
Yazdanpanah et al. Genome Medicine           (2024) 16:69  
https://doi.org/10.1186/s13073-024-01322-7

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Genome Medicine

Metabolome-wide Mendelian 
randomization for age at menarche and age 
at natural menopause
Mojgan Yazdanpanah1, Nahid Yazdanpanah1, Isabel Gamache1, Ken Ong2, John R. B. Perry2,3 and 
Despoina Manousaki1,4*   

Abstract 

Background The role of metabolism in the variation of age at menarche (AAM) and age at natural menopause 
(ANM) in the female population is not entirely known. We aimed to investigate the causal role of circulating metabo-
lites in AAM and ANM using Mendelian randomization (MR).

Methods We combined MR with genetic colocalization to investigate potential causal associations between 658 
metabolites and AAM and between 684 metabolites and ANM. We extracted genetic instruments for our exposures 
from four genome-wide association studies (GWAS) on circulating metabolites and queried the effects of these vari-
ants on the outcomes in two large GWAS from the ReproGen consortium. Additionally, we assessed the mediating 
role of the body mass index (BMI) in these associations, identified metabolic pathways implicated in AAM and ANM, 
and sought validation for selected metabolites in the Avon Longitudinal Study of Parents and Children (ALSPAC).

Results Our analysis identified 10 candidate metabolites for AAM, but none of them colocalized with AAM. For ANM, 
76 metabolites were prioritized (FDR-adjusted MR P-value ≤ 0.05), with 17 colocalizing, primarily in the glycerophos-
phocholines class, including the omega-3 fatty acid and phosphatidylcholine (PC) categories. Pathway analyses 
and validation in ALSPAC mothers also highlighted the role of omega and polyunsaturated fatty acids levels in delay-
ing age at menopause.

Conclusions Our study suggests that metabolites from the glycerophosphocholine and fatty acid families play 
a causal role in the timing of both menarche and menopause. This underscores the significance of specific metabolic 
pathways in the biology of female reproductive longevity.
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Background
Female reproductive longevity, defined by the timing 
of menarche and menopause, exhibits significant vari-
ability driven by genetics, lifestyle, and environmental 
exposures [1, 2], but the precise biological mechanisms 
underlying variations in reproductive aging are still not 
fully understood. However, the timing of both age at 
menarche (AAM) and age at natural menopause (ANM) 
appears to have significant effects on women’s health [3]. 
For example, the early onset of puberty has been linked 
to high risk-taking behaviors, reduced educational attain-
ment [3], adult obesity, type 2 diabetes [4], cardiovascu-
lar diseases [5], susceptibility to cancers, and increased 
mortality rates [6]. Interestingly, women are more likely 
to experience an early natural menopause following 
either early or late menarche [7]. Therefore, identify-
ing biomarkers that enhance our comprehension of the 
physiology of AAM and ANM variations, as well as their 
interconnectedness, is important. Moreover, these mol-
ecules may potentially serve as pharmacological targets 
to alter the duration of a woman’s reproductive lifespan.

Observational studies using large-scale metabolomics 
data have led to the discovery of a number of candidate 
biomarkers for various traits. Nevertheless, conducting 
case–control studies that simultaneously measure hun-
dreds of circulating metabolites is cost-prohibitive but 
also susceptible to confounding and reverse causation, 
which restricts their ability to identify causal biomarkers. 
In recent years, large genome-wide association studies 
(GWAS) have identified genetic variants associated with 
the levels of numerous metabolites. Furthermore, large-
scale GWAS datasets have become available for AAM 
and ANM, significantly advancing our knowledge of the 
genetic factors encompassing these traits. The availabil-
ity of such GWAS data offers a valuable opportunity to 
investigate potential causal associations between circu-
lating metabolites and AAM and ANM using Mendelian 
randomization (MR). MR is a well-established method in 
genetic epidemiology that explores whether a modifiable 
exposure is causally linked to a particular outcome [8]. 
Based on the use of genetic variants, randomly allocated 
at conception, to infer levels of these exposures, MR 
helps eliminate bias from confounding or reverse causa-
tion [9]. Two-sample MR uses data from separate GWAS 
for the exposure and outcome, enhancing statistical 
power for causal inference in complex health outcomes 
measured in large GWAS [10].

In this study, we conducted two-sample MR to inves-
tigate potential causal associations between hundreds of 
previously measured circulating metabolites and AAM 
or ANM using summary statistics from large GWAS [11, 
12]. We further explored the potential effects of body 
mass index (BMI) on the MR associations between the 

candidate metabolites and AAM and ANM. Colocaliza-
tion analyses were conducted to differentiate between 
causal associations and genetic correlations due to vari-
ants in linkage disequilibrium (LD). Pathway and enrich-
ment analyses were used to uncover potential biological 
processes influencing AAM and ANM. Finally, we sought 
validation for the causal associations with AAM and age 
at menopause for selected candidate metabolites directly 
measured in participants in the Avon Longitudinal Study 
of Parents and Children (ALSPAC).

