Yazdanpanah et al. Genome Medicine (2024) 16:69 Genome Medicine
https://doi.org/10.1186/513073-024-01322-7

RESEARCH Open Access

. . ®
Metabolome-wide Mendelian e

randomization for age at menarche and age
at natural menopause

Mojgan Yazdanpanah', Nahid Yazdanpanah', Isabel Gamache', Ken Ong?, John R. B. Perry** and
Despoina Manousaki'*

Abstract

Background The role of metabolism in the variation of age at menarche (AAM) and age at natural menopause
(ANM) in the female population is not entirely known. We aimed to investigate the causal role of circulating metabo-
lites in AAM and ANM using Mendelian randomization (MR).

Methods We combined MR with genetic colocalization to investigate potential causal associations between 658
metabolites and AAM and between 684 metabolites and ANM. We extracted genetic instruments for our exposures
from four genome-wide association studies (GWAS) on circulating metabolites and queried the effects of these vari-
ants on the outcomes in two large GWAS from the ReproGen consortium. Additionally, we assessed the mediating
role of the body mass index (BMI) in these associations, identified metabolic pathways implicated in AAM and ANM,
and sought validation for selected metabolites in the Avon Longitudinal Study of Parents and Children (ALSPAC).

Results Our analysis identified 10 candidate metabolites for AAM, but none of them colocalized with AAM. For ANM,
76 metabolites were prioritized (FDR-adjusted MR P-value <0.05), with 17 colocalizing, primarily in the glycerophos-
phocholines class, including the omega-3 fatty acid and phosphatidylcholine (PC) categories. Pathway analyses

and validation in ALSPAC mothers also highlighted the role of omega and polyunsaturated fatty acids levels in delay-
ing age at menopause.

Conclusions Our study suggests that metabolites from the glycerophosphocholine and fatty acid families play
a causal role in the timing of both menarche and menopause. This underscores the significance of specific metabolic
pathways in the biology of female reproductive longevity.
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Background

Female reproductive longevity, defined by the timing
of menarche and menopause, exhibits significant vari-
ability driven by genetics, lifestyle, and environmental
exposures [1, 2], but the precise biological mechanisms
underlying variations in reproductive aging are still not
fully understood. However, the timing of both age at
menarche (AAM) and age at natural menopause (ANM)
appears to have significant effects on women’s health [3].
For example, the early onset of puberty has been linked
to high risk-taking behaviors, reduced educational attain-
ment [3], adult obesity, type 2 diabetes [4], cardiovascu-
lar diseases [5], susceptibility to cancers, and increased
mortality rates [6]. Interestingly, women are more likely
to experience an early natural menopause following
either early or late menarche [7]. Therefore, identify-
ing biomarkers that enhance our comprehension of the
physiology of AAM and ANM variations, as well as their
interconnectedness, is important. Moreover, these mol-
ecules may potentially serve as pharmacological targets
to alter the duration of a woman’s reproductive lifespan.

Observational studies using large-scale metabolomics
data have led to the discovery of a number of candidate
biomarkers for various traits. Nevertheless, conducting
case—control studies that simultaneously measure hun-
dreds of circulating metabolites is cost-prohibitive but
also susceptible to confounding and reverse causation,
which restricts their ability to identify causal biomarkers.
In recent years, large genome-wide association studies
(GWAS) have identified genetic variants associated with
the levels of numerous metabolites. Furthermore, large-
scale GWAS datasets have become available for AAM
and ANM, significantly advancing our knowledge of the
genetic factors encompassing these traits. The availabil-
ity of such GWAS data offers a valuable opportunity to
investigate potential causal associations between circu-
lating metabolites and AAM and ANM using Mendelian
randomization (MR). MR is a well-established method in
genetic epidemiology that explores whether a modifiable
exposure is causally linked to a particular outcome [8].
Based on the use of genetic variants, randomly allocated
at conception, to infer levels of these exposures, MR
helps eliminate bias from confounding or reverse causa-
tion [9]. Two-sample MR uses data from separate GWAS
for the exposure and outcome, enhancing statistical
power for causal inference in complex health outcomes
measured in large GWAS [10].

In this study, we conducted two-sample MR to inves-
tigate potential causal associations between hundreds of
previously measured circulating metabolites and AAM
or ANM using summary statistics from large GWAS [11,
12]. We further explored the potential effects of body
mass index (BMI) on the MR associations between the
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candidate metabolites and AAM and ANM. Colocaliza-
tion analyses were conducted to differentiate between
causal associations and genetic correlations due to vari-
ants in linkage disequilibrium (LD). Pathway and enrich-
ment analyses were used to uncover potential biological
processes influencing AAM and ANM. Finally, we sought
validation for the causal associations with AAM and age
at menopause for selected candidate metabolites directly
measured in participants in the Avon Longitudinal Study
of Parents and Children (ALSPAC).

Methods

Mendelian randomization assumptions

Univariable two-sample MR studies were performed to
explore potential causal relationships between circulat-
ing metabolites and AAM and ANM. MR relies on three
core assumptions: (1) The genetic instrument (IV) must
have a strong association with the exposure (relevance
assumption); (2) the genetic instrument should not be
linked to confounding factors that connect the exposure
to outcome (independence assumption); (3) the genetic
instrument should affect the outcome only through the
exposure (exclusion restriction assumption). Violation of
this last assumption is known as horizontal pleiotropy.

