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Abstract 

Background  Lung cancer is the leading cause of cancer‑related death in the world. In contrast to many other 
cancers, a direct connection to modifiable lifestyle risk in the form of tobacco smoke has long been established. 
More than 50% of all smoking‑related lung cancers occur in former smokers, 40% of which occur more than 15 
years after smoking cessation. Despite extensive research, the molecular processes for persistent lung cancer risk 
remain unclear. We thus set out to examine whether risk stratification in the clinic and in the general population can 
be improved upon by the addition of genetic data and to explore the mechanisms of the persisting risk in former 
smokers.

Methods  We analysed transcriptomic data from accessible airway tissues of 487 subjects, including healthy volun‑
teers and clinic patients of different smoking statuses. We developed a computational model to assess smoking‑asso‑
ciated gene expression changes and their reversibility after smoking is stopped, comparing healthy subjects to clinic 
patients with and without lung cancer.

Results We find persistent smoking‑associated immune alterations to be a hallmark of the clinic patients. Integrating 
previous GWAS data using a transcriptional network approach, we demonstrate that the same immune‑ and inter‑
feron‑related pathways are strongly enriched for genes linked to known genetic risk factors, demonstrating a causal 
relationship between immune alteration and lung cancer risk. Finally, we used accessible airway transcriptomic data 
to derive a non‑invasive lung cancer risk classifier.
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Conclusions Our results provide initial evidence for germline‑mediated personalized smoke injury response and risk 
in the general population, with potential implications for managing long‑term lung cancer incidence and mortality.

Background
Through international efforts and public health cam-
paigns, the prevalence of cigarette smoking worldwide 
has substantially decreased during the last 30 years [1]. 
However, lung cancer remains a major cause of death in 
current and former smokers: more than 50% of all smok-
ing-related lung cancers occur in former smokers [2], 
40% of which occur more than 15 years after smoking 
cessation [3]. Low-dose CT screening studies in asymp-
tomatic smokers and former smokers, stratified for risk 
by age and smoking history, have shown a reduction in 
lung cancer-related death by up to 26% [4, 5]. Although 
CT lung screening has been demonstrated to be cost-
effective [6, 7], improvements in risk stratification of 
participants could further improve cost-effectiveness 
thereby making screening more widely accessible and 
allowing detection of at-risk subjects overlooked by the 
current criteria.

Transcriptional profiles from normal airway epithelium 
have been proposed as potential molecular biomark-
ers of a personalized smoke-injury response related to 
increased risk, and as potential predictors of the presence 
of lung cancer. Early studies of bronchial cells provided a 
broad characterization of the genes affected by cigarette 
smoke exposure [8] and their post-cessation reversibility 
[9] and included initial attempts to derive predictive can-
cer gene expression signatures [10]. Following the model 
of a ‘field of injury’ throughout the airway epithelium, 
later efforts focused on more accessible tissues from the 
nasal or buccal cavity to assess the personal smoke injury 
response [11, 12]. Sridhar et al. [13] and Zhang et al. [14] 
provided initial evidence on 25 patients that nasal epi-
thelium might act as a proxy for smoking-induced gene 
expression changes in the bronchus. More recently, the 
AEGIS study team presented a large multi-centre study 
in which they showed that a classifier based on micro-
array gene expression data in bronchial epithelium 
improved the diagnostic performance of bronchoscopy 
in patients being investigated for suspected lung cancer 
[15]. They followed this up with a similar study based 
on nasal gene expression [16]. They showed significant 
concordance between gene expression in bronchial and 
nasal epithelium, and that a lung cancer classifier based 
on nasal gene expression together with clinical risk fac-
tors had significantly improved predictive performance 
over a classifier based on clinical risk factors alone. These 
studies addressed the question of improving the diagnos-
tic management of current and former smokers in whom 

lung cancer is already suspected due to the presence of 
pulmonary nodules detected during CT screening.

To date, no study so far addresses the important ques-
tion of whether and how the smoke-injury response dif-
fers in the general population from that observed in 
individuals with an elevated pre-screening risk. Accord-
ingly, no molecular risk stratification strategy exists 
for the general population, where any early detection 
measures would arguably reap the greatest benefits. 
Here, we present a cohort which includes current and 
former smokers with suspected lung cancer based on 
clinical evaluation from a physician, as well as a group 
of never, former and current smoker healthy volunteers 
from the general population (Fig. 1). Our study provides 
an in-depth characterization of the smoke-injury gene 
expression response in the healthy volunteers, based on 
accessible nasal tissue, and investigates the differences 
in smoke injury response between the healthy volun-
teers and the group of patients referred to the clinic. We 
derive molecular classifiers for assessing cancer risk in 
the clinic population as well as for predicting risk among 
the general population of asymptomatic current and for-
mer smokers. Using germline genotype data, we associ-
ate individual differences in smoke injury response with 
known lung cancer Genome-wide association study 
(GWAS) risk loci, providing strong evidence for causal 
involvement of inherited variation in immune and inter-
feron-related pathways, and for a role of immunosup-
pression in lung cancer development [17, 18].

Methods
Cohort and sample collection
Four hundred eighty-seven donors were recruited into 
the CRUKPAP cohort at Royal Papworth Hospital, Cam-
bridge (UK), including 114 healthy volunteers (HV) and 
337 patients being investigated for suspicion of lung can-
cer. Patients investigated for lung cancer were referred by 
their primary care physician with either symptoms suspi-
cious for lung cancer (e.g. cough, hemoptysis, weight loss, 
chest pain, shortness of breath) or in a few cases where a 
lung abnormality was identified on a CT scan performed 
for another indication (incidental finding). The eligibil-
ity criteria for healthy volunteers were as follows: age 18 
or above; current or former smokers must have smoked 
at least 100 cigarettes in their lifetime. Individuals with 
a previous history or current suspicion of airway or lung 



Page 3 of 19de Biase et al. Genome Medicine           (2024) 16:54  

cancer were excluded. Imaging was not performed on 
healthy volunteers prior to inclusion.

All participants were stratified into smoking cessa-
tion categories as follows: 45 never smokers (NV), 289 
former smokers (FS) and 153 current smokers (CS). 
Former smokers were further divided into categories: 
> 1 year after cessation (FS1, n = 234), 1–12 months 
after cessation (FS2, n = 45) and < 1 month after ces-
sation (FS3, n = 10). Smoking status for all subjects 
was confirmed via blood cotinine test. Cumulative 
smoke exposure measured in pack-years was recorded 
and stratified into four categories: ‘none’ (PY1), < 10 
years (PY2), 10–30 years (PY3) and > 30 years (PY4). 
For suspected lung cancer patients, both COPD status 
and final cancer diagnosis (lung cancer/no lung cancer) 
were recorded.

From these donors, 413 nasal epithelial curettages 
were collected using Arlington Scientific ASI Rhino-
pro nasal curettes. Briefly, the nostril is opened with a 
nasal speculum to identify the inferior turbinate. Under 
direct vision, the tip of the nasal curette is gently scraped 
over the turbinate to obtain a ‘peel or curl’ of epithe-
lial tissue. The curl of tissue is then removed by flick-
ing the curette while the tip is submerged in RNAlater™ 

collection medium and the presence of the curl floating 
in the medium is confirmed by visual inspection. This 
procedure is repeated twice for each nostril per donor. 
RNA integrity (RIN) was checked for all samples and we 
retained all samples with a RIN of 6 or higher.

Bronchial brushings were collected using 2.0-mm 
brush diameter cytology brushes (Olympus Medical, UK) 
from 236 patients undergoing flexible bronchoscopy as 
part of investigations for suspected lung cancer. Samples 
were taken by gently brushing the bronchial epithelium 
of the main bronchus contralateral to the suspected lung 
cancer. Two brushes coated with bronchial epithelial cells 
were each collected into 500 μl RNALater.