Methods
Mendelian randomization assumptions
Univariable two-sample MR studies were performed to 
explore potential causal relationships between circulat-
ing metabolites and AAM and ANM. MR relies on three 
core assumptions: (1) The genetic instrument (IV) must 
have a strong association with the exposure (relevance 
assumption); (2) the genetic instrument should not be 
linked to confounding factors that connect the exposure 
to outcome (independence assumption); (3) the genetic 
instrument should affect the outcome only through the 
exposure (exclusion restriction assumption). Violation of 
this last assumption is known as horizontal pleiotropy.

Discovery datasets
For our MR analysis, we collected GWAS summary 
statistics for circulating metabolites on Europeans to 
use as sources for our exposures (Kettunen et  al. [13], 
N = 24,925; Lotta et al. [14], N = 86,507; Long et al. [15], 
N = 1960; Shin et  al. [16], N = 7824). The samples of the 
GWAS by Long et  al. were derived from the TwinsUK 
cohort, while Shin et al. performed a GWAS meta-anal-
ysis of the TwinsUK and KORA cohorts. The GWAS by 
Lotta et al. was a meta-analysis of four cohorts (Fenland 
cohort, EPIC-Norfolk, INTERVAL) while Kettunen et al. 
meta-analyzed 14 GWAS including two GWAS from 
subsets of the FINRISK97 cohort. The methods used for 
metabolite measurements were liquid chromatography-
mass spectrometry (LC–MS) (Long et  al., Lotta et  al., 
Shin et  al.), and/or gas chromatography-mass spec-
trometry (GS-MS) (Shin et al.), and/or nuclear magnetic 
resonance spectrometry (NMR) (Kettunen et  al. and 
Lotta et al.). All GWAS adjusted their metabolite meas-
urements for age and sex of the participants, and addi-
tional covariates appear in Additional file  1: Table  S1. 
For the outcomes, we utilized summary statistics from 
the ReproGen consortium GWAS by Day et  al. (Nto-

tal = 329,345, combining 40 studies with 23andMe and 
UK Biobank) [11] for AAM and from the largest-scale 
GWAS meta-analysis by Ruth et al. of four studies (1000 
Genomes imputed studies, Breast Cancer Association 
Consortium, and UK Biobank, Ntotal = 201,323) [12] for 
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ANM. Units of measurement for the exposures (metabo-
lite levels) were standard deviations (SD), while the out-
comes were expressed in years in the respective GWAS. 
Additional file 1: Table S1 provides additional details on 
each GWAS and Fig. 1 illustrates the overall study design.

Instrumental variable selection
In order to satisfy the first MR assumption, we chose as 
IVs SNPs strongly associated with metabolite levels in the 
exposure GWAS (P ≤ 5 ×  10−8). Among these, we selected 
independent SNPs (linkage disequilibrium (LD) 
r2 < 0.001) within a 500-kb region using European ances-
try reference data from the 1000 Genomes Project [17]. 
For SNPs that were not available in the outcome GWAS, 
we identified proxy SNPs in high LD (r2 > 0.8) using the 
SNIPA website (https:// snipa. helmh oltz- muenc hen. de/ 
snipa3/). To further assess the first MR assumption, we 
filtered out metabolites for which the global F-statistic of 
the SNP-IVs was below 10, using the following formula: 
F =

R2
k

[1−R2]
[n−k−1]

 , where n is the size of the cohort, k is the 

number of SNP-IVs, and R2 is the proportion of the vari-
ance of each exposure explained by the SNP-IVs [18] 
(according to the formula R2 ≈ 2β2f × 1− f  where β 

and f denote the effect estimate and the effect allele fre-
quency of the allele [19]). Summary statistics of the SNP-
IVs used in our MR analysis can be found in Additional 
file 1: Table S2.

Mendelian randomization analysis
We performed MR studies of the causal relationships 
between the exposures (metabolites) and outcomes 
(AAM and ANM) using the TwoSampleMR R package 
(v.0.5.5) [20]. We computed the MR Wald ratios for each 
genetic instrument of the exposures with the outcome, 
and when multiple SNP-IVs were available for a single 
metabolite, we meta-analyzed them using the inverse 
variance weighted (IVW) method [10]. Causal effects 
with type I error rate of less than 5% after correction for 
multiple testing using a false discovery rate (FDR) were 
considered significant.