Discovery datasets

For our MR analysis, we collected GWAS summary
statistics for circulating metabolites on Europeans to
use as sources for our exposures (Kettunen et al. [13],
N=24,925; Lotta et al. [14], N=86,507; Long et al. [15],
N=1960; Shin et al. [16], N=7824). The samples of the
GWAS by Long et al. were derived from the TwinsUK
cohort, while Shin et al. performed a GWAS meta-anal-
ysis of the TwinsUK and KORA cohorts. The GWAS by
Lotta et al. was a meta-analysis of four cohorts (Fenland
cohort, EPIC-Norfolk, INTERVAL) while Kettunen et al.
meta-analyzed 14 GWAS including two GWAS from
subsets of the FINRISK97 cohort. The methods used for
metabolite measurements were liquid chromatography-
mass spectrometry (LC-MS) (Long et al., Lotta et al,
Shin et al), and/or gas chromatography-mass spec-
trometry (GS-MS) (Shin et al.), and/or nuclear magnetic
resonance spectrometry (NMR) (Kettunen et al. and
Lotta et al.). All GWAS adjusted their metabolite meas-
urements for age and sex of the participants, and addi-
tional covariates appear in Additional file 1: Table S1.
For the outcomes, we utilized summary statistics from
the ReproGen consortium GWAS by Day et al. (N,
1 =329,345, combining 40 studies with 23andMe and
UK Biobank) [11] for AAM and from the largest-scale
GWAS meta-analysis by Ruth et al. of four studies (1000
Genomes imputed studies, Breast Cancer Association
Consortium, and UK Biobank, N, =201,323) [12] for
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ANM. Units of measurement for the exposures (metabo-
lite levels) were standard deviations (SD), while the out-
comes were expressed in years in the respective GWAS.
Additional file 1: Table S1 provides additional details on
each GWAS and Fig. 1 illustrates the overall study design.

Instrumental variable selection

In order to satisfy the first MR assumption, we chose as
I'Vs SNPs strongly associated with metabolite levels in the
exposure GWAS (P<5x107%). Among these, we selected
independent SNPs (linkage disequilibrium (LD)
*<0.001) within a 500-kb region using European ances-
try reference data from the 1000 Genomes Project [17].
For SNPs that were not available in the outcome GWAS,
we identified proxy SNPs in high LD (+*>0.8) using the
SNIPA website (https://snipa.helmholtz-muenchen.de/
snipa3/). To further assess the first MR assumption, we
filtered out metabolites for which the global F-statistic of
the SNI;Z-IVS was below 10, using the following formula:
F = —%5r, where 7 is the size of the cohort, k is the

[n—k—1]
number of SNP-IVs, and R? is the proportion of the vari-

ance of each exposure explained by the SNP-IVs [18]
(according to the formula R? ~ 28%f x (1—f) where B

Exposure data

Page 3 of 13

and f denote the effect estimate and the effect allele fre-
quency of the allele [19]). Summary statistics of the SNP-
IVs used in our MR analysis can be found in Additional
file 1: Table S2.

Mendelian randomization analysis

We performed MR studies of the causal relationships
between the exposures (metabolites) and outcomes
(AAM and ANM) using the TwoSampleMR R package
(v.0.5.5) [20]. We computed the MR Wald ratios for each
genetic instrument of the exposures with the outcome,
and when multiple SNP-IVs were available for a single
metabolite, we meta-analyzed them using the inverse
variance weighted (IVW) method [10]. Causal effects
with type I error rate of less than 5% after correction for
multiple testing using a false discovery rate (FDR) were
considered significant.

Sensitivity analysis

To address potential violations of the third MR assump-
tion, we conducted several sensitivity analyses to inves-
tigate the possibility of bias introduced by genetic
instruments’ heterogeneity and pleiotropy. These analy-
ses were performed on results that met the significance
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Fig. 1 Flow chart of study design. Representation of the analytical steps and of the main results for both studied outcomes. Orange boxes refer

to AAM, while green boxes refer to ANM
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threshold and required the availability of multiple SNP-
IVs. To assess pleiotropy, we employed both MR-Egger
regression [21] and MR-PRESSO (Pleiotropy RESidual
Sum and Outlier) [22] methods. MR-Egger, unlike the
IVW method, does not constrain its intercept to zero,
allowing for the detection of directional pleiotropy when
the intercept significantly deviates from 0 (p-value < 0.05).
MR-Egger requires that the association of each variant
with the exposure is not correlated with its pleiotropic
effect, a condition known as the InSIDE assumption
[21]. This is necessary to weaken the third assumption.
The MR-PRESSO global test was also utilized to iden-
tify potential horizontal pleiotropy by estimating the
presence of outlier SNP-IVs. As part of our sensitivity
analyses, we applied Steiger filtering [23] to evaluate the
directionality of the MR associations. This step ensured
that the SNP-IVs were more strongly associated with the
exposure (in this case, the metabolites) than with the
outcomes (AAM and ANM). To assess heterogeneity, we
implemented the Cochran Q heterogeneity test in both
the IVW and MR-Egger analyses [24].

Multivariable MR analyses

To test the second MR assumption (“independence”
assumption), we tested whether the association between
the candidate metabolites and AAM or ANM, as deter-
mined by our MR analysis, could be influenced by body
mass index (BMI), a possible confounder or media-
tor. Indeed, BMI is known to influence both AAM and
ANM [2, 25-27], and it also has an impact on certain
metabolites [28]. In order to take this into account, we
performed multivariable MR (MVMR) analysis. MVMR
requires a larger number of genetic instruments for the
exposures than the number of the exposures being tested
in the model, which in this case are two: a metabolite and
BMIL. For these MVMR analyses, we used data from large
available GWAS for childhood BMI (z=39,620) [29] and
adult BMI (2= ~700,000) [30].