For 162 donors, both nasal and bronchial samples were 
available. Sample collection and diagnosis took place con-
temporaneously. All samples underwent short-read RNA 
sequencing using Illumina TruSeq library generation for 
the Illumina HiSeq 2500 platform. Blood samples were 
taken from 467 donors and germline genotyped using the 
Illumina Infinium Oncoarray platform at 450K tagging 
germline variants. Total gene expression levels (TPM and 
variance stabilized) were determined for 18,072 protein-
coding genes for all samples using DeSeq2.

Fig. 1 Overview of study subjects and data analysis. (Left) Repartition of the subjects into clinical categories and smoking status. For each category, 
we show the number of subjects for which RNA‑seq (on nasal and bronchial samples) and array‑based blood genotyping were performed. Nasal 
samples from the AEGIS cohort were used as a validation set. (Right) Schematic of the different analyses conducted to stratify patients and identify 
dysregulated pathways among clinic patients
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RNA extraction and sequencing
Tissue samples from bronchial brushings and nasal 
curettes were stored in 500-μl RNALater overnight at 4 
°C, and then at −80 °C for longer-term storage. RNA was 
extracted using Qiagen MiRNeasy columns according to 
the manufacturer’s protocols. Briefly, bronchial brushes 
were rinsed in PBS, brushes transferred into 700 μl Qia-
zol and cells lysed by vortexing twice for 30 s. For nasal 
samples, the RNALater containing nasal tissue (500 μl) 
was diluted with 2 ml of PBS and spun at 10,000 rpm for 
10 min. The cell pellet was lysed by resuspension in 700 
μl Qiazol. For both types of samples, the Qiazol lysate 
was applied to a QiaShredder tube (#217004) and spun at 
13,000 rpm for 2 min. The homogenate was kept at room 
temperature for 5 min, followed by chloroform extrac-
tion using PhaseLock tubes. Nucleic acids in the aqueous 
phase were precipitated using 1.5 volumes of 100% etha-
nol and DNA was digested using DNAse I. Finally, RNA 
was isolated from the mixture using RNAeasy mini spin 
columns. RNA was quantified using a Qbit measurement 
and quality was assessed using an Agilent Bioanalyzer. 
For samples with a RIN greater than 6, a total of 500 ng 
of RNA was used for Illumina TruSeq Library genera-
tion. Sequencing was carried out on HiSeq 2500 Illumina 
sequencers. Sequencing was carried out in two separate 
multiplexed experiments.

RNA sequencing data processing
Quality control using FastQC [19] showed good sequence 
quality and no adapter contamination for all samples. 
Alignment was carried out with TopHat2 [20], using as 
a reference the human genome version GRCh37. Read 
counts were computed for all protein-coding genes with 
subread featureCounts v1.6.0 [21]. The data was produced 
in 2 experimental batches, producing a strong batch effect 
that can be observed in the raw data. Moreover, a group 
of samples from one of the batches has lower total counts 
compared to the other samples (Additional file 1: Fig. S16a).

Raw counts were normalized using DESeq2’s vari-
ance-stabilizing transformation [22], which had the 
advantage of partly correcting the previously men-
tioned batch effects (Additional file  1: Fig. S16a). 
Genes with across-samples log variance smaller than 
−4 were discarded from further analysis. Total gene 
expression levels (variance stabilized) were determined 
for 18,072 protein-coding genes for all samples. To 
ascertain that the experimental batch did not covary 
with any clinical covariate, we computed the strength 
and significance of the association between the batch 
and the other covariates using Cramer’s V and chi-
square test. We did not observe a significant asso-
ciation between batch and age, sex, COPD, smoking 

status, pack-years and donor population of origin 
(healthy volunteer/clinic patient). We only observed 
a weak but significant association with cancer status 
(Additional file 1: Fig. S16b).

To assess the overall contribution of clinical and envi-
ronmental variables to gene expression in the nasal epi-
thelium, we also extracted variance components using 
a linear model, regressing donor population of origin 
(healthy volunteer/clinic patient), cancer status, smok-
ing status, pack-years, sex, age, COPD and experimen-
tal batch against total gene expression across all genes 
(Additional file 1: Fig. S16c). We found that donor pop-
ulation of origin and smoking status contribute most to 
gene expression variability (28.8 and 25.4% of the total 
explained variance. Notably, the donor population of 
origin still contributes significantly to the explained vari-
ance after accounting for all other clinical and technical 
covariates.

Differential expression analysis
All differential expression analyses were performed with 
DESeq2 v1.26.0 [22]. Age, experimental batch, sex, smok-
ing status and pack-years were included as confounding 
variables. Adding COPD as an additional confounding 
variable did not substantially alter the results. Genes with 
multiple-testing-adjusted (Benjamini-Hochberg) p-val-
ues < 0.05 were considered differentially expressed. For 
differential expression between clinic cancer and clinic 
benign in bronchial samples, 8 genes had artificially high 
(>20) absolute fold-change, due to their very low average 
expression across samples. These genes were removed 
from the list of differentially expressed genes.

Gene expression dynamics
To identify genes affected by smoke and characterize 
their post-cessation expression dynamics, we applied 
Bayesian linear regression and model selection (R pack-
age BAS v1.5.3 [23]). We modeled the expression of each 
gene on smoking status, where smoking status is encoded 
in 3 variables:

– CS (0/1) indicating current-smoker status
– FSS (0/1) indicating former-smoker status
– FS (0/1/2/3) indicating time since smoking cessation

Additionally, the model includes age, sex and experi-
mental batch as confounding variables.

We tested for inclusion of each of the variables into 
our model and inferred posterior probabilities for all 
eight possible models to retrieve the most likely time 

gxp ∼ CS+ FS+ FSS+ confoundings
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dynamic of gene expression changes for each gene 
individually. Each combination, or group of combina-
tions, corresponds to a gene class among unaffected 
by smoking, rapidly reversible, slowly reversible, irre-
versible and cessation-associated (Additional file  1: 
Fig. S1). Each gene is assigned to the class with the 
highest posterior probability. To identify genes for 
which smoking has the strongest effect, we applied 
a threshold on the beta coefficient and retained only 
genes with a beta CS greater than 0.4 for rapidly 
reversible, slowly reversible and irreversible genes, 
and beta FSS greater than 0.25 for cessation-associ-
ated genes.

Derivation of population and clinic risk scores
L1-penalized multivariate logit regression was per-
formed with R package glmnet 3.0-2 [24] using only the 
nasal gene expression data. Patient status was encoded 
with a binary variable (cancer: 1; no cancer 0 for the 
clinic classifier; clinic patient: 1, healthy volunteer: 0 
for the population classifier), and patients with Ineligi-
ble status were excluded from the analysis. In the gene 
expression classifiers, the status of each patient was pre-
dicted based on the expression of the 749 response genes 
and 4 clinical covariates, namely sex, age, smoking status 
and pack-years, all of which were encoded as numeri-
cal variables (smoking status encoding: Never smokers: 
0, Ex > 1 year: 1; Ex 1–12 months: 2; Ex < 1 m: 3, cur-
rent smokers: 4). For the clinical classifier, we also used a 
lasso regression, using only sex, age, smoking status and 
pack-years as predictors. The lasso shrinkage parameter 
(λ) was chosen to minimize the mean cross-validated 
error (‘lambda-min’ option in the cv.glmnet function). 
Area under the receiver operating characteristic curve 
and precision-recall curves were computed using the 
PRROC package [25], after 10 rounds of 10-fold cross-
validation experiments. To compare the performances 
of the response genes to the performances of random 
genes, we randomly drew 20 sets of 749 genes among 
the 18,072 protein-coding genes retained for all analyses, 
and cross-validation experiments were conducted on 
the same test and training set as the one used with the 
response genes.