Sensitivity analysis
To address potential violations of the third MR assump-
tion, we conducted several sensitivity analyses to inves-
tigate the possibility of bias introduced by genetic 
instruments’ heterogeneity and pleiotropy. These analy-
ses were performed on results that met the significance 

Fig. 1 Flow chart of study design. Representation of the analytical steps and of the main results for both studied outcomes. Orange boxes refer 
to AAM, while green boxes refer to ANM

https://snipa.helmholtz-muenchen.de/snipa3/
https://snipa.helmholtz-muenchen.de/snipa3/
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threshold and required the availability of multiple SNP-
IVs. To assess pleiotropy, we employed both MR-Egger 
regression [21] and MR-PRESSO (Pleiotropy RESidual 
Sum and Outlier) [22] methods. MR-Egger, unlike the 
IVW method, does not constrain its intercept to zero, 
allowing for the detection of directional pleiotropy when 
the intercept significantly deviates from 0 (p-value < 0.05). 
MR-Egger requires that the association of each variant 
with the exposure is not correlated with its pleiotropic 
effect, a condition known as the InSIDE assumption 
[21]. This is necessary to weaken the third assumption. 
The MR-PRESSO global test was also utilized to iden-
tify potential horizontal pleiotropy by estimating the 
presence of outlier SNP-IVs. As part of our sensitivity 
analyses, we applied Steiger filtering [23] to evaluate the 
directionality of the MR associations. This step ensured 
that the SNP-IVs were more strongly associated with the 
exposure (in this case, the metabolites) than with the 
outcomes (AAM and ANM). To assess heterogeneity, we 
implemented the Cochran Q heterogeneity test in both 
the IVW and MR-Egger analyses [24].

Multivariable MR analyses
To test the second MR assumption (“independence” 
assumption), we tested whether the association between 
the candidate metabolites and AAM or ANM, as deter-
mined by our MR analysis, could be influenced by body 
mass index (BMI), a possible confounder or media-
tor. Indeed, BMI is known to influence both AAM and 
ANM [2, 25–27], and it also has an impact on certain 
metabolites [28]. In order to take this into account, we 
performed multivariable MR (MVMR) analysis. MVMR 
requires a larger number of genetic instruments for the 
exposures than the number of the exposures being tested 
in the model, which in this case are two: a metabolite and 
BMI. For these MVMR analyses, we used data from large 
available GWAS for childhood BMI (n = 39,620) [29] and 
adult BMI (n =  ~ 700,000) [30].

Colocalization analyses
MR enables the detection of associations between two 
phenotypes; however, it is possible that the causal SNP 
for both phenotypes may not be the same. To explore 
this possibility, we performed a colocalization analysis 
to examine the potential influence of LD between the 
SNP-IVs for metabolites and the causal SNPs for AAM or 
ANM [31] on our causal MR associations. This analysis 
was performed using the coloc package in R [32], which 
computes posterior probabilities for four hypotheses: H0 
(no association of the genomic locus with either trait), H1 
(association with AAM or ANM but not with the metab-
olite level), H2 (association with the metabolite level but 
not with AAM or ANM), H3 (association with AAM 

or ANM and the metabolite level through two differ-
ent causal SNPs in LD), and H4 (association with AAM 
or ANM and the metabolite level via one shared causal 
SNP). As parameters for prior probability, we used the 
default parameters, i.e., p1 (prior probability of the expo-
sure having a causal variant) = 1.0 ×  10−4, p2 (prior proba-
bility of the outcome having a causal variant) = 1.0 ×  10−4, 
and p12 (prior probability of the exposure and the out-
come sharing the same causal variant) = 1.0 ×  10−5. To 
estimate the posterior probability H4 for each genomic 
locus, which indicates the presence of a single causal var-
iant for both the metabolites and AAM or ANM, we ana-
lyzed all SNPs with a minor allele frequency (MAF) > 0.01 
within 1  MB of each metabolite SNP-IV. Colocalization 
analyses were performed for metabolites that showed 
evidence of MR association with AAM or ANM, using 
the available full summary-level results from the GWAS 
by Lotta et  al. [14], Shin et  al. [16], and Kettunen et  al. 
[13] (full summary-level results from Long et  al. are 
not available). If the posterior probabilities of H4 were 
greater than 0.8 for at least one of the SNP-IV associated 
with a candidate metabolite, this metabolite was consid-
ered colocalized with AAM or ANM.

Bidirectional MR
To test the directionality of our causal MR associations, 
in addition to the Steiger filtering, we performed reverse 
two-sample MR analyses, where AAM or ANM were the 
exposures and the colocalized metabolites were the out-
comes. SNP-IVs for the two exposures (AAM or ANM) 
were extracted from the same ReproGen consortium 
GWAS and were strongly associated with the exposures 
at a GWAS p-value ≤ 5 ×  10−8. The IVW method was 
used to evaluate the causal reverse associations, and we 
employed MR-Egger and two additional MR methods 
robust to pleiotropy, the weighted median [33], which 
assumes that at least half of the SNP-IVs are not pleio-
tropic, and the weighted mode [34], which assumes that 
the most common causal effect is consistent with the true 
causal effect.