Colocalization analyses

MR enables the detection of associations between two
phenotypes; however, it is possible that the causal SNP
for both phenotypes may not be the same. To explore
this possibility, we performed a colocalization analysis
to examine the potential influence of LD between the
SNP-IVs for metabolites and the causal SNPs for AAM or
ANM [31] on our causal MR associations. This analysis
was performed using the coloc package in R [32], which
computes posterior probabilities for four hypotheses: HO
(no association of the genomic locus with either trait), H1
(association with AAM or ANM but not with the metab-
olite level), H2 (association with the metabolite level but
not with AAM or ANM), H3 (association with AAM
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or ANM and the metabolite level through two differ-
ent causal SNPs in LD), and H4 (association with AAM
or ANM and the metabolite level via one shared causal
SNP). As parameters for prior probability, we used the
default parameters, i.e., p; (prior probability of the expo-
sure having a causal variant) =1.0x 1074, p, (prior proba-
bility of the outcome having a causal variant)=1.0x107*,
and p;, (prior probability of the exposure and the out-
come sharing the same causal variant)=1.0x107°. To
estimate the posterior probability H4 for each genomic
locus, which indicates the presence of a single causal var-
iant for both the metabolites and AAM or ANM, we ana-
lyzed all SNPs with a minor allele frequency (MAF) >0.01
within 1 MB of each metabolite SNP-IV. Colocalization
analyses were performed for metabolites that showed
evidence of MR association with AAM or ANM, using
the available full summary-level results from the GWAS
by Lotta et al. [14], Shin et al. [16], and Kettunen et al.
[13] (full summary-level results from Long et al. are
not available). If the posterior probabilities of H4 were
greater than 0.8 for at least one of the SNP-IV associated
with a candidate metabolite, this metabolite was consid-
ered colocalized with AAM or ANM.

Bidirectional MR

To test the directionality of our causal MR associations,
in addition to the Steiger filtering, we performed reverse
two-sample MR analyses, where AAM or ANM were the
exposures and the colocalized metabolites were the out-
comes. SNP-IVs for the two exposures (AAM or ANM)
were extracted from the same ReproGen consortium
GWAS and were strongly associated with the exposures
at a GWAS p-value<5x107%, The IVW method was
used to evaluate the causal reverse associations, and we
employed MR-Egger and two additional MR methods
robust to pleiotropy, the weighted median [33], which
assumes that at least half of the SNP-IVs are not pleio-
tropic, and the weighted mode [34], which assumes that
the most common causal effect is consistent with the true
causal effect.

Replication of our MR findings

We sought to replicate the findings for metabolites dis-
playing significant associations in our main MR analysis
by extracting IVs for these candidate metabolites from
an independent cohort by Suhre et al. [35]. Since there
was no available independent GWAS with available sum-
mary statistics for the outcome (ANM), we used the same
GWAS meta-analysis by Ruth et al. [12]. We identified
significant IVs associated with the metabolites in the
Suhre et al. study and searched for proxies for missing
SNPs in the ANM GWAS using the LDproxy function
of LDlinkR (7*>0.8) [36]. Similar to our discovery MR,
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replication MR analyses were performed using the Two-
SampleMR package [20].

Pathway and metabolite set enrichment analyses

To perform pathway and enrichment analyses based on
the prioritized metabolites from our main MR and colo-
calization analyses, we first identified a single identifier
per metabolite in the following databases: KEGG Com-
pound [37], PubChem [38], BioCyc/HumanCyc [39], and
Chemical Entities of Biological Interest (ChEBI) [40].
These databases provide the most frequently used and
updated Human Metabolome Database (HMDB) identi-
fiers in metabolomics [41, 42]. Over-representation anal-
ysis (ORA) was implemented using the hypergeometric
test to evaluate whether a particular metabolite set is
represented more than expected by chance within the
given compound list. Statistical significance was deter-
mined when FDR-corrected P-values were below 0.05. To
perform ORA, we initially provided a list of compound
names, which was then consolidated using conventional
feature selection techniques to explore biologically signif-
icant patterns. This involved identifying whether a spe-
cific metabolite set was more prominently represented
in the given compound list than would be expected
by chance. After accounting for multiple testing, one-
tailed P-values were calculated. We then used the Gene
Multiple Association Network Integration Algorithm
(GeneMANIA) tool (http://www.genemania.org/) and
Functional Mapping and Annotation of genetic asso-
ciations (FUMA), a web-based tool (https://fuma.ctglab.
nl), to construct a gene network to better characterize
the functions of the main class of the MR-prioritized
metabolites for AAM and ANM. Pathway analyses were
performed using MetaboAnalyst [43], using “Enrich-
ment Analysis” and “Joint-Pathway Analysis,” with the
latter using the integration method of “Combine p values
(pathway-level).” For the pathway and enrichment analy-
ses, only metabolites which colocalized (H4>80%) with
either AAM or ANM and who had identified metabolites
(HMDB) were selected. These in silico follow-up analy-
ses aimed to identify biologically meaningful pathways to
which our candidate metabolites clustered, using quanti-
tative metabolomic data.

