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Abstract 

Despite the abundance of genotype-phenotype association studies, the resulting association outcomes often lack 
robustness and interpretations. To address these challenges, we introduce PheSeq, a Bayesian deep learning model 
that enhances and interprets association studies through the integration and perception of phenotype descriptions. 
By implementing the PheSeq model in three case studies on Alzheimer’s disease, breast cancer, and lung cancer, we 
identify 1024 priority genes for Alzheimer’s disease and 818 and 566 genes for breast cancer and lung cancer, respec-
tively. Benefiting from data fusion, these findings represent moderate positive rates, high recall rates, and interpreta-
tion in gene-disease association studies.
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Background
In the scenario of genotype-phenotype association, the 
association significance usually comes from a good vari-
ety of sequence analysis experiments in the form of a 
p-value, e.g., GWAS [1], PheWAS [2], RNA-seq [3], and 
MeRIP-seq [4]. While p-value data provide a genome-
wide significance for each genotype-phenotype associa-
tion, the characteristics of high density and uncertainty 
make it a fine-grained but weak signal. The uncertainty 
of the p-value and the rigorous significance thresh-
old setting [5, 6] make it challenging to obtain robust 

association results, and in the meantime, the interpreta-
tions of the results are largely unclear [7].

In recent years, a big trend has emerged in the field of 
deep learning (DL), focusing on diverse multi-omics data 
including genome, transcriptome, epigenome, proteome, 
exposome, and microbiome [8]. Commonly employed 
deep learning techniques have been widely utilized for 
feature extraction, integrated analysis, and robust predic-
tive modeling across various life omics datasets. How-
ever, this research directs its primary attention to the 
perceptual aspects of deep learning methods pertaining 
to gene-disease association, particularly those derived 
from textual evidence and network structures. The pri-
mary objective of this study is to enhance the robustness 
and interpretability of gene-disease associations through 
the integration of external text and network data, thus 
augmenting the findings obtained from single-omic 
sequence analysis. In this regard, it is necessary to fuse 
association information from two different modalities, 
the association significance (p-values) and DL-generated 
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phenotype descriptions (embeddings), through a data 
fusion strategy.

DL models have shown a strong ability to perceive 
semantic interpretation in texts and the topological 
structure of networks in association studies [9, 10]. Bene-
fiting from its powerful perception ability, DL plays a role 
in interpreting the text or network data for associations 
and making the association prediction evidence-sup-
portive and ontology-normalized [11, 12]. The Human 
Phenotype Ontology (HPO) was initially published in 
2008 [13] with the goal of integrating phenotypic data 
for translational research and diagnostics, and it main-
tains a stable rate of update [14–16]. In recent years, the 
range of HPO has been extended from rare to common 
human disease [17]. Today, HPO terms are extended to 
a broader range of diseases [18], as well as specific dis-
eases like cancer, as it permits the tagging and curation 
of the underlying phenotypes that are associated with 
variants described in the literature [19]. Galer et al. [20] 
used the terms defined in HPO, performed a DL-based 
semantic similarity analysis, and associated clinical fea-
tures with distinct genetic etiologies. Greene et  al. [21] 
merged HPO-coded profiles with functional gene-spe-
cific information and successfully identified several true 
gene-disease associations among a large collection of 
genome-sequenced and HPO-coded cases with rare dis-
eases. Peterson et al. [22] derived HPO-based phenotype 
descriptions from patients’ clinical notes and used DL-
based means to prioritize disease-associated patients. 
James et  al. [23] systematically integrated clinical phe-
notype data with genotype information, and leveraged 
HPO-based patient phenotype and variant data into clin-
ical variant prioritization.

In addition to data perception, the ultimate objective 
of this study is to comprehend the interrelationships 
between two distinct modalities of association informa-
tion. To achieve the goal of association inference, one 
commonly used algorithmic option is the Bayesian net-
work framework [24–26]. This framework is rooted in a 
statistical model that effectively captures and models the 
uncertainty of observations, enabling inference of the 
hidden relational dependencies within the data. With its 
Bayesian nature, a Bayesian network treats the data in the 
form of distribution and regards data relation depend-
encies as conditional probability [27]. Under a Bayesian 
framework, a Bayesian network learns the data relation-
ship, unveils the potential conditional dependencies, and 
achieves relational modeling among observations, thus 
making it a strong tool in association investigation [28]. 
Shaw and Campbell [29] used the Bayesian network to 
combine gene variation frequency with biological anno-
tations and developed a variation interpretation model. 
Dai [30] proposed IGESS, a Bayesian network framework, 

to model the distribution dependency of the p-value in 
GWAS and trait output, and improved the accuracy of 
risk variant inference. De et  al. [31] proposed a Bayes-
ian network model that aggregated inputs from multiple 
variant prioritization algorithms with genomic and clini-
cal database annotations and prioritized potentially dam-
aged genes and candidate diseases. Zhou [32] applied 
another Bayesian network framework to investigate the 
potential dependencies between GWAS summary data 
and mutation descriptors from the literature and recon-
structed the observation and their dependencies to pro-
mote the inference of gene-disease associations. By using 
the Bayesian network, all of the above works facilitated 
conditional dependency modeling in genotype-pheno-
type association studies, but they ignored the percep-
tion of the data semantics as done by DL methods, thus 
imposing a limitation on result interpretation.

Recently, there has been a trend of hybrid strategy that 
combines DL with a Bayesian network, known as Bayes-
ian deep learning (BDL), formed by a series of works 
[33–35]. Inheriting the Bayesian idea of traditional 
Bayesian neural networks (BNN), [36, 37] BDL uses the 
probabilistic graphical model (PGM) in the Bayesian 
network to model the uncertainty and relational depend-
ence among data but integrates a DL perception module 
into the probabilistic graphical model through a hinge 
variable. A general BDL framework involves a DL per-
ception module and a PGM inference module, which 
extracts high-quality semantic representations upon 
the observations and investigates the potential depend-
encies among the data. Adam [38] used a variational 
autoencoder (VAE) module to perceive a semantic rep-
resentation from the integrated omics data including 
transcriptomic and proteomic data. The observation 
representation is then input into a Bayesian network to 
assist the inference of the hidden relationships among 
the single cell and its corresponding omics data. This 
work also demonstrates an intuition that the perception 
of omics data using DL can boost the performance of 
higher-level inference and in turn, the feedback from the 
inference process also enhances the perceptual power.

All the above advances suggest that a BDL frame-
work not only perceives the data feature representation 
but also infers the hidden relationships among the data. 
Therefore, BDL encourages the effective synergy of DL 
and Bayesian network, and supports conditional depend-
ence modeling in the genotype-phenotype association 
study.

This study presents a novel Bayesian deep learn-
ing model named PheSeq, which aims to bridge the 
phenotype descriptions with association significance 
in gene-disease associations. To achieve this, PheSeq 
trains a 96-layer deep learning module to perceive the 
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phenotype descriptions in the literature and network, 
incorporates association significance within a Bayesian 
network framework, learns the inherent dependencies 
among associations through data fusion techniques, 
and ultimately discovers novel gene-disease observa-
tions. As a result, PheSeq offers an interpretable high-
level inference for novel gene-disease associations

The PheSeq model is employed in three distinct 
gene-disease association case studies. The first case 
study involves the use of GWAS summary data for AD, 
the second case study utilizes transcriptomic data for 
breast cancer (BC), and the third one employs methyla-
tion data for lung cancer (LC). We collect p-values for 
sequence analysis under three distinct cases to obtain 
association significance between gene and disease. 
Simultaneously, we collect phenotype descriptions for 
each gene-disease pair in literature and network and 
employ a computational pipeline to generate pheno-
typic embedding for the gene-disease pair. Our model, 
utilizing data fusion learning, integrates association 
information from two different modalities, resulting 
in a more comprehensive recommendation of gene-
disease associations. The findings indicate that PheSeq 
produces prioritized genes with a moderately positive 
rate when compared to traditional single sequence 
analysis. In the case of AD, the percentage of prioritized 
significant genes over background GWAS genes is 5.6%, 
which represents a substantial improvement over the 
low positive rate of 1.7% observed in the GWAS experi-
ment. Similarly, PheSeq filters 2.3% of genes in LC 
methylation data and 0.75% in BC transcriptome data, 
compared to the respective positive rates of 4.7% and 
2.7% in the conventional sequence analysis. In all three 
case studies, the top 50 prioritized genes include over 
half that is consistent with previously known gene-dis-
ease associations recorded in the DISEASES database 
[39]. In addition, it is worth noting that a significant 
proportion of prioritized genes in AD cases, specifically 
90% (45 out of 50), can be readily interpreted with sup-
porting evidence obtained from GWAS experiments or 
established databases.

The contribution of the PheSeq model is twofold. 
Firstly, it employs a data fusion strategy to improve 
the study of gene-disease associations by combining 
p-value data and phenotypic embeddings. Addition-
ally, it utilizes phenotype descriptions to interpret the 
associations. Results in case studies show that PheSeq 
obtains a moderate positive rate and high recall rate, 
benefiting from the data fusion strategy. In addition, 
The model derives a vast dataset of association evi-
dence, making it possible for the interpretation and 
exploration of gene-disease associations.

Methods
Data collection for sequence analysis, literature, 
and network data in three case studies
To investigate the efficacy and robustness of the PheSeq 
model, three diseases characterized by distinct patho-
logical features are selected as case studies. Relevant 
sequence analysis and literature data are collected for 
each of them.

The three selected diseases, along with their cor-
responding sequence analysis data, represent a broad 
spectrum of gene-pathology associations among patient 
populations. Alzheimer’s disease (AD), a prototypical 
genetic disorder, is analyzed using genome-wide associa-
tion study (GWAS) summary data to elucidate the sig-
nificance of single nucleotide polymorphisms (SNPs) in 
genetic inheritance. Breast cancer (BC), a typical cancer 
type that has been extensively studied, has comprehen-
sive and representative expression profile data for associ-
ation research. We therefore employ transcriptome data 
for sequence analysis. Additionally, the etiology of lung 
cancer (LC) is more complex, influenced by environmen-
tal factors and epigenetics. Therefore, methylation data is 
chosen as the representative sequence analysis data.