Gene ontology analysis and pathway analysis
All Gene Ontology (GO) enrichment analyses were per-
formed using clusterProfiler v3.14.3 [26]. GO terms with 
adjusted (Benjamini-Hochberg) p-values < 0.05 were 
considered enriched.

Pathway metascores were calculated by averaging vst-
normalized gene expression of genes belonging to the 
selected genesets, after regressing out the experimental 
batch effect.

Genotyping data pre‑processing
SNP phasing and imputation
We phased the 450,000 germline genotypes using a statis-
tical phasing algorithm (eagle v2.4.1 [27]) and population 
data from the 1000 genome project. For each haplotype, 
we then imputed missing genotypes using the minimac4 
pipeline [28]. This allowed us to impute the genotype of 
each subject at 46,000,000 positions. After filtering out 
SNPs with low imputation quality (Rsq<0.8), we were left 
with 7,650,214 SNPs in total for each sample.

LD pruning
First, we only considered SNPs that have a minor allele 
frequency greater than 1% in our cohort, reducing the 
number of SNPs to 5,772,170. Next, we removed SNPs in 
strong LD. To do so, we filtered out SNPs with a Variant 
inflation frequency larger than 20, with VIF = 1/(1 − r2). 
This threshold thus corresponds to removing SNPs with 
a multiple correlation > 0.95. VIFs are calculated on 50 
SNPs sliding windows over the entire chromosomes. With 
this threshold, 4,728,931 (81.9 %) of the total 5,772,170 
SNPs were filtered out, and 1,043,239 (18.0%) were 
retained.

eQTL analysis
We computed the eQTL tests for the set of 18,072 pro-
tein-coding genes for which we have sufficient cover-
age (see filter criteria for RNAseq data above). For each 
gene, we tested all SNPs in a 500-kb cis window (500-kb 
upstream from the TSS, 500-kb downstream from the 
transcription termination site). For each test, we model 
the effect of known clinical and technical covariates (sex, 
age, batch, smoking status and pack-years) using a fixed 
effect. All clinical covariates were encoded as numerical 
values (0–4 for smoking status, 0–3 for age and pack-
years, and binary 0–1 for sex and batch), and genotypes 
are encoded as a numeric variable (0: Ref/Ref; 1: Alt/Ref; 
2: Alt/Alt). P-values were computed using t-statistics 
from linear regression in the R package Matrix eQTL 
[29]. We used a two-step multiple-testing correction 
procedure, as described in [30]. First, for each gene, we 
correct for the number of variants tested using Bonfer-
roni correction. Second, we performed a global correc-
tion across the lead variants, that is, the most significant 
SNPs, per eQTL, using a Benjamini-Hochberg procedure.

Gene‑environment interaction test
To test for a combined effect of genotype and environ-
ment on the gene expression level of the smoke injury 
gene, we conducted an interaction test between the geno-
type background and the smoking status of the patient, 
encoded in a 0/1/2 form (Never/Ex/Current). For each of 
the 749 smoke-injury gene, we retrieved the lead eQTL 
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variant identified in the genome-wide eQTL analysis and 
tested for an interaction effect between the genotype 
encoded in a 0/1/2 numeric and the smoking status, cor-
recting for the effect of age, sex, smoking status, pack-
years and genotype. Analogous to the eQTL analysis, we 
first corrected for the number of variants for each gene 
using Bonferroni correction and then applied a global 
Benjamini-Hochberg procedure to account for the num-
ber of genes tested.

Identification of GWAS‑linked genes
To study the mechanisms by which germline genotype 
background influences lung cancer risk, we adopted the 
approach developed by [31]. We downloaded a curated 
set of 1261 GWAS lung cancer risk loci from the GWAS 
catalog [32] (see Additional file 2: Table S9) and mapped 
genotyped and imputed SNPs of all patients to the near-
est GWAS risk locus as follows. For each GWAS risk 
locus, we retrieved a list of variants in our cohort within 
a 500-kb cis-window using linkage disequilibrium (LD) 
cutoff of R2 > 0.8 in the UK population using the Link-
age Disequilibrium Calculator of the ensembl website 
[33], yielding 9739 candidate variants and 135,513 gene-
SNP pairs. 3455 of those 9739 variants had a significant 
effect on their corresponding e-gene with a p-value < 
0.05 (after Benjamini-Hochberg multiple testing correc-
tion). Many of those 3230 hits were in LD with the same 
GWAS variant, such that all eQTL variants mapped to 67 
unique GWAS risk loci (Additional file 2: Table S8) from 
10 different studies and were linked to the expression of 
44 genes.

Transcription factor network and activity
A context-specific protein-protein interaction network for 
nasal and bronchial epithelium was built using ARACNe-
AP [34] on the vst-normalized expression data and a list 
of 1988 human transcriptional regulators, compiled using 
information available on public databases, from [35]. 
ARACNe-AP was able to infer context-specific interac-
tions across 1548 nasal and 1535 bronchial regulators. The 
activity of each of these regulators in each nasal and bron-
chial sample was inferred using VIPER v1.20.0 [36].

Network representations of TF-TF and TF-targets 
interactions were produced with Cytoscape v3.8.1.

To find TFs that had an overrepresentation of GWAS 
genes in their target network, we used a context-spe-
cific TF-TF interaction network built using ARACNe-
AP on bronchial vst-normalized gene expression data 
and a list of 1988 human transcriptional regulators 
(see above). For each TF i, we first counted the number 
(NG(i)) of genes in its target network that were identified 
as a GWAS gene. We then compared the proportion of 
GWAS genes in each TF target network to the expected 

number that would be found for a similar number of ran-
domly selected genes with a one-tailed hypergeometric 
test using the phyper function in R with the following 
parameters:

m: total number of genes in the network of TF i; n = 
18,062 − m; k = the number identified of GWAS genes 
and q = NG(i), the number of GWAS genes in the target 
network of the TF i. Obtained p-values were adjusted for 
multiple testing using a Benjamini-Hochberg correction. 
We applied the same procedure to test for the enrich-
ment of response genes in the 4 identified GWAS TFs, 
although we did not correct the p-values for multiple 
testing this time since we conducted only 4 tests.

Results
Study subjects
We recruited 487 subjects among which were 114 healthy 
volunteers from the Cambridge Bioresource (https:// 
www. cambr idgeb iores ource. group. cam. ac. uk/) and 373 
patients referred to the out-patient clinic at Royal Pap-
worth Hospital (Cambridge, UK) or Peterborough City 
Hospital (Peterborough, UK) with symptoms or imaging 
suspicious for lung cancer (clinic group). Healthy volun-
teers are defined as individuals without any prior history 
or current suspicion of lung cancer who had not under-
gone any imaging investigations. Within the clinic group, 
301 patients were diagnosed with cancer and 72 patients, 
although initially presenting with symptoms and/or 
imaging suspicious for lung cancer had a final diagnosis 
of a benign condition, the majority of which were due 
to infection or inflammation (Fig.  1, Additional file  2: 
Table S1). From these donors, we collected a total of 649 
samples: 413 nasal epithelial samples by mini-curette 
from 114 healthy donors and 299 clinic patients, and 236 
bronchial brushings from clinic patients (Fig.  1; see the 
‘Methods’ section). For 162 clinic patients, both nasal 
and bronchial samples were collected (Additional file  2: 
Table  S2). Samples from healthy volunteers and clinic 
patients were collected and processed by the same staff 
using identical experimental protocols.