Validation of selected candidate metabolites in the Avon

Longitudinal Study of Parents and Children (ALSPAC) study
To validate our findings for selected candidate metabo-
lites associated with AAM and ANM, we tested the asso-
ciation of directly measured levels of these metabolites
with the two traits in ALSPAC. The ALSPAC is a popu-
lation-based birth cohort study, which enrolled 14,541
pregnant women resident in Avon, UK, with expected
delivery dates between 1 April 1991 and 31 December
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1992 [44, 45]. Of the initial pregnancies, there was a
total of 13,988 children who were alive at 1 year of age.
With additional phases of recruitment, the total sample
size for analyses using any data collected after the age of
seven is 15,447 pregnancies, resulting in 14,901 children
being alive at 1 year of age. Overall, 8932 European chil-
dren, among which #=3919 girls, and their parents were
closely monitored at regular intervals for 28 years using
questionnaires and clinic-based assessments with full
study details published elsewhere [46, 47].

Age at onset of menarche was assessed based on a
derived variable, combining repeated reports at different
visits from age 8 years to age 17 years [48]. Age at meno-
pause was assessed using questionnaires from 14,541
mothers in a recent follow-up visit in 2020 and was self-
reported in a questionary (Variable number: C3b). Only
mothers who had their menopause were kept for analy-
sis [49]. Information was collected at two visits (Focus
on Mothers 1 and 2 or FOM1 and FOM2). BMI meas-
urements were calculated based on height and weight
measurements of girls at clinical visits at ages 7, 8, and
11 years based on the formula weight (kg)/height (cm)?
and were standardized to a mean of 0 and an SD of 1.
Study data were collected and managed using REDCap
electronic data capture tools hosted at the University of
Bristol [50]. REDCap (Research Electronic Data Capture)
is a secure, web-based software platform designed to
support data capture for research studies. Missing BMI
z-scores at age 8 years were imputed based on measure-
ments at age 7 or 9 years. The maternal BMI was read-
ily available as a derived variable, based on 2 clinic visits
(EOM1 and FOM2).

Please note that the study website contains details of all
the data that is available through a fully searchable data
dictionary and variable search tool: http://www.bristol.
ac.uk/alspac/researchers/our-data/

Metabolite measurements in ALSPAC

Nonfasted peripheral blood was collected from ALSPAC
participants (children and mothers) at four different fol-
low-up visits, at ages 7 (F7 visit), 15 (TF3 visit), 16 (TF4
visit), and 24 years (F24 visit) for child participants. Sam-
ples were processed within 4 h and stored at—80 °C [51].
Fasting and post-prandial blood samples were also col-
lected for a subset of ALSPAC participants at the Before
Breakfast Study (BBS) at age 8 years. In mothers, metabo-
lite levels were measured at a fasting state either at the
FOM1 visit (average age 48 years, range 34—64 years) or
the FOM2 visit (average age 51 years, range 39—66 years).
Metabolomic profiling was done using the Nightingale
NMR metabolomics platform (Helsinki, Finland), and
228 metabolic traits (and their ratios) were quantified in
EDTA-plasma.
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We assessed the associations between metabolites and
age at menarche or menopause using linear regression.
Subsequently, to assess the influence of BMI on these
associations, we included childhood BMI at age 8 years as
a covariate for AAM and mothers’ adult BMI at FOM1
or FOM2 as a covariate for age at menopause. We also
conducted these models without including mothers who
experienced early menopause, defined as before the age
of 45 [49].

Results

Causal relationships between metabolites and AAM

or ANM

To evaluate the potential causal relationships between
metabolites and AAM and ANM, we initially conducted
univariate MR analyses, as outlined in the study design
flowchart (Fig. 1). In total, we identified SNP-IVs for
658 metabolites for AAM and 684 for ANM (Additional
file 1: Table S3).

Our MR findings indicate causal relationships between
ten circulating metabolites and AAM and 76 metabo-
lites for ANM (at an FDR P-value <0.05) (Fig. 2). Among
the identified metabolites for AAM, five metabolites
belong to the glycerophosphocholine main class, two
to the amino acids/peptides, and one to alcohols/poly-
ols. All these metabolites, except X-11470, conferred an
increase in AAM (Fig. 2A, Additional file 1: Table S3A),
with effects ranging from 0.05 (mannose) to 0.25 (PC aa
C32:3) years per 1 SD change in metabolite.

Contrarily, for ANM, metabolites within the same main
class exhibited effects in different directions. The most
prevalent main class was also the glycerophosphocho-
lines, comprising of 50 of the 76 metabolites, followed
by fatty acids with nine metabolites (Fig. 2B, Additional
file 1: Table S3B). For ANM, we observed several metabo-
lites, mostly phosphatidylcholine (PC) with absolute MR
beta coefficients ranging between 0.05 (docosapentaeno-
ate [n3 DPA; 22:5n3]) and 3.13 (mannose) years per SD
increase in the metabolite level.

As statistical tests to evaluate pleiotropy, we performed
MR-Egger, MR-PRESSO, and Cochran’s Q statistic. These
tests did not suggest the presence of pleiotropy in the
detected associations for metabolites with more than one
SNP-IV (Additional file 1: Tables S4Ai and S4Bi). Addi-
tionally, the results of Steiger filtering supported the pre-
sumed direction of the causal association, confirming
that the candidate metabolites are likely responsible for
the changes in AAM and ANM, rather than the inverse
(Additional file 1: Tables S4Aii and S4Bii).

Among the metabolites that met the significance
threshold in our MR analyses, seven were common to
both AAM and ANM, grouped into four major metabolic
clusters: glycerophosphocholines [PC aa C32:3, PC aa
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C34:1, LysoPC a C14:0], amino acids and peptides [iso-
leucine, threonine], and monosaccharides [mannoses].
With the exception of mannose for ANM, increasing lev-
els of all the other metabolites were consistently associ-
ated with later AAM and later ANM in our MR analyses
(Fig. 3 and Additional file 1: Table S5).

