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Abstract 

Background To diagnose the full spectrum of hereditary and congenital diseases, genetic laboratories use many dif‑
ferent workflows, ranging from karyotyping to exome sequencing. A single generic high‑throughput workflow would 
greatly increase efficiency. We assessed whether genome sequencing (GS) can replace these existing workflows 
aimed at germline genetic diagnosis for rare disease.

Methods We performed short‑read GS (NovaSeq™6000; 150 bp paired‑end reads, 37 × mean coverage) on 1000 
cases with 1271 known clinically relevant variants, identified across different workflows, representative of our tertiary 
diagnostic centers. Variants were categorized into small variants (single nucleotide variants and indels < 50 bp), large 
variants (copy number variants and short tandem repeats) and other variants (structural variants and aneuploidies). 
Variant calling format files were queried per variant, from which workflow‑specific true positive rates (TPRs) for detec‑
tion were determined. A TPR of ≥ 98% was considered the threshold for transition to GS. A GS‑first scenario was gener‑
ated for our laboratory, using diagnostic efficacy and predicted false negative as primary outcome measures. As input, 
we modeled the diagnostic path for all 24,570 individuals referred in 2022, combining the clinical referral, the transi‑
tion of the underlying workflow(s) to GS, and the variant type(s) to be detected.

Results Overall, 95% (1206/1271) of variants were detected. Detection rates differed per variant category: small vari‑
ants in 96% (826/860), large variants in 93% (341/366), and other variants in 87% (39/45). TPRs varied between work‑
flows (79–100%), with 7/10 being replaceable by GS. Models for our laboratory indicate that a GS‑first strategy would 
be feasible for 84.9% of clinical referrals (750/883), translating to 71% of all individuals (17,444/24,570) receiving GS 
as their primary test. An estimated false negative rate of 0.3% could be expected.

Conclusions GS can capture clinically relevant germline variants in a ‘GS‑first strategy’ for the majority of clinical 
indications in a genetics diagnostic lab.
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Background
Although human genetic diseases are rare, they account 
for an important public health burden [1, 2]. Diagnostic 
approaches to detect the underlying genetic causes of 
these diseases require a broad spectrum of technologies, 
ranging from traditional approaches such as karyotyping, 
genomic microarrays, FISH, MLPA, and Sanger sequenc-
ing, to more advanced technologies, such as exome 
sequencing and transcriptomics. Each of these technolo-
gies is dedicated to detecting one or multiple variant 
types [3–6]. In clinical genomics, (de novo) single nucleo-
tide and copy number variants (SNV/CNV) are the most 
commonly found aberrations [7–9], but to a lesser extent 
aneuploidy, expansions of short tandem repeats (STR), 
and (copy-neutral) structural variants (SV) also contrib-
ute to disease. To molecularly diagnose a rare disease, 
multiple workflows are often used, as a single disease can 
often be caused by multiple variant types [10–14]. Impor-
tantly, for diagnostic purposes, every technology needs to 
prove clinical, as well as analytical, validity [3, 15].

Genome sequencing (GS) promises comprehensive 
variant calling of all variant types from a single experi-
ment, allowing for all types of molecular diagnoses [16, 
17]. This (potentially) not only leads to an increased 
diagnostic yield but also provides a higher efficiency for 
genetic diagnostic laboratories that would no longer need 
to maintain multiple workflows to capture the various 
variant types. So far, however, widespread implementa-
tion of GS is lagging as the increase in diagnostic yield 
has been limited while incurring higher costs compared 
to routine workflows [18–20].

Several studies have performed direct comparisons 
between GS and one or a few techniques to explore con-
cordance and utility [18–21], and GS has meanwhile 
been implemented for diagnosis and discovery in a few 
countries [22, 23]. A less explored scenario for effec-
tive implementation of GS as a routine diagnostic test is 
the impact of GS replacing all currently used diagnostic 
workflows. For instance, in our tertiary referral centers 
for genetic diagnostic testing at the Radboud University 
Medical Center (Radboudumc) and Maastricht Univer-
sity Medical Center + (MUMC +), approximately 25,000 
individuals with a rare disease are tested annually, requir-
ing > 10 molecular and cytogenetic workflows to capture 
all genetic variant types. Replacing these workflows with 
a single GS-based workflow would increase efficiency. 
To determine the feasibility of transitioning to a generic 
GS diagnostic workflow, we performed a benchmarking 

study using GS on 1000 individuals previously molecu-
larly diagnosed with a rare genetic disease, representative 
of the myriad of genetic variant types identified across 10 
different workflows and modeled the impact of a GS-first 
diagnostic strategy for rare disease in our centers.

