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Abstract 

Background  Rare oncogenic driver events, particularly affecting the expression or splicing of driver genes, are sus-
pected to substantially contribute to the large heterogeneity of hematologic malignancies. However, their identifica-
tion remains challenging.

Methods  To address this issue, we generated the largest dataset to date of matched whole genome sequencing 
and total RNA sequencing of hematologic malignancies from 3760 patients spanning 24 disease entities. Taking 
advantage of our dataset size, we focused on discovering rare regulatory aberrations. Therefore, we called expression 
and splicing outliers using an extension of the workflow DROP (Detection of RNA Outliers Pipeline) and AbSplice, 
a variant effect predictor that identifies genetic variants causing aberrant splicing. We next trained a machine learning 
model integrating these results to prioritize new candidate disease-specific driver genes.

Results  We found a median of seven expression outlier genes, two splicing outlier genes, and two rare splice-affect-
ing variants per sample. Each category showed significant enrichment for already well-characterized driver genes, 
with odds ratios exceeding three among genes called in more than five samples. On held-out data, our integrative 
modeling significantly outperformed modeling based solely on genomic data and revealed promising novel candi-
date driver genes. Remarkably, we found a truncated form of the low density lipoprotein receptor LRP1B transcript 
to be aberrantly overexpressed in about half of hairy cell leukemia variant (HCL-V) samples and, to a lesser extent, 
in closely related B-cell neoplasms. This observation, which was confirmed in an independent cohort, suggests LRP1B 
as a novel marker for a HCL-V subclass and a yet unreported functional role of LRP1B within these rare entities.

Conclusions  Altogether, our census of expression and splicing outliers for 24 hematologic malignancy entities 
and the companion computational workflow constitute unique resources to deepen our understanding of rare onco-
genic events in hematologic cancers.
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Background
Hematologic malignancies are characterized by abnor-
mal blood cells in the bone marrow, peripheral blood, 
or lymphatic organs. They can occur in various forms, 
affecting the myeloid or lymphoid cell lineage. In 2020, 
hematologic malignancies accounted for approximately 
2.5% of new cancer cases globally and accounted for 3.1% 
of cancer-associated mortality [1]. While some subtypes, 
like myeloproliferative neoplasm, exhibit a high degree of 
uniformity in their manifestation and genetic profile, oth-
ers, like myelodysplastic neoplasm, display a significantly 
broader spectrum, hampering correct diagnosis and 
therapy decisions, which negatively impacts treatment 
outcomes and survival [2]. Thus, better understanding 
the variety of oncogenic events for each disease entity is 
of utmost interest to refine diagnostics and facilitate the 
development of new therapeutic options.

Within the last decade, the identification of driver 
genes in hematologic malignancies has been dramati-
cally enhanced. To this end, functional screens such as 
CRISPR [3, 4] and transposon screens [5] on model sys-
tems have been applied. Complementary to these efforts, 
next-generation sequencing analyses of primary clini-
cal samples [6, 7] were employed, which better capture 
the in  vivo biology. This research has provided valuable 
insights into the underlying genetic landscape of each 
entity and triggered a revision of the classification sys-
tems, which now emphasize genomics-based categoriza-
tion of various leukemia and lymphoma entities [2, 8–10]. 
However, despite significant progress in understanding 
recurrent driver mutations in hematologic malignancies, 
much remains to be learned about the rare events within 
each disease entity that drive their individual develop-
ment and progression [11, 12]. Such rare events could 
arise not only from somatic mutations but also from rare 
germline variants, as supported by an increasing number 
of studies unraveling the implication of rare genetic pre-
dispositions to cancer [13–18].

Alterations of gene expression and splicing play a 
key role in cancer [19], particularly in hematologic 
malignancy pathogenesis [20–30]. For instance, many 
hematologic malignancies are characterized by altered 
expression resulting from gene rearrangements that lead 
to the overexpression of specific transcription factors 
or cell cycle regulators. Examples include acute myeloid 
leukemia (AML) with defining genetic alterations [31], 
BCR::ABL1-positive chronic myeloid leukemia (CML) 
[32], or CCND1 rearrangements in mantle cell lym-
phoma (MCL) [2, 33]. Moreover, aberrant splicing can 
generate gain or loss-of-function transcript isoforms of 

driver genes for many cancer types [34]. For example, 
multiple aberrant splice isoforms of the TP53 transcript 
have been observed in CML, even in the absence of 
genomic mutations around exon–intron junctions [35]. 
However, a systematic analysis of rare expression and 
splicing aberrations among hematologic malignancies is 
still lacking.