Assessing the influence of BMI on the causal MR
associations

To assess the influence of BMI on the causal relation-
ships of the candidate metabolites with AAM or ANM,
we conducted MVMR by including either childhood or
adult BMI as second exposure in the MR model. These
analyses were restricted to MR-prioritized metabolites
with three or more SNP-IVs, resulting in one metabo-
lite for AAM and nine for ANM. Among these metabo-
lites, only lysoPC a C20:4 (P-value=0.015), PC aa C36:4
(P-value=0.047), PC aa C40:6 (P-value=0.031), and PC
P-40:5 or PC O-40:6 (P-value=0.025) retained a sugges-
tive (P-value <0.05) IVW MR estimate for causal associa-
tion for ANM after adjusting for adult BMI (Additional
file 1: Table S6). The remaining causal associations of
metabolites with AAM or ANM disappeared when child
or adult BMI was taken into account, suggesting that
BMI could potentially mediate or act as a confounder in
these associations (Additional file 1: Table S6).

Colocalization

In our colocalization analyses, we considered that the
MR-prioritized metabolites colocalized with AAM or
ANM if the posterior probabilities of the candidate
metabolites and outcome sharing a single causal SNP
(H4) for any of the SNP-IVs of each metabolite were
greater than 0.8. We found evidence of colocalization
with ANM for 17 MR-prioritized metabolites, mainly
from the glycerophosphocholines class, but none for
AAM (Additional file 1: Table S7). The genes encompass-
ing the SNP-IVs of the 17 colocalized metabolites were
FADS1, FADS2, FEN1, MYRF, and TMEM?258, suggest-
ing the existence of shared pathways among the prior-
itized metabolites.

Bidirectional MR analysis

To further validate the directionality of the causal MR
associations, we conducted reverse MR, which did not
provide evidence for a causal effect of ANM on these
metabolites (Additional file 1: Table S8), confirming that
the metabolites confer the changes in AAM or ANM, and
not the opposite.

Replication MR analysis
We performed a replication MR analysis utilizing an
independent metabolite cohort as a source of IVs for
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4~guanidinobutanoate 010(0.04-0.16)  IVW:2  Long
5-hydroxylysine -0.09 (-0.14--004) VW2 Long
Isoleucine - 160(131-1.90)  Waldratio Kettunen

methionine sulfone 0.17(0.10-024) VW4 Long

055 (0.45-065)  Wald ratio Long

threonine

CH2 groups to double bonds ratio
Double bonds in fatty acids

Ratio of bis-allylic bonds to double bonds i
adrenate (22:4n6)

arachidonate (20:4n6)
docosapentaenoate (n3 DPA; 22:5n3)
eicosapentaenoate (EPA; 20:5n3)
isovalerylcarni
oleoyl ethanolamide

~0.14 (-0.22--0.06) IVW:5 Kettunen
015(0.08-023)  IVW:5  Kettunen
012(0.06-018)  IVW:4  Kettunen
021(0.09-033)  Waldratio Long
010(0.05-0.14)  Wald ratio Long
005(0.02-009)  Waldratio Long
0.18(0.08-029)  Wald ratio Long
-0.12 (-0.20-004) VW2 Long
016 (0.09-023)  Wald ratio Long

ipids

e g a

1~(1-enyl-palmitoyl)-2~arachidonoy~GPE (P~16:0/20:4)
1~(1-enyl-stearoyl)-2-arachidonoy-GPE (P~18:0/20:4)
1~dihomo-linolenoyl-GPE (20:3n3 or 6)

1-linoleoy-GPE (18:2)

2-linoleoyl-GPE (18:2)

0.17(0.09-025)  Wald ratio Long
015(0.08-028)  Waldratio Long
009(0.04-015)  IVW:2  Long
~0.13(-0.19--0.07) Wald ratio Long
-0.18 (-0.27--0.08) Wald ratio _Long