Smoking history was obtained for all subjects, con-
firmed by cotinine test, and recorded as never smokers 
(NV, n = 45), current smokers (CS, n = 153) and former 
smokers (FS, n = 289). Former smokers were stratified 
into 3 categories based on their time from smoking ces-
sation: former smokers who had quit less than 1 month 
(n = 10), 1 to 12 months (n = 45), or more than 1 year 
(n = 234, median = 168 months) prior to sample collec-
tion (Fig. 1; see the ‘Methods’ section). Cumulative smoke 
exposure was measured in pack-years and stratified into 
4 categories: none, 0–10, 11–30, > 31 pack-years. In addi-
tion to smoking status, sex, age, lung cancer subtype and 
stage and presence of chronic obstructive pulmonary 

https://www.cambridgebioresource.group.cam.ac.uk/
https://www.cambridgebioresource.group.cam.ac.uk/
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disease (COPD) were recorded according to the GOLD 
criteria [37] (Additional file  2: Table  S2). While most 
clinic patients with cancer were diagnosed with non-small 
cell lung cancer (NSCLC; n = 245), 56 subjects presented 
with metastatic disease from an extra-thoracic primary (n 
= 8), small-cell lung cancer (SCLC, n = 31) or rare pul-
monary cancer, e.g. carcinoid (n = 17). Given the differ-
ent underlying biology between NSCLC and other types 
of tumours, these subjects (with cancer status marked as 
Ineligible in Additional file 2: Table S2) were included in 
all analyses investigating smoke injury response, but were 
excluded for lung cancer risk prediction. Clinic patients 
with a final diagnosis of a benign condition were followed 
up for a minimum of 1 year to confirm the absence of 
cancer.

Airway samples underwent RNA sequencing using 
standard protocols [38]. Blood samples were taken from 
467 subjects for germline genotyping with Illumina 
Infinium Oncoarray platform at 450K tagging germline 
variants [38]. Total gene expression was quantified as 
variance-stabilized counts and corrected for batch effects 
in all downstream analyses (see the ‘Methods’ section).

Healthy volunteers and clinic patients show widespread 
differences in gene expression
To investigate overall gene expression patterns, we first 
tested for gene expression differences between all clinic 
patients (benign and cancer diagnoses) and healthy vol-
unteers using nasal epithelium samples from both cur-
rent and former smokers correcting for smoking status, 
pack-years, sex and age. We found extensive differences 
in gene expression between the healthy volunteer and 
clinic groups, with 5359 genes differentially expressed 
(FDR < .05; see the ‘Methods’ section). Genes showing 
increased expression in clinic patients were enriched for 
cilium assembly and organization, while genes showing 
reduced expression were enriched for oxidative phos-
phorylation and several immune-related pathways, such 
as neutrophil activation, antigen processing and presen-
tation and response to interferon-gamma (Additional 
file 2: Table S3). When performing the same comparison 
in current smokers only, similar enrichment was found 
in the genes with increased and reduced expression. In 
former smokers who had quit for more than 1 year, there 
was no increased expression compared to healthy volun-
teers for genes related to ciliary function, but there was 
reduced expression of genes related to immune path-
ways such as inflammatory response, neutrophil activa-
tion and response to interferon-gamma. These analyses 
demonstrate widespread expression differences between 
healthy volunteers and clinic patients not solely attribut-
able to differences in smoke exposure and suggest that 
an immunosuppressed state can be detected in the nasal 

epithelium of subjects from the clinic group during active 
smoking and for years after smoking cessation.

In contrast, comparing gene expression between 
patients with and without cancer in the clinic group and 
accounting for the same confounding (analysing current 
and former smokers together) yielded only 28 signifi-
cantly altered genes (Padj < .05; see the ‘Methods’ sec-
tion) in the bronchus, and no significantly differentially 
expressed genes in the nose. Among the 28 differentially 
expressed genes in the bronchus, 3 were up-regulated 
in patients with cancer: MMP13, a metalloproteinase 
known to increase lung cancer invasion and metastasis 
[39]; EDA2R, a member of the tumour necrosis factor 
(TNF) receptor superfamily, members of which modu-
late immune response in the tumour microenvironment 
[40]; and CTSL, a lysosomal cysteine protease involved 
in epithelial-mesenchymal transition [41]. The 25 genes 
down-regulated in cancer patients were enriched in 
immune-related GO terms, in particular neutrophil-
mediated immunity (Additional file 2: Table S4), consist-
ent with our finding in the comparison between clinic 
patients and healthy volunteers in nasal tissue.

In summary, we observe major gene expression dif-
ferences in nasal epithelium between healthy volunteers 
and clinic patients. However, we find no significant sig-
nal when comparing patients with lung cancer with those 
who had a final benign diagnosis (despite initially being 
suspicious for lung cancer). This result is in contrast to 
that obtained in the AEGIS study [16], which reported 
a notable difference in nasal gene expression between 
clinic-referred cancer and benign patients. However, 
we found a significant overlap between the set of differ-
entially expressed genes between cancer and no-cancer 
in AEGIS and the set of differentially expressed genes 
between our clinic and healthy groups (P = 1.44 ×  10−5). 
These results may be explained by differences in the 
nature of the benign (non-cancer) diagnoses between 
the two studies. In our study, the majority of patients in 
the clinic group had clinical symptoms/imaging highly 
suspicious for lung cancer. Patients with a final benign 
diagnosis were predominantly due to significant typical 
bacterial infection/inflammation (pneumonia). However 
in the AEGIS cohorts, many of the benign diagnoses, 
where known, were due to sarcoidosis, fibrosis, benign 
tumours or atypical infections (fungal and mycobacte-
rial). Therefore, in our cohort, the pre-test probability for 
malignancy in the benign group was higher than in the 
AEGIS benign group.

Gene expression response to smoke injury differs 
between healthy volunteers and clinic patients
Intrigued by these overall expression differences between 
healthy volunteers and clinic patients, we investigated the 
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post-cessation dynamics of individual genes using a pop-
ulation-based approach. We first employed a Bayesian 
linear regression model to predict nasal gene expression 
in healthy volunteers as a function of smoking status, 
accounting for sex and age (see the ‘Methods’ section). 
This model classified genes as either unaffected by smok-
ing (US), rapidly reversible (RR; no difference between 
former and never smokers), slowly reversible (SR; inter-
mediate expression levels in former smokers compared 
to never and current) or irreversible (IR; no difference 
between former and current smokers). Additionally, 
genes were classified as cessation-associated (CA) if no 
difference was present between current and never smok-
ers, but elevated or reduced expression was observed 
in former smokers (see Additional file  1: Fig. S1 for a 
schematic).

In healthy volunteers, 5755 genes were found to be 
affected by smoking status, out of which 513 genes show a 
strong effect (effect size > 0.4 for rapidly reversible, slowly 
reversible, irreversible genes, > 0.25 for cessation acti-
vated genes; see the ‘Methods’ section, Additional file 2: 
Table S5). Most genes (485/513) were found to be rapidly 
reversible, in line with previous findings in bronchial tis-
sue [9]. GO pathway analysis of these genes revealed up-
regulation of cellular detoxification, response to oxidative 
stress (e.g. CYP1A1, CYP1B1, AHRR, NQO1, GPX2, 
ALDH3A1) and keratinization (e.g. KRT6A, KRT13, 
KRT17, SPRR1A, SPRR1B, CSTA) pathways, and down-
regulation of cilium organization (e.g. FOXJ1, DNAH6, 
IFT81, CEP290, UBXN10), extracellular matrix organi-
zation (e.g. FN1, COL3A1, COL5A1, COL9A2) and 
interferon-signaling (e.g. IFI6, IFIT1, IFI44, RSAD2) in 
current compared to never smokers. Genes involved in 
inflammatory response were found both among the up-
regulated (IL36A, IL36G, S100A8, S100A9, CLU) and 
down-regulated (SAA1, SAA2, IL33) genes. Principal 
components analysis using the rapidly reversible genes 
showed a clear separation of current smokers from all 
other subjects. In contrast, slowly reversible and irre-
versible genes placed patients on a trajectory from never 
smokers to current smokers, as expected (Additional 
file 1: Fig. S2a).