To address this gap, we conducted a comprehensive 
analysis of genomes (whole genome sequencing, WGS) 
and matched transcriptomes (total RNA sequencing, 
RNA-Seq) of tumor tissues from 3760 patients spanning 
24 hematologic malignancy entities (Fig. 1). We analyzed 
this data using RNA-seq-based expression and splicing 
outlier callers, as well as AbSplice [36], a tool we recently 
published that predicts rare genetic variants causing 
aberrant splicing. We demonstrate how these results can 
be utilized to identify a novel marker for a rare entity and 
enhance the prediction of hematologic malignancy driver 
genes beyond the commonly used mutational recurrence. 
In summary, our study aims to deepen our understanding 
of the role of rare gene expression and RNA splicing in 
the development of hematologic malignancies and pro-
vide novel driver gene candidates.

Methods
Dataset
Patients
We used genomic and transcriptomic data from the 
Munich Leukemia Laboratory (MLL). We included a 
total of 3760 tumor samples sent to the MLL between 
September 2005 and April 2019 for routine diagnostic 
workup (Table  1). Diagnoses from peripheral blood or 
bone marrow were based on cytomorphology, immu-
nophenotype, cytogenetics, and molecular genetics, as 
previously described [40–42]. All patients or their legal 
guardians gave written informed consent for genetic 
analyses and to the use of laboratory results and clinical 
data for research purposes, according to the Declaration 
of Helsinki. The study was approved by the MLL’s institu-
tional review board. The dataset spanned 24 disease enti-
ties (Table 1, Table S1).

Sample preparation
DNA and total RNA from peripheral blood and bone 
marrow samples were extracted using the MagNA Pure 
96 Instrument and the MagNAPure96 DNA and Viral 
NA LV Kit and MagNA Pure 96 Cellular RNA LV Kit, 
respectively (Roche LifeScience, Mannheim, Germany). 
WGS and RNA-seq were performed on the prepared 
samples (Supplementary Materials and Methods).
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Variant calling and annotation
Variant calling of single-nucleotide variants, short 
insertions and deletions, structural variants, copy num-
ber variations, and gene fusions were performed on all 
samples as described previously [43–46] (Supplemen-
tary Materials and Methods). The analysis was based on 
the GENCODE v33 [47] annotation and using the refer-
ence genome GRCh37.

One particularity of our setting is that matched 
healthy control tissues are rarely available since it is 
generally not required for diagnosis during routine 
diagnostics. Therefore, we filtered variants based on 
sex-matched normal samples (Supplementary Materials 
and Methods). Hence, these variants encompass both 
somatic and germline variants. While rare germline 
variants can include variants predisposing to leukemia, 
it is less likely for common germline variants. To dis-
card common germline variants and reduce artifacts 
from the data, we filtered single-nucleotide variants, 
short insertions, and deletions with the following cri-
teria (“unmatched_filter2”, see Supplementary Results):

(1)	 Only consider variants emitted with “PASS” quality

(2)	 Discard variants with gnomAD v2.1.1 [48] minor 
allele frequency > 0.05% to discard common ger-
mline variants

(3)	 Discard variants with sample variant allele fre-
quency < 0.1, as we found an excess for those low 
VAF variants, perhaps as a consequence of DNA 
acoustic shearing [49]

Analogously, we filtered structural variant calls with 
the following criteria:

(1)	 Only consider variants emitted with “PASS” quality
(2)	 Only consider variants if they have three or more 

paired-reads supporting it
(3)	 Discard variants found with exact breakpoint loca-

tions in the gnomAD SV database [50]
(4)	 Discard variants that are found in four or more dif-

ferent myeloid and four or more different lymphatic 
entities

Altogether, our variant filtering procedures yielded a 
combination of somatic and rare germline variants.

Fig. 1  Overview of the study. Dataset: Whole genome sequencing and total RNA sequencing of 3760 hematologic malignancies spanning 
24 different disease entities. Bioinformatic processing: On genomic data, IntOGen captures recurrent mutational patterns [37], and AbSplice 
predicts variants causing aberrant splicing [36]. Working on RNA-seq data, OUTRIDER calls expression outliers of commonly expressed genes [38], 
NB-act calls overexpression of rarely expressed genes (Methods), and FRASER calls splicing outliers [39]. Census: a unique collection of genomic 
and transcriptomic aberrations for 24 hematologic malignancy entities. Downstream analysis: driver gene prediction and enrichment analysis 
per disease entity
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To predict the effects of variants on splicing, we 
applied AbSplice-DNA v1.0.0 [36] to the filtered vari-
ants. AbSplice-DNA estimates the probability that a rare 
variant causes aberrant splicing in a given tissue, which 
takes the variant and splice annotations, so-called Splice-
Maps, as input. We generated SpliceMaps for each study 
group as described previously [36]. The variants with an 
AbSplice-DNA prediction score ≥ 0.2 were classified as 
splice-affecting variants. Further variant effect predictions 
were obtained by applying Ensembl VEP v81 [51]. VEP 
splice-related variants were defined as VEP calculated 
consequences “splice_acceptor_variant” (2 base region at 
the 3′ end of an intron), “splice_donor_variant” (2 base 
region at the 5′ end of an intron), and “splice_region_vari-
ant” (1–3 bases of the exon or 3–8 bases of the intron).