1,2-dilinoleoyl-GPC (18:2/18:2) . ~0.16 (-0.24--0.08) Wald ratio Long
1= :0/20: 0.11(0.05-0.16)  Waldratio Long
1-arachidonoyl-GPC (20:4n6) 008(0.04-0.12)  Wald ratio Long
1-arachidonoyl-GPI (20:4) - 020(0.09-031)  Waldratio Long
1-dihomo-linoleoyl-GPC (20:2) ~0.13 (-0.18--0.07) Wald ratio ~Long
1~docosapentaenoyl-GPC (22:5n3) 0.18(0.08-028)  Waldratio Long
1-eicosapentaenoyl-GPC (20:5) . 0.16(0.07-026)  Wald ratio Long
1-linoleoyl~2-arachidonoyl-GPC (18:2/20:4n6) 012(0.06-0.18)  Waldratio Long
1-linoleoyl-GPC (18:2) . ~0.19 (-0.28--0.10) Wald ratio Long
1-myristoyl-2-linoleoyl~GPC (14:0/18:2) - ~0.22 (-0.33--0.11) Wald ratio Long
1-oleoyl-2-eicosapentaenoyl-GPC (18:1/20:5) . 0.15(0.06-025)  Wald ratio Long
1-oleoyl-2-linoleoyl-GPC (18:1/18:2) . ~0.19 (-0.29--0.10) Wald ratio Long
1-palmitoleoyl~2-linoleoyl-GPC (16:1/18:2) = -0.15 (-021--0.10) IVW:2  Long
1-palmitoleoyl-GPC (16:1) . -0.22(0.33--0.10) Wald ratio  Long
1-palmitoyl-2-alpha-linolenoyl-GPC (16:0/18:3n3) = ~0.13 (-0.21--0.06) Wald ratio Long
1-palmitoyl-2-arachidonoyl-GPC (16:0/20:4) 008(0.04-012)  Waldratio Long
1-palmitoyl-2-sicosapentaenoyl-GPC (16:0/20:5) . 017(0.07-027)  Waldratio Long
1-palmitoyl-2-linoleoyl-GPC (16:0/18:2) o -0.16(-0.22--009) IVW:2  Long
1-palmitoyl-2-meadoyl-GPC (16:0/20:3n9) . 015(0.08-022)  Wald ratio Long
1-palmitoyl-2-stearoyl-GPC (16:0/18:0) - 028(0.12-045)  Waldratio Long
1-pentadecanoyl-2-linoleoyl-GPC (15:0/18:2) = -0.22 (-0.33--0.11) Wald ratio Long
1-stearoyl-2-arachidonoyl-GPC (18:0/20:4) 007(0.04-011)  Waldratio Long
1-stearoyl-2-docosapentaenoyl-GPC (18:0/22:5n3) » 016 (0.07-024)  Wald ratio Long
: - 022(0.12-032)  Waldratio Long
1-stearoyl-2-meadoyl-GPC (18:0/20:3n9) 012(0.06-0.18)  Wald ratio Long
2-arachidonoyl-GPC (20:4) 009(0.04-013)  Waldratio Long
PG aa C24:0 - 0.18(0.09-026)  Wald ratio Lotta
PC aa C26:0 - ~0.54 (-0.80--0.29) Wald ratio  Lotta
PC aa C32:3 - 179(147-212)  Wadratio Lotta
PC aa Ca4:1 - Wald ratio  Lotta
PC aa C36:4 011(0.05-017) VW3 Lotta
PC aa C36:5 - 018(0.09-027) VW4 Lotta
PC aa C40:4 - 027(0.15-039) VW2 Lotta
PC aa C40:6 - 052(0.19-086)  IVW:l1  Lotta
PC aa C42:0 —=—  186(0.97-274)  Waldratio Lotta
PC aa C42:4 - 1.07 (055-1.59)  Waldratio Lot
PC aa C42:5 —=—297(233-362)  Waldratio Lotta
PC ae C30:1 - -0.43 (-0.67--0.18) Wald ratio  Lotta
PC ae C30:2 - 036(0.13-060)  Wald ratio Lotta
PC ae C40:1 - 034(0.14-053) VW2 Lotta
PC ae C40:6 - 027(0.15-039) VW3  Lotta
PC ae C42:3 010(0.04-015) VW7 Lotta
lysoPC a G14:0 - 111(091-1.31)  Waldratio Lotta
lysoPC a C20:4 010(0.04-016)  IVW:  Lotta
lysoPC a C24:0 - 031(0.13-049)  Waldratio Lotta
IysoPC a C26:1 - 0.16(0.08-024)  Wald ratio  Lotta
lysoPC a C28:0 - -0.50 (-0.76--0.24) Wald ratio Lotta
lysoPC a C28:1 - 035(0.19-052)  Waldratio Lotta
phosphatidylcholine (16:0/22:5n3, 18:1/20:4) 008(0.04-013)  Waldratio Long
phosphatidylcholine (18:0/20:5, 16:0/22:5n6) 0.13(0.06-020)  Wald ratio Long

2-arachidonoylglycerol (20:4) = 0.23(0.13-0.32)  Wald ratio Long

Mannose —— | -3.13 (-3.70--2.56) Wald ratio Long

5-methyluridine (ribothymidine) Ll -0.11(-0.16--0.07) Wald ratio Long
X - 12695 - -0.29 (-0.44--0.14) Wald ratio Long
X - 22822 ] 060 (0.49-071)  Waldratio Long
X - 24125 = ~0.20 (-0.31--0.09) Wald ratio Long

X-11858 - -0.61(-0.95--0.27) Wald ratio Shin

0 250

Change in ANM in years per 1 SD change in metabolite level
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Metabolite Study
Amino acids and peptides
Isoleucine Kettunen
threonine Long
Glycerophosphocholines
PC aa C32:3 Lotta Traits
PC aa C34:1 Lotta AAM
lysoPC a C14:0 Lotta ANM
Monosaccharides
Mannose Long
Unknown
X - 22822 Long

B o s

Change in AAM or ANM in year per 1 SD change in metabolite level

Fig. 3 Shared MR-prioritized metabolites between AAM and ANM. Comparison of the effects of shared metabolites between AAM and ANM
on the two outcomes. Estimates (betas) express changes in years in AAM and ANM per SD increase in the circulating level of each metabolite. The

results are grouped based on the main class of the metabolites

the MR-prioritized metabolites for ANM (Additional
file 1: Table S9). The results of the main MR association
of omega-3 fatty acids with ANM replicated, with an
increase of omega-3 fatty acids levels delaying the onset
of ANM, and estimates consistently aligning across vari-
ous MR methods.

Metabolic pathway and enrichment analysis

To uncover the biological mechanisms linking the 17
MR-identified and colocalized metabolites with ANM,
we conducted a follow-up pathway analysis. Among
these metabolites, we were able to identify 15 with
Human Metabolome Database (HMDB) identifiers
[52], which we used in our metabolite-based pathway
and enrichment analysis (Additional file 1: Table S10).
Using the KEGG database, we identified a significant
association between the glycerophosphocholines clus-
ter and ANM (FDR P-value=1.03x10"°) (Additional
file 1: Table S11A). The pathways underlying this asso-
ciation encompass the metabolism of glycerophospho-
lipids (FDR P-value=2.13x1073), alpha-linolenic acid
(FDR P-value=2.13x107%), and linoleic acid (FDR
P-value =8.74x107%) (Additional file 1: Table S11B).