We next repeated the above analysis on the clinic sub-
group. In the absence of clinic never smokers, and since 
no technical or biological covariates could explain the 
observed overall expression differences between the 
groups (see the ‘Methods’ section), we considered the 
healthy volunteer never smokers as a bona fide reference 
group for this analysis. We found 4112 genes with smok-
ing-dependent expression changes, 584 of which showed 

a strong effect (same effect size thresholds as above; see 
the ‘Methods’ section and Additional file  2: Table  S5). 
We evaluated this classification with a principal com-
ponents analysis on the clinic subjects, similar to what 
was done for healthy volunteers, and found that patients 
clustered according to their smoking status, as expected 
(Additional file 1: Fig. S2b). Of the 584 genes identified 
as dysregulated by smoke in the clinic patients, 233 were 
also found in the healthy volunteer analysis (P < .001, 
chi-squared test, Additional file  1: Fig. S3). However, 
while most of these genes (227/233) were rapidly revers-
ible in the healthy volunteers, only 113 were also clas-
sified as rapidly reversible in the clinic group (Fig.  2a). 
Of the remaining 120 genes, 2 genes (BPIFA2 and CLU) 
were classified as irreversible and 24 genes as slowly 
reversible, including CYP1B1, a well-known detoxifica-
tion gene, and BMP7, a gene previously shown to have 
a role in immunoregulation [42] (Fig.  2b). The remain-
ing 94 genes were classified as rapidly reversible in the 
healthy volunteer group and as cessation-associated 
in the clinic group (e.g. UBXN10, Fig.  2b) and showed 
a strong enrichment for cilia structure and function 
(Additional file 2: Table S6). While cilia-associated genes 
were down-regulated in current smokers in both groups 
(consistent with cigarette smoke damaging airway cilia), 
the same genes showed increased expression in current 
and former smokers in the clinic group compared to the 
healthy volunteers. This observation in the clinic group 
might be linked to the decreased expression of inter-
feron-gamma-related genes in the clinic group, as it has 
been shown that interferon-gamma suppresses ciliogen-
esis and ciliary movement [43].

Lastly, the 351 genes that showed smoking-dependent 
expression changes in the clinic group but not in the 
healthy volunteers (Fig.  2a) were strongly enriched in 
extracellular matrix organization and immune-related 
genes (including response to interferon-gamma, neutro-
phil activation, chemotaxis and inflammation). For exam-
ple, GBP6 showed down-regulation and slow reversibility 
in the clinic group (Fig. 2b) and is known to be associated 
with reduced overall survival in squamous cell carcinoma 
of the head and neck [44].

Overall, we observe striking differences in smoke-
dependent gene expression in the clinic patients compared 
to volunteers that could not be explained by comorbidi-
ties or other covariates, with generally slower reversibility 
post-cessation in the clinic group. We hypothesize that 
some of the 749 genes with differences in smoke-depend-
ent expression might reflect individual responses to the 
smoke injury and thus refer to them as response genes.
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Response gene expression levels predict disease status 
and may improve risk stratification for population 
screening
We postulated that the smoke-injury response genes 
we identified might provide evidence for a personal-
ized smoke injury response and be candidate genes for 
a molecular biomarker of lung cancer risk. In the clinic 
group, where patients already show evidence of lung dis-
ease, such a biomarker would help identify patients with 
the highest need for further investigation. In the general 
smoker and former smoker population, it could be added 
to existing methods of risk stratification to improve the 
identification of individuals who would most benefit from 
lung cancer screening thereby sparing those at the lowest 
risk who would have least to benefit from screening.

Therefore, we trained two independent classifiers: a 
‘clinic classifier’ that predicts the cancer status of each 
sample (cancer vs clinic benign and healthy volunteers: 
potentially of use in the clinic) and a ‘population classi-
fier’ that predicts the donor group that the samples were 
taken from (clinic benign or clinic cancer vs healthy vol-
unteers: potentially of use in risk stratification for pop-
ulation screening). For both classifiers, we used gene 
expression data from the 749 response genes together 
with clinical information (sex, age, smoking status and 
pack-years; see the ‘Methods’ section) in a lasso-penal-
ized multivariate logistic regression and derived a log-
odds score from each classifier. In line with the observed 
strong expression, differences between healthy volunteers 
and clinic patients, the ‘population’ score clearly separates 

Fig. 2 Smoke injury dynamics. a Plot showing the change of reversibility dynamics for the 749 response genes in the healthy volunteer (left) 
and clinic (right) donor groups (genes classified as unaffected by smoking in both donor groups were removed). Color bars represent the number 
of genes in each reversibility class (blue = rapidly reversible, yellow = slowly reversible, red = irreversible, green = cessation associated, grey = 
unaffected by smoking). b Normalized gene expression over smoking status for 4 exemplar response genes with different post‑cessation dynamics 
in the clinic and healthy groups, with linetype and shape representing donor status (plain line = clinic group, dashed line = healthy volunteer) 
and colors representing the genes’ assigned reversibility classes (same color code as panel a). See also Fig. S1 for schematic examples

Fig. 3  Disease status prediction based on response genes. a, b Risk score distribution for the population test (a) and the clinic test (b) predicted 
from the clinical variables and the expression of the response genes using a penalized regression (see the ‘Methods’ section). The risk distributions 
are presented separately for healthy volunteers (green), clinic patients without cancer (orange) and clinic patients with cancer (purple). c, d 
ROC curves for the population (c) and clinic (d) scores. For each case, we present the ROC curve for the model trained on clinical data (triangles) 
or on gene expression and clinical data (squares). Each curve is an average obtained across 100 cross‑validation (CV) experiments and the grey 
area surrounding the curve gives the standard error. The color of the curve represents the test threshold corresponding to the represented 
sensitivity/false‑positive rate compromise. (Inset) Area under the ROC curve, in 100 CV rounds, for a clinical‑only model (red) the model constructed 
on the response genes (blue) and a model constructed on a combination of clinical information and response genes (green) for the population (c) 
and clinic (d) classifiers. P values given above each box are computed using a 2‑sample t‑test. e The population and clinic classifiers applied to nasal 
samples from the AEGIS cohort

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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healthy volunteers from clinic subjects (Fig. 3a). Interest-
ingly, the ‘clinic’ score (Fig. 3b) additionally distinguishes 
the benign and cancer patients within the clinic group, 
placing benign subjects between healthy volunteers and 
cancer subjects. As expected, the two scores are highly 
correlated (Pearson correlation = 0.8, P < .001, Addi-
tional file 1: Fig. S4a). Both scores yielded high area under 
the curve (AUC) values for both precision-recall (clinic 
score: mean AUC-PR = 0.83 after 10-fold cross-valida-
tion; population score: mean AUC-PR = 0.85, 10–fold 
cross-validation, Fig.  3c, d) and receiver-operator char-
acteristics (clinic score: mean AUC-ROC = 0.84, 10-fold 
CV; population score: mean AUC-ROC = 0.92, 10 fold 
CV; see also the ‘Methods’ section) and performed sig-
nificantly better than a model using the same number 
of randomly selected genes (Additional file  1: Fig. S5). 
In practice, to reach a sensitivity of 95% for the popula-
tion score, one would use a score threshold of 2.69, which 
would result in an average false-positive rate of 42.8%, 
while to reach a similar sensitivity using clinical data 
alone would result in a false-positive rate of 74.5%. For 
the clinic score, a score threshold of −1.46 gives a 95% 
sensitivity and false positive rate of 62.1%, while similar 
sensitivity with clinical data alone would result in a false-
positive rate of 67.8% (Fig. 3c, d). These results indicate 
that models incorporating gene expression data of the 
response genes defined above performed significantly 
better than models built on clinical covariates alone (see 
also inset of Fig.  3c, d for a comparison of the perfor-
mance of models based on gene expression data alone, 
clinical covariates alone or a combination of gene expres-
sion data and clinical covariates). In addition, both scores 
retained their ability to separate the patient groups after 
regressing out all potential confounders, confirming that 
gene expression data improves classification compared to 
using clinical covariates alone (Sup. Fig. 4b, c).