For the sequence analysis, the AD-related GWAS sum-
mary data were collected from GCST002245 [40] on the 
GWAS Catalog. The transcriptome data were generated 
using the Agilent G4502A_07_3 platform, and the meth-
ylation data from the Human Methylation 450 platform 
were retrieved from TCGA [41]. Then, the association 
significance for each gene was obtained, and the Manhat-
tan-style plot of the above results is shown in Fig. 1.

In detail, for AD, GWAS summary data were down-
loaded from summary data of the international genom-
ics of Alzheimer’s project (IGAP) [40] (https:// www. 
niaga ds. org/ datas ets/ ng000 36), which performed a two-
stage GWAS on individuals of European ancestry on 
7,055,881 SNPs, and 23 genes were proposed to include 
the AD-related SNPs. In accordance with standard con-
ventions [42], we adhered to a straightforward practice 
in retrieving genes located ± 100 kb of the SNP site by 
using Bedtools, thus assigning association significance 
to corresponding genes. For BC, the transcriptome 
data from TCGA [41] were collected (Platform: Agi-
lentG4502A_07_3), which includes 597 cancer samples 
and 64 healthy samples. The two-sample T-test was 
used to calculate the differential expression for each 
gene in the patient population and the normal popula-
tion, thus obtaining the association significance for each 
gene. For LC data, 862 samples with prognostic infor-
mation were collected from TCGA (Platform: Human-
Methylation450). A prognostic analysis was performed 
by combining the prognostic data of each patient. A 
Cox regression was performed to infer the correlation 

https://www.niagads.org/datasets/ng00036
https://www.niagads.org/datasets/ng00036
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between the methylation site and the prognostic risk, 
and the association significance for each methylation 
site was assigned to the corresponding gene. In total, 
GWAS in AD covers 18,157 genes and assigns p-value 
to each of them. Meanwhile, the count of genes in 
sequence analysis upon BC and LC is 17,374 and 24,578, 
respectively (Table 1).

To collect phenotype descriptions, disease-related lit-
erature was downloaded on a PubMed and PMC scale. 
Specifically, we gathered the full names of diseases 
(Alzheimer’s disease, breast cancer, and lung cancer) 

and their corresponding MeSH terms. After down-
loading the PMID and PMCID list, the PubTator API 
was then utilized to retrieve all available abstracts and 
full-text articles. To ensure the relevance of the litera-
ture to the diseases, keyword matching was employed 
as an additional filtering step. Specifically, we required 
that the full name or abbreviation of the disease is men-
tioned at least 3 or 5 times within the abstract or full 
text respectively. In total, 24,440 pieces of literature 
were obtained within the AD topic, mentioning 14,261 
genes. Likewise, 55,638 and 81,463 pieces of literature 

Fig. 1 Manhattan plot of sequence analysis data. a AD GWAS, depicting 18,157 genes visualized in a Manhattan plot with − log p value represented 
along a vertical line and chromosome position on the x-axis; b BC sequence analysis incorporating transcriptomic data, 17,374 genes encompassed; 
c LC sequence analysis integrating methylation data, involving 24,578 genes
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were obtained for BC and LC, covering 10,498 and 
20,460 genes, respectively (Table 1).

In addition, network data were collected to capture 
structural information of genes. Specifically, the protein-
protein interaction (PPI) network data for Homo sapiens 
were gathered from the STRING database [43], and the 
filtering of PPIs was performed by applying a confidence 
threshold of 0.7, following the guidelines provided by 
the STRING database. As a result, a PPI network with 
359,776 edges was obtained. After mapping protein IDs 
to gene Entrez ID, 15,131 unique genes were included in 
this network.

A phenotypic embedding generation pipeline
For a given gene-disease pair, a phenotypic embedding 
generation pipeline is proposed to process concept and 
sentence embeddings from literature and process graph 
embedding from network data.

When processing sentences which contain a given 
gene, we first annotate three types of phenotype descrip-
tion phrases, including biological process terms, phe-
notypic terms, and disease terms. These terms are then 
normalized by gene ontology (GO), HPO, and MeSH, 
respectively. In detail, OGER++ [44] is used to annotate 
and normalize the GO terms, PhenoTagger [45] is for 
the HPO terms, and PubTator is used for the gene and 
disease mentions. Subsequently, sentences that address 
phenotype description of the gene-disease association 
are filtered by a biomedical event extraction model [32] 
on AGAC corpus [46]. This model detects the biomedi-
cal events in texts, including molecular physiological 
activity, cell physiological activity, and interactions. Alto-
gether, concepts and sentences for each gene are encoded 
by BioBERT [47] and put into a deep neural network to 
generate concept and sentence embeddings.

When processing network that contains a specific gene, 
we locate the gene within the STRING network and then 
apply a graph embedding method. The proposed pipeline 
provides a diverse range of options for embedding com-
putation, including node2vec [48], Mashup [49], BioPlex 
3.0 [50, 51], HuRI, and drug-target network [50, 52], and 
struct2vec [53]. In the case studies, we primarily adhere 
to Yue’s guideline [54] and employ struct2vec to compute 
the graph embedding.

Finally, a dynamic meta-embedding method, proposed 
by Douwe [55], is used to compute an average weight of 
the bio-concept embedding, sentence embedding, and 
graph embedding for each association. The resulting inte-
gration of these distinct embedding modalities aims to 
enable a robust phenotypic embedding representation of 
each gene-disease association.

Furthermore, to facilitate user observation of the qual-
ity of their embedding data, the corresponding visu-
alization tools are also provided in this pipeline, and the 
details are given in the Additional file 1.

PheSeq, the proposed data fusion model
Motive of data fusion
In this section, we introduce mathematical notations to 
illustrate the motive and setting of the model.

For a given disease d, the gene-disease association 
data include p-value data Pg and embedding data Lg 
for gene g, each of which is collected from multi-omics 
sequence analysis and text/network representation learn-
ing, respectively. The left side of the figure presents asso-
ciation data from two perspectives: the Manhattan plot 
for Pg from the sequence analysis and the embedded 
semantic space plot for Lg from the embedding genera-
tion pipeline. The Manhattan plot serves as a standard 
graphical representation of the association significance 
p-values between genes and diseases in sequence analy-
sis, where the chromosome position for each g is placed 
on the x-axis, while the significance of Pg is stated as 
− log p along the y-axis. In the embedded semantic space 
plot, each point signifies the phenotypic embedding asso-
ciated with g and d. Typically, genes with similar seman-
tic associations cluster together. Both the Manhattan 
plot and the semantic space plot provide visualizations 
of two modalities of data pertaining to gene-disease 
associations.

Generally, the p-value threshold or semantic simi-
larity is applied in sequence analysis or representa-
tion learning. For example, a false discovery rate such 
as the Bonferroni or Benjamini test [56] is applied as 
a strict threshold for Pg-based significant analysis, 
while 0.05 is regarded as an empirical but less strict 
threshold, as shown in Fig.  2a. Therefore, the thresh-
old of the p-value needs to be considered in terms of 

Table 1 Data resources and the statistics of covered genes from the literature and sequence analysis

Sequence analysis Literature extraction

Gene count Data resource Gene count # of literature

AD 18,157 GWAS summary data (GCST002245) 14,261 24,440

BC 17,374 Transcriptome data (AgilentG4502A_07_3) 10,498 55,638

LC 24,578 Methylation data (HumanMethylation450) 20,460 81,463
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Fig. 2 The framework of PheSeq. a General model input in PheSeq involves p-values for association significance in sequence analysis 
and phenotypic embeddings for phenotype description from texts or graphs. The associations with p-values are graphically depicted 
in a Manhattan-style plot. A threshold line with a strict criterion (red line) or a less strict criterion (green line) is then applied. Concurrently, a DL 
perception module learns the association description of gene-disease association from text or graph. Genes exhibiting significant association 
descriptions tend to aggregate in the top-left region of the semantic space, as shown in the figure. Analogous patterns emerge in other scenarios. 
Finally, PheSeq learns the data distributions and performs data fusion for gene-disease associations. b/c Data fusion of association significance 
and phenotype description for a significant/non-significant gene-disease association by PheSeq. For each gene-disease association, two distinct 
types of observations, denote as L for phenotypic embedding and P for p-value, are considered for data fusion. Both sets of observations are 
input into the PGM inference module, facilitating the learning of dependency relationships among them in conjunction with latent variables. The 
phenotypic embedding L is initially processed through the DL perception module for semantic training, resulting in the generation of high-quality 
embeddings denoted as Z. The latent variable T serves a pivotal role in synchronizing the phenotypic embedding data with the p-value data, 
the latter adhering to a beta distribution indicative of a predisposition toward “small-p-value.” In addition, another latent variable F functions 
as an association score, establishing connnections among model parameters. Conceptually, the switch mechanism activates when both the 
association significance and phenotype description align, effectively bridging the above heterogeneous data modalities. Part c shows 
the converse situation, wherein the data indicate non-significance for the gene-disease association. In this case, a uniform distribution is employed 
to characterize the distribution of the p-value. The remaining configurations of the model remain consistent



Page 7 of 26Yao et al. Genome Medicine           (2024) 16:56  

the data congruence with the phenotype description. 
Intuitively, from a view of semantic similarity, embed-
ding data Lg with similar significant or non-significant 
association semantics is prone to forming a cluster 
in a semantic space. As illustrated in Fig.  2a, under 
the guidance of a color-coding scheme, the synergy 
and fusion of data from these two modalities can be 
observed.

Model setting
Under a BDL framework, we propose a generative 
model, PheSeq, to uncover underlying gene-disease 
associations by bridging two types of heterogeneous 
association data. The data comprise the phenotype 
description data in texts and graphs, along with associ-
ation significance data derived from sequence analysis, 
collectively unveiling associations between genes and 
diseases.

PheSeq consists of two modules, i.e., a DL module 
for the perception task and a PGM module for the 
inference task. The DL module consists of a 96-layer 
deep neural network, designed to perceive seman-
tic interpretation in texts and the network topology 
structures related to the phenotype description of 
associations. In the meantime, the PGM module mod-
els the association significance with inherent uncer-
tainty via a random variable setting and captures the 
distribution dependency among phenotype descrip-
tion and association significance. Finally, data fusion 
of the heterogeneous association data is performed in 
a BDL framework, whose inherent attribute is a gen-
erative model. This framework then generates novel 
association significance by establishing a connection 
between the two types of heterogeneous association 
data. In summary, PheSeq learns the data congruence 
of phenotype description and association significance, 
leverages the collective power of the heterogeneous 
data, and enables the inference of novel gene-disease 
associations.