Gene-level mutational recurrence scores were obtained 
using IntOGen commit 437a047 [37], and MutSigCV 
v1.41 [52]. The IntOGen framework has a hard-coded 
cutoff of 10,000 on the total number of variants per 
sample. This cutoff has been set from studies based on 

somatic variants only. In our setting, which includes an 
excess of rare germline variants, the cutoff is too low. 
However, within the IntOGen framework, the input of 
all 7 individual tools is restricted to variants from cod-
ing transcripts only. Therefore, to circumvent IntOGen’s 
rejection of samples with a large number of variants, we 
have filtered for variants on UTRs and coding sequences 
prior to running IntOGen using the VEP calculated 
impact ‘HIGH’, ‘MODERATE’, ‘LOW’, or calculated con-
sequence “5_prime_UTR_variant,” “3_prime_UTR_vari-
ant,” and “coding_sequence_variant.”

Moreover, the variants were further filtered using 
the following criteria, as these more stringent filters 
led to improved driver gene enrichments of IntOGen 
(“unmatched_filter3”, see Supplementary Results):

(1)	 Discard variants with sample variant allele fre-
quency < 0.15

(2)	 Only consider variants supported by at least 20 
reads

Table 1  Disease entities enrolled and corresponding study groups

Disease entity Abbreviation Number of samples 
per disease entity

Study group Number of 
samples per study 
group

Acute myeloid leukemia AML 730 AML 730

Myelodysplastic neoplasm MDS 713 MDS 713

Marginal zone lymphoma MZL 71 MatureB group 375

Mantle cell lymphoma MCL 71

High-grade B-cell lymphoma HGBL 61

Lymphoplasmacytic lymphoma LPL 59

Follicular lymphoma FL 57

Other B-cell non-Hodgkin lymphomas B-NHL 56

Myeloproliferative neoplasm MPN 344 MPN 344

Chronic lymphocytic leukemia CLL 279 CLL 279

Multiple myeloma MM 236 PCN group 247

Monoclonal gammopathy of undetermined significance MGUS 11

Myelodysplastic/myeloproliferative neoplasm, unclassifiable MDS/MPN-U 81 MDS/MPN group 207

Atypical chronic myeloid leukemia aCML 67

Myelodysplastic/myeloproliferative neoplasm with ring sidero-
blasts and thrombocytosis

MDS/MPN-RS-T 59

B-cell precursor acute lymphoblastic leukemia BCP-ALL 204 BCP-ALL 204

T-cell non-Hodgkin lymphoma T-NHL 90 T-cell group 174

T-cell acute lymphoblastic leukemia T-ALL 84

Chronic myelomonocytic leukemia CMML 142 CMML 142

Mastocytosis 98 Mastocytosis 98

Hairy cell leukemia HCL 68 Hairy-cell group 97

Hairy cell leukemia variant HCL-V 29

Chronic myeloid leukemia CML 92 CML 92

Chronic lymphoproliferative disorder of natural killer cells CLPD-NK 58 NK 58



Page 5 of 21Cao et al. Genome Medicine           (2024) 16:70 	

Expression and splicing outlier calling
We implemented a Python backend version of OUT-
RIDER v.1.99.0 [38] for scalability (see Availability of 
data and materials) and applied it to RNA-seq data using 
DROP v1.1.0 [53] default settings to call expression out-
liers at a false discovery rate (FDR) of 0.05. Expression 
outliers with lower-than-average expressions (z-score < 0) 
were defined as underexpression outliers, and higher-
than-average expressions (z-score > 0) as overexpression 
outliers.