We also assessed the performance of the trained popu-
lation and clinic risk score models separately on current 
and former smokers. We found that the population risk 
score is equally applicable to current and former smok-
ers: a significant difference in the risk score of the healthy 
volunteers and clinic subjects can be observed, even after 
regressing out clinical covariates and confounding (Addi-
tional file 1: Fig. S6). While the clinic risk score performs 
well on both groups, the added value from gene expres-
sion data appears less important in the clinic score, in 
particular in former smokers (Additional file 1: Fig. S6). 
We have shown that our classifiers are efficient at sepa-
rating subjects regardless of their cancer stage, cancer 
type (squamous carcinoma or adenocarcinoma) and 
COPD status (Additional file 1: Fig. S7) and that our clas-
sifiers capture differences in risk that persist for more 
than 10 years after smoking cessation (Additional file 1: 

Fig. S8). Because COPD is a known risk factor for lung 
cancer, we also compared the potential additional contri-
bution of COPD data and of gene expression data, sin-
gly and in combination, to the risk classifiers based solely 
on clinical data (Additional file 1: Fig. S9). We found that 
COPD data add little to the performance of either the 
clinic or population classifier.

Finally, we validated our classifiers by applying them 
to an independent cohort. No publicly available cohort 
matches the composition of our cohort, in particular 
because of the absence of a healthy group of current and 
former smokers distinct from the clinic-referred patient 
group. However, the AEGIS cohort [45] includes nasal 
samples from clinic-referred patients with pulmonary 
nodules and a diagnosis of lung cancer or benign disease. 
We applied our two classifiers to this cohort and found 
a good separation between subjects with and without 
cancer, despite the different gene expression quanti-
fication technologies and populations of origin of the 
patients (Fig.  3e, Additional file  1: Fig. S10). We found 
a stronger separation between patients with and with-
out cancer using the AEGIS nasal classifier from Perez-
Rogers et al. (2017) [16] on the AEGIS data (Additional 
file 1: Fig. S10a). However, we note that the AEGIS clas-
sifier [16], when applied to our data, mostly differentiates 
healthy volunteers and clinic patients while the difference 
between the scores of cancer and no-cancer patients is 
only modest (Additional file  1: Fig. S10b). These results 
confirm the ability of our classifier to stratify patients, 
even when applied to patients from different clinical 
contexts.

Overall, our results demonstrate that classifiers based 
on nasal gene expression have the potential to improve 
risk stratification of current and ex-smokers in both a 
population screening context and a clinic context.

Alterations in immune pathways underlie the lung cancer 
risk classification
To gain insights into the mechanisms of risk, we asked 
which genes robustly contributed most to the classi-
fiers by identifying genes selected in more than 80% of 
the cross-validation (CV) rounds (Additional file  1: Fig. 
S11). Among the 46 genes selected most often in either 
of the risk prediction models, we found genes that were 
previously identified as important players in lung cancer 
development, e.g. SAA2 [18], HAS2 [46–48] or TGM3 
[49–52], in line with the current literature.

However, the genes used as predictors of risk in our 
model reflect a wide variety of smoking-associated 
alterations. In order to gain some mechanistic insight, 
we investigated risk contribution at the pathway level. 
First, we performed GO enrichment analysis on the list 
of smoke injury genes (both the ones identified in the 
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healthy volunteers and in the clinic group) to identify 
the main pathways affected by smoke. We found that the 
smoke injury genes are mainly involved in xenobiotic 
metabolism and response to oxidative stress, extracel-
lular matrix organization, keratinization, ciliary struc-
ture and mobility and immune response (Additional 
file  2: Table  S7). We then chose 8 GO terms as repre-
sentatives of these alterations: Keratinization, Extracel-
lular matrix organization, Xenobiotic metabolism, Cilium 
organization, Inflammatory response, Neutrophil medi-
ated immunity, Response to interferon gamma and Anti-
gen processing and presentation. We calculated geneset 
metascores for each of these GO terms (Fig. 4a and Addi-
tional file 1: Fig. S12). For some of these pathways, such as 
Keratinization, we observed a similar, rapidly reversible 
dynamic in healthy volunteers and clinic patients (Addi-
tional file 1: Fig. S12a). For most pathways, however, the 
dynamics were different in the two donor groups. Cilium 

organization appeared to be rapidly reversible in healthy 
volunteers, while in clinic patients it showed increased 
expression in former smokers, with no difference 
between current and never smokers. Xenobiotic metabo-
lism showed a slower reversibility in clinic patients than 
in healthy volunteers (Additional file 1: Fig. S12a). For all 
immune-related pathways, we observed reduced expres-
sion in current smokers, and a slow reversibility dynamic, 
uniquely in clinic patients (Fig. 4a); we also observed that 
their activity does not revert to healthy never-smoker 
level even long after smoking cessation (Additional file 1: 
Fig. S12b).

To identify which of these pathways contributed most 
to increased risk, we then calculated the correlation 
between geneset metascore in each subject and sub-
jects’ risk scores from the population and clinic classi-
fiers. We calculated these correlations for current and 
former smokers (> 12 months) separately, to be able to 

Fig. 4 Pathway analysis and contribution to risk. a Comparison of geneset metascore (average vst‑normalized gene expression; see the ‘Methods’ 
section) over smoking status for 4 immune‑related GO terms in healthy (dashed line, triangles dot) and clinic subjects (plain line, round dot). 
b Correlation between the population or clinic risk score and geneset metascore for the 8 gene sets representing biological functions altered 
by smoking; spearman correlation is shown separately for current and former smokers (> 12 months); Spearman correlation values are reported 
(blue = positive correlation, red = negative correlation), as well as the associated p‑values (*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001)
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identify differences in geneset contribution to risk in the 
two groups that might reflect differences between acute 
smoke injury response and the long-term consequences 
of past smoke exposure (Fig.  4b). In current smokers, 
while Keratinization and Extracellular matrix organiza-
tion did not significantly correlate with either risk score, 
the remaining four genesets tested showed moderate but 
significant correlation with both risk scores, pointing to 
alterations of the xenobiotic detoxification pathways, cili-
ary function and immune response as major contributors 
to patient-specific differences in risk. In former smok-
ers, the population risk score correlated with the same 
4 GO terms indicating that detoxification pathways, 
ciliary function and immune response are the main con-
tributors to the overall risk of lung disease. In contrast, 
only pathways related to immune alterations (Response 
to interferon gamma, Neutrophil-mediated immunity, 
Antigen processing and presentation) correlated with the 
clinic risk score in former smokers, while no correlation 
was observed with Xenobiotic metabolism, and only a 
very weak correlation with Cilium organization (Fig. 4b). 
These results indicate that immune alterations are sig-
nificant contributors to the risk of cancer in both current 
and former smokers in the clinic group.