PheSeq encompasses two algorithmic variations 
based on the distinction in pheotypic embedding 
input. Specifically, it includes a Static-PheSeq model 
designed for a predefined set of embedding data and 
a Dynamic-PheSeq model tailored for a set of flex-
ible and learnable embedding data. The Static-PheSeq 
model assumes that the embedding data are already 
well-learned to represent the source data, so a fixed 
deep-learned representation is fed into a Bayes-
ian network and captures the potential relations and 
dependencies among the genotype-phenotype data. 
Meanwhile, the Dynamic-PheSeq model involves both 

phenotypic embedding and p-value into a BDL frame-
work, and the embedding data and all the PGM param-
eters are adjusted dynamically.

Embedding computation and p‑value modeling 
for gene‑disease association
In the DL perception module, a neural network Vθ (·) 
is introduced to perceive the association description 
and learn a semantic representation. In the Static-Phe-
Seq model, Vθ (·) is implemented by the BioBERT deep 
network to generate a fixed representation. Instead, 
Vθ (·) is implemented by a VAE neural network in the 
Dynamic-PheSeq.

To model the gene-disease association, two latent vari-
ables are imported into the PGM inference module. First, 
a latent variable F = {Fg } represents the score of the gene-
disease association and follows the beta distribution with 
ag and bg as parameters, i.e., Fg ∼ Beta(ag , bg ) . Another 
latent variable T = {Tg } ∼ Bernoulli(Fg ) plays a “switch” 
role in synchronizing the heterogeneous association data. 
It takes a binary value, where 1 indicates a g-d association 
(as shown in Fig. 2b) and 0 indicates a non-association (as 
shown in Fig. 2c).

Modeling the uncertainty and prior of the p-value has 
long been a research issue [57, 58]. Parker and Rothenberg 
[59] found that any distribution on the interval [0, 1] can 
be modeled as a mixture of individual beta distributions. 
Allison [60] chose a standard two-parameter beta distribu-
tion for the p-value as it allows for the flexible modeling of 
shapes on the unit interval and demonstrated its effective-
ness in p-value from microarray data. Xiang [61] further 
justified the precision of the parameter estimated obtained 
by fitting a mixture beta-uniform distribution to a p-value 
distribution. Hu [62] presented empirical evidence that 
a standard beta distribution can accurately capture the 
shape of the true density of the p-value. Zhou [32] adopted 
a beta-uniform approximation approach within the Bayes-
ian network framework to approximate the actual p-value 
obtained from GWAS.

Therefore, in the PheSeq model, a mixture beta-uniform 
distribution is selected as the prior of p-value and we 
assume

When the switch is on ( Tg = 1 ), Pg follows a beta distri-
bution, Beta(αg , 1) . Here, αg is generated by � and prone 
to be close to zero, thus leading to a significant associa-
tion between gene g and disease. Conversely, when the 
switch is off ( Tg = 0 ), Pg follows a uniform distribution 
of U(0, 1) and makes it a high chance to sample a less sig-
nificant p-value.

Pg ∼ TgBeta(αg , 1)+ (1− Tg )U(0, 1).
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In summary, all the variables used in PheSeq are:

The BDL framework for Static‑PheSeq model solving
In the view of the generative model, the optimization goal 
of Static-PheSeq is to maximize the log-likelihood of the 
p-value and random variables conditioned on phenotype 
descriptions. Since the DL module is fixed in Static-Phe-
Seq when tuning the PGM module, it is straightforward 
to obtain the parameter iterations via the standard maxi-
mum likelihood estimate (MLE) computation.

Based on the distribution dependencies provided in 
Fig. 2b and c, the logarithm of the joint probability equals to

Considering the variational sampling of the latent 
variable, the expectation of the logarithm of the 
joint pdf, L(�) = Eq(T ,F)[log p(P,T , F |Z,�)] , is 
set as the loss function. A Monte Carlo estima-
tion leads to LMC(�) = log p(P,T ∗, F∗

|Z,�) , where 
T ∗, F∗

∼ q∗(T , F) . As ∇�L(�) ≈ ∇�LMC(�) , the noisy 
estimate of the gradient with respect to the neural net-
work parameters, � , is

The gradient computation leads to the optimization 
iteration in MLE. Here, �(x) = Ŵ′(x)/Ŵ(x) is the dig-
amma function. Eventually, a gradient ascent iteration, 
�(t+1)

= �(t)
+ η∇�L(�) , is adopted, where η is the 

learning rate.
In Static-PheSeq, the model parameters are mainly 

derived by formula (2). The iteration ends when these 
parameters achieve convergence. The implementation 
of Static-PheSeq is concluded in Algorithm  1, “MLE 
for Static-PheSeq,” and the complete proof is given in 
Additional file 2. The effectiveness of the model is then 
evaluated in the selected case studies.







Obs: Z = {Zg },P = {Pg }, g = 1, · · · ,G,

Latent variables: F = {Fg },T = {Tg }, g = 1, · · · ,G,
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�
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(2)

∇φLMC(φ) =
G
�

g=1

(∇αg
∂αg
∂φ

+∇ag
∂ag
∂φ

+ ∇bg
∂bg
∂φ

),

where














∇αg = T ∗

g (log Pg +
1
αg
),

∇ag =
Ŵ(ag+bg )�(ag+bg )−Ŵ(ag+bg )�(ag )

Ŵ(ag+bg )
+ log F∗

g ,

∇bg =
Ŵ(ag+bg )�(ag+bg )−Ŵ(ag+bg )�(bg )

Ŵ(ag+bg )
+ log(1− F∗

g ).

The BDL framework for Dynamic‑PheSeq model solving
Compared with Static-PheSeq, the main difference in 
Dynamic-PheSeq is the importing of the learnable embed-
ding data Zg , which is encoded by the description data Lg 
in a variational autoencoder (VAE) framework. It should 
be noted that the model parameters, a and b, are relevant 
to the input learned embedding Z and the neural network 
with parameter � , thus denoting it as a(�,Z) and b(�,Z) , 
respectively.

Since Zg and Pg need to be learned jointly in 
Dynamic-Pheseq, a maximum a posteriori (MAP) esti-
mation and MLE for Bayesian network optimization 
are applied in the model solving. Here, the optimiza-
tion goal is to maximize the evidence lower bound 
(ELBO), which is obtained by computing the expecta-
tion of the logarithm of evidence, w.r.t. posterior of all 
latent variables, i.e.,

where, qθ (Zg |Lg ) denotes an approximation for the poste-
rior pdf of embedding Zg generated from the DL percep-
tion module, and KL(·�·) refers to the Kullback-Leibler 
divergence between two pdfs.

Subsequently, MAP with respect to qθ (Zg |Lg ) is 
applied to maximize the objective for {Fg } , where 
θ = {w

{1...L}, b{1...L}} is the parameters of the DL neural net-
work, and wl and bl are the weight and bias of the lth layer, 
respectively.

By using the block coordinate ascent, direct 
computation yields the iteration formula for Fg , 
i.e.,  Fg ← (Tg + ag − 1)/(ag + bg − 1) . Considering only 
the terms related to Zg , the Monte Carlo estimation is used 
to simplify the expectation calculation.

where Z(n)
g = µg + σg + ε

(n)
g  , and ε(n)g ∼ N (0, IK ) , and 

{1, 2, · · · ,N } is the index for Monte Carlo sampling.
Given a fixed Fg in the PGM, the gradient computation 

with respect to µg and σg suffices to optimize the DL per-
ception module.

L(q) = Eq[log p(P|T )+ log p(T |F)+ log p(F |Z)

+ log pθ (L|Z)] −KL(qθ (Z|L)�P(Z))

− Eq[log q(F)] − Eq[log q(T )],

LMAP(Fg ,Tg ,�, θ)
= Tg (log αg + (αg − 1) log Pg )+ Tg log Fg + (1− Tg )

· log(1− Fg )+ log Ŵ(ai+bi)
Ŵ(ai)Ŵ(bi)

+ (ag − 1) log Fg + (bg
−1) log(1− Fg )+ Eqθ (Zg |Lg )[log p(Lg |Zg )] −KL

(qθ (Zg |Lg )�p(Zg )))−
�w
2

L
l=1(�Wl�

2
F + �bl |

2
2).

˜L(�, θ;Zg ) =
1

N

N
∑

n=1

[log pθ (Lg |Z
(n)
g )+ log p(Fg |Z

(n)
g )]

−KL(qθ (Zg |Lg )�P(Zg )),
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From (3), optimization of the weights and bias in DL per-
ception modules is performed through a conventional 
backpropagation process. The gradient ascent iteration, 
µ
(t+1)
g = µ

(t)
g + η∇µg L(�, θ;Zg ) and σ (t+1)

g = σ
(t)
g + η∇σg L(�, θ;Zg ) , 

is applied, where η is the learning rate.
A prerequisite of MLE computation is to compute the 

joint probability of all observations and latent variables 
conditioning on parameters set, � . From the graphical 
model in Fig. 2b and c, we have the logarithm of the joint 
probability

Similar to Static-PheSeq, the expectation of the loga-
rithm of the joint probability w.r.t. posterior distribution 
of the latent variables is set up as the loss function, i.e., 
L(�) = Eq(T ,F)[log p(P,T , F ,Z, L|�)]

The gradient computation w.r.t. � considers the 
back-propagation flows through the model parameters 
a, b, and α , and the iteration formula is the same as the 
Static-PheSeq in (2). The implementation of Dynamic-
PheSeq is concluded in Algorithm  2, “MAP-MLE for 
Dynamic-PheSeq,” and the complete proof is given in 
Additional file 2.

Results
The results section is organized based on the follow-
ing logic. Firstly, we present the obtained association 
significance data and phenotype description data for 
three different case studies, visualizing the distribu-
tion consistency required for data fusion. Secondly, we 
evaluate the data fusion results of the PheSeq model, 
including its performance on the reference dataset DIS-
EASES [39] and a quantitative comparison analysis with 
results obtained from a single sequence analysis method. 