Replication of our MR findings
We sought to replicate the findings for metabolites dis-
playing significant associations in our main MR analysis 
by extracting IVs for these candidate metabolites from 
an independent cohort by Suhre et  al. [35]. Since there 
was no available independent GWAS with available sum-
mary statistics for the outcome (ANM), we used the same 
GWAS meta-analysis by Ruth et  al. [12]. We identified 
significant IVs associated with the metabolites in the 
Suhre et  al. study and searched for proxies for missing 
SNPs in the ANM GWAS using the LDproxy function 
of LDlinkR (r2 > 0.8) [36]. Similar to our discovery MR, 
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replication MR analyses were performed using the Two-
SampleMR package [20].

Pathway and metabolite set enrichment analyses
To perform pathway and enrichment analyses based on 
the prioritized metabolites from our main MR and colo-
calization analyses, we first identified a single identifier 
per metabolite in the following databases: KEGG Com-
pound [37], PubChem [38], BioCyc/HumanCyc [39], and 
Chemical Entities of Biological Interest (ChEBI) [40]. 
These databases provide the most frequently used and 
updated Human Metabolome Database (HMDB) identi-
fiers in metabolomics [41, 42]. Over-representation anal-
ysis (ORA) was implemented using the hypergeometric 
test to evaluate whether a particular metabolite set is 
represented more than expected by chance within the 
given compound list. Statistical significance was deter-
mined when FDR-corrected P-values were below 0.05. To 
perform ORA, we initially provided a list of compound 
names, which was then consolidated using conventional 
feature selection techniques to explore biologically signif-
icant patterns. This involved identifying whether a spe-
cific metabolite set was more prominently represented 
in the given compound list than would be expected 
by chance. After accounting for multiple testing, one-
tailed P-values were calculated. We then used the Gene 
Multiple Association Network Integration Algorithm 
(GeneMANIA) tool (http:// www. genem ania. org/) and 
Functional Mapping and Annotation of genetic asso-
ciations (FUMA), a web-based tool (https:// fuma. ctglab. 
nl), to construct a gene network to better characterize 
the functions of the main class of the MR-prioritized 
metabolites for AAM and ANM. Pathway analyses were 
performed using MetaboAnalyst [43], using “Enrich-
ment Analysis” and “Joint-Pathway Analysis,” with the 
latter using the integration method of “Combine p values 
(pathway-level).” For the pathway and enrichment analy-
ses, only metabolites which colocalized (H4 > 80%) with 
either AAM or ANM and who had identified metabolites 
(HMDB) were selected. These in silico follow-up analy-
ses aimed to identify biologically meaningful pathways to 
which our candidate metabolites clustered, using quanti-
tative metabolomic data.

Validation of selected candidate metabolites in the Avon 
Longitudinal Study of Parents and Children (ALSPAC) study
To validate our findings for selected candidate metabo-
lites associated with AAM and ANM, we tested the asso-
ciation of directly measured levels of these metabolites 
with the two traits in ALSPAC. The ALSPAC is a popu-
lation-based birth cohort study, which enrolled 14,541 
pregnant women resident in Avon, UK, with expected 
delivery dates between 1 April 1991 and 31 December 

1992 [44, 45]. Of the initial pregnancies, there was a 
total of 13,988 children who were alive at 1 year of age. 
With additional phases of recruitment, the total sample 
size for analyses using any data collected after the age of 
seven is 15,447 pregnancies, resulting in 14,901 children 
being alive at 1 year of age. Overall, 8932 European chil-
dren, among which n = 3919 girls, and their parents were 
closely monitored at regular intervals for 28 years using 
questionnaires and clinic-based assessments with full 
study details published elsewhere [46, 47].

Age at onset of menarche was assessed based on a 
derived variable, combining repeated reports at different 
visits from age 8 years to age 17 years [48]. Age at meno-
pause was assessed using questionnaires from 14,541 
mothers in a recent follow-up visit in 2020 and was self-
reported in a questionary (Variable number: C3b). Only 
mothers who had their menopause were kept for analy-
sis [49]. Information was collected at two visits (Focus 
on Mothers 1 and 2 or FOM1 and FOM2). BMI meas-
urements were calculated based on height and weight 
measurements of girls at clinical visits at ages 7, 8, and 
11  years based on the formula weight (kg)/height (cm)2 
and were standardized to a mean of 0 and an SD of 1. 
Study data were collected and managed using REDCap 
electronic data capture tools hosted at the University of 
Bristol [50]. REDCap (Research Electronic Data Capture) 
is a secure, web-based software platform designed to 
support data capture for research studies. Missing BMI 
z-scores at age 8 years were imputed based on measure-
ments at age 7 or 9 years. The maternal BMI was read-
ily available as a derived variable, based on 2 clinic visits 
(FOM1 and FOM2).