FRASER v.1.99.0 [39] was applied to RNA-seq data 
using DROP v1.2.3 [53] with default settings to call splic-
ing outliers (FDR < 0.05). We grouped the samples into 
14 study groups based on hematopoietic cell origins and 
pathologies [2, 8–10] to ensure sufficient sample sizes 
(Table 1, N at least 58). Splicing outliers with delta Intron 
Jaccard Index > 0 were defined as overrepresented splic-
ing outliers, and delta Intron Jaccard Index < 0 as under-
represented splicing outliers.

As OUTRIDER is restricted to commonly expressed 
genes defined as genes with fragments per kilobase of 
transcript per million mapped reads (FPKM) larger than 
1 in at least 5% of the samples, we introduced a novel 
method to detect aberrant activation of genes usually not 
expressed. This method, NB-act (Negative Binomial acti-
vation), provides p-values for observed fragment count 
(read pairs) for each gene in each sample under the null 
hypothesis that the gene is not expressed in the sample. 
Specifically, NB-act computes the probability of observ-
ing a certain number of fragments or more for a gene in a 
particular sample, assuming a negative binomial distribu-
tion with an expected baseline expression of 1 FPKM and 
a dispersion parameter of 0.02 (Supplementary Materi-
als and Methods). The FPKM value of 1 corresponds to 
the threshold separating expressed from non-expressed 
genes in OUTRIDER [38]. The dispersion parameter of 
0.02 corresponds to the empirically observed lowest dis-
persion values estimated by OUTRIDER on expressed 
genes. As low dispersion corresponds to high variance, 
we chose a low dispersion value for NB-act to be con-
servative. NB-act was applied to rarely expressed genes 
(FPKM > 1 in at least one sample but less than 5% of the 
samples).

Enrichment for driver gene and variant categories
The enrichment of cancer driver genes was evaluated 
by the Fisher test using Cancer Gene Census (CGC) 
GRCh37 v97 [54] (Supplementary Materials and Meth-
ods). The role of hematologic malignancy driver genes 
was determined using annotation “Tissue Type” and 
“Role in Cancer”.

As promoter variants, we considered all single-nucleo-
tide variants and short insertions and deletions less than 

2000 bp away from the transcription start site of the cor-
responding gene. Frameshift and stop-gain variants were 
detected with Ensembl VEP v81 [51]. For copy number 
variation, we considered a gene affected by copy num-
ber variation if its position overlaps with the “ + ” or “ − ” 
regions called by GATK CallCopyRatioSegments [55]. 
The enrichment analysis of variants within expression 
outlier gene-sample pairs was performed using the Fisher 
test. Sample-gene pairs with other variants were excluded 
apart from those for which enrichment was calculated.

Variance component analysis
The variance component analysis was conducted using a 
linear model. We used the logarithmized copy ratio and 
a binarization of the rare VEP high-impact, rare pro-
moter, and rare structural variants affecting a gene-sam-
ple combination as the independent variables. As for the 
dependent variable, we used an autoencoder corrected 
expression zScore for each gene-sample combination. 
The linear model was fitted for every gene individually, 
followed by ANOVA. The variance explained by each 
independent variable was calculated as the sum of square 
errors of each independent variable over all independ-
ent variables. The resulting variance components were 
normalized to add up to one, and we reported the mean 
value.

Survival analysis
Overall survival (OS) analyses were performed accord-
ing to Kaplan–Meier and compared using two-sided 
log-rank tests with the statistical software R v4.2.2 with 
the survival [56] and survminer [57] packages. The over-
all survival was calculated as the time from diagnosis to 
death or last follow-up.

Driver gene prediction
Machine-learning models were trained to predict the 
probability of a gene to be a hematologic malignancy 
driver gene. To this end, random forest classifiers (Python 
package scikit-learn v1.0.2) [58] were trained to predict 
driver genes using gene-level features obtained from all 
samples on the one hand and each of the 14 study groups 
on the other hand. We also fitted logistic regression, 
XGboost, and fully connected neural networks. The gene-
level features consisted of 21 features from seven gene-
level metrics of seven IntOGen tools, nine features from 
AbSplice-DNA scores, 22 features from OUTRIDER 
obtained using combinations of fold-change direction, 
significance, and effect size cutoffs, and, similarly, 11 fea-
tures from NB-act and 22 features from FRASER (Sup-
plementary Materials and Methods). For those models 
integrating external gene functional data, co-essen-
tial modules from DepMap [59] and 256-dimensional 
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functional gene embeddings [60] were further included 
as features. In total, 377 genes listed among the hemato-
logic panel genes (Supplementary Materials and Meth-
ods) or the hematologic malignancy driver genes from 
CGC GRCh37 v97 [54] were used as the positive class for 
the classifiers. The random forests were trained using the 
function “RandomForestClassifier” with the minimum 
number of samples required to split an internal node set 
to 19, the maximal tree depth set to 10, and default set-
tings otherwise (Supplementary Materials and Methods). 
The models were trained with fivefold cross-validation, 
stratified to preserve the percentage of positive class in 
all folds, using the function “StratifiedKFold” from the 
Python package scikit-learn v1.0.2 [58]. Performances 
were evaluated by precision-recall curves on the valida-
tion data. This process was repeated 10 times (random 
repeats) to assess the variability of the performance esti-
mates. Subsequently, only prediction values based on 
validation data were used for candidate curation. As the 
predicted probabilities range very differently across study 
groups, no fixed threshold was set, and we focused on the 
rank of the predicted genes. The list of approved drugs 
was obtained from the Pharos database (https://​pharos.​
nih.​gov/) [61]. The benchmark against IntOGen and 
MutSigCV was conducted on all study groups.