(3)







































∇µg
˜L(�, θ;Zg ) =

1
N

N
�

n=1

[∇µg log pθ (Lg |Z
(n)
g )

+∇µg log p(Fg |Z
(n)
g )] − µg ,

∇σg
˜L(�, θ;Zg ) =

1
N

N
�

n=1

[∇σg log pθ (Lg |Z
(n)
g )

+∇σg log p(Fg |Z
(n)
g )] +

K (1−σg )

2σg
.

(4)

log p(P,T , F ,Z, L|�)

= log
∏G

g=1
p(Pg ,Tg , Fg ,Zg , Lg |�)

=

∑G

g=1
[Tg log αg + Tg

(

αg − 1
)

log Pg

+

(

Tg + ag − 1
)

log Fg +
(

bg − Tg

)

log
(

1− Fg
)

+ log
Ŵ
(

ag + bg
)

Ŵ
(

ag
)

Ŵ
(

bg
) + log pθ (Lg |Zg )+ log p(Zg )].

Subsequently, we provide an overall comparative obser-
vation of the predictions of PheSeq and a single sequence 
analysis method. Following that, we analyze the positive 
impact imposed by phenotype description in the PheSeq 
model. Subsequently, considering that PheSeq incor-
porates prior knowledge from the literature, we design 
ablation study to assess PheSeq’s predictive capability by 
removing prior knowledge. Simultaneously, we conduct 
a horizontal comparison between PheSeq and several 
other data fusion methods, comparing the differences in 
data modalities and data integration strategies. Finally, 
we develop a phenotype description network to exem-
plify and showcase the results.

Data visualization for association significance 
and phenotype description
In the context of three distinct case studies, a total of 
24,440 AD-related literature, 55,638 BC-related litera-
ture, and 81,463 LC-related literature are fed into the 
phenotypic embedding generation pipeline. This yields 
18,157 gene-AD pairs, 17,374 gene-BC pairs, and 24,578 
gene-LC pairs, respectively. We visually represent these 
associations within the cubic grid in the graphical pres-
entation in Fig.  3. Leveraging the inherent principles of 
semantic computation, gene-disease pairs with similar 
phenotypic descriptions are anticipated to exhibit prox-
imity within this embedding space.

To observe the data congruence of the phenotypic 
embedding and p-value from sequence analysis, we 
employ a color-coding scheme to visualize the congru-
ence in the distribution of two distinct modalities of data. 
Here, each gene is colored in a gradient ranging from red 
to blue, with color intensity denotes the level of statisti-
cal significance associated with the p-value of the corre-
sponding gene.

In this figure, the congruence in data distribution 
between association significance and phenotype descrip-
tion is readily discernible through distinct data parti-
tioning and segmentation. Specifically, genes exhibiting 
significant p-values (depicted as red dots) tend to dis-
perse across the outer regions of the 3-D manifold space 
along the manifold path. Conversely, genes with non-sig-
nificant p-values (represented by green-blue dots) mani-
fest discernible partitioning and segmentation along a 
distinct direction within the manifold space.

In summary, the significance of p-values aligns with 
the clustering trend observed in phenotypic embedding. 
This suggests the potential and rationale for merging 
embedding data with significant p-values to prioritize 
disease-related genes. Furthermore, this fusion-based 
approach has the potential to deepen our understanding 
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of gene-disease associations with the aid of phenotype 
descriptions.

Evaluation of the predicted genes by PheSeq
After feeding the association significance data and phe-
notype description data into the PheSeq model in AD, 
BC, and LC cases, model iterations ran data fusion pro-
cesses and generated new p-values for gene-disease 
associations. Upon the generation of the association 
significance for each gene after PheSeq implementation, 
abundant novel gene-disease associations were subse-
quently suggested.

Comparison of prioritized genes by PheSeq and sequence 
analysis methods
As illustrated in Table 2, the number of genes predicted 
by the PheSeq model for AD is 1024. This accounts for 
5.6% of the 18,157 background GWAS genes, thereby 
establishing a moderate ratio when compared to the low 
positive rate of 1.7% obtained from the GWAS experi-
ment. Similarly, the PheSeq model prioritizes 818 BC 
genes with a positive rate of 4.7%, which is compara-
tively higher than the positive rate of 2.7% obtained 
from the transcriptome experiment utilizing Agi-
lentG4502A_07_3. Furthermore, 566 genes are prior-
itized for LC, and the resulting positive rate of 2.3% is 
significantly higher than the positive rate of 0.75% in the 
methylation experiment with Human Methylation 450.

PheSeq yields newly predicted genes for the associa-
tion study, of which, a good portion are overlapped ones 
with single sequence analysis, and the rest are newly 
recalled ones. In summary, for AD, 236 genes out of 1024 

prioritized genes overlap with the GWAS experiment. 
Similarly, 68 out of 566 genes in LC and 347 out of 818 
genes in BC overlap with the methylation experiment 
and transcriptome experiment, respectively. Further-
more, PheSeq recalls 768, 471, and 498 novel significant 
genes for AD, BC, and LC, respectively.

Evaluation by the benchmark dataset
To evaluate the prioritization result, a benchmark data-
base, DISEASES [39], is referenced, which integrates 
36,448 gene-disease associations from three resources 
with increasing reliability, i.e., “Text mining,” “Experi-
ments,” and “Knowledge.” Among them, the “Text min-
ing” results are retrieved by text co-occurrence, and 
“Experiments” collect GWAS databases like target illu-
mination GWAS analytics (TIGA), Catalogue of Somatic 
Mutations in Cancer (COSMIC), and DistiLD, while 
the “Knowledge” results involve general gene-disease 
association databases like AmyCo, MedlinePlus, and 
UniProtKB.

Fig. 3 View of data congruence in three case studies. a 3-D semantic representation of AD genes; b BC genes with 3-D representation; c LC genes 
with 3-D representation. With the color gradient representing the significance level by a single sequence analysis, genes after the phenotypic 
embedding computation are projected onto a 3-D semantic space. Intuitively, the significant and less significant disease-associated genes are 
distinguished along the manifold direction based on their phenotypic embeddings. The observation suggests the high data quality of association 
significance and phenotype description, which supports the subsequent data fusion

Table 2 Gene-disease association discovery in the case studies 
via PheSeq and sequence analysis

Significant genes by 
PheSeq

Significant genes by 
sequence analysis

# Genes 
overlapped

# Gene Ratio # Gene Ratio

AD 1,024 1,024
18,157

= 5.6% 311 311
18,157

= 1.7% 236

BC 818 818
17,374

= 4.7% 470 470
17,374

= 2.7% 347

LC 566 566
24,578

= 2.3% 184 184
24,578

= 0.75% 68
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In AD, three mutually overlapping sources in DIS-
EASES, Text mining, Experiment, and Knowledge, 
encompass 315, 339, and 26 significant genes, respec-
tively, corresponding to 624 AD genes in total. Among 
these, PheSeq achieves 128, 48, and 17 gene hits in the 
three sources, respectively, contributing to 151 signifi-
cant AD genes in total. The result reveals a relatively 
higher recall rate, i.e., 17/26, in the Knowledge source, 
lower in the Experiment source (48/339), and intermedi-
ate in the Text mining source (128/315).

The recall rate in BC and LC is higher than that in 
AD. In BC, the three sources contain 176, 344, and 29 
LC genes, contributing to 533 LC genes. The recall rate 
for each source is 72/176, 73/344, and 19/29. The over-
all recall rate is 159/533, whereas in LC, the overall recall 
rate is 342/669. PheSeq hit 119 out of 297 genes in the 
Text mining source, 239 out of 391 genes in the Experi-
ment source, and 21 out of 25 genes in the Knowledge 
source. In brief, though it still misses many hits in DIS-
EASES, PheSeq obtains a reasonable recall rate.

By observing the Top 50 genes prioritized by PheSeq 
(Fig. 4), it is concluded that over half of them have been 
recorded in the DISEASES database, of which 26/50 for 
AD, 33/50 for BC, and 36/50 for LC. The high coverage 
reveals that PheSeq well replicates the associations in 
the benchmark database. In comparison, the record of 
significant genes by sequence analysis is relatively scarce 
within the top 50. It is noted that DISEASES covers a 
good portion of the significant genes by sequence analy-
sis. Among 311 significant AD genes through sequence 
analysis, 233 are encompassed in the DISEASES data-
base. In the cases of sequence analysis experiments for 
BC and LC, 424 out of 470 significant BC genes and 137 
out of 184 significant LC genes are cataloged in the DIS-
EASES database.

Interestingly, PheSeq replicates the associations in the 
three DISEASES resources with different coverage rates. 
Among them, 24 genes in the AD prediction have been 
recorded in the “Text mining” part, while the number 
for BC and LC is 20 and 10. Comparatively, LC obtains 

Fig. 4 The top prioritized genes from PheSeq and sequence analysis in the DISEASES database. The hits plot and cumulative charts in DISEASES 
serve to compare the recall rate of PheSeq and sequence analysis methods
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higher recall in the “Experiments” part. The results 
also suggest that it is hard for a single source of data to 
recover gene-disease associations, and PheSeq is capable 
of fusing the heterogeneous data to achieve better data 
comprehension.

Investigation of top prioritized AD‑associated genes
Taking AD as an example, the top 5 genes with and 
without GWAS supports are investigated. Being the 
Top 5, MAPT, PSEN1, APP, APOE, and GRN are known 
vital ones in the AD pathological hypothesis. In detail, 
MAPT encodes the Tau protein, and its hyper-phos-
phorylation forms the neurogenic fiber tangles in neu-
rons and leads to neuronal apoptosis [63]. Moreover, 
mutations in PSEN1 and PSEN2 have an impact on an 
APP-cleaving enzyme, γ-secretase, thus regulating APP 
expression. Meanwhile, the accumulation of Abeta, 
an APP-encoded protein, forms the fibrillar amyloid 
plaques in the brain and impairs the ability of spatial 
learning and memory, which is a known direct cause of 
AD [64]. Being the most widely studied AD-associated 
gene, APOE is known to cause neuro-inflammation 
among AD patients by affecting the microglia [65]. 
In addition, GRN is a causal gene for frontotemporal 
dementia, a neurodegenerative disease [66].