Please note that the study website contains details of all 
the data that is available through a fully searchable data 
dictionary and variable search tool: http:// www. brist ol. 
ac. uk/ alspac/ resea rchers/ our- data/

Metabolite measurements in ALSPAC
Nonfasted peripheral blood was collected from ALSPAC 
participants (children and mothers) at four different fol-
low-up visits, at ages 7 (F7 visit), 15 (TF3 visit), 16 (TF4 
visit), and 24 years (F24 visit) for child participants. Sam-
ples were processed within 4 h and stored at − 80 °C [51]. 
Fasting and post-prandial blood samples were also col-
lected for a subset of ALSPAC participants at the Before 
Breakfast Study (BBS) at age 8 years. In mothers, metabo-
lite levels were measured at a fasting state either at the 
FOM1 visit (average age 48 years, range 34–64 years) or 
the FOM2 visit (average age 51 years, range 39–66 years). 
Metabolomic profiling was done using the Nightingale 
NMR metabolomics platform (Helsinki, Finland), and 
228 metabolic traits (and their ratios) were quantified in 
EDTA-plasma.

http://www.genemania.org/
https://fuma.ctglab.nl
https://fuma.ctglab.nl
http://www.bristol.ac.uk/alspac/researchers/our-data/
http://www.bristol.ac.uk/alspac/researchers/our-data/
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We assessed the associations between metabolites and 
age at menarche or menopause using linear regression. 
Subsequently, to assess the influence of BMI on these 
associations, we included childhood BMI at age 8 years as 
a covariate for AAM and mothers’ adult BMI at FOM1 
or FOM2 as a covariate for age at menopause. We also 
conducted these models without including mothers who 
experienced early menopause, defined as before the age 
of 45 [49].

Results
Causal relationships between metabolites and AAM 
or ANM
To evaluate the potential causal relationships between 
metabolites and AAM and ANM, we initially conducted 
univariate MR analyses, as outlined in the study design 
flowchart (Fig.  1). In total, we identified SNP-IVs for 
658 metabolites for AAM and 684 for ANM (Additional 
file 1: Table S3).

Our MR findings indicate causal relationships between 
ten circulating metabolites and AAM and 76 metabo-
lites for ANM (at an FDR P-value ≤ 0.05) (Fig. 2). Among 
the identified metabolites for AAM, five metabolites 
belong to the glycerophosphocholine main class, two 
to the amino acids/peptides, and one to alcohols/poly-
ols. All these metabolites, except X-11470, conferred an 
increase in AAM (Fig. 2A, Additional file 1: Table S3A), 
with effects ranging from 0.05 (mannose) to 0.25 (PC aa 
C32:3) years per 1 SD change in metabolite.

Contrarily, for ANM, metabolites within the same main 
class exhibited effects in different directions. The most 
prevalent main class was also the glycerophosphocho-
lines, comprising of 50 of the 76 metabolites, followed 
by fatty acids with nine metabolites (Fig. 2B, Additional 
file 1: Table S3B). For ANM, we observed several metabo-
lites, mostly phosphatidylcholine (PC) with absolute MR 
beta coefficients ranging between 0.05 (docosapentaeno-
ate [n3 DPA; 22:5n3]) and 3.13 (mannose) years per SD 
increase in the metabolite level.

As statistical tests to evaluate pleiotropy, we performed 
MR-Egger, MR-PRESSO, and Cochran’s Q statistic. These 
tests did not suggest the presence of pleiotropy in the 
detected associations for metabolites with more than one 
SNP-IV (Additional file 1: Tables S4Ai and S4Bi). Addi-
tionally, the results of Steiger filtering supported the pre-
sumed direction of the causal association, confirming 
that the candidate metabolites are likely responsible for 
the changes in AAM and ANM, rather than the inverse 
(Additional file 1: Tables S4Aii and S4Bii).

Among the metabolites that met the significance 
threshold in our MR analyses, seven were common to 
both AAM and ANM, grouped into four major metabolic 
clusters: glycerophosphocholines [PC aa C32:3, PC aa 

C34:1, LysoPC a C14:0], amino acids and peptides [iso-
leucine, threonine], and monosaccharides [mannoses]. 
With the exception of mannose for ANM, increasing lev-
els of all the other metabolites were consistently associ-
ated with later AAM and later ANM in our MR analyses 
(Fig. 3 and Additional file 1: Table S5).

Assessing the influence of BMI on the causal MR 
associations
To assess the influence of BMI on the causal relation-
ships of the candidate metabolites with AAM or ANM, 
we conducted MVMR by including either childhood or 
adult BMI as second exposure in the MR model. These 
analyses were restricted to MR-prioritized metabolites 
with three or more SNP-IVs, resulting in one metabo-
lite for AAM and nine for ANM. Among these metabo-
lites, only lysoPC a C20:4 (P-value = 0.015), PC aa C36:4 
(P-value = 0.047), PC aa C40:6 (P-value = 0.031), and PC 
P-40:5 or PC O-40:6 (P-value = 0.025) retained a sugges-
tive (P-value < 0.05) IVW MR estimate for causal associa-
tion for ANM after adjusting for adult BMI (Additional 
file  1: Table  S6). The remaining causal associations of 
metabolites with AAM or ANM disappeared when child 
or adult BMI was taken into account, suggesting that 
BMI could potentially mediate or act as a confounder in 
these associations (Additional file 1: Table S6).