The five genes where colocalization between metabo-
lites and ANM occurred shared common networks
and functions in our GeneMANIA and FUMA analy-
ses (Fig. 4, Additional file 1: Table S12). Specifically,

in our FUMA analysis, both FADSI and FADS2 were
linked to the metabolism of linoleic acid (adjusted
P-value=9.97 x 10~%), alpha-linolenic omega-3, and lin-
oleic omega-6 acids (adjusted P-value=0.001), and to
the biosynthesis of unsaturated fatty acids (adjusted
P-value=0.003) (Additional file 1: Table S12C). This
underlines the importance of the fatty acid pathway in
the timing of ANM.

Validation of selected candidate metabolites for AAM

and ANM in ALSPAC

As a further step to validate the MR-prioritized metab-
olites for AAM and ANM, we conducted an observa-
tional study in an independent cohort, ALSPAC. In this
cohort, the mean age at menarche was 12.21+1.03 years
(N'=2456 girls across four visits), and the mean age at
menopause was 49.03+4.18 years (N=1626 post-men-
opausal mothers across the FOM1 and FOM2 visits).
Regarding AAM, only two out of the 10 MR-prioritized
metabolites were measured in this cohort. However,
these two metabolites did not exhibit any association
with AAM, with or without adjustment for childhood
BMI (Additional file 1: Table S13).

Nine out of the 17 colocalized metabolites for
ANM were measured in ALSPAC. Six metabolites
were found to be associated (P-value<0.05) with age
at menopause in this cohort, all from the fatty acids
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Fig. 4 Pathway analysis of colocalized metabolites with ANM using GeneMANIA. Each circle represents a gene and its diverse interactions
across the network. Pie-chart for each gene represents specific functions associated with lipid metabolism

class. Notably, omega-3 fatty acids displayed the larg-
est effect, with a substantial delay in age at menopause
(Bropmz=4.12+1.03 years per mmol/l increase in the
metabolite level, P-value =6.46 x 107>, N=863). With the
exception of monounsaturated fatty acids, all remaining
metabolites were consistently associated with a delay in
age at menopause, with estimated effects ranging from
0.16 to 4.12 years per unit increase (mmol/l or percent)
(Additional file 1: Table S13). After adjusting for BMI,
the results remained largely consistent with those from
the unadjusted model, except for monounsaturated fatty
acids. This discrepancy suggests that BMI may have
mediating or confounding effects on the relationship of
this metabolite with age at menopause. Furthermore,
the majority of our results remained consistent even
after excluding mothers with early menopause, defined
as an age of menopause <45 years [49] (Additional file 1:
Table S13). Overall, this analysis supports our finding
that fatty acids, mostly those associated with omega-3
metabolism, appear to be important in the timing of age
at menopause.

Discussion

In this study, we employed Mendelian randomization
(MR) and colocalization analyses to conduct a thor-
ough investigation into the causal relationships between
numerous circulating metabolites and the timing of
menarche and menopause. We further validated our
findings through an observational study in an independ-
ent cohort. Our results offer insights into the impact of
metabolism, mostly that of the glycerophosphocholines
and fatty acids, on female reproductive longevity, indicat-
ing that genetic predisposition to altered levels of circu-
lating blood metabolites can be a risk factor for variations
in AAM or ANM.

Our analysis highlights the role of many metabolites
associated with the choline fraction, clustering within
the phosphatidylcholine (PC) subclass, and of fatty acids,
both essential nutriments from the diet [53], in the tim-
ing of age at menarche and menopause. Metabolism of
both phosphatidylcholines and fatty acids involves the
enzyme phosphatidylethanolamine N-methyltransferase
(PEMT) [54, 55], which is influenced by various factors,



Yazdanpanah et al. Genome Medicine (2024) 16:69

including sex hormone levels such as estrogens [56], sug-
gesting links with the female fertility.

Phosphatidylcholine levels are also altered in physio-
logical states, such as pregnancy and menopause [56, 57],
and pathological states of estrogen abundance or defi-
ciency. More precisely, postmenopausal women are more
susceptible to choline deficiency due to the decline in
their estrogen levels, while pregnant women showed pro-
tection against its deficiency [56, 57]. Furthermore, this
metabolite subclass has been found to play a role in the
regulation of menstrual cycle [58] and has shown protec-
tive effects on follicular development and oocyte matu-
ration against an exogenous endocrine disruptor [59]. In
our MR analysis, the majority of the metabolites associ-
ated with AAM or ANM and shared by both, belong to
this subclass, with the majority conferring a delay of both
outcomes. This underscores the significance of this class
in the female reproductive system. Our results for AAM
align with previous MR findings [60], while for ANM,
further studies are needed to investigate the potential
therapeutic effects of choline, or phosphocholine, supple-
mentation on the timing of menopause.

During menopause, there is a shift in unsaturated fatty
acid metabolism, and hormonal replacement therapy
has been shown to restore different fatty acid levels in
postmenopausal women [61] and in animal models [62].
Additionally, fatty acid levels have been found to impact
menopausal symptoms [63]. Previous research supports
the administration of omega-3 fatty acids to increase
ovarian reserve [64], by potentially delaying the onset of
menopause. Our main and replication MR analyses, path-
way analysis, and observational study in ALSPAC con-
verge to a delaying effect of omega-3, polyunsaturated,
and monounsaturated fatty acids, on age at menopause,
suggesting a protective role of polyunsaturated and
omega-3 fatty acid supplementation in women at risk of
premature menopause. A potential mechanism underly-
ing these associations could be linked to the anti-inflam-
matory properties of omega-3 fatty acids, by reducing the
production of proinflammatory cytokines [65]. Indeed,
menopausal transition is linked to an increase in mark-
ers of inflammation, particularly in women with early
menopause, which may suggest a detrimental effect of
inflammation on ovarian longevity [66—68]. Thus, a life-
time exposure to higher levels of fatty acids with anti-
inflammatory effects could potentially delay the onset of
menopause, a hypothesis that merits to be tested in clini-
cal trials.