Investigation of the top 50 genes leads to a discovery 
that a good trade-off leverages association significance 
and phenotype description and helps to infer the poten-
tial associations. First, 24 out of 50 prioritized Phe-
Seq genes pass the IGAP GWAS significant test. They 
both carry significant p-values and supportive seman-
tic evidence. For example, TREM106B, with a signifi-
cant p-value of 9.53E−14, wins 50 hits in the literature. 
In addition, 18 out of 50 prioritized genes pass the sig-
nificant test in the GWAS dataset EFO_0000249. Among 
them are GRN, TMEM106B, SPI1, CR1, and PICALM 
from GCST90044699; SORL1 and SQSTM1 from 
GCST002245; CLU and ABCA7 from GCST90012877; 
MAPT from GCST90038452; APP from GCST012182; 
APOE from GCST009019; TREM2 from GCST005549; 
TTR from GCST007319; FUS from GCST007320; 
TOMM40 from GCST000682; BIN1 from GCST005922; 
and ACE from GCST90013835.

Second, for the rest of the 32 genes that do not exist in 
the GWAS Catalog, 4 of them are included in the known 
database. In detail, PSEN1 and PSEN2 are both in Uni-
ProtKB and MedlinePlus, while SNCA and CSK3B are 
in UniProtKB. Eventually, for the 28 genes that are not 
reported by GWAS or known databases, 23 of them are 
suggested to be AD-related with confirmed phenotype 
description.

To compare the global prioritization results between 
PheSeq and sequence analysis, a cumulative chart for 

database hits for the top 50 filtered genes is given in 
Fig. 5b.

Overall, the results suggest that the PheSeq model 
effectively leverages the synergy among heterogeneous 
association data, alleviating the limitations of using sin-
gle-source association significance data.

Genes with significance in PheSeq and single‑omics 
sequence analysis: a comparative observation
It is noted that the sequence analysis used in compara-
tive experiments may introduce errors, particularly when 
considering the inherent instability of results obtained 
from single-omics sequence analyses. Consequently, the 
sequence analysis unavoidably overlooks certain known 
significant associations and may erroneously produce 
false positive results. PheSeq, on the other hand, aims to 
reduce the error by data fusion. Therefore, a comparative 
analysis is performed for both types of experiments.

To display and further investigate each overlapping and 
recalled gene by considering its significance value both 
on PheSeq and the sequence analysis, − log p plots for all 
significant genes in AD, BC, and LC are given in Fig. 5. 
In this figure, the horizontal − log p axis refers to the 
association significance obtained by sequence analysis, 
while the vertical − log p axis corresponds to the gener-
ated p-value by PheSeq. In addition, the size of the circle 
for each gene reflects the count of the phenotype descrip-
tions related to the gene (Fig. 5a).

Intuitively, these figures offer a means by which to 
investigate the genes with overlapped significance both in 
sequence analysis and phenotype description. In particu-
lar, the plot is separated into sections by threshold lines. 
The genes with overlapped significance genes are located 
in the top right corner of the plot, which pass the sig-
nificance test in sequence analysis and in the meantime 
carry sufficient association semantics. Meanwhile, the 
newly reported significant genes by PheSeq are located in 
the top left section of the plot, which may show less or 
limited significance in sequence analysis.

In the context of AD, genes with overlapping asso-
ciations, including APOE, GRN, LRRK2, and SPI1, are 
visually presented in the top right corner (Fig.  5b), all 
of which pass the significance test in GWAS and pos-
sess sufficient AD-relevance association semantic by 
PheSeq. Furthermore, genes with less significance in the 
sequence analysis, e.g., PSEN1, SOD1, MAPT, C9orf72, 
and PSEN2, are displayed in the top left section. Among 
the four, PSEN1 and PSEN2 are known AD-related genes, 
reported in AlzGene [67], while C9orf72 and SOD1 are 
known to be relevant to neurogenetic disease and possess 
AD-relevant literature support in GeneCards [68].

In BC, overlapped genes, such as SFRP1, HOXA4, and 
OSR1 genes, are clearly displayed (Fig. 5c). The location 
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of these genes in the figures show that these genes pos-
sess both significance in sequence analysis and PheSeq. 
Again, we are focusing on the recalled genes by PheSeq. 
Here, PheSeq recalled less significant genes in sequence 
analysis such as NEU1, ZAP70, EIF2S2, ZNRF3, and 
CLIC1, while all of which possess strong significance in 

PheSeq. The literature review as well shows the relevance 
of BC to these genes, e.g., NEU1 [69], ZAP70 [70], EIF2S2 
[71], ZNRF3 [72], and CLIC1 [73].

Similar observations are carried on for LC, where 
overlapped genes such as MIR6129, OVAAL, MTOR-
AS1, and LINC0269 are displayed in the top right 

Fig. 5 The − log p plots of overlapping and recalled genes after applying PheSeq and sequence analysis in AD, BC, and LC. a Layout of the − log p 
plot. The x-axis and y-axis denote the − log p value from the sequence analysis and the PheSeq model respectively. The red line refers to a strict 
threshold line such as Benjamini FDR in our case, and the green line refers to a less strict threshold line such as − log 0.005 in our case. Genes are 
labeled when overlapped in PheSeq and sequence analysis or recalled by PheSeq. b The − log p plot of significance for both PheSeq and sequence 
analysis in AD. Five genes are marked in red, i.e., MAPT, PSEN1, C9orf72, SOD1, and PSEN2. All of them are PheSeq recalled genes, which obtain high 
significance in PheSeq but obtain less or limited significance in GWAS. c The − log p plot in BC. Five PheSeq recalled genes are chosen and marked 
in red, i.e., NEU1, ZAP70, EIF2S2, ZNRF3, and CLIC11. These genes obtain comparatively higher significance in PheSeq than that in sequence analysis. 
d The − log p plot in LC. The five marked genes are UGT2B15, VPS33B, ATAD5, GNAT2, and SPPL3. All five genes show strong significance in PheSeq 
but limited significance in sequence analysis
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corner of Fig.  5d. Meanwhile, the top left part of the 
figure indicates PheSeq-recalled genes. The literature 
review again shows the relevance of LC to these genes, 
e.g., UGT2B15 [74], VPS33B [75], ATAD5 [76], GNAT2 
[68], and SPPL3 [77].

In conclusion, association study results obtained by 
PheSeq and a single sequence analysis can be simulta-
neously observed by the above figures. In addition, this 
figure enables specific investigation on overlapped genes 
or newly recalled genes by PheSeq after data fusion. The 
analysis in the three cases suggests that the genes recalled 
by Pheseq may not be directly associated with the target 
disease, but they with a high chance exhibit relevance via 
database or literature review.

Impact of phenotype description on PheSeq 
with association interpretability
PheSeq incorporates rich semantic information within 
its data fusion framework, and it leverages the synergy 
between the sequence analysis and association descrip-
tions. As a result, PheSeq retrieves a vast dataset of phe-
notype sentences and bio-concepts for interpreting the 
prioritized gene-disease association. In summary, 14,084 
phenotype sentences are utilized by PheSeq to support 
1024 prioritized genes in AD. With an average of 13 phe-
notype sentences per gene, this dataset includes 1849 
GO terms and 1351 HPO terms. In BC and LC, 2250 
and 10,440 phenotype sentences are obtained, respec-
tively, with each gene associated with an average of 9 
and 10 phenotype sentences. More details on the valida-
tion of embedding quality, and the statistic of phenotype 
description are provided in Additional file 3.

Actually, the PheSeq model prioritizes the gene-dis-
ease associations by perceiving corresponding descrip-
tion descriptions. As per observation, genes recalled by 
PheSeq generally possess pertinent phenotype descrip-
tions. Taking MAPT in AD as an example, it is known to 
be relevant to the etiology of AD by the widely accepted 
Tau protein hypothesis, although it fails to pass the 
significance test in GWAS. As can be observed from 
Table  3, the most frequently cited phenotype descrip-
tions related to MAPT include “Neurofibrillary tangles” 
(HP:0002185), “Hyperphosphorylation” (GO:0048151), 
“Cognitive impairment” (0100543), “Microtubule bind-
ing” (GO:0008017), “Long-term synaptic potentia-
tion” (GO:0060291), and “Microtubule polymerization 
potentiation” (GO:0046784). According to the Tau 
protein hypothesis, hyperphosphorylation of the Tau 
protein leads to its aggregation, ultimately disrupting 
microtubule stability and resulting in the formation of 
neurofibrillary tangles―a hallmark pathological fea-
ture of AD. The observation shows that the top ranked 

associated phenotype descriptions are highly relevant 
and supportive for the MAPT-AD association.

We further investigated four such genes, namely 
PSEN1, c9orf72, SOD1, and PSEN2, all of which dis-
played robust significance in PheSeq, despite exhibiting 
less or limited significance in sequence analysis.

Table 3 presents examples and statistics of the pheno-
type descriptions including bio-concepts and sentences. 
Except for C9orf72, the rest of them are all recalled ones 
by PheSeq. Here, frequently mentioned bio-concepts 
include “Senile plaques” (HP:0100256), “Neurofibril-
lary tangles” (HP:0002185), “Hippocampal atrophy” 
(HP:0410170), “Abnormality of mitochondrial metabo-
lism” (HP:0003287), and “Inflammatory response” (GO: 
0006954). These phenotype descriptions are known to be 
relevant to AD, thus suggesting a potential gene list for 
further AD-gene association investigations.

Similarly, an inquiry is undertaken regarding NEU1, 
ZAP70, EIF2S2, ZNRF3, and CLIC1 in BC. Remarkably, 
these genes exhibit significant importance in PheSeq 
analysis, despite showing relatively modest significance 
in sequence analysis.

In accordance with the aforementioned observations in 
the AD case, phenotype descriptions with high associa-
tion relevance are derived. Specifically, bio-concepts such 
as “Angiogenesis” (GO:00001525), “Cytokine produc-
tion” (GO:0001816), “Epidermal growth factor-activated 
receptor activity” (GO:0005006), “Aldehyde dehydroge-
nase [NAD(P)+] activity” (GO:0004030), and “Wnt sign-
aling pathway” (GO:0016055) are frequently mentioned.