Methods
Cohort selection
We retrospectively selected archival residual DNA 
material from a cohort (n = 1000) with known clinically 
relevant variants (n = 1271) from genome diagnostic 
laboratories of the Radboudumc in Nijmegen and the 
MUMC + in Maastricht. The cohort was selected from 
all positive reports in 2018, taking into account the dis-
tribution of molecular and cytogenetic workflows used in 
these departments for the primary diagnosis of germline 
variants underlying hereditary and congenital diseases 
using blood-derived DNA (based on the total number 
of requests and diagnostic yield), as well as to include 
a myriad of different genes, chromosomes and vari-
ant types (n = 979 cases, 1249 variants; Additional file 1: 
Table S1 and S2). The cohort was complemented with a 
few interesting cases for which DNA was extracted from 
another source than EDTA blood (n = 21, 22 variants; 
Additional file  1: Table  S1 and S2). Of note, the cohort 
included 62 cases with diagnostic referrals that are under 
suspicion of harboring variants that are at risk to fail 
detection in a 30 × short-read genome. These cases had 
variants (n = 119 in genes or regions with a high level of 
sequence homology (n = 63), or possible mosaic variants 
(n = 56, range 2.4–54%), where the primary diagnostic 
referral was not always aimed at germline testing, but 
EDTA blood samples were available (Additional file  1: 
Table  S2). Based on the selection criteria, the cohort is 
considered representative for our diagnostic centers.

Genome sequencing
GS, using 150  bp paired-end short-reads, was per-
formed as defined by the manufacturer (Illumina, San 
Diego, CA, USA). In brief, 1000  ng DNA was used 
for library preparation using the Illumina DNA PCR-
free protocol and DNA was tagmented to an average 
insert size of 450  bp using bead-linked transposomes 
[24]. To allow equimolar pooling of samples, barcoded 
dual indexing was used after which the Illumina index 
correction strategy was applied (Additional file  1: 
Table  S1). Sequencing was performed on an Illumina 
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NovaSeq6000™ Instrument (24 samples on a S4 flow-
cell) to an anticipated genome-wide coverage of 30-fold 
minimal.

Data analysis
Raw output was stored in Illumina’s BaseSpace Sequence 
Hub and data was analyzed using the Germline Pipe-
line of Illumina’s DRAGEN™ (Dynamic Read Analy-
sis for GENomics) Bio-IT platform v3.7.5 [25, 26]. In 
short, after data is demultiplexed, mapped, and aligned 
(GRCh37), the DRAGEN Germline Pipeline provides a 
comprehensive analysis, including small variant (SNV 
and indels < 50 bp), ROH, CNV, and SV calling, as well as 
repeat expansion detection and genotyping through Illu-
mina Expansion Hunter [27]. In addition, we used newly 
developed DRAGEN SMA [28] and CYP21A2 (DRAGEN 
v3.9) callers for those specific cases in which the genetic 
variants located in SMN1/2 or CYP21A2 (n = 19 cases, 34 
variants).

Variant detection strategy
Variant detection was divided into two phases. First, vari-
ant call format files (VCF) generated by the DRAGEN 
Germline Pipeline were assessed by automated (includ-
ing clinical filters) or manual targeted queries using Illu-
mina’s TruSight Software Suite v2.5 (TSS) to identify the 
variants of interest, resulting in a positive “ + ” (detected) 
or negative “ − ” (not detected) result. Variant detection 
was based on matching of chromosomal coordinates of 
small variants, or reciprocal overlap of genomic event 
intervals for large variants (CNV, ROH, STR). Other 
variants (structural variants and aneuploidies) were only 
investigated manually using VCFs and the Integrative 
Genomics Viewer (IGV) genome browser [29] in TSS, as 
TSS did not support automated features (clinical filters) 
at the time of analysis. Second, variants that failed detec-
tion were further assessed to determine why they were 
absent from the VCFs.

Sensitivity analysis
Sensitivity analysis was performed in two ways. First, we 
assessed the overall sensitivity of GS by calculating the 
true positive rate (TPR) for each workflow, defined as the 
number of true positive variants (TP) divided by the total 
number of variants (n = 1271 in 1000 cases) including 
the false negatives (FN; TPR = TP/(TP + FN). Second, we 
repeated the analysis after exclusion of the cases (n = 62) 
with variants (n = 123) which were a priori known to fail 
detection in a 30 × short-read genome to better approxi-
mate the TPR.

Impact analysis
We modeled a scenario of the overall impact of GS 
implementation as a generic workflow. Hereto we per-
formed three in silico analyses.

First, we determined the sequence depth at genomic 
positions that are known to harbor (likely) pathogenic 
variation. Sequence depth was calculated from 35 ran-
domly selected genomes. The median coverages were 
subsequently intersected with genomic positions (coor-
dinates) of all known pathogenic variants reported 
in the repository of the Dutch Association of Clinical 
Laboratory Geneticists [30, 31] and ClinVar [32]. In 
addition, we determined the median coverages for all 
coding positions of genes with well-established rare 
disease associations [33]. Under the assumption that 
sequence coverage is one of the main determinants for 
being able to reliably call a variant, we next calculated 
the fraction of variants with sufficient coverage. Mini-
mal threshold for presumed detection of a variant was 
set at tenfold coverage at the respective genomic coor-
dinate. Assuming a binomial distribution with probabil-
ity 0.5 of sequencing the variant allele at a heterozygous 
position, at least 10 reads are required to obtain a 99% 
probability that at least two reads contain the variant 
allele [34].

Secondly, we extrapolated and modeled the obtained 
workflow-based TPRs and GS variant detection limita-
tions from our experimental data to a real-life scenario 
of our genetic diagnostic laboratories. In line with 
guidelines for assuring the quality of diagnostic next-
generation sequencing [35, 36], we used a TPR of ≥ 98% 
as threshold for replacing workflows by GS. As input 
for our model, we used anonymized data of all 41,691 
individuals tested in our genetic diagnostic laboratories 
in 2022 (Additional file 2: Fig. S1). For each diagnostic 
referral (n = 54,680), we evaluated the reason for refer-
ral and eligibility for inclusion in our model. A total of 
24,166 referrals were excluded, as these either repre-
sented cascade screening (n = 7854) or were not within 
the current scope of replacing by GS (n = 16,312), such 
as for instance non-DNA based and/or biochemical 
assays (Additional file  2: Fig. S1). For the remaining 
30,514 referrals for testing, performed in 24,570 indi-
viduals, we determined the experiments and workflows 
used to address the diagnostic referral as input for 
the model. Combining the workflow and variant type 
detected per clinical indication, we modeled the impact 
of substituting eligible experiments (clinical indica-
tions) for GS in the diagnostic trajectory of these indi-
viduals. Of note, for individuals with multiple referrals 
that could be replaced by GS, a maximum of one GS 
was considered, with subsequent diagnostic referrals 
involving reanalysis of existing data.
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Finally, to determine the impact of the GS-first strat-
egy on overall diagnostic yield, the outcome per indi-
vidual was projected under the following assumptions:

• Negative diagnostic results remained negative, 
regardless of the underlying workflow, thus also not 
considering a possible added diagnostic value of 
GS.

• For individuals whose diagnostic track would not 
include GS, or where GS was supplemented with an 
additional non-GS transferable clinical referral, the 
original diagnostic outcome was maintained.

• For individuals with a conclusive ((highly) likely 
pathogenic variant), or possible (variant of 
unknown significance) diagnosis, the GS diagnostic 
outcome was offset with the TPRs per workflow. Of 
note, for individuals with multiple diagnostic refer-
rals, it was first determined which experimental 
workflow led to the initial possible/conclusive diag-
nosis.

We subsequently determined the number of individu-
als negatively impacted by the GS-first strategy as proxy 
for false negatives [FN]. The false negative rate (FNR) 
was determined by FNR = [FN]/[FN] + [TP], in which 
[TP] was defined as the original diagnostic yield in the 
cohort of 24,570 individuals minus the [FN].

Results
Genome diagnostics and cohort demographics
This local 1000 genome project included archival 
DNA samples of 505 males and 495 females who were 
genetically tested in our laboratories using 10 differ-
ent workflows (Additional file  1: Table  S1; Additional 
file 2: Fig. S2). For 378 individuals, this included anal-
ysis of specific variants, a single gene, or a few genes, 
whereas in 617 individuals, extensive gene panels or 
other genome-wide analyses were used. For the remain-
ing five individuals, a combination of both approaches 
was employed (Additional file  2: Fig. S2). A total of 
1271 diagnostically relevant variants were reported 
(Additional file  1: Table  S2; Additional file  2: Fig. S2). 
All variants were called complying to specifications of 
DRAGEN variant calling, grouping them in three cat-
egories: a category for small variants (n = 860), includ-
ing SNVs and indels up to 50 bp in size, a second one 
for large variants (n = 366), i.e., CNVs and STRs, leaving 
a third category for all other variants (n = 45), involv-
ing SVs and chromosome anomalies (CA) (Additional 
file 1: Table S2; Additional file 2: Fig. S2). For our 1000 
genomes, we reached an average sequencing depth of 
37 × (Additional file 2: Fig. S3).

GS technical validation and feasibility assessment 
of replacing workflows by GS
In total, 94.9% (1206/1271) of all variants were detected 
with GS (Fig.  1; Additional file  1: Table  S2). Small vari-
ants were detected in 96.1% (826/860), large variants 
(123 bp–72.8 Mb) in 93.2% (341/366), and other variants 
in 86.7% (39/45) (Additional file 2: Fig. S4 and S5). Subdi-
viding the cohort by the variants we expected to readily 
identify (n = 1152) and those that we would not (n = 119), 
indeed confirmed the prior knowledge of the techni-
cal challenges in detecting mosaic variants and variants 
located in homologous regions or genes with short-read 
30 × GS: 1138 of 1152 variants (98.8%) were detected 
as expected, whereas only 68/119 (57.1%) of challeng-
ing variants were identified (Fisher’s exact test p < 0.001; 
Additional file  1: Table  S2). The variants that remained 
undetected after manual curation (n = 65), could be cat-
egorized into four categories: mosaic variants (n = 27, 
including somatic and mitochondrial variants), homolo-
gous regions (n = 25, e.g., variants in STRC  or the Opsin 
gene family), short tandem repeats/repetitive sequence 
(n = 10, such as FMR1 and Robertsonian translocations), 
and other variants (n = 3). Of note, the detection limit of 
small mosaic variants was 13%.

We next reconstituted the 1271 variants to their origi-
nal workflows to determine the overall performance of 
detection of different variant types per workflow, which 
ranged from 79% for karyotyping to 100% for Southern 
blots (Fig. 1). Subsequent analysis of the TPR per work-
flow revealed that all workflows, except repeat length 
analysis, karyotyping, and FISH, were determined to have 
a TPR > 98% (Additional file 2: Table S3).

In silico extrapolation of detection rates to 58,393 variants 
and 4266 disease genes
Assessing the available coverage data of 794 detected 
SNVs in our cohort showed that 99.1% had a ≥ 10 × cov-
erage (Additional file  1: Table  S2; Additional file  2: Fig. 
S6). We next leveraged the observations onto a larger in 
silico data set of variants. Hereto, we obtained 58,393 
genomic coordinates from variants known in the VKGL 
and/or ClinVar databases to cause autosomal dominant/
recessive disease (Additional file 1: Table S4) and deter-
mined the sequence coverage for those positions across 
35 genomes. For 99.5% of variants, the minimal cov-
erage across 35 genomes was ≥ 10 × (Additional file  2: 
Fig. S6). Generation of similar coverage statistics for all 
coding bases of 4,266 disease-associated genes showed 
that the average coverage was 45 × (Additional file  1: 
Table S5; Additional file 2: Fig. S5), with 88.1% of genes 
(3759/4266) having a coverage of ≥ 10 × for all protein-
coding bases (Additional file 2: Fig. S6).
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Modeling the impact of GS implementation in clinical 
practice
We next set out to model the impact of GS implemen-
tation on everyday practice in our clinical centers, from 
both the clinical point of view, as well as from the lab-
oratory point of view. In addition, we determined the 
impact on overall diagnostic yield obtained from a GS-
first perspective.

In 2022, our tertiary genetic diagnostic laboratory 
received 30,514 diagnostic referrals to identify the pri-
mary germline DNA defect in 24,570 individuals with 
rare disease (Fig. 2; Additional file 2: Fig. S7). In total, 
883 different reasons for referral were observed, with 
the top 10 ranking clinical indications being responsi-
ble for 21% of all referrals. On average, per individual 
1.24 referrals were noted, and 82% of individuals were 
referred only once (Additional file 2: Fig. S7). Of note, 
for 966 individuals, the diagnostic referral (n = 2072) 
consisted of reanalysis of existing exome data and did 
not require the generation of novel experimental data. 
For the other 28,442 referrals, 36,633 wet lab experi-
ments were performed using 11 different workflows 
(Fig. 2).

From a clinical point of view, 750 of 883 (85%) clinical 
reasons for referral could be addressed via GS (Fig.  3). 
The remaining 133 could not be performed via GS for 
various reasons, of which somatic variant detection (53%) 
and detection of variants in homologous regions (13%) 
are the most prominent (Fig. 3). From a laboratory point 
of view, this GS-first strategy would not only fully replace 
the exome workflow and all Southern blots but would 
also considerably reduce the use of other workflows, 
such as Sanger sequencing (by 89%), MLPA (by 80%) and 
targeted NGS approaches (by 70%; Fig.  3). Importantly, 
applying these observations to the diagnostic trajectory 
of all individuals shows that GS can be used as first-tier 
test for 16,777 (68%; Fig. 3) of individuals.

Finally, we modeled the impact on the overall diagnos-
tic yield. In 2022, a conclusive molecular diagnosis was 
obtained in 2652 of 24,570 individuals (10.79%), and for 
another 3597 (14.64%) a possible diagnosis was identified. 
Extrapolation of TPRs for individuals whose diagnostic 
trajectory would include GS, resulted in an anticipated 
conclusive diagnosis in 2643 individuals (10.76%) and a 
possible diagnosis in 3589 (14.61%; Additional file 2: Fig. 
S8). Collectively, a generic GS-first strategy would thus 

Fig. 1 Technical validation of 1271 variants. Schematic representation of detection rates of previously identified pathogenic variants across multiple 
different workflows. In total, 94.9% (1206/1271) of all variants were detected in GS data. The distribution of variants across the ten workflows 
shows a detection rate ranging between 79 and 100%. Abbreviations: targeted next‑generation sequencing ((t)NGS), deletion polymerase chain 
reaction (DelPCR), multiplex ligation‑dependant probe amplification (MLPA), fluorescence in situ hybridization (FISH), exome sequencing (ES), single 
nucleotide variants (SNV), copy number variants (CNV), short tandem repeat expansions (STRs), region of homozygosity (ROH), structural variants 
(SV), chromosome anomalies (CA)
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Fig. 2 Diagnostic referrals for genetic testing in 2022. In total, 24,570 individuals were referred, together requiring 36,633 data‑generating 
experiments (in 23,604 individuals) in 11 different workflows, and 2072 reanalyses of existing (exome) datasets (in 966 individuals). Abbreviations: 
targeted next‑generation sequencing ((t)NGS), deletion polymerase chain reaction (DelPCR), multiplex ligation‑dependant probe amplification 
(MLPA), fluorescence in situ hybridization (FISH), exome sequencing (ES), long‑read sequencing (LRS)

Fig. 3 Assessing the impact of a GS‑first transition. A From 833 different clinical reasons for referral in 2022, 750 can be transitioned to GS. B This 
transition would result in 16,777 individuals receiving GS as the only workflow. For 667 (3%), the GS should be supplemented by an additional 
test, whereas for the remaining 7126 (29%) GS would not be suited, either because for them the clinical indications included experiments 
not transferable to GS (n = 6160; 25%), or because the referral did not require data generation (n = 966; 4%). C The use of GS as a primary test 
has a significant impact on reducing the experimental workload in the original workflows. Proportions of the transferable number of tests 
per workflow are indicated in black. Abbreviations: targeted next‑generation sequencing ((t)NGS), deletion polymerase chain reaction (DelPCR), 
multiplex ligation‑dependant probe amplification (MLPA), fluorescence in situ hybridization (FISH), exome sequencing (ES), long‑read sequencing 
(LRS)
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possibly negatively impact the diagnostic outcome for 
17 (0.07%) individuals (FN = 17), translating to a possible 
false negative diagnostic rate of 0.3%.

Discussion
Over the last decade, the use of GS as a routine diag-
nostic test has been debated in the context of a higher 
potential diagnostic yield by interpreting non-coding 
DNA variants, as well as the potential to diagnose indi-
viduals with rare disease more efficiently, as GS allows 
the identification of virtually all genetic variants in a sin-
gle experiment. Widespread diagnostic implementation 
has however been hampered by the costs involved with 
GS, given that the anticipated higher diagnostic yield has 
so far not materialized. An increased diagnostic yield is 
however still expected for unexplained rare genetic dis-
ease, especially when looking beyond SNV and CNV 
detection in the exome only. To ultimately benefit from 
the advantages of GS, costs need to be reduced for a 
generic genetic diagnostic laboratory. In this study, we 
focused on the potential for GS as a generic diagnostic 
rare disease test, replacing the full spectrum of work-
flows available in a genetic diagnostic laboratory. With 
our cohort of 1000 genomes, representative of 10 differ-
ent workflows and a multitude of genetic variant types, 
we found that GS detected > 95% of all pathogenic vari-
ants, albeit with variable efficacy across variant types and 
workflows. We also modeled the impact of a transition 
to a generic GS workflow for our diagnostic laborato-
ries and concluded that for 68% of individuals diagnosti-
cally referred to our departments a generic GS workflow 
would be possible.

In our series of 1000 samples, we noted differences in 
the detection of different variant types; 96.1% of small 
variants (< 50  bp) were detected, whereas only 93.3% of 
large variants, and 86.7% of other variants were recov-
ered from GS. Interestingly, one of the arguments gener-
ally used as benefit from GS is its ability to better detect 
structural variation compared to ES [37]. Conceptually, 
this is true from having a more uniform coverage across 
the genome [38]. In addition, we, and others, have pre-
viously shown that additional diagnoses obtained via GS 
compared to routine care, not only are often SVs, but also 
that the resolution of SV complexity identified, often (far) 
exceeds that of other technologies [20, 39]. However, our 
data now show that the capture of SNVs/indels from GS 
is more complete than of SVs (Fisher’s exact, p = 0.006). 
Irrespectively, it must be noted that the overall number 
of SVs evaluated was limited due to our inclusion cri-
teria which required DNA from EDTA blood. Further 
retrospective analysis of pathogenic SVs might provide 
additional insights. Also, given the assumption and prior 
work showing that GS excels in SV detection, one might 

also speculate on GS now uncovering variants where the 
initial gold standard technology might have been wrong.

Any technology comes with technical limitations. 
Here, we did not identify any unexpected limitations in 
variant calling for the 5% (65/1271) of undetected vari-
ants, besides the already known limitations of variant 
calling in short-read GS data. For instance, it is known 
that mapping short reads in homologous regions is dif-
ficult, and also, short-read GS at ~ 30 × will pose difficul-
ties in detecting mosaic variants. Solutions to recover 
these variants from short read data are, however, possi-
ble: for mosaic variants, increasing GS sequence depth 
may be able to recover all clinically relevant variation, 
while bioinformatic callers might help in the success-
ful retrieval of (likely) pathogenic variants in complex 
homologous genomic regions. Currently, such dedicated 
callers already exist, e.g., we successfully used callers for 
the SMA [28] and CYP21A2 loci in our analyses, and 
also, other tools calling variation in paralogous regions 
have been developed [40]. On a positive note, we already 
recovered 68 of 119 variants that we a priori expected to 
be beyond the technical limitations of 30 × GS, without 
further optimization. These included variants located in 
highly homologous regions (STRC  and OTOA), as well 
as variants present in mosaic state (> 14%), for which in 
the SOC trajectory dedicated tests are deployed that are 
designed to detect specific variants of interest.

Diagnostic efficacy can be enhanced by reducing the 
complexity of sample handling and the number of work-
flows. In our laboratory set-up, one clinical referral is 
often translated into experiments in multiple workflows; 
for example, to molecularly diagnose CHARGE syn-
drome, caused by CHD7 haploinsufficiency, both Sanger 
sequencing and MLPA analysis are needed to allow the 
detection of SNV/indels as well as of (partial) gene dele-
tions. The introduction of a generic GS workflow would 
allow for calling both SNV/indels, CNVs, and other SVs 
affecting CHD7 from a single experiment. For other dis-
orders, for instance, those caused by the expansion of 
short tandem repeats, it might be more challenging, as 
short-read sequencing technologies may be unable to 
capture the full length of the extension. However, our 
data shows that although for some repeats the exact 
length cannot be obtained, a generic GS workflow is able 
to identify those individuals with repeat lengths outside 
of the normal range. This result can be followed with 
dedicated tests to determine the size of the repeat. From 
an efficacy point of view, one may argue that a second 
workflow is still required. While this is a valid point, in 
a generic GS workflow, the subsequent use of a second 
workflow is much more efficient, as it will only be used 
for those individuals with a high a priori chance of a posi-
tive outcome (given their abnormal GS results).
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Whether or not it is efficient for laboratories to make 
a transition towards a generic GS workflow may depend 
on lab-specific factors, including size of the lab, num-
ber of workflows in use, and type of diagnostic refer-
rals received. From our series of 1000 genomes tested, 
we showed that ES can technically be replaced by GS 
(TPR > 98%), in line with previous reports on comparing 
diagnostic outcomes of ES and GS [18–20]. Hence, diag-
nostic laboratories, whose expertise is to only perform 
ES, could easily move towards GS with the benefit of a 
faster workflow as enrichment is no longer needed [24]. 
Yet, for laboratories specialized in the use of karyotyp-
ing (TPR < 98%) for the detection of somatic copy num-
ber changes, routine 30 × GS might not be sufficient. 
Additionally, we showed that there are some genes with 
lower coverage (for part) of all protein-coding bases, 
which warrants caution when these genes are of specific 
interest related to a specific clinical differential diagno-
sis. The results of our study should therefore be carefully 
examined and extrapolated to local infrastructure and 
clinical expertise. Of note, a site-specific (early) health 
economic impact analysis is also recommended prior to 
large-scale implementation, in which evaluation of cost-
effectiveness is key. These studies are mostly performed 
in the context of proving that an early diagnosis also has 
a beneficial impact on overall health care cost expendi-
ture [21, 41–43]. In light of implementing a generic GS 
workflow, a complementary micro-costing study could be 
of relevance [44, 45]. Such studies would allow to weigh 
possible cost-reductions from phasing out workflows and 
changes in workforce against potential increase of per-
sample sequencing costs, as well as the costs associated 
with (ease of ) clinical data interpretation.

Here, we report on our laboratories, which together 
maintain > 10 workflows, representative for most core 
technologies used in genetic testing [16], and enabling 
detection of all variant types. The scenario models for our 
centers showed that 750/883 (85%) diagnostic referrals 
can be completed using GS, which would result in 68% 
of all individuals referred to our diagnostic laboratory 
making use of a single workflow and a single experiment, 
and 3% needing additional testing, suggesting that for 
71% of individuals (n = 17,444) a GS-first strategy would 
be beneficial. Whereas our analysis did not include a full 
micro-costing study, a generic GS-first workflow for such 
volume of samples might become within reach, especially 
with prices announced for germline GS in the range of 
100 to 200 dollars per genome [46–48]. For the 15% of 
clinical indications not transferable to GS (responsible 
for 29% of individuals referred), we noted trends, such 
that most of these required somatic structural variant 
detection, currently assayed via karyotyping, FISH and/
or arrays, or variants were located in complex regions of 

the genome, currently assessed by amplicon-based long-
read sequencing strategies [49]. These technical chal-
lenges can — in part — be overcome by sequencing at 
higher depth (e.g., ~ 100 × or even ~ 350 ×) to allow better 
somatic SNV/indel detection [50]. Yet, it could also be 
considered to maintain workflows for dedicated diagnos-
tic referrals. Alternatively, technological innovations spe-
cifically targeting these more challenging variant types 
and regions would constitute a worthwhile investment. 
For somatic variant detection via karyotyping, FISH and/
or arrays, optical genome mapping [51, 52] could replace 
these workflows as a second major generic assay, avail-
able in parallel to GS, but used for mutually exclusive 
clinical referrals. Similarly, a more generic use of long 
read genomes [53, 54] may provide a costs-effective strat-
egy for diagnostic referrals involving variants in complex 
regions in the genome, or where variant size exceeds 
those detectable from short reads (such as for repeat 
expansions). For either technical solution, a careful eval-
uation of the required coverage, as well as the impact on 
the false negative rate when compared to the old tech-
nique [38, 55–58].

The implementation of a novel technology requires 
careful balancing of the pros and cons. For GS, our study 
has highlighted advantages related to laboratory effi-
ciency, but also showed that not all previously detected 
(likely) pathogenic germline variants were also identifi-
able from GS. Hence, if a generic GS workflow were to 
be used, it is to be expected that some individuals who 
would receive a conclusive diagnosis with the old diag-
nostic test strategy, would no longer do so with the 
implementation of a generic GS. In our objective quan-
tification of the false negative rate from GS, using all 
diagnoses obtained by the current diagnostic strategy 
as the gold standard, we modeled that the transition to 
a generic GS in our laboratory might result in an addi-
tional diagnostic false negative rate of 0.3%. Whereas 
this is undesirable for the individual patient, previous 
experience has shown that there may be trade-offs. For 
instance, with the introduction of genomic microarrays 
at the expense of karyotyping, no longer detecting appar-
ently balanced chromosomal rearrangements had to be 
accepted. Further, with the introduction of ES as replace-
ment for Sanger sequencing for genetically and clinically 
heterogeneous disorders, one lost sensitivity at base pair 
level while gaining in mutation target size. Both innova-
tions changed diagnostic testing, because despite losing 
out on a few positive diagnoses, they still improved the 
overall diagnostic yield [59, 60]. So far, the overall diag-
nostic advantage of GS is still limited. Disease-specific 
evaluations of diagnostic yield of GS have, however, 
reported on an increase in diagnostic yield, ranging 
from 1.3% for neurodevelopmental disorders [20] to 17% 
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for congenital limb malformations [17]. Additionally, 
it has been reported that cytogenetically found appar-
ently balanced chromosomal rearrangements appear to 
be genomic imbalances in ~ 1/3 of patients with de novo 
translocations and inversions [61, 62], and that ~ 2/3 of 
balanced chromosomal abnormalities are involved in 
pathogenic mechanisms [63]. With growing experience 
in detecting and interpreting structural variants in GS 
data, we also expect to identify more inversions, trans-
locations, and other structural variants as underlying 
causes of human genetic disease. The use of GS over cur-
rent workflows would provide an added value for which 
individuals with rare disease would immediately benefit, 
thus potentially compensating for the 0.3% diagnostic 
loss from introducing a generic GS workflow.

Finally, our study is designed as technical benchmark-
ing, which did not include an evaluation of variant prior-
itization. We and others have, however, recently shown in 
prospective parallel and randomized GS studies that sim-
ilar variant types and diagnostic yield are obtained when 
comparing GS to current (non-GS) standard-of-care 
diagnostic workflows [18, 20]. In light of this, it is also 
worthwhile to underscore that even though analytically 
a full genome sequence is provided, a targeted interpre-
tation of variants, in line with the clinical request, could 
still be pursued. For instance, initially, variants in single 
genes can be prioritized using in silico enrichment strate-
gies when the GS is performed instead of a Sanger test, 
or, alternatively, only CNVs can be visualized when oth-
erwise an array would have been analyzed. If negative, a 
more agnostic approach for the interpretation of genetic 
variation can performed, where the existing and available 
GS data provide a valuable resource for efficient reanaly-
sis and reinterpretation strategies. We noted that 6.8% 
of our referrals (n = 2072) already involved reanalysis of 
existing exome data. With increasing knowledge on the 
role of (rare) non-coding variants in relation to disease 
and improvement in the bioinformatic detection of vari-
ants in complex regions of the genome from short reads, 
it can be expected that the availability of GS provides 
more flexibility in adapting reanalysis strategies towards 
these loci and variant types in the near future.

Conclusions
In summary, our benchmarking study provides detailed 
insights into the technical possibilities and limitations 
of GS and its use as a generic diagnostic workflow. We 
show that > 95% of known pathogenic variants, selected 
across the full spectrum of genetic variation, are readily 
detectable from GS. Modeling the impact of the transi-
tion to a generic GS strategy for our laboratory resulted 
in a more efficient workflow for 71% of individuals by 
reducing overall test complexity. A possible false negative 

rate of 0.3% was observed. It is possible that this potential 
diagnostic loss will be offset by an increase in diagnostic 
yield expected from GS over standard care, enabled by 
an evolving GS workflow, guided by better bioinformatic 
tools to further improve the detection of a wide variety 
of genomic variants and a greater understanding of non-
coding and structural variant interpretation. GS thus 
appears a suitable generic first tier test to diagnose indi-
viduals with rare diseases.
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