in the number of differentially expressed genes 
(DEGs) compared to systemic lupus erythematosus 
(SLE). The observed transcriptome changes in periph-
eral immune cells also exhibit significant overlap with 
those in pancreatic β cells and macrophages, underscor-
ing shared molecular mechanisms and offering insights 
for therapeutic strategies targeting both tissues. Moreo-
ver, our study introduces the T1DM-associated tran-
scriptomic change (TMZ) score as a potential readout 
for high-throughput screens and an indicator of treat-
ment response. We demonstrate substantial heterogene-
ity in T1DM-associated transcriptomic changes across 
patients, as reflected in the TMZ score, which corre-
lates with disease risk indicators and provides a basis for 
patient stratification.

While our dataset significantly contributes to under-
standing systemic immunopathology in T1DM, we 
acknowledge its limitations, particularly the exclusion 
of the entire spectrum of autoimmune diabetes subtypes 
and the absence of stimulated C-peptide quantification. 
Future studies addressing these limitations in larger and 
more diverse cohorts will enhance our understanding of 
autoimmune diabetes dynamics over time.
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