Meanwhile, UGT2B15, VPS33B, ATAD5, GNAT2, 
and SPPL3 exhibit a significant impact on PheSeq in LC 
and win corresponding literature support [68, 74–77], 
despite not meeting the reference threshold in sequence 
analysis. Consistent with previous observations in AD 
and BC cases, these genes are commonly associated with 
LC-relevant phenotypes, including “Low-density lipopro-
tein particle receptor activity” (GO:0005041), “Fibroblast 
growth factor-activated receptor activity” (GO:0005007), 
“GDP-dissociation inhibitor activity” (GO:0005092), 
“Goodpasture-antigen-binding protein kinase activity” 
(GO:0033868), and “Transforming growth factor beta 
receptor binding” (GO:0005160).

In summary, these results indicate that PheSeq under-
scores the disease-specific phenotype descriptions and 
incorporate them with sequence analysis significance. 
Remarkably, PheSeq holds particular importance in situ-
ations where a single sequence analysis may elicit system-
atic bias and flawed predictions of crucial genes. In such 
instances, PheSeq serves as an effective tool for establish-
ing a connection between phenotype descriptions and 
association significance in sequence analysis and helps to 
recall the significant genes.
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Table 3 Associated phenotypes for PheSeq recalled genes

Gene Significant 
in PheSeq

Significant in  SAa # of phenotype Phenotype ID Phenotype term # of citation

Alzheimer’s disease

    MAPT Strict Less 118 HP:0002185 Neurofibrillary tangles 202

GO:0048151 Hyperphosphorylation 105

HP:0100543 Cognitive impairment 69

GO:0008017 Microtubule binding 24

GO:0060291 Long-term synaptic potentiation 21

GO:0046785 Microtubule polymerization potentiation 15

    PSEN1 Strict Less 121 HP:0011034 Amyloidosis 102

GO:0016310 Phosphorylation 55

GO:0016236 Macroautophagy 51

GO:0060291 Long-term synaptic potentiation 32

HP:0002185 Neurofibrillary tangles 21

HP:0100256 Senile plaques 19

    C9orf72 Strict Limited 128 GO:0008384 IkappaB kinase activity 26

GO:0004784 Superoxide dismutase activity 17

GO:0003777 Microtubule motor activity 14

HP:0410170 Hippocampal atrophy 13

HP:0007112 Temporal cortical atrophy 11

HP:0002354 Memory impairment 6

    SOD1 Strict Less 84 GO:0004784 Superoxide dismutase activity 153

HP:0007373 Motor neuron atrophy 48

HP:0003287 Abnormality of mitochondrial metabolism 20

GO:0000422 Autophagy of mitochondria 19

GO:0003777 Microtubule motor activity 15

    PSEN2 Strict Less 84 GO:0042982 Amyloid precursor protein metabolic process 88

GO:0006954 Inflammatory response 78

HP:0100256 Senile plaques 73

GO:0060291 Long-term synaptic potentiation 65

HP:0002529 Neuronal loss in central nervous system 32

Breast cancer

    NEU1 Strict Less 67 GO:0001525 Angiogenesis 87

GO:0001837 Epithelial to mesenchymal transition 77

GO:0006915 Apoptotic process 43

GO:0007155 Cell adhesion 26

GO:0012501 Programmed cell death 24

    ZAP70 Strict Limited 74 GO:0001816 Cytokine production 146

GO:0002870 T cell anergy 78

GO:0012501 Programmed cell death 43

GO:0008283 Cell population proliferation 24

GO:0042110 T cell activation 24

    EIF2S2 Strict Less 34 GO:0004030 Aldehyde dehydrogenase [NAD(P)+] activity 155

GO:0007049 Cell cycle 112

GO:0042571 Immunoglobulin complex, circulating 56

GO:0019815 B Cell receptor complex 46

GO:0005850 Eukaryotic translation initiation factor 2 complex 43
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Table 3 (continued)

Gene Significant 
in PheSeq

Significant in  SAa # of phenotype Phenotype ID Phenotype term # of citation

    ZNRF3 Strict Limited 32 GO:0001837 Epithelial to mesenchymal transition 96

GO:0004693 Cyclin-dependent protein serine/threonine kinase 
activity

38

GO:0016055 Wnt signaling pathway 37

GO:0044214 Spanning component of plasma membrane 32

GO:0008283 Cell population proliferation 12

    CLIC1 Strict Less 57 GO:0005161 Platelet-derived growth factor receptor binding 53

GO:0001837 Epithelial to mesenchymal transition 38

GO:0005006 Epidermal growth factor-activated receptor 
activity

51

GO:0005104 Fibroblast growth factor receptor binding 37

GO:0005172 Vascular endothelial growth factor receptor 
binding

31

Lung Cancer

    UGT2B15 Strict Limited 63 GO:0004707 MAP kinase activity 155

GO:0005041 Low-density lipoprotein particle receptor activity 91

GO:0005007 Fibroblast growth factor-activated receptor 
activity

82

GO:0005104 Fibroblast growth factor receptor binding 82

GO:0005172 Vascular endothelial growth factor receptor 
binding

65

    VPS33B Strict Limited 30 GO:0001837 Epithelial to mesenchymal transition 147

GO:0005006 Epidermal growth factor-activated receptor 
activity

51

GO:0016192 Vesicle-mediated transport 42

HP:0100630 Nasopharyngeal 39

GO:0005092 GDP-dissociation inhibitor activity 12

    ATAD5 Strict Limited 29 GO:0072671 Mito-associated ubiquitin-dependent protein 
catabolic process

50

GO:0005007 Fibroblast growth factor-activated receptor 
activity

47

GO:0005011 Macrophage colony-stimulating factor receptor 
activity

45

GO:0008384 IkappaB kinase activity 31

GO:0033868 Goodpasture-antigen-binding protein kinase 
activity

21

    GNAT2 Strict Limited 28 GO:0005680 Anaphase-promoting complex 111

GO:0001532 Interleukin-21 receptor activity 67

GO:0033868 Goodpasture-antigen-binding protein kinase 
activity

63

GO:0072671 Mito-associated ubiquitin-dependent protein 
catabolic process

54

GO:0004709 MAP kinase activity tangles 21

    SPPL3 Strict Limited 28 GO:0001837 Epithelial to mesenchymal transition 76

GO:0005104 Fibroblast growth factor receptor binding 65

GO:0005149 Interleukin-1 receptor binding 32

GO:0005160 Transforming growth factor beta receptor binding 26

GO:0005164 Tumor necrosis factor receptor binding 12
a SA Sequence analysis
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Impact of prior knowledge on PheSeq with association 
prediction: an ablation study
In the aforementioned analysis, we compare the perfor-
mance of PheSeq with that of a single sequence analysis 
in three distinct case studies. It is essential to note that, 
as a data fusion method, PheSeq inherently incorporates 
prior knowledge from literature and networks. Conse-
quently, PheSeq is a model integrating prior knowledge 
and holds an inherent advantage over conventional 
sequence analysis models. In this section, we conduct 
an ablation study to evaluate how prior knowledge is 
incorporated into the PheSeq model. We systematically 
remove specific prior information and rerun the entire 
prediction process to assess the impact accordingly.

Based on the publication dates of omics data, we 
exclude all literature data beyond those time points. 
Specifically, for AD, the literature cutoff date is set at 
October 27, 2013. Correspondingly, for BC and LC, the 
respective dates are January 28, 2016. Consequently, this 
approach results in a significant compression of the prior 
knowledge derived from the literature. In the original 
experiments, the literature on AD covers 14,261 genes; 
however, with the cutoff set on October 27, 2013, only 
1017 genes are now covered. In the case of BC, the gene 
coverage decreases from 10,498 to 3,399, and in LC, the 
reduction rate is greater, dropping from 20,460 to 749 
genes.

PheSeq in the ablation setting predicts 391 significant 
genes associated with AD, 1398 significant genes asso-
ciated with BC, and 172 ones with LC. Despite the rela-
tively limited inclusion of prior literature knowledge for 
these genes, the results in Table 4 clearly demonstrate two 
patterns. First, predicted significant genes typically carry 
a higher proportion of literature knowledge. For instance, 
among the 391 key AD genes, each gene, on average, pos-
sesses 21.17 literature references, 31.80 pieces of related 
sentence evidence, and 11.54 core concepts, whereas in 
the corresponding non-significant genes, these values are 

only 2.32, 3.28, and 2.90, respectively. Second, due to the 
preservation of PPI data in prior knowledge, prioritized 
genes are more likely to be adjacent to other significant 
ones. For instance, among the 391 AD significant genes, 
statistical analysis of information from their top 10 neigh-
bors reveals an average of 5.54 significant genes per gene, 
with a cumulative literature count of 115.35, a sentence 
evidence count of 173.22, and a concept count of 62.86. 
In contrast, for non-significant genes, the number of sig-
nificant genes among their top 10 neighbors decreases to 
3.13, with corresponding literature, sentence, and con-
cept counts of 3.08, 4.36, and 3.87, respectively. The two 
patterns are observed as well in BC and LC case studies.

In short, significant genes exhibit extensive prior 
knowledge, either encompassing abundant literature in 
historical data or demonstrating strong associations with 
significant disease-related genes in PPI networks.

Taking PICALM as an example, this gene is notably 
associated with a substantial amount of AD literature. As 
of the end of 2023, a total of 264 publications are avail-
able for PICALM, with 112 publications retained before 
the cutoff in 2013. This abundance of literature contrib-
utes to PICALM being identified as a significant gene 
with a high probability in the ablation study conducted 
by PheSeq. Similarly, ESR1 in LC also maintains a con-
siderable literature count, totaling 132 publications by 
the end of 2023 and retaining 54 publications before the 
cutoff in the preceding years of 2016.

In AD, GBA emerges as the gene exhibiting the strong-
est association in the PPI network. Its neighbors, such 
as UGCG, PSAP, GALC, and SGMS2, are all linked to 
known AD pathological processes and exhibit signifi-
cant p-values in sequence analysis, namely 0.045, 0.029, 
0.00056, and 0.0014, respectively. This significantly 
increases the likelihood of PheSeq identifying GBA as a 
significant gene.