Further detailed descriptions are available in the Sup-
plementary Materials and Methods.

Validation HCL‑V dataset
Patients
The validation HCL-V dataset included a total of 42 
patients, including 14 HCL-V and 28 HCL patients. The 
HCL-V patients were diagnosed based on immunophe-
notype and morphological characteristics consistent with 
HCL-V, including all CD5 negative, CD11c positive, and 
CD123 negative markers. All HCL-V patients were con-
firmed as BRAF-V600E negative.

Sample preparation
Tumor cells were isolated by cell sorting (purity > 99%) 
as FSChighCD20+CD11c+ and kappa/lambda light-chain 
restriction. RNA was isolated by the RNeasy Micro Kit 
(Qiagen, Hilden, Germany).

RNA sequencing, read mapping
For the generation of RNA-sequencing libraries, the 
NuGEN Trio RNA-Seq System (NuGEN, Redwood City, 
California) was used. Samples were split equally and pro-
cessed in independent sequencing steps to allow for the 
correction of batch effects. Sequencing was performed 
with paired-end sequencing and two times 100-bp 
length. Sequences were aligned with HiSAT2 v2.1.0 [62] 
to the GRCh38.

Gene expression analysis
Gene expression was analyzed with DESeq2 [63]. The 
size factor was calculated using DEseq2. The counts were 
normalized by size factors. The activation of LRP1B was 
determined with a two-component Gaussian mixture 
clustering with equal variance on size factor-normal-
ized and log-transformed counts, using the R package 
“mclust” v.6.0.0 [64].

Results
We investigated WGS and RNA-seq data from 3760 
tumor samples representing 24 different types of leu-
kemia and lymphoma (Table  1). This dataset has been 
collected from routine diagnostics and is the largest col-
lection of hematologic malignancy samples with WGS 
and matched RNA-seq, which also includes rare disease 
entities like hairy cell leukemia variant (HCL-V) and 
chronic lymphoproliferative disorder of natural killer 
cells. In order to restrict our analysis to putative rare ger-
mline and somatic variants, we filtered variants called on 
WGS with stringent quality filters and population allele 
frequency to discard artifacts and common germline 
variants, respectively (Table S2, S3 and S4) [48]. We next 
annotated the genes using the seven features from the 
software IntOGen, which include positional recurrence 
of variants in genome sequence (OncodriveCLUSTL), 
positional recurrence of variants in protein conforma-
tion (HotMAPS), enrichment of variants in functional 
domains (smRegions), three alternative measures of 
selection strength inferred from synonymous and non-
synonymous variants (CBaSE, MutPanning, and dNd-
Scv), and OncodriveFML, a method identifying excess 
of variants across tumors in both coding and non-coding 
genomic regions [37, 65–71]. Moreover, we annotated 
genetic variants falling into gene bodies, including deep 
intronic variants, with AbSplice-DNA, a tool predicting 
variants causing aberrant splicing [36]. On the RNA-seq 
data, we used OUTRIDER on a total of 12,966 protein-
coding genes commonly expressed across the dataset 
to call high or low expression outliers, and FRASER to 
call splicing outliers [38, 39]. We also introduced a new 
method, NB-act, to call rare aberrant activation of genes 
mainly not expressed (Methods). As summarized in 
Table 2, these methods provide qualitatively complemen-
tary evidence for detecting and predicting driver genes. 
Combining all these results, we established a unique cen-
sus of genomic and transcriptomic aberrations in 3760 
hematologic malignancy samples (Fig. 1).

Expression outliers are enriched for hematologic 
malignancy driver genes
Case–control differential expression analysis identifies 
common differences between tumor and healthy samples 

https://pharos.nih.gov/
https://pharos.nih.gov/


Page 7 of 21Cao et al. Genome Medicine           (2024) 16:70 	

and, therefore, can be suited to identify recurrently dif-
ferentially expressed genes in tumors. To identify poten-
tial rare driver genes, we instead employed expression 
outlier analysis, which calls rare, aberrantly high, or low 
expression of a gene within a dataset. OUTRIDER calls 
expression outliers by modeling read count distribu-
tion across samples and reporting the statistical signifi-
cance of extreme observations. Moreover, OUTRIDER 
controls for gene expression covariations, which allows 
automatic corrections for technical sources of variation, 
such as batch effects, and adjusts for transcriptome-
wide co-regulation patterns due to trans-acting regu-
latory changes. Deviations from these variations have 
been shown to be enriched for rare variants with strong 
cis-regulatory effects [38] and help identify causes of 
rare disorders [72–75]. Applying OUTRIDER, we called 
21,264 underexpression outliers (median of 2 per sam-
ple) and 14,041 overexpression outliers (median of 2 
per sample) on 10,193 different protein-coding genes 
(Figure S1-S2, Table S5 and S6). To verify whether these 
outliers are associated with cancer, we calculated their 
enrichment for reported hematologic malignancy driver 
genes, which we adapted from CGC [54]. We observed a 
strong enrichment for CGC hematologic tumor suppres-
sor genes among underexpression outliers and for CGC 
hematologic oncogenes among overexpression outliers 

(Fig. 2A, B). Notably, the genes called as outliers in more 
than five samples exhibited the highest enrichment, indi-
cating that genes frequently called as outliers are more 
likely to be oncogenic. Moreover, we found that the 
number of expression outliers per sample was unevenly 
distributed (Figure S1-S2). Samples with numerous outli-
ers may either represent cases where OUTRIDER could 
not adequately fit the data or situations where the gene 
regulatory network is globally affected, resulting in wide-
spread expression aberrations throughout the genome. 
We reasoned that the enrichment for driver genes among 
expression outliers could be lower in all those samples. 
Indeed, the enrichment for tumor suppressor genes 
and oncogenes increased when focusing on the three 
most significant outliers (at most three) in each sample 
(Fig. 2A, B).

OUTRIDER filters out genes expressed in less than 5% 
of samples due to statistical modeling limitations, leav-
ing a gap in detecting rare gene activation. To fill this 
gap, we developed a complementary algorithm, NB-act 
(Methods). We applied it to the 6017 rarely expressed 
protein-coding genes filtered out by OUTRIDER. NB-act 
identified 10,263 activation outliers among 1623 genes 
(with a median of 0 and 75% quantile of 2 per sample, 
Figure S3, Table S7). We observed a notable enrichment 
for CGC hematologic oncogenes among all activation 

Table 2  Complementary of the methods used as input for the integrative analyses

Input Method Goal Limitation

Genetic variants IntOGen • Detect different types of the recurrence of genomic 
alterations in genes
• Combine seven tools that cover multiple aspects of can-
cer driver gene detection

• Focus only on genetic variants
• Focus only on single nucleotide variants and short indels, 
while structural variants, epigenetic silencing events, 
and germline susceptibility variants are not considered

Genetic variants AbSplice • Estimates the probability for a genetic variant to cause 
aberrant splicing
• Integrates deep learning sequence-based models 
(SpliceAI and MMSplice) with quantitative maps of splicing 
levels in tissues of interest (SpliceMap)
• It can be used to trace RNA-seq-based aberrant splicing 
calls back to the genomic-level variant

• For deep intronic variants, AbSplice performs not as well 
as near splice site variants
• SpliceMaps need to be created if new tissue or cell types 
are added

RNA-seq OUTRIDER • Detects RNA expression outlier, independently of genetic 
variants
• Accounts for covariations using denoising autoencoder

• Applies only to genes typically expressed in the con-
sidered cohort. Fails at calling activation of otherwise 
not expressed genes
• Sufficiently large cohort is required (> 60 samples) 
to detect outliers reliably

RNA-seq NB-act • Detects aberrantly activated genes in RNA-seq data, 
which complements OUTRIDER

• In comparison to underexpression outliers for which 
NMD-triggering variants provide orthogonal ground truth, 
benchmarking data based on rare variant annotation 
is less certain for gene activation

RNA-seq FRASER • Detects aberrantly spliced genes in RNA-seq data
• Accounts for sources of covariation using denoising 
autoencoder
• Intron-centric: no prior annotation needed, and does 
not require building clusters of introns sharing splice sites, 
which can get prohibitively big and lead to modeling 
complications

• Sufficiently large cohort is required (> 50 samples) 
to detect outliers reliably
• Can overlook some genuinely pathogenic isoforms, 
especially rapidly degraded splice isoforms
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Fig. 2  Expression outliers are enriched for hematologic malignancy driver genes. A Enrichment for CGC hematologic tumor suppressor genes 
among all genes called by OUTRIDER as well as at most three significant genes per sample that were called to be underexpression outliers. 
The genes are stratified by the number of samples in which the gene is called as an outlier. Numbers of the genes and nominal significances 
from the Fisher test are labeled at the top of the bars (ns: not significant; *: P ≤ 0.05; **: P ≤ 0.01; ***: P ≤ 0.001; ****: P ≤ 0.0001). Error bars of the odds 
ratio (95% confidence intervals) are shown where the Fisher test is significant. B, C As in A for CGC hematologic oncogenes among overexpression 
and activation outliers, respectively. D Raw RNA-seq read counts per sample against expected counts for TET2. For fifteen samples (red), TET2 
was called as an underexpression outlier, including samples AML_0405 and T-ALL_0269, showcased in the panels (E–H). E, F Gene expression 
z-score among all samples against the genomic position of the genes on chromosome 4. G, H Copy ratio within chromosome 4 binned into 1-kb 
region. Red vertical lines mark the genomic position of the expression outliers. Black dashed lines mark the estimated region of no copy number 
variation. The underexpression outliers in TET2 and UBE2D3 in sample AML_0405 reflect the consequence of copy number loss that is very specific 
to the TET2 locus. In contrast, an extra copy of whole chromosome 4 (karyotype: 47,XY, + 4) is found in sample T-ALL_0269. TET2 reduced expression 
must have a different cause in this sample
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outliers (Fig.  2C). Here too, restricting to at most three 
outliers per sample increased the enrichment. Alto-
gether, these analyses provide a unique set of aberrantly 
expressed genes in hematologic malignancies with strong 
enrichment for driver genes.

We next investigated how expression outliers were 
associated with genomic alterations. We observed a 
strong enrichment of relevant genomic aberrations 
among the expression outliers. Overall, 22.2% of the 
underexpression outliers overlapped a copy number loss, 
and 14.0% of the overexpression outliers and 12.6% of the 
activation outliers overlapped a copy number gain. We 
also performed a variance component analysis of OUT-
RIDER-corrected expression levels and found that copy 
ratio explained the largest part of the variance explained 
by genomic alterations (typically 60%, Figure S4-S5), con-
sistent with a predominant role of copy number altera-
tions in transcriptomic aberrations in cancer [76, 77]. 
We also found significant enrichments for rare variants 
associated with nonsense-mediated decay (stop-gained, 
frameshift, and splice-related) as well as structural vari-
ants and variants found in the promoter region among 
underexpression outliers (Methods, Figure S6), consist-
ent with earlier reports in non-cancer samples [78], and 
with genomic alterations underpinning allele-specific 
expression in cancer [19]. Structural variants were also 
significantly enriched among overexpression and acti-
vation outliers (Figure S7-S8). Interestingly, we found 
enrichments for rare splice-related variants and rare 
frameshift variants among overexpression outliers but 
not activation outliers, perhaps because, in some cases, 
these variants lead to RNAs with increased stability 
(Figure S7-S8). Overall, these enrichments for relevant 
genomic aberrations support the reliability of the expres-
sion outlier calls and provide a genetic explanation for a 
substantial fraction of them.

Investigations of expression outlier events of the tumor 
suppressor gene TET2 illustrate how this catalog can be 
used. Loss of function of TET2 has been reported in mye-
loid leukemia due to splice site mutations, out-of-frame 
insertions or deletions, and base substitutions [79–82]. 
We found 15 underexpression outlier events (two in 
AML, one in myelodysplastic neoplasm, seven in B-cell 
precursor acute lymphoblastic leukemia, and five in T-cell 
acute lymphoblastic leukemia) for TET2 across all sam-
ples and no overexpression outliers (Fig. 2D), consistent 
with its role as a tumor suppressor gene. To gain further 
insights, we showcased the two samples with the lowest 
fold changes (samples AML_0405 and T-ALL_0269). For 
these two samples, TET2 was among the most extreme 
outliers (Figure S9-S10). However, neither the single 
nucleotide variants, short insertions and deletions, struc-
tural variants, nor gene fusions explained the observed 

decrease in TET2 expression. Inspection of the genomic 
coverage indicated a loss of the TET2 locus nested within 
a single-copy loss of a larger region in chromosome 4 for 
sample AML_0405 likely explaining the underexpression 
(Fig.  2E, G). This explanation was further supported by 
the decreased expression of the neighbor gene UBE2D3 
(Fig.  2E). In contrast, genomic coverage investigations 
did not provide an explanation for the reduced expres-
sion of TET2 in sample T-ALL_0269 (Fig. 2F, H). Further 
outliers, including TET2 in sample T-ALL_0269, could 
reflect yet-to-be-interpreted genetic variants, epigenetic 
causes, or outlier caller false positives [83].

In summary, both OUTRIDER and NB-act reveal aber-
rantly expressed genes enriched for driver genes and can 
be used to identify downregulated tumor suppressor 
genes or activated oncogenes in individual samples.

Rare splicing aberrations are enriched for hematologic 
malignancy driver genes
We applied FRASER to detect aberrant splicing events 
(aberrant usage of existing or novel splice sites) within 
our samples, which could be caused by events such 
as alternative exon usage, intron retention, alterna-
tive donor or acceptor site usage, usage of deep intronic 
donor and acceptor sites, or truncation of parts of the 
transcript. Like OUTRIDER for expression, FRASER is a 
tool to call splicing outliers while controlling for covari-
ations, a task that is distinct from calling differential 
splicing between groups [39]. We called 43,464 splicing 
outliers across 35,410 gene-level splicing outlier events 
on a total of 7591 genes in 2854 samples (Figure S11, 
Table S8). Remarkably, we observed a substantial enrich-
ment for CGC hematologic tumor suppressor genes 
among these splicing outliers (Fig. 3A). As for expression 
outliers, restricting to at most three outliers per sample 
increased the enrichment. Moreover, the genes called 
as splicing outliers in more than five samples exhibited 
the highest enrichment, suggesting a higher potential of 
being oncogenic.

Calling splicing aberrations from RNA-seq data can 
point towards mutations that have been overlooked using 
the genomic data alone. As an example, we showcase 
RB1, a well-known tumor suppressor gene, which can 
be inactivated by various mechanisms, including intra-
genic mutations, methylation of the promoter region, and 
chromosomal deletions [84]. In sample B-NHL_1747, we 
identified an unusual exon-skipping event of the 20th 
exon in RB1 (Figure S12). Analyzing the WGS data of 
this sample revealed a deletion of 118-base-pair in the 
region of the 20th exon, which led to a frame-shift exon-
skipping (Figure S13). However, this structural variant 
was initially discarded in our variant calling pipeline 
due to stringent filtering, where we required paired-read 
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support for considering a variant, while this deletion 
was only supported by split-reads. While anecdotal, this 
example is reminiscent of a similar case observed in rare 
diseases, where expression outlier helped to identify a 
promoter variant responsible for underexpression, while 
the variant was initially not prioritized during whole 
exome sequencing analysis due to its location [85]. Using 
FRASER, which accurately captured the consequence of 
this initially discarded structural variant as a splicing out-
lier, we were now able to recognize the significant tran-
scriptomic impact of this variant and rescued it.

As a complementary approach to RNA-seq-based 
splicing outlier calling, we considered AbSplice [36], a 
recently published algorithm that predicts whether a 
rare variant causes aberrant splicing. Here, we applied 
it for the first time to hematologic malignancy samples. 
AbSplice integrates two sequence-based machine learn-
ing tools, MMSplice [86] and SpliceAI [87], with so-
called SpliceMaps, which are quantified tissue-specific 
usages of splice sites, including non-annotated and weak 
splice sites. We derived SpliceMaps from the raw RNA-
seq data (Methods). AbSplice classified 7160 rare vari-
ants as splice-affecting out of 275,899,978 pre-filtered 
variants, resulting in 7074 genes predicted to be affected 
across 3093 samples (with a median of 2 per sample, Fig-
ure S14, Table S9  and S10). These results demonstrated 
a strong enrichment for CGC hematologic tumor sup-
pressor genes among all genes carrying splice-affecting 
variants (Fig.  3B). Furthermore, when focusing on the 
genes that were predicted to have recurrent aberrant 
splicing events across multiple samples, we observed an 
even higher enrichment, indicating a tendency for recur-
rent splice-affecting variants to occur in known hema-
tologic malignancy driver genes (Fig.  3B). In contrast 
to the RNA-seq-based splicing outlier calls, restricting 
AbSplice predictions to at most three calls per sample did 
not lead to a significantly higher enrichment, likely due 
to the limited number of samples with a high number of 
variants displaying strong AbSplice scores. Collectively, 

these results indