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Abstract 

Background The presence of coronary plaques with high-risk characteristics is strongly associated with adverse car-
diac events beyond the identification of coronary stenosis. Testing by coronary computed tomography angiography 
(CCTA) enables the identification of high-risk plaques (HRP). Referral for CCTA is presently based on pre-test probabil-
ity estimates including clinical risk factors (CRFs); however, proteomics and/or genetic information could potentially 
improve patient selection for CCTA and, hence, identification of HRP. We aimed to (1) identify proteomic and genetic 
features associated with HRP presence and (2) investigate the effect of combining CRFs, proteomics, and genetics 
to predict HRP presence.

Methods Consecutive chest pain patients (n = 1462) undergoing CCTA to diagnose obstructive coronary artery 
disease (CAD) were included. Coronary plaques were assessed using a semi-automatic plaque analysis tool. Measure-
ments of 368 circulating proteins were obtained with targeted Olink panels, and DNA genotyping was performed 
in all patients. Imputed genetic variants were used to compute a multi-trait multi-ancestry genome-wide polygenic 
score  (GPSMult). HRP presence was defined as plaques with two or more high-risk characteristics (low attenuation, 
spotty calcification, positive remodeling, and napkin ring sign). Prediction of HRP presence was performed using 
the glmnet algorithm with repeated fivefold cross-validation, using CRFs, proteomics, and  GPSMult as input features.

Results HRPs were detected in 165 (11%) patients, and 15 input features were associated with HRP presence. Predic-
tion of HRP presence based on CRFs yielded a mean area under the receiver operating curve (AUC) ± standard error 
of 73.2 ± 0.1, versus 69.0 ± 0.1 for proteomics and 60.1 ± 0.1 for  GPSMult. Combining CRFs with  GPSMult increased predic-
tion accuracy (AUC 74.8 ± 0.1 (P = 0.004)), while the inclusion of proteomics provided no significant improvement 
to either the CRF (AUC 73.2 ± 0.1, P = 1.00) or the CRF +  GPSMult (AUC 74.6 ± 0.1, P = 1.00) models, respectively.
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Conclusions In patients with suspected CAD, incorporating genetic data with either clinical or proteomic data 
improves the prediction of high-risk plaque presence.

Trial registration https:// clini caltr ials. gov/ ct2/ show/ NCT02 264717 (September 2014).
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Background
Coronary computed tomography angiography (CCTA) 
is guideline-endorsed for identifying patients with 
suspected obstructive coronary artery disease (CAD) 
[1, 2]. Additionally, CCTA enables risk stratification 
including detection of high-risk plaques (HRP) predis-
posing patients to adverse cardiac events [3–5]. HRPs 
are defined as having two or more characteristics on 
the CCTA associated with a higher likelihood of hav-
ing an acute coronary syndrome (ACS) [6]. These 
characteristics include low attenuation plaque, spotty 
calcification, positive remodeling, and the napkin ring 
sign.

In patients with stable chest pain suggestive of 
obstructive CAD, pre-test probability (PTP) estimation 
is recommended to guide decisions about downstream 
testing [1, 2]. Classically, PTP estimation is based on sex, 
age, and chest pain typicality [1]. In general, both patient 
stratification, diagnostic value, and risk prediction have 
been improved by also considering clinical risk factors 
(CRFs) [7, 8] in the PTP estimation. The majority of de 
novo chest pain patients have low PTP and are recom-
mended to undergo index testing by CCTA to identify 
potentially obstructive lesions [1, 2, 7]. Evidence of HRP 
characteristics has been documented in both patients 
with obstructive and non-obstructive lesions which 
CCTA outlines [4, 9], and as early treatment of patients 
with HRP characteristics could improve prognosis [10], 
an optimized clinical tool to guide CCTA utilization for 
HRP identification is warranted.

Based on large-scale proteomic panels and genotyping 
arrays yielding multi-protein models and genome-wide 
polygenic scores (GPSs), respectively, proteomics and 
genetics have been used for the prediction of obstructive 
CAD [11, 12], CAD-related traits [13], and general CAD 
risk management [14]. However, whether the combina-
tion of proteomic and genetic data improves the predic-
tion accuracy of HRP presence is unknown. Further, a 
high PRS of CAD has previously been shown to be most 
predictive in patients younger than 55 years of age [15]. 
It is currently unknown whether this is also the case for 
HRP presence.

The primary aim of this study was to identify features 
(i.e., CRF, GPS, and proteins) associated with HRP pres-
ence and evaluate a combination of clinical, proteomic, 
and genetic data to predict the trait in de novo chest pain 

patients with suspected obstructive CAD. Secondly, we 
aimed to uncover any age-related variation in predictive 
features.

Methods
Study population
This is a sub-study of the Danish study of Non-Invasive 
testing in Coronary Artery Disease (Dan-NICAD) 1 
study. The study protocol and main results have previ-
ously been described [16, 17]. In short, Dan-NICAD 
1 was a prospective, multicenter cross-sectional study 
of 1675 patients with no previous history of CAD, low-
intermediate PTP, and symptoms suggestive of obstruc-
tive CAD referred for initial testing by CCTA. On the day 
of CCTA, patients also underwent blood sampling, while 
symptoms and cardiac risk factors were registered. EDTA 
plasma was isolated from blood samples and stored at 
-80 °C.

CCTA add HRP definition
CCTA was performed on a 320-slice volume CT scan-
ner (Aquilion One; Toshiba Medical Systems, Japan) 
following usual clinical guidelines. The presence and 
location of coronary plaques and CAD severity assess-
ment were evaluated by a cardiologist [16]. CCTA 
plaque analysis was performed blinded to clinical risk 
factors, proteomics, and genetics, using the previously 
validated software Qangio CT (Research Edition ver. 
3.1.4.2, Medis NL [18]).

Obstructive CAD was defined as a 50% diameter 
stenosis by visual assessment at CCTA. Plaques were 
evaluated by dedicated and trained core laboratory 
personnel (Cardiac Imaging Center, Department of 
Cardiology, Goedstrup Hospital, Denmark) for four 
qualitative high-risk characteristics: (1) positive remod-
eling (remodeling index > 1.10 calculated as vessel area 
at the location of plaque divided by reference vessel area 
in adjacent normal segments), (2) low-attenuation (non-
calcified plaque with a plaque volume of > 1 mm [3] 
containing voxels with CT attenuation < 30 Hounsfield 
Units), (3) spotty calcification (< 3 mm calcium encased 
in non-calcified plaque), and (4) napkin ring sign (ring-
like structure with lowest CT attenuation in the center 
of the plaque). The presence of HRP was defined as 
having coronary lesions with two or more high-risk 

https://clinicaltrials.gov/ct2/show/NCT02264717
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characteristics, as recommended by the CAD-RADS 2.0 
system [19].

Clinical risk factor model
The clinical risk factor model was based on the fea-
tures incorporated in the risk factor-weighted clinical 
likelihood (RF-CL) model of obstructive CAD [7]. The 
model is based on sex, age, angina typicality (typical, 
atypical, non-specific, and dyspnea), and the number 
of risk factors (family history of early CAD, smoking 
[never vs. active/former], dyslipidemia [receiving cho-
lesterol-lowering medication], hypertension [receiv-
ing antihypertensive medication], and type 2 diabetes) 
ranging from 0 to 5. Models utilizing CRFs included all 
of the above features in their input.

Protein model
In total, 368 proteins were measured in EDTA plasma 
samples at Olink proteomics AB (Uppsala, Sweden) 
as previously described [20]. The protein analysis was 
done using four Olink Target 96 panels: the Cardiovas-
cular II, Cardiovascular III, Inflammation, and Immune 
Response panel. The Cardiovascular II and III panels 
were chosen for their relevance to cardiovascular pro-
cesses, while the Inflammation and Immune Response 
panels were included to broaden the search for associa-
tions. Samples marked in Olink’s internal quality con-
trol steps were removed. Also, if the fraction of samples 
below the limit of detection (LOD) for a protein 
exceeded 20%, the protein was excluded from further 
analyses. For all included proteins, values were rank-
normalized before adjusting for the collection box. A 
total of 300 proteins passed quality control and were 
included in the input to all models utilizing proteomic 
features.

Genetic model
Genotyping, quality control, and imputation have pre-
viously been described [20]. In short, genotyping used 
the Illumina Global Screening Array, followed by impu-
tation using the Michigan Imputation Server. Single 
nucleotide polymorphisms (SNPs) with minor allele 
frequencies ≤ 1% were excluded.

The genotype weights of the multi-trait multi-ancestry 
genome-wide  polygenic score  (GPSMult, https:// www. 
pgsca talog. org/ score/ PGS00 3725/) by Patel et  al. [21] 
were used to estimate genetic risk for CAD, as no dedi-
cated HRP polygenic score exists.  GPSMult aggregates 
multiple polygenic scores from CAD, BMI, ischemic 
stroke, diabetes mellitus, peripheral artery disease, 
glomerular filtration rate, systolic and diastolic blood 
pressure, LDL and HDL cholesterol, and triglycerides 
utilizing the 1,296,172 variants included in HapMap3.

Combined models
For combined models, the prediction was based on 
three groups of input features: (1) clinical risk fac-
tors (nine features), (2) proteins (300 features), and (3) 
 GPSMult (one feature), with the name of each model 
reflecting the included feature groups.

Data analysis
The primary outcome was defined as the presence of 
HRP. For individual features (i.e., individual clinical risk 
factors, individual proteins, and  GPSMult), performance 
was measured using the receiver operating characteris-
tic (ROC) with the area under the curve (AUC) and 95% 
confidence interval (CI) implemented in the pROC [22] 
R package. Significance testing was performed using the 
Wilcoxon rank sum test and a Bonferroni corrected sig-
nificance threshold of 0.05/315.

Models using more than one input feature were con-
structed using logistic regression with elastic net regular-
ization [23, 24] implemented in the glmnet and caret [25] 
R packages, using weights to compensate for case–con-
trol imbalance. To limit the impact of random sampling 
noise, all models were based on 100 repeats of fivefold 
cross-validation (CV), foregoing a completely independ-
ent test set. ROC was used as a summary metric to select 
the optimal model. Hyperparameters were chosen from a 
combination of three alphas (0.1, 0.55, 1) and 10 lambdas 
ranging from 0.0001 to 1.

For all models, performance in every fold and repeat was 
stored, resulting in 500 AUC estimates for each model. Per-
formance was reported as the mean ± standard error of all 
AUC estimates. As the AUC distributions for some mod-
els were not Gaussian, comparisons of model performance 
used the Kruskal–Wallis rank sum test to compare all mod-
els followed by Bonferroni corrected Dunn’s test for individ-
ual post-hoc comparisons, reporting the adjusted P value.

Estimation of predictive performance in plaque sub-
types was performed for all models. For each model, the 
HRP probability was averaged per individual across the 
100 repeats, before calculation of the AUC with 95% CI 
for single features.

All analyses were performed within R [26] version 
4.2.1. SHapley Additive explanation (SHAP) values were 
estimated using the fastshap [27] R package, using 100 
Monte Carlo repetitions. Plotting was performed using 
ggplot2 [28].

Results
Study population
Of the 1675 eligible patients, 1462 (87%) had complete 
data on clinical risk factors, proteomics, genomics, and 
CCTA. Baseline demographics are shown in Table  1. 

https://www.pgscatalog.org/score/PGS003725/
https://www.pgscatalog.org/score/PGS003725/
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Baseline demographics of excluded patients are shown 
in Table S1, while the reason for exclusion is shown in 
Fig S1.

High-risk characteristics including positive remod-
eling, low-attenuation, spotty calcification, and nap-
kin-ring sign were present in 309 (21%), 144 (10%), 181 
(12%), and 36 (2%) patients, respectively (Fig.  1). In 
total, HRP presence was identified in 165/1462 (11%) 
patients, and 341/1462 patients (23%) had obstructive 
CAD. HRP presence was significantly correlated with 
obstructive CAD presence (Pearson’s correlation = 0.49, 
P < 0.001), with 134 patients having both.

Single clinical, protein, and genetic feature association 
with high‑risk plaque
A total of 84 individual clinical, protein, and genetic 
features had a 95% CI lower limit of the AUC estimate 
above 50% (Fig. 2A). Among those, 14/84 (17%) features 
were significantly associated with HRP presence when 
accounting for multiple testing: three clinical risk fac-
tors (age, sex (male) and number of risk factors (0–5)), 
ten proteins (MMP12, TREM1, MMP-3, KIM1, CDCP1, 
PRSS8, LEP, GDF-15, PIgR, and COL1A1), and  GPSMult. 
Stratifying patients by  GPSMult quintiles revealed 
increased HRP prevalence with increasing polygenic 

Table 1 Baseline information

Abbreviations: CAD coronary artery disease, CCTA  coronary computed tomography angiography, LDL low-density lipoprotein, HDL high-density lipoprotein

Values are listed as mean ± standard deviation for normally distributed data; otherwise, the median and interquartile range are used
a Missing values were observed in total cholesterol n = 41, LDL cholesterol n = 41, HDL cholesterol n = 38, triglyceride n = 46, systolic and diastolic blood pressures 
n = 3, body mass index n = 8, coronary artery calcium score n = 1

Overall (n = 1462) High‑risk plaque (n = 165) No high‑risk plaque 
(n = 1297)

Demographics
 Age, years 57 ± 9 60 ± 8 57 ± 9

 Males 699 (48%) 122 (74%) 577 (44%)

Risk factors, n (%)
 Family history 527 (36%) 63 (38%) 464 (36%)

 Current/former smoker 778 (53%) 104 (63%) 674 (52%)

 Dyslipidemia 349 (24%) 42 (25%) 307 (24%)

 Hypertension 517 (35%) 69 (42%) 448 (35%)

 Type 2 diabetes 85 (6%) 16 (10%) 69 (5%)

Type of chest pain, n (%)
 Typical angina 393 (27%) 63 (38%) 330 (25%)

 Atypical angina 497 (34%) 47 (28%) 450 (35%)

 Non-specific chest discomfort 271 (19%) 23 (14%) 248 (19%)

 Dyspnea 301 (21%) 32 (19%) 269 (21%)

Laboratory tests
 Cholesterol medication 349 (24%) 42 (25%) 307 (24%)

Yes No Yes No Yes No

 Total cholesterol, mmol/La 4.9 ± 1.2 5.5 ± 1.0 5.2 ± 1.6 5.8 ± 1.4 4.9 ± 1.1 5.5 ± 1.0

 LDL cholesterol, mmol/La 2.8 ± 1.1 3.4 ± 0.9 3.1 ± 1.2 3.7 ± 0.9 2.8 ± 1.0 3.4 ± 0.9

 HDL cholesterol, mmol/La 1.4 ± 0.4 1.5 ± 0.5 1.4 ± 0.4 1.4 ± 0.5 1.5 ± 0.4 1.5 ± 0.4

 Triglyceride, mmol/La 1.5 [1.0–2.1] 1.3 [0.9–1.9] 1.6 [1.0–2.3] 1.5 [1.1–2.3] 1.5 [1.0–2.1] 1.3 [0.9–1.9]

Measurements
 Blood pressure medication 517 (35%) 69 (42%) 448 (35%)

Yes No Yes No Yes No

 Systolic blood pressure, mm  Hga 143 ± 19 136 ± 18 144 ± 18 146 ± 19 143 ± 19 135 ± 18

 Diastolic blood pressure, mm  Hga 84 ± 11 82 ± 11 83 ± 11 86 ± 11 85 ± 11 81 ± 11

 Body mass  indexa 26.8 ± 4.2 26.3 ± 3.6 26.8 ± 4.3

 Obstructive CAD at CCTA 341 (23%) 134 (81%) 207 (16%)

 Coronary artery calcium  scorea 0 [0–81] 210 [52–624] 0 [0–42]
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Fig. 1 Study design. 1462 patients underwent coronary computed tomography angiography (CCTA), followed by image analysis of high-risk 
plaque (HRP) characteristics. Finally, nine clinical risk factors, one multi-trait multi-ancestry genome-wide polygenic score  (GPSMult), and 300 proteins 
were used to predict HRP presence

Fig. 2 Predictive performance of single features. A Area under the curve (AUC) for individual features, grouped by feature type. Error bars indicate 
a 95% confidence interval (CI). Asterisks indicate statistical significance after Bonferroni correction for multiple testing. CRF, clinical risk factors; 
 GPSmult, multi-trait multi-ancestry genome-wide polygenic score. Only single features with a lower limit of 95% CI above 50% are shown. B 
Prevalence of high-risk plaque (HRP) stratified by  GPSMult quintiles. Odds ratios are calculated using the first quintile as a reference. Asterisk indicates 
a statistically significant difference in the estimated odds ratio compared to the reference quintile
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score, with the highest quintile having an odds ratio of 
6.03 (P = 0.02) relative to the lowest quintile (Fig. 2B).

Combined prediction models of high‑risk plaque
Compared to the model based on CRF features, the 
prediction accuracy of HRP presence by the protein 
model was lower (AUC 73.2 ± 0.1 vs. 69.0 ± 0.1, P < 0.001) 
(Fig.  3A). The  GPSMult model had an AUC of 60.1 ± 0.1, 
which was inferior to both the CRF and protein models.

Combining  GPSMult with CRFs or protein fea-
tures increased prediction accuracy of HRP 
presence (CRF +  GPSMult: 74.8 ± 0.1, P = 0.004; Pro-
tein +  GPSMult = 71.0 ± 0.1, P < 0.001). Combining CRF 
and protein features leads to the inclusion of eight 
features in total, four of these being proteins, but no 
improvement in the accuracy of prediction was observed 
compared to the CRF model (73.2 ± 0.1, P = 1.00). Simi-
larly, a full model including all feature groups did not 
improve the CRF +  GPSMult model (74.6 ± 0.1, P = 1.00).

Across all models, using each model for predict-
ing individual high-risk plaque characteristics showed 
the lowest predictive performance for low attenuation 
plaques and the highest for napkin ring sign (Table 2).

Supplementary analysis defining HRP as 1- or 3-feature 
positive plaques (instead of 2-feature) found CRF to have 
the best predictive ability in 3-feature HRP (n = 29), while 
CRF +  GPSMult had the best predictive ability for 1-fea-
ture HRP (n = 388, Table S2).

Age stratification
Stratifying the cohort into patients above and below 
55  years of age showed an HRP prevalence of 8.0% 
(50/627) in patients ≤ 55  years and 13.8% (115/835) in 
patients > 55 years. For all non-protein models, this strati-
fication improved HRP prediction in patients ≤ 55  years 
(Fig.  3) relative to patients > 55  years. Especially the 
 GPSMult among patients ≤ 55 displayed improved predic-
tion accuracy significantly (AUC ≤55 = 66.5 ± 0.4 vs. AUC 

Fig. 3 Predictive performance of individual and combined models. Models included features from up to three feature groups, as shown 
on the x-axis, revealing the CRF +  GPSMult model to be the most predictive in the full cohort. Stratifying patients by age group resulted in improved 
 GPSMult performance in the group ≤ 55 years of age, while the CRF +  GPSMult models were best in both groups. AUC, area under the curve; CRF, 
clinical risk factor;  GPSMult, multi-trait multi-ancestry genome-wide polygenic score; Full, CRF + protein +  GPSMult
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>55: 58.3 ± 0.2, P < 0.001). The best-performing model in 
both age groups was based on CRF and  GPSMult, yield-
ing improved prediction in younger patients (AUC 
≤55 = 77.3 ± 0.3 vs. AUC >55 = 70.7 ± 0.02 (P < 0.001)).

Predicting individual high-risk plaque characteristics in 
patients ≤ 55 years of age showed similar results as in the 
full cohort (Table S3).

Comparing the impact of individual features (utiliz-
ing SHAP values) on model output in the CRF +  GPSMult 
models across the three groups (full cohort, ≤ 55 years of 
age, and > 55 years of age), sex was consistently the most 
influential single feature on HRP presence (Fig.  4A). 
Comparing the impact of CFRs to  GPSMult revealed 
 GPSMult to be equally important to the sum of risk fac-
tors. For individual risk factors, family history of early 
CAD appeared protective in the full cohort, smoking 
had an impact in patients > 55  years of age, and choles-
terol medication was protective in patients > 55  years of 
age and the full cohort (Fig. 4A). Finally, the use of anti-
hypertensive medication and having diabetes both had a 
low impact on all model predictions. Typical chest pain 
symptoms indicated increased HRP risk in all groups, 
while nonspecific chest pain in patients ≤ 55 years of age 
and other chest pain in patients > 55 years of age and the 
full cohort indicated reduced HRP risk.

Examining the individual SHAP values (Fig.  4B) 
revealed multiple features (age, number of risk factors, 
and  GPSMult) with the potential to be more impactful 
than sex for a single patient although they were inferior 
from a cohort perspective.

Discussion
The main finding of the study was that HRP presence 
can be predicted using clinical risk factors, whereas 
genetic data primarily serves as a strong source of com-
plementary information,  resulting in improved HRP 
prediction in the complete cohort and especially among 
patients below 55  years of age the prediction accuracy 

was significantly improved. Finally, we did not find that 
our proteomic data improved the overall discrimination, 
despite having better individual prediction accuracy than 
genetic data.

Looking at individual input features, 14 features were 
significantly associated with HRP presence, with well-
known clinical risk factors and proteins showing superior 
discrimination. Our findings are not surprising as several 
proteins are correlated with sex and age which indepen-
dently correlates to HRP presence (Fig. 2A). In our study, 
we used protein measurements without adjusting the 
protein level for age and sex, as we wanted to retain these 
signals for models which did not incorporate age and sex 
directly.

Regarding the combined models, CRF features were 
the most predictive feature group for HRP presence. In 
contrast, Bom et al. [13] reported 196 patients with 22% 
HRP prevalence and utilized four Olink panels, three of 
which were also analyzed in our study, and found pro-
teins to be predictive of HRP presence (AUC  of 79 ± 1) 
with impaired prediction accuracy by CRFs alone (AUC 
of 65 ± 4). The difference in CRF predictive performance 
between our studies could be explained by our study 
having more detailed CRF data, e.g., the number of risk 
factors as implemented in the RF-CL model. Further-
more, the higher predictive performance of proteomics 
observed by Bom et al. may be explained by their inclu-
sion of the targeted Cardiometabolic Olink panel which 
was not included in our study. This highlights the possi-
bility of future discoveries as proteomic panels include an 
increasing number of proteins.

Due to the rarity of cohorts with detailed high-risk 
plaque characteristics, no suitable GWAS summary sta-
tistic exists for the calculation of a traditional polygenic 
score for HRP. Instead, we leveraged  GPSMult, an exist-
ing polygenic score for CAD, which incorporates genetic 
information about multiple known CAD risk factors and 
from multiple ancestries.  GPSMult showed the greatest 

Table 2 Plaque subtype prediction

CRF clinical risk factor, GPSMult multi-trait multi-ancestry genome-wide polygenic score

Numbers are the area under the curve with a 95% confidence interval

Models Low attenuation (n = 144) Spotty calcification 
(n = 181)

Positive remodeling 
(n = 309)

Napkin ring sign (n = 36)

CRF 71.1 [66.8–75.4] 72.7 [69.0–76.3] 71.9 [68.7–75.0] 76.9 [69.4–84.3]

Protein 67.4 [62.9–71.8] 69.3 [65.3–73.4] 69.0 [65.6–72.3] 74.2 [66.5–81.9]

GPSMult 59.2 [54.3–64.1] 60.2 [55.9–64.5] 62.7 [59.2–66.1] 61.1 [51.6–70.6]

CRF +  GPSMult 72.8 [68.6–77.0] 75.1 [71.7–78.5] 74.9 [71.9–77.8] 78.0 [70.0–85.9]

Protein +  GPSMult 69.1 [64.9–73.3] 71.5 [67.7–75.3] 71.9 [68.8–75.0] 76.3 [69.3–83.3]

CRF + Protein 71.1 [66.6–75.6] 73.0 [69.3–76.8] 71.5 [68.3–74.7] 79.3 [72.7–85.9]

Full 72.3 [68.3–76.4] 75.0 [71.5–78.6] 74.9 [72.0–77.9] 79.5 [72.8–86.2]
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prediction accuracy in patients below 55  years of age. 
This is consistent with previous findings by Mars et  al. 
reporting PRS for CAD prediction to have lower per-
formance in people above 55  years of age [15] and also 
explains the somewhat low predictive ability of  GPSMult 
by itself in our study (mean age of 60 years).

Interestingly, we found that  GPSMult was able to 
improve prediction when combined with either CRFs or 
proteins, indicating that genetics carry additional infor-
mation about existing or novel aspects of HRP risk. 
Meanwhile, the inclusion of proteins with CRFs did not 
improve prediction, suggesting that the proteins assessed 
in our study do not contain additional information about 
HRP risk. It is possible that future improvements in HRP 
prediction could arise from increasing the number of 
included plasma proteins, using, e.g., SomaScan 7K or 
Olink Explore HT.

One of the strengths of this study is the consecutive 
enrollment of nearly 1500 patients with detailed CCTA 
readings allowing for the discovery of HRP presence and 
specific plaque characteristics. Additionally, the Danish 
healthcare system is likely to reduce referral bias, as no 
direct payment is needed for citizens to undergo diag-
nostic testing and therefore our findings represent an all-
comer population.

The primary limitation of the study is the lack of exter-
nal validation. Instead, this study utilized internal testing 
through repeated cross-validation, enabling visualization 
of the uncertainty of our performance estimates (Fig. 3). 
Additionally, this study investigated only 300 proteins, 
meaning that additional studies, using larger, more 
explorative panels, are required to investigate the remain-
ing plasma proteome.

Fig. 4 Feature importance of the CRF +  GPSMult models across cohort groups. A Mean absolute SHAP values, representing the average importance 
of input features on model prediction, with blue features leading to lower risk and red features leading to higher risk. B Patient-level SHAP values, 
showing how impactful some features can be in extreme cases. SHAP, Shapley additive explanation; T2D, type 2 diabetes mellitus;  GPSMult, multi-trait 
multi-ancestry genome-wide polygenic score
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Conclusion
Genetic data can be used to improve both clinical risk 
factors and proteomic models for the prediction of HRP 
presence, especially in patients below 55  years of age. 
However, a model combining both clinical risk factors 
and proteomics did not improve high-risk plaque iden-
tification, despite both types of data being predictive on 
their own.
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