Patient‑specific genetic background modulates the smoke 
injury response
Germline genetic variation may influence individual dif-
ferences in response to airway smoke injury, and hence, 
risk of smoking-related lung cancer. To investigate this, 
we first conducted an eQTL analysis on nasal and bron-
chial epithelium separately and jointly to identify variants 
that affect the expression of neighbouring genes (see the 
‘Methods’ section). We obtained 990 (bronchial), 1316 
(nasal) and 1695 (combined) eQTL effect genes (e-genes) 
at 1% FDR. We found a significant overlap between the 
nasal and bronchial e-genes (Additional file 1: Fig. S13a), 
with 574 genes in common (corresponding to 58% and 
44% of the bronchial and nasal eQTL respectively, Fish-
er’s exact test P < .001). Similarly, we found a correlation 
of 0.56 between the adjusted p-values of the lead variants 
between both sets (Additional file 1: Fig. S13b), confirm-
ing shared cis-regulation between the nasal and bronchial 
epithelium.

To further study the interaction between subject-spe-
cific genetic background and environmental factors, we 
next leveraged this eQTL catalogue to search for genetic 
variants within the 749 response genes that might modu-
late gene expression differently depending on subjects’ 
smoke exposure. We identified 78/749 genes with at least 
one lead eQTL variant with genome-wide significance 
at 10% FDR (Additional file 2: Table S8). We then tested 
for an interaction effect between smoking status and 

genotype for all 78 lead eQTL variants on gene expres-
sion. We identified 11 genes (CH25H, LHX6, WNT5A, 
DRAM1, SULF1, LGALS7B, HAPLN4, FXYD5, EFCAB2, 
TOX and SPRR1A; see Additional file 1: Fig. S14) whose 
expression changes in response to smoke are modu-
lated by the presence of genetic variants (nominal P < .1, 
Additional file 2: Table S8), suggesting that those genetic 
variants might modulate the response to smoke injury 
and to lung cancer risk. For example, up-regulation of 
FXYD5 has been shown to correlate with tumor size 
[53] and poor survival [54] in NSCLC and to be impli-
cated in many cancer types as FXYD5 enhances NFκ-B 
transcriptional activity, promotes angiogenesis and 
increases tumor cell’s migration and invasion abilities 
[55]. Finally, this protein also promotes inflammation in 
epithelial cells, notably in lung tissues [56]. Analysing 
the expression of this gene in our cohort, we find that 
subjects with a homozygous reference genotype at the 
19:35660670:G:A locus have similar levels of expression 
both in never, ex and current smokers (Fig. 5a). On the 
contrary, subjects that have a heterozygous or homozy-
gous alternative genotype present higher levels of expres-
sion of this gene in response to smoke (Fig.  5a), which 
might increase their lung cancer risk. We observe simi-
lar trends for the 10 other response genes stated above 
(Additional file  1: Fig. S14, Additional file  2: Table  S8). 
This finding demonstrates how subjects’ specific genetic 
background can influence their reaction to cigarette 
smoke and in turn might affect their risk of developing 
lung cancer.

Common germline variants regulate interferon‑gamma 
genes and are linked to known lung cancer risk loci
We next identified GWAS hits that were in strong link-
age disequilibrium in the UK population to SNPs that we 
found to be regulating the expression of nearby genes in 
our eQTL analyses (see the ‘Methods’ section). Among 
the 1261 GWAS lung cancer risk loci, our analysis iden-
tified 63 GWAS risk loci from 13 different studies with 
variants that significantly affect the expression of a 
nearby gene at a 5% FWER threshold (Additional file 2: 
Table S10). These 63 eQTL/GWAS variants were linked 
to the expression of 41 genes, notably including 10 genes 
implicated in the interferon-gamma signalling pathway. 
Pathway enrichment confirmed a strong enrichment for 
genes involved in response to interferon-gamma (hyper-
geometric test, Padj = 7 ×  10−13), as well as for other 
immune-related functions (e.g. innate immune response, 
antigen processing and presentation of exogenous peptide 
antigen, regulation of immune response, T cell receptor 
signalling pathway; see Additional file 2: Table S11 for the 
full list of enriched GO terms).
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Fig. 5 Genotype background influences lung cancer risk. a Combined environmental and genetic effect on the expression of the FXYD5 gene 
in nasal tissues. For each nasal sample, we present the expression level of the gene FXYD5 separately for never (pink), former (green) and current 
(blue) smokers. Samples are further stratified depending on the genotype of the subject at the 19:35660670:G:A locus (Ref/Ref: homozygous 
reference; Ref/Alt: heterozygous; Alt/Alt homozygous Alternative). The p‑value gives the significance level of an interaction effect of the smoking 
status and the genotype at 19:35660670:G:A on the expression of the FXYD5 gene (see the ‘Methods’ section). GWAS enrichment analysis: (b) 
Network representation of the 4 bronchial regulons enriched in GWAS genes. The 4 TFs are shown as squares and their target genes in the bronchial 
network as circles. The colour of the nodes indicates whether the gene/TF is a smoke injury risk gene (blue), a gene that co‑localizes with a GWAS 
hit (i.e. no threshold on eQTL significance) (red) or both (green). The level of overrepresentation for genes in the network of those TFs can be found 
in Table 1. c Activity level of each of the 4 TFs in nasal tissue, depending on the disease status of the patient (green, healthy volunteer; orange, clinic 
patient without cancer; purple, clinic patient with cancer). Stars represent the significance of a two‑sample t‑test (ns, p > 0.05; *p ≤ 0.05; **p ≤ 0.01; 
***p ≤ 0.001; ****p ≤ 0.0001)
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To better understand the mechanisms by which GWAS 
variants might increase lung cancer risk, we looked for a 
link between 41 genes linked to a GWAS risk locus and 
transcriptional regulatory network in bronchial tissue. To 
do so, we inferred a TF-target interaction network from 
bronchial expression data (see the ‘Methods’ section) 
and searched for TFs whose targets were enriched for the 
41 genes. We found 4 TFs showing a strong enrichment 
(hypergeometric test, Padj < .05; see the ‘Methods’ sec-
tion), ETV7,

SPIB, IRF1 and CIITA (Fig. 5b) all of which are known 
players in the interferon-gamma mediated signalling 
pathway [57–60]. We further confirmed the enrichment 
of GWAS genes in these 4 TFs by using a wider list of 
GWAS genes with a relaxed eQTL cut-off (nominal P < 
.05) and still found a 2- to 3-fold enrichment in all 4 TFs 
(Table  1). Analyzing the activity of those 4 TFs in the 
nasal samples, we found significant differences between 
healthy volunteers and clinic patients, in particular a 
lower activity in clinic patients, confirming the impor-
tance of these 4 TFs in the progression toward a disease 
status (Fig. 5c, and see Additional file 1: Fig. S15 for the 
activity of the same 4 TFs in the bronchial samples of 
clinic patients with and without cancer). In contrast, we 
found that the levels of activity of those 4 TFs were simi-
lar in clinic patients with and without cancer (Fig. 5c and 
Additional file  1: Fig. S15). We further tested whether 
our set of response genes was enriched within the tar-
gets of those TFs and indeed found that all 4 TFs are 
enriched for response genes (2- to 3-fold enrichment, 
nominal P < .05, Table 1).

Altogether, these findings suggest that the effects of 
inherited variation on lung cancer risk may be exerted 
in part through a different immune response follow-
ing smoke injury, creating an immunosuppressed 

environment that favours the final steps to the emergence 
of cancer.

Discussion
In this study, we demonstrate that gene expression data 
from nasal epithelium has the potential to improve lung 
cancer risk stratification within the general population of 
current and former smokers. Using healthy never smok-
ers as a baseline, we have compared smoking-dependent 
patterns of gene expression between healthy volunteers 
and clinic patients undergoing investigation for lung can-
cer. We have developed gene-expression-based classifiers 
to separate these groups, revealing striking differences 
in the long-term persistence of gene expression patterns 
after smoking cessation. Using pathway analysis, we have 
inferred the mechanisms that underlie these differences. 
We found that known lung cancer risk loci regulate the 
expression of genes that are enriched in specific pathways 
that were also deregulated in response to smoking. These 
pathways include neutrophil-mediated immunity and 
response to interferon-gamma, suggesting that immune 
dysregulation is causally involved in the aetiology of non-
small cell lung cancer. Our results are consistent with 
recent studies linking immune-related genetic variants to 
a variety of lung-related phenotypes [61]. Together, they 
support and extend the model in which genetically influ-
enced differences in immune regulation interact with 
smoking and other injuries, including air pollution [62], 
to create an airway cellular environment which is associ-
ated with impaired lung function and an increased risk of 
lung cancer.