Similarly, in BC, the NEU1 gene is strongly linked to 
several significant genes in the PPI network, including 

Table 4 Investigation of prior knowledge derived in the significant or non-significant genes in the ablation study

Gene count Aveg. literature Aveg. sentence Aveg. concept # sign. 
neighbors

# literature # sentence # concept

Alzheimers’ disease

    Sign. genes 391 21.17 31.80 11.54 5.54 115.35 173.22 62.86

    Non-sign. genes 626 2.32 3.28 2.90 3.13 3.08 4.36 3.87

Breast cancer (BC)

    Sign. genes 1398 13.96 21.67 13.65 6.51 80.59 125.84 79.04

    Non-sign. genes 2001 2.36 3.29 3.63 5.19 4.33 6.03 6.65

Lung cancer (LC)

    Sign. genes 172 17.23 22.29 12.12 4.78 88.90 115.00 61.16

    Non-sign. genes 577 1.56 2.03 2.29 2.94 0.41 0.54 0.62
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GLB1 (4.11e−11), ARSA (5.15e−05), and GAL3ST1 
(1.99e−13). This, in turn, leads to PheSeq maintaining 
positive predictions for these genes in the ablation study.

In summary, the observed patterns in the ablation 
experiments indicate that despite the extensive removal 
of literature prior knowledge, the predicted significant 
genes still predominantly retain both literature and net-
work priors. This in turn aligns with the initial purpose of 
data fusion.

Furthermore, we evaluate the predictive capacity of 
PheSeq with removed prior literature knowledge, and 
the top 50 significant genes with the cumulative charts 
in DISEASES are shown in Fig. 6a. The yellow line rep-
resents the ablation method where literature priors are 
excluded, while the red line corresponds to the original 
PheSeq method. In the cumulative line plot, it is observ-
able that the yellow line consistently remains below the 
red line. This result indicates a significant decline in 
the predictive capability of PheSeq when a substantial 
amount of literature priors is removed, and it aligns with 
the data fusion concept in PheSeq.

Comparison of other data fusion models
As a representative data fusion algorithm, PheSeq com-
bines two distinct types of association information: 
sequence analysis data and embedding data. When 
addressing gene-disease associations, there are diverse 
strategies for data incorporation and model selection 
within data fusion algorithms. Even when examining the 
same disease, variations in results among different fusion 
methods can arise due to the use of diverse data modali-
ties. Figure  7 illustrates the overlap of significant genes 
under various methodologies. As depicted in the figure, 
achieving a high degree of overlap between different 
methods is challenging, regardless of the number of sig-
nificant genes predicted by each approach.

Nevertheless, conducting a comparative analysis of 
outcomes from various data fusion methods, including 

PheSeq, remains crucial for obtaining a comprehensive 
evaluation of PheSeq’s performance. As shown in Table 5, 
different methods cover various data modalities, includ-
ing data from GWAS, gene expression, gene regulatory 
network (GRN), expression quantitative trait loci (eQTL) 
high-throughput chromosome conformation capture 
(Hi-C), copy number alteration (CNA), literature, and 
protein-protein interaction. The number of significant 
genes varies across methods, with Lee et al. [78] having 
the lowest at 12 and PheSeq having the highest at 1024 in 
AD. In BC, Kim et al. [79] report the lowest count at 35 
while PheSeq has the highest count at 818. In LC, Zhang 
et al. [80] have the lowest at 23 whereas PheSeq exhibits 
the highest at 566. This likely reflects differences in the 
identification of significant genes when using different 
methods and data modalities.

There are three main types of data fusion strategies 
used in machine learning; early (data-level), intermedi-
ate (joint-level), and late (decision-level) [89, 90]. In the 
early data fusion algorithms, data from various sources, 
once fully collected, are mapped to a unified data space 
through vectorization methods such as concatenation 
or addition. Subsequently, a machine learning model 
is employed for knowledge-based decision-making. 
Researches [78, 80, 81, 83–85, 88] fall into this scope. In 
contrast, intermediate data fusion algorithms often uti-
lize a series of models within a step-wise set, where dif-
ferent models handle distinct stages of data, ultimately 
completing data fusion and knowledge-based decision-
making within a single pipeline. This type of algorithm 
includes researches [79, 82, 86, 87]. Late data fusion 
algorithms, on the other hand, involve the simultane-
ous processing of data from different sources by various 
models, achieving integrated decision-making. Although 
the selected comparative experiments only represent a 
small portion of the data fusion methods for three case 
studies, it is suggested that early and intermediate data 
fusion methods remain predominant, and late data 

Fig. 6 The top 50 significant genes with cumulative charts in DISEASES in the ablation study
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fusion methods are relatively less frequently employed. 
GDAMDB [32] and PheSeq stand as representatives of 
late data fusion methods, utilizing Bayesian networks to 
learn the distribution relationships among data variables, 
offering interpretable fusion decisions.

In addition, the interpretation approaches vary widely 
among these methods. While some methods rely on 
enrichment analysis and pathway analysis, others incor-
porate more sophisticated techniques such as inter-
pretable neural networks or recommendation systems. 
Additionally, some methods do not explicitly specify 
their interpretation approach. This diversity highlights 
the complexity of interpreting integrated data and under-
scores the need for tailored approaches based on the spe-
cific objectives of each study.

Finally, we utilize DISEASES as the external dataset ref-
erenced to compare the performance of predictive capac-
ity among these methods. As detailed in the rightmost 
column of the table, PheSeq exhibits superior predictive 
performance in BC and LC, outperforming other meth-
ods in precision and recall. For instance, PheSeq recalls 
159 DISEASES genes out of 818 predicted significant 
genes. Both the amount and the ratio are greater than the 
rest methods. In AD, while PheSeq recalls 151 DISEASES 
genes, this is attributed to its larger overall prediction 
quantity. Conversely, Lee et  al. [78] and GDAMDB [32] 
demonstrate higher precision, with GDAMDB display-
ing notably high recall values. This also underscores the 
advantages of the late data fusion approach.

In summary, PheSeq stands out as a late data fusion 
algorithm in the context of gene-disease associations, 
predominantly employing phenotype descriptions 
extracted from literature to enhance the interpretive 
aspects of the obtained results.

Association interpretation in a visualized phenotype 
description network
Benefiting from the good amount of phenotype descrip-
tion and sentence support, we derive abundant phe-
notype descriptions for gene-disease associations. To 
summarize all the PheSeq-prioritized genes with the 
collected bio-concepts and sentences, a visualized phe-
notype description network is built for AD, BC, and LC, 
separately. In the network, the significant genes (both 
from PheSeq and sequence analysis) and the bio-concepts 
are treated as nodes, and a gene-concept edge is linked 
when a sentence description addressing the association is 
available. The network is released in a user-friendly web-
page1, while the pipeline of the network construction is 
introduced in Additional file 3.

The network offers diverse patterns of association inter-
pretations that serve to enhance the comprehension of 
the mechanisms that underlie gene-disease associations.

Fig. 7 Overlap of significant genes from different data fusion 
methods on gene-disease associations. a AD. b BC. c LC

1 Webpage of the visualized phenotype description network. http:// lit- evi. 
hzau. edu. cn/ PheSeq [108]

http://lit-evi.hzau.edu.cn/PheSeq
http://lit-evi.hzau.edu.cn/PheSeq
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Pattern 1. GO enrichment analysis
The network enables GO enrichment analysis. Here, four 
gene sets are shown in Fig. 8a, b, c with GO terms cor-
responding to apoptosis [91], mitophagy [92], chemi-
cal synaptic transmission [93], and long-term synaptic 
potentiation [94]. In Fig. 8a, 24 genes are linked with the 
“Apoptotic process” (GO:0006915), supported by 133 
pieces of sentence evidence. In total, the 24 genes consist 
of 7 ones from GWAS, 17 ones from PheSeq, and 5 ones 
that overlapped. After applying the hypergeometric test, 
the gene set is significantly enriched in “Negative regula-
tion of neuron apoptotic process” (GO:0043524) with an 

association significance of 3.4305E-12 and “Positive regu-
lation of apoptotic process” (GO:0043065) with an asso-
ciation significance of 1.8137E−06. The results confirm 
the relevance of these 24 genes to the “apoptosis process.” 
Moreover, all the GO-linked genes in Fig.  8b,c pass the 
corresponding GO enrichment test.

Pattern 2. Link genes from two sources
The inclusion of significant genes identified by both 
PheSeq and sequence analysis provides avenues for fur-
ther investigation into pathological mechanisms. Tak-
ing the five genes in Fig. 8a as an example, MEF2C is a 

Table 5 Comparison of different data fusion methods on gene-disease associations

a Data fusion strategy. Early for data-level, intermediate for joint-level, and late for decision-level
b Count of significant genes
c Hits of significant genes in DISEASES

Method Data modality Strategya Interpretation Countb Hitc

Alzheimers’ disease

    Lee 22 [78] GWAS + eQTL Early / 12 8

    DeepGAMI [81] Gene expression + GRN +eQTL Early Enrichment analysis 102 2

    scGRNom [82] GWAS + Hi-C Intermediate Enrichment analysis 146 43

    GDAMDB [32] GWAS + literature Late / 149 72

    PheSeq GWAS + literature + PPI Late Phenotype and literature 1024 151

Breast cancer

    Kim 20 [79] CNA + gene expression + methylations + clini-
cal info

Intermediate / 36 5

    Ahn 14 [83] Transcriptome + pathway Early / 50 2

    GLRP [84] Gene expression + PPI Early Interpretable neural network + pathway 
analysis

167 5

    IMNA [85] GWAS + eQTL Early Literature 391 24

    PheSeq Transcriptome + literature + PPI Late Phenotype and literature 818 159

Lung cancer

    Zhang 20 [80] Methylation + gene expression Early / 23 2

    Gogleva 22 [86] CRISPR + knowledge graph + literature Intermediate Interpretable recommendation system 31 8

    CTpathway [87] Gene expression + transcriptome + pathway 
+ PPI

Intermediate Pathway analysis 59 12

    ECMarker [88] Gene expression + clinical phenotype Early Interpretable neural network 500 19