The involvement of the FADSI and FADS2 genes
in ANM is an intriguing finding. These genes encode
enzymes responsible for catalyzing the omega-3 and
omega-6 lipid biosynthesis pathways [69]. The FADS
locus, which is clustered on chromosome 11, exerts
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pleiotropic effects, mostly on lipid-associated metabolic
traits, but recent GWAS evidence has linked it with
female fertility [70]. Additionally, this locus has been tar-
geted by natural selection multiple times in human his-
tory [53, 69, 71], including in populations with diets rich
in meat and fish, which are significant sources of omega
fatty acids and choline [53]. The selective pressure found
in the European population was suggested to be caused
by the diet transition across history [53, 70]. However, it
can also be possible that the selective pressure could also
involve female fertility, potentially by delaying ANM and
as such increasing the female reproductive longevity.

Overall, our findings provide new evidence on the role
of lipid metabolism in female reproductive longevity, but
the precise biological mechanisms behind our findings
remain unclear and further studies need to be done to
understand these associations.

Our study has multiple strengths. First, we used MR,
a study design allowing for causal inference, by limiting
confounding, reverse causation, and other biases com-
mon in observational epidemiology. The hypothesis-free
design of our study offers a thorough screen for causal
relationships between metabolites evaluated by non-tar-
geted metabolomics and AAM or ANM. We conducted
a number of sensitivity analyses and a replication MR
study using instruments from an independent metabolite
GWAS, which largely supported the main findings. Our
colocalization analyses followed by pathway and enrich-
ment studies provide further insight into the biological
mechanisms underlying variations in ANM. Finally, our
validation study, based on direct measurements of candi-
date metabolites in a cohort of women accurately report-
ing their AAM and ANM, further supports the role of
selected MR-prioritized metabolites in these traits.

There are some considerable limitations in our study.
Other than BMI, many factors influence the timing of
menarche and menopause [1, 2], among which lifestyle
traits such as nutrition and physical activity [72-77],
which could potentially confound the identified MR
associations. However, information about lifestyle fac-
tors is not consistently available across cohorts and less
GWAS are available of these traits, limiting our abil-
ity to adjust for them in multivariable MR. Also, higher
BMI is correlated with lower socio-economic status
and poor diet. The results of our observational study
in ALSPAC girls can be hampered by the fact that the
metabolite measurements were predominantly obtained
under non-fasting conditions, which may have influ-
enced our results toward the null [78, 79]. Furthermore,
the data collection in ALSPAC spanned nearly a decade,
during which lifestyle elements may have changed, also
potentially mitigating the effects of metabolites on the
two outcomes. Analyzing a restricted time period could
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reduce this bias but might also lead to a loss of statisti-
cal power, emphasizing the need for replication in larger
datasets with a shorter time frame. Moreover, the defini-
tion of age at menopause used in the ReproGen GWAS
[12] differs from the definition of age at menopause
used in the ALSPAC. While both definitions relied on
self-reported age of menopause, which can be subject
to memory bias, in the ReproGen GWAS, additional fil-
tering was applied to isolate cases of natural menopause
(see Additional file 1: Table S1). Natural menopause is a
term used to differentiate the spontaneous occurrence of
menopause due to aging versus menopause induced by
exogenous or pathological factors. These differences in
definitions could potentially explain variations between
our discovery and replication analyses. The inclusion of
mothers with possible non-natural menopause and the
fact that many mothers did not reach menopause dur-
ing the most recent available follow-up visit in ALSPAC
may have contributed to the lower-than-expected mean
age at menopause. The memory bias limitation could be
alleviated through replication analyses, even if the defini-
tions of age at menopause differ between the discovery
and replication phases. Additionally, metabolite levels
were not necessarily measured by the same platforms
across the metabolomic GWAS and ALSPAC. Also, there
is a partial overlap of samples (from the UK Biobank) in
the replication MR between the exposure and outcome
GWAS cohorts. However, given the robustness of the
association between the IVs and exposures (F-statis-
tic>30), and the consistency in direction between the
discovery MR and replication in ALSPAC, it is plausible
to infer that bias may not necessarily be the driving force
behind the observed association. This variation can also
affect the results of our validation analysis in ALSPAC.
Furthermore, our two-sample MR analyses can only test
linear effects of the metabolite levels on AAM and ANM,
and therefore, we cannot exclude non-linear effects (i.e.,
effects of extremely low or high metabolite levels) on
these traits. Finally, our results are based on European
GWAS data for both metabolites and AAM and ANM,
and as such, they cannot be generalized to non-European
populations.

Conclusion

Using complementary approaches leveraging human
genomic and metabolomic data, we were able to
identify circulating metabolites potentially influenc-
ing reproductive longevity. In keeping with previ-
ous research, our findings point to choline-containing
phospholipids and fatty acids as molecules that affect
the timing of both AAM and ANM. These results
support the presence of differences in the metabolic
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profiles of women with altered pubertal or menopau-
sal timing, while unraveling new biological pathways
underpinning the female reproductive aging.
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