We recognize that our clinic classifier, while academi-
cally useful, may not be rapidly applicable in the clinic 
where immediate biopsy-driven results to differentiate 
patients who have lung cancer from those who do not, 
despite presenting with similar symptoms, are required 

Table 1 Overrepresentation of different classes of genes (GWAS‑associated genes or smoking response genes as defined in the 
smoking reversibility analysis section) in the regulatory network of four TFs

Regulon size, the number of genes in the regulatory network for each TF; # hit, the number of genes, among each TF regulatory network that we annotate as a GWAS-
linked gene (in parenthesis: expected number of GWAS genes in the regulatory network of the TF); FDR, false discovery rate of the overrepresentation of GWAS hits in 
the TF regulatory network (hypergeometric test; see the ‘Methods’ section). For the GWAS genes, each test is performed for 3 sets of genes defined using a hard (P < 
1e−06; 44 genes); lenient (P < .05; 569 genes) or no threshold (3181 genes) on eQTL significance levels. For the ‘response genes’, only one test is performed with all the 
response genes

GWAS genes Response genes

Hard threshold Lenient threshold No threshold All genes

TF Regulon size # Hit FDR # Hit FDR # Hit FDR # Hit P‑value FDR

IRF1 318 10 (1.5) 2.9 1e−07 34 (12.5) 2.0 1e−07 83 (60) 0.07 37 (11.5) 5.19 1e−11 7.67 1e−08

CIITA 372 9 (1.5) 2.4e−08 26 (13) 0.08 83 (69) 1 45 (13.2) 1.31 1e−13 1.96 1e−10

SPIB 174 6 (0.5) 2.9e−04 14 (5.8) 0.6 43 (30.7) 1 14 (6.16) 0.0013 NS

ETV7 171 4 (0.8) 0.088 14 (5.4) 0.5 35 (28.7) 1 14 (6.08) 0.0011 NS
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to allow rapid progression of clinical management. How-
ever, our population classifier, which to our knowledge 
is the first gene-based classifier to address risk stratifica-
tion for lung cancer in the healthy smoker population, 
has potential utility in lung cancer screening. With an 
average cross-validated AUC (ROC) of 0.92 (Fig.  3a, c), 
the classifier identifies 95% of high-risk individuals with 
a false-positive rate of around 40%. The gene expres-
sion data add to the power of the classifier over clinical 
data alone (Fig.  3c). If confirmed, these results suggest 
potential value for including gene expression data in 
such a classifier as population-based lung cancer screen-
ing becomes widely adopted. Currently, the selection 
of individuals for lung cancer screening with low-dose 
CT scanning is performed using clinical risk prediction 
scores (such as LLPv2.0, USPSTF or PLCOm2012). How-
ever, the prevalence of lung cancer in such populations is 
only 1–3%. Pre-enrichment of the population to CT scan 
using a biomarker(s), such as nasal sampling, could be 
clinically and economically advantageous.

It is important that a classifier be validated in the pre-
cise clinical context in which it will be applied. This is the 
first cohort describing gene expression changes and a 
smoking-dependent injury response in the nasal epithe-
lium of healthy volunteers and as such, no suitable data 
set for validation is currently available. We suggest that 
our results are sufficient to support inclusion in a con-
firmatory study, including both rederivation and valida-
tion, using the lung cancer screening initiatives now in 
progress in a number of countries. In such studies, the 
contribution of gene expression data should be assessed 
alongside other potential predictors.

Support for the validity of our classifiers and thus for 
these further studies comes from two sources. First, our 
cross-comparisons with the AEGIS dataset (16) which 
showed that our classifiers have the power to discrimi-
nate patients with and without cancer within that dataset 
(Fig. 3e), even though the cohort was microarray-based, 
and the samples derived from a different clinical context. 
Second, we show (Fig.  4) that the genes that contribute 
most to the classifiers belong to pathways related in par-
ticular to inflammatory and immune function, which are 
in turn linked to genetic variation at lung cancer GWAS 
loci. This is evidence for a causal role of these genes in 
lung cancer risk. Consistent with this, our classifiers are 
equally efficient at identifying individuals with early- 
or late-stage disease (Additional file  1: Fig. S7b), and in 
predicting squamous or adenocarcinoma (Additional 
file 1: Fig. S7a). The classifiers are effective in both cur-
rent and former smokers, and the clinic patients (cancer 
and benign) continue to show an elevated risk score 10 
years and more after stopping smoking (Additional file 1: 
Fig. S8), consistent with the known persisting cancer 

risk in former smokers. This may allow identification of 
those former smokers most at risk, and in time, open up 
approaches to lowering that risk based on the mecha-
nisms involved in that individual.

Using a geneset metascore analysis, we identified 
immune-related pathways, in particular response to 
interferon-gamma and antigen processing and presen-
tation, as the pathways that contribute most to our lung 
cancer risk scores (Fig.  4b) in both current and former 
smokers. IFN-γ is a molecule that is involved in anti-
tumour immune response by activating cellular immu-
nity and exhibiting anti-proliferative, pro-apoptotic and 
anti-angiogenic properties within the tumour microen-
vironment [63]. An immunosuppressive state favoured 
by the decreased expression of genes involved in IFN-γ 
signalling and antigen presentation was observed both 
in lung cancer and in bronchial premalignant lesions 
and suggested to promote the progression to invasive 
disease [18, 64]. We observe these alterations in healthy-
appearing nasal tissue affected by the smoking-associated 
field of injury, suggesting that this immunosuppressive, 
cancer-promoting, state is present at even earlier steps of 
carcinogenesis.

Our analysis based on the known NSCLC GWAS 
risk loci provides the critical causal links between 
risk variants and the activity of four transcription fac-
tors known to be active in interferon gamma signalling 
(CIITA, ETV7, IRF1, SPIB). We also identified 10 genes 
whose response to smoke differed between healthy and 
clinic subjects and whose expression was regulated by a 
gene-by-environment interaction between the genetic 
background of subjects and their smoking behaviour 
(Fig.  5a, Additional file  1: Fig. S14). While these results 
demonstrate how genetic background can affect indi-
vidual response to smoke injury, and so lung cancer risk, 
larger cohorts will be needed to explore systematically 
the interaction between smoking behaviour and individ-
ual genetic background genome-wide. This may in time 
uncover differences in mechanisms of risk between indi-
viduals and allow risk-lowering interventions to be tai-
lored appropriately.

Conclusions
Our results extend recent reports [17, 18, 65] of the role 
of altered immune responses in lung cancer risk. These 
results are consistent with a description of inherited 
genetic variation in immune and inflammatory path-
ways resulting in impaired pulmonary function, as seen 
in COPD, and related lung cancer risk [61]. They sug-
gest a model for smoking-related lung cancer in which 
genetically determined differences in the immune and 
inflammatory responses to cigarette smoke and other 
environmental exposures modulate the bronchial cellular 
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environment and increase the probability of progression 
towards cancer. The altered bronchial cellular environ-
ment may itself result in respiratory symptoms whether 
cancer is present or not, which accounts for the incom-
plete separation of cancer from benign in the clinic 
group. Importantly, the persisting risk in former smokers 
is driven, at least in part, by the persistence of the altered 
cellular environment. This might, in the future, provide 
opportunities for risk-lowering intervention.
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