    PheSeq Methylation + literature + PPI Late Phenotype and literature 566 342

Fig. 8 Association interpretation in the visualized phenotype description network for AD. a Observation of the gene-phenotype links. There are 19 
significant PheSeq genes linked with the phenotype term “apoptosis process” in AD, and sequence analysis provides 7 significant links. b Gene-gene 
interaction through genes with shared phenotype descriptions. APOE and PSEN1 inhibit the autophagy of mitochondria directly, as reported 
in PMID:33440662 [95] and PMID:31720366 [96]. Meanwhile, PSNE1 inhibits this biological process by affecting PINK1 and PARK2. c Multiple GO 
terms lead to complex gene pathological pathways. PSEN1 and GSK3B are exclusively found in PheSeq, while the other four, i.e., APOE, MAPT, 
APP, and PICALM are both found by PheSeq and IGAP GWAS. All of them interact with each other and lead to two biological processes, long-term 
synaptic potentiation, and synaptic transmission. d Links between genes and GO or HPO interpret a multi-level pathology mechanism. By tracing 
two HPO terms, i.e., neuronal loss in the central nervous system and neurodegeneration, to GO terms and their linked genes, multi-level links are 
formulated. Three genes are included in these links, in which GSK3B is exclusively found by PheSeq, while APP and MAPT are separately found 
by PheSeq and IGAP GWAS. These links unveil a cascade mechanism that starts from gene involvement in multiple biological processes and ends 
in two phenotypic processes

(See figure on next page.)
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GWAS-reported gene, the S-nitrosylation of which 
causes mitochondrial dysfunction and apoptotic cell 
death in neurons. Furthermore, PheSeq prioritized 
genes such as PSEN1, PSEN2, SOD1, and GSK3B are 
also added to the linking graph. Among them, PSEN1 
and PSEN2 are known AD-related genes, the mutation 

of which contributes to the clinical syndrome of early-
onset AD (EOAD) through apoptosis. In addition, SOD1 
and GSK3B both trigger apoptosis in neurons. Evidence 
in literature (PMID: 32006534 [97]) indicates that muta-
tions in PSEN1 increase the activity of GSK3B, cause 
apoptosis, and facilitate AD. These observations imply 

Fig. 8 (See legend on previous page.)
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that all the linked genes are related to apoptosis and AD 
pathology.

Pattern 3. Hybrid gene‑phenotype associations
The network facilitates hybrid investigation of gene-
phenotype associations. First, exploring genes that share 
phenotype descriptions holds the potential to reveal 
gene-gene interactions. As shown in Fig. 8b, APOE and 
PSEN1 inhibit the autophagy of mitochondria directly, 
as reported in PMID:33440662 [95] and PMID:31720366 
[96]. Meanwhile, PSNE1 inhibits this biological process 
by affecting PINK1 and PARK2. In detail, PMID:31720366 
[96] claims that PSEN1 mutation reduces the removal of 
damaged mitochondria via autophagy mitophagy path-
ways, PMID:30387070 [98] claims that patients with a 
PSEN1 mutation where there is decreased mitophagy 
and autophagy have been reported due to changes in 
PINK1 and PARK2, and PMID:33440662 [95] figures 
out the PSEN1 mutations or expresses the APOE which 
induces the lysosomal dysfunction, which is a key part of 
the mitochondrial clearance. After combining the three 
pieces of evidence, the interaction between these genes 
is inferred. Mutations in the PSEN1 induce changes in 
PINK and PARK2, which induces lysosomal dysfunction, 
thus causing mitochondrial accumulation by inhibiting 
mitophagy in iPSC-derived neurons of AD patients.

Second, an integrative analysis of multiple GO 
terms leads to the discovery of complex gene patho-
logical pathways. For instance, sentence evidence from 
PMID:32166182 [99], 33926499 [100], 31191636 [101], 
and 32362813 [102] in Fig. 8c curates the pathway infor-
mation: the released Abeta peptides from the FAS neu-
rons with APP or PSEN1 mutations causes synaptic 
inhibition, such as long-term potentiation (LTP) block-
ade and neurotransmission defects. Meanwhile, the 
Abeta protein encoded by APP plays a crucial role in this 
pathway. In more detail, APOE potentiates LTP inhibi-
tion induced by Abeta oligomers. In addition, the genetic 
deletion of tau protein, as well as GSK3B inhibition, 
blocks Abeta-induced impairments of LTP. Eventually, 
PICALM variants appear to cause Abeta trafficking and 
clearance, thereby protecting the synaptic function and 
neurotransmission.

Third, exploring links between genes and GO or HPO 
can enhance the understanding of a comprehensive 
pathology mechanism across multiple levels. As shown in 
Fig. 8d, GSK3B, APP, and MAPT induce two clinical phe-
notypes in AD pathology, neuronal loss, and neurodegen-
eration, by affecting four molecular-level physiological 
processes, including the apoptotic process, inflammatory 
response, synaptic transmission, and neuron projection 
development.

Finally, an evidence-supported gene-GO network con-
tributes to integrating the findings, pinpointing vital dis-
ease-associated genes. For instance, PSEN1 is linked with 
a good variety of GO terms, which make the PSEN1-cen-
tric gene-GO links illuminative. Figure 8a, b ,c shows that 
PSEN1 facilitates early-onset AD possibly through apop-
tosis triggered by the collapse of the nucleus due to lam-
ina disruption. In addition, PSEN1 reduces the removal 
of damaged mitochondria via autophagy mitophagy path-
ways in patient-derived AD fibroblasts and neurons from 
iPSCs. Furthermore, PSEN1 mutation blocks hippocam-
pal LTP by promoting the release of Abeta peptides in 
FAD neurons. Altogether, the network is beneficial for 
a comprehensive understanding of the different mecha-
nisms that PSEN1 plays in the AD process.

Interestingly, although GSK3B has not been reported 
to be AD-related, Fig.  8c, d shows that it is involved in 
two AD pathological pathways. One is the increased 
activity of GSK3B induced by PSEN1, followed by facili-
tated apoptosis. The other is the genetic deletion of tau 
protein mediates the inhibition of GSK3B, thereby block-
ing Abeta-induced impairments of LTP.

Pattern 4. Association augments with auxiliary PPI info
Considering the rich PPI information encompassed 
within the data modalities integrated by PheSeq, we 
also incorporate the representation of PPI connections 
in the visualized phenotype description network. The 
black edges between genes in the network represent PPI 
information sourced from the STRING database. Pre-
vious experiments demonstrate that, in the absence of 
literature data, PPI links crucially contribute to graph 
embedding, aiding PheSeq in retrieving relevant signifi-
cant genes. Additional file 3 provides examples of the hub 
or common gene nodes in the PPI network, which link 
to other significant gene neighbors in PPI connections. 
Examples suggest that the observation of auxiliary PPI 
attributes provides augmented mechanistic insights for a 
given gene-disease association.

In short, the visualized phenotype description network 
contributes to addressing gene association in an inter-
pretable manner and provides further potential to unveil 
the disease pathology mechanism.

Discussion
In the present day, the co-existence of sequence analy-
sis outcomes and textual resources has emerged as an 
increasingly pervasive practice. In light of this trend, data 
fusion of the above heterogeneous data holds consider-
able promise for advancing comprehensive data fusion 
techniques.

The scenario focused on in this research is such a case 
when a rich resource of p-values and descriptive texts 
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are available, both of which form a pair of heterogene-
ous association datasets supporting the discovery of the 
gene-disease associations.

The PheSeq model effectively integrates the advantages 
of two types of data by leveraging the heterogeneous 
synergy in a Bayesian deep learning framework. PheSeq 
specifically utilizes the DL perception module to generate 
high-quality embedding representations from phenotype 
descriptions. Additionally, it makes use of the Bayesian 
network to effectively model the uncertainty of observa-
tion and infer the inherent dependence relations among 
gene-disease associations.

PheSeq takes advantage of the interpretability nature of 
the phenotype descriptions. The use of bio-concepts and 
sentence evidence further improves the interpretability 
of PheSeq results. Moreover, the knowledge inference 
patterns shown in Fig.  8 suggest that only when litera-
ture and sequence information are well integrated can 
the model unveil hidden in-depth mechanisms out of the 
network.

In addition to a promising data fusion idea, PheSeq also 
encourages certain concerns for further exploration of 
gene-disease associations.

First, PheSeq does not functionas a predictive algo-
rithm solely focused on achieving absolute confidence in 
association prioritization. Instead, our primary objective 
is to addressthe inherent limitations of inference derived 
from single-omics sequence analysis. Therefore, we adopt 
a data fusion approach to facilitate interpretable novel 
associations.

Second, the prioritized gene-disease association needs 
to be investigated with a methodical approach. As evi-
dent in sequence analysis, depending solely on statisti-
cal significance and employing stringent cutoff criteria 
may result in high false negatives. As shown in Fig.  5, 
the prioritization of PheSeq does not always align with 
the sequence analysis. The significant p-value may be 
discarded due to missing embedding support, and the 
non-significant p-value may be recalled due to support-
ive embedding. Fortunately, the PheSeq model provides 
strong evidence traceability, which enables further valida-
tion or investigations of genes of concern by checking the 
evidence support, even if the gene has lower rankings.

Third, considerations are needed when applying Phe-
Seq in a general genotype-phenotype association study. 
For example, the appropriate thresholding strategy is 
needed to evaluate the significance of associations after 
the sequence analysis. In addition, appropriate bench-
marks datasets, such as DISEASES used in our cases, 
are used for the sake of evaluation. Furthermore, the 
inconsistency of association significance and phenotype 
description needs to be investigated ahead of the model 
implementation.

Conclusion
In conclusion, this research performs a worth-trying 
attempt in heterogeneous association data fusion This 
framework successfully bridges the phenotype descrip-
tion perception and p-value uncertainty inference. The 
association significance is utilized as a fine-grained weak 
signal for the association significance. Overall, it is an 
inspiring idea to unveil genotype-phenotype associa-
tions and investigate the potential relation dependency 
through data perception, data fusion, and probabilistic 
inference in a novel Bayesian framework.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
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Additional file 1. Usage Guideline of PheSeq Code. This file provides 
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comprehensive algorithmic solutions implemented in PheSeq, detailing 
the models and their implementations.

Additional file 3. Phenotype Description by PheSeq and A Visualized 
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vides the visualized phenotype description network and all the phenotype 
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using PheSeq, data observation is suggested by the proposed visualization 
methods. The data formatting, code pipeline, and result analysis are suggested 
in Additional file 3. Additional file 2: Appendix A.0.3.
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