Colocalization
In our colocalization analyses, we considered that the 
MR-prioritized metabolites colocalized with AAM or 
ANM if the posterior probabilities of the candidate 
metabolites and outcome sharing a single causal SNP 
(H4) for any of the SNP-IVs of each metabolite were 
greater than 0.8. We found evidence of colocalization 
with ANM for 17 MR-prioritized metabolites, mainly 
from the glycerophosphocholines class, but none for 
AAM (Additional file 1: Table S7). The genes encompass-
ing the SNP-IVs of the 17 colocalized metabolites were 
FADS1, FADS2, FEN1, MYRF, and TMEM258, suggest-
ing the existence of shared pathways among the prior-
itized metabolites.

Bidirectional MR analysis
To further validate the directionality of the causal MR 
associations, we conducted reverse MR, which did not 
provide evidence for a causal effect of ANM on these 
metabolites (Additional file 1: Table S8), confirming that 
the metabolites confer the changes in AAM or ANM, and 
not the opposite.

Replication MR analysis
We performed a replication MR analysis utilizing an 
independent metabolite cohort as a source of IVs for 
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Fig. 2 MR-prioritized metabolites for AAM (A) or ANM (B). Estimates (betas) express changes in years in AAM and ANM per SD increase 
in the circulating level of each metabolite. The results are grouped based on the main class of the metabolites
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the MR-prioritized metabolites for ANM (Additional 
file 1: Table S9). The results of the main MR association 
of omega-3 fatty acids with ANM replicated, with an 
increase of omega-3 fatty acids levels delaying the onset 
of ANM, and estimates consistently aligning across vari-
ous MR methods.

Metabolic pathway and enrichment analysis
To uncover the biological mechanisms linking the 17 
MR-identified and colocalized metabolites with ANM, 
we conducted a follow-up pathway analysis. Among 
these metabolites, we were able to identify 15 with 
Human Metabolome Database (HMDB) identifiers 
[52], which we used in our metabolite-based pathway 
and enrichment analysis (Additional file  1: Table  S10). 
Using the KEGG database, we identified a significant 
association between the glycerophosphocholines clus-
ter and ANM (FDR P-value = 1.03 ×  10−9) (Additional 
file  1: Table  S11A). The pathways underlying this asso-
ciation encompass the metabolism of glycerophospho-
lipids (FDR P-value = 2.13 ×  10−3), alpha-linolenic acid 
(FDR P-value = 2.13 ×  10−3), and linoleic acid (FDR 
P-value = 8.74 ×  10−3) (Additional file 1: Table S11B).

The five genes where colocalization between metabo-
lites and ANM occurred shared common networks 
and functions in our GeneMANIA and FUMA analy-
ses (Fig.  4, Additional file  1: Table  S12). Specifically, 

in our FUMA analysis, both FADS1 and FADS2 were 
linked to the metabolism of linoleic acid (adjusted 
P-value = 9.97 ×  10−4), alpha-linolenic omega-3, and lin-
oleic omega-6 acids (adjusted P-value = 0.001), and to 
the biosynthesis of unsaturated fatty acids (adjusted 
P-value = 0.003) (Additional file  1: Table  S12C). This 
underlines the importance of the fatty acid pathway in 
the timing of ANM.

Validation of selected candidate metabolites for AAM 
and ANM in ALSPAC
As a further step to validate the MR-prioritized metab-
olites for AAM and ANM, we conducted an observa-
tional study in an independent cohort, ALSPAC. In this 
cohort, the mean age at menarche was 12.21 ± 1.03 years 
(N = 2456 girls across four visits), and the mean age at 
menopause was 49.03 ± 4.18  years (N = 1626 post-men-
opausal mothers across the FOM1 and FOM2 visits). 
Regarding AAM, only two out of the 10 MR-prioritized 
metabolites were measured in this cohort. However, 
these two metabolites did not exhibit any association 
with AAM, with or without adjustment for childhood 
BMI (Additional file 1: Table S13).

Nine out of the 17 colocalized metabolites for 
ANM were measured in ALSPAC. Six metabolites 
were found to be associated (P-value < 0.05) with age 
at menopause in this cohort, all from the fatty acids 

Fig. 3 Shared MR-prioritized metabolites between AAM and ANM. Comparison of the effects of shared metabolites between AAM and ANM 
on the two outcomes. Estimates (betas) express changes in years in AAM and ANM per SD increase in the circulating level of each metabolite. The 
results are grouped based on the main class of the metabolites
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class. Notably, omega-3 fatty acids displayed the larg-
est effect, with a substantial delay in age at menopause 
(βFOM2 = 4.12 ± 1.03  years per mmol/l increase in the 
metabolite level, P-value = 6.46 ×  10−5, N = 863). With the 
exception of monounsaturated fatty acids, all remaining 
metabolites were consistently associated with a delay in 
age at menopause, with estimated effects ranging from 
0.16 to 4.12 years per unit increase (mmol/l or percent) 
(Additional file  1: Table  S13). After adjusting for BMI, 
the results remained largely consistent with those from 
the unadjusted model, except for monounsaturated fatty 
acids. This discrepancy suggests that BMI may have 
mediating or confounding effects on the relationship of 
this metabolite with age at menopause. Furthermore, 
the majority of our results remained consistent even 
after excluding mothers with early menopause, defined 
as an age of menopause < 45 years [49] (Additional file 1: 
Table  S13). Overall, this analysis supports our finding 
that fatty acids, mostly those associated with omega-3 
metabolism, appear to be important in the timing of age 
at menopause.

Discussion
In this study, we employed Mendelian randomization 
(MR) and colocalization analyses to conduct a thor-
ough investigation into the causal relationships between 
numerous circulating metabolites and the timing of 
menarche and menopause. We further validated our 
findings through an observational study in an independ-
ent cohort. Our results offer insights into the impact of 
metabolism, mostly that of the glycerophosphocholines 
and fatty acids, on female reproductive longevity, indicat-
ing that genetic predisposition to altered levels of circu-
lating blood metabolites can be a risk factor for variations 
in AAM or ANM.

Our analysis highlights the role of many metabolites 
associated with the choline fraction, clustering within 
the phosphatidylcholine (PC) subclass, and of fatty acids, 
both essential nutriments from the diet [53], in the tim-
ing of age at menarche and menopause. Metabolism of 
both phosphatidylcholines and fatty acids involves the 
enzyme phosphatidylethanolamine N-methyltransferase 
(PEMT) [54, 55], which is influenced by various factors, 

Fig. 4 Pathway analysis of colocalized metabolites with ANM using GeneMANIA. Each circle represents a gene and its diverse interactions 
across the network. Pie-chart for each gene represents specific functions associated with lipid metabolism
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including sex hormone levels such as estrogens [56], sug-
gesting links with the female fertility.

Phosphatidylcholine levels are also altered in physio-
logical states, such as pregnancy and menopause [56, 57], 
and pathological states of estrogen abundance or defi-
ciency. More precisely, postmenopausal women are more 
susceptible to choline deficiency due to the decline in 
their estrogen levels, while pregnant women showed pro-
tection against its deficiency [56, 57]. Furthermore, this 
metabolite subclass has been found to play a role in the 
regulation of menstrual cycle [58] and has shown protec-
tive effects on follicular development and oocyte matu-
ration against an exogenous endocrine disruptor [59]. In 
our MR analysis, the majority of the metabolites associ-
ated with AAM or ANM and shared by both, belong to 
this subclass, with the majority conferring a delay of both 
outcomes. This underscores the significance of this class 
in the female reproductive system. Our results for AAM 
align with previous MR findings [60], while for ANM, 
further studies are needed to investigate the potential 
therapeutic effects of choline, or phosphocholine, supple-
mentation on the timing of menopause.

During menopause, there is a shift in unsaturated fatty 
acid metabolism, and hormonal replacement therapy 
has been shown to restore different fatty acid levels in 
postmenopausal women [61] and in animal models [62]. 
Additionally, fatty acid levels have been found to impact 
menopausal symptoms [63]. Previous research supports 
the administration of omega-3 fatty acids to increase 
ovarian reserve [64], by potentially delaying the onset of 
menopause. Our main and replication MR analyses, path-
way analysis, and observational study in ALSPAC con-
verge to a delaying effect of omega-3, polyunsaturated, 
and monounsaturated fatty acids, on age at menopause, 
suggesting a protective role of polyunsaturated and 
omega-3 fatty acid supplementation in women at risk of 
premature menopause. A potential mechanism underly-
ing these associations could be linked to the anti-inflam-
matory properties of omega-3 fatty acids, by reducing the 
production of proinflammatory cytokines [65]. Indeed, 
menopausal transition is linked to an increase in mark-
ers of inflammation, particularly in women with early 
menopause, which may suggest a detrimental effect of 
inflammation on ovarian longevity [66–68]. Thus, a life-
time exposure to higher levels of fatty acids with anti-
inflammatory effects could potentially delay the onset of 
menopause, a hypothesis that merits to be tested in clini-
cal trials.

The involvement of the FADS1 and FADS2 genes 
in ANM is an intriguing finding. These genes encode 
enzymes responsible for catalyzing the omega-3 and 
omega-6 lipid biosynthesis pathways [69]. The FADS 
locus, which is clustered on chromosome 11, exerts 

pleiotropic effects, mostly on lipid-associated metabolic 
traits, but recent GWAS evidence has linked it with 
female fertility [70]. Additionally, this locus has been tar-
geted by natural selection multiple times in human his-
tory [53, 69, 71], including in populations with diets rich 
in meat and fish, which are significant sources of omega 
fatty acids and choline [53]. The selective pressure found 
in the European population was suggested to be caused 
by the diet transition across history [53, 70]. However, it 
can also be possible that the selective pressure could also 
involve female fertility, potentially by delaying ANM and 
as such increasing the female reproductive longevity.

Overall, our findings provide new evidence on the role 
of lipid metabolism in female reproductive longevity, but 
the precise biological mechanisms behind our findings 
remain unclear and further studies need to be done to 
understand these associations.

Our study has multiple strengths. First, we used MR, 
a study design allowing for causal inference, by limiting 
confounding, reverse causation, and other biases com-
mon in observational epidemiology. The hypothesis-free 
design of our study offers a thorough screen for causal 
relationships between metabolites evaluated by non-tar-
geted metabolomics and AAM or ANM. We conducted 
a number of sensitivity analyses and a replication MR 
study using instruments from an independent metabolite 
GWAS, which largely supported the main findings. Our 
colocalization analyses followed by pathway and enrich-
ment studies provide further insight into the biological 
mechanisms underlying variations in ANM. Finally, our 
validation study, based on direct measurements of candi-
date metabolites in a cohort of women accurately report-
ing their AAM and ANM, further supports the role of 
selected MR-prioritized metabolites in these traits.

There are some considerable limitations in our study. 
Other than BMI, many factors influence the timing of 
menarche and menopause [1, 2], among which lifestyle 
traits such as nutrition and physical activity [72–77], 
which could potentially confound the identified MR 
associations. However, information about lifestyle fac-
tors is not consistently available across cohorts and less 
GWAS are available of these traits, limiting our abil-
ity to adjust for them in multivariable MR. Also, higher 
BMI is correlated with lower socio-economic status 
and poor diet. The results of our observational study 
in ALSPAC girls can be hampered by the fact that the 
metabolite measurements were predominantly obtained 
under non-fasting conditions, which may have influ-
enced our results toward the null [78, 79]. Furthermore, 
the data collection in ALSPAC spanned nearly a decade, 
during which lifestyle elements may have changed, also 
potentially mitigating the effects of metabolites on the 
two outcomes. Analyzing a restricted time period could 
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reduce this bias but might also lead to a loss of statisti-
cal power, emphasizing the need for replication in larger 
datasets with a shorter time frame. Moreover, the defini-
tion of age at menopause used in the ReproGen GWAS 
[12] differs from the definition of age at menopause 
used in the ALSPAC. While both definitions relied on 
self-reported age of menopause, which can be subject 
to memory bias, in the ReproGen GWAS, additional fil-
tering was applied to isolate cases of natural menopause 
(see Additional file 1: Table S1). Natural menopause is a 
term used to differentiate the spontaneous occurrence of 
menopause due to aging versus menopause induced by 
exogenous or pathological factors. These differences in 
definitions could potentially explain variations between 
our discovery and replication analyses. The inclusion of 
mothers with possible non-natural menopause and the 
fact that many mothers did not reach menopause dur-
ing the most recent available follow-up visit in ALSPAC 
may have contributed to the lower-than-expected mean 
age at menopause. The memory bias limitation could be 
alleviated through replication analyses, even if the defini-
tions of age at menopause differ between the discovery 
and replication phases. Additionally, metabolite levels 
were not necessarily measured by the same platforms 
across the metabolomic GWAS and ALSPAC. Also, there 
is a partial overlap of samples (from the UK Biobank) in 
the replication MR between the exposure and outcome 
GWAS cohorts. However, given the robustness of the 
association between the IVs and exposures (F-statis-
tic > 30), and the consistency in direction between the 
discovery MR and replication in ALSPAC, it is plausible 
to infer that bias may not necessarily be the driving force 
behind the observed association. This variation can also 
affect the results of our validation analysis in ALSPAC. 
Furthermore, our two-sample MR analyses can only test 
linear effects of the metabolite levels on AAM and ANM, 
and therefore, we cannot exclude non-linear effects (i.e., 
effects of extremely low or high metabolite levels) on 
these traits. Finally, our results are based on European 
GWAS data for both metabolites and AAM and ANM, 
and as such, they cannot be generalized to non-European 
populations.

Conclusion
Using complementary approaches leveraging human 
genomic and metabolomic data, we were able to 
identify circulating metabolites potentially influenc-
ing reproductive longevity. In keeping with previ-
ous research, our findings point to choline-containing 
phospholipids and fatty acids as molecules that affect 
the timing of both AAM and ANM. These results 
support the presence of differences in the metabolic 

profiles of women with altered pubertal or menopau-
sal timing, while unraveling new biological pathways 
underpinning the female reproductive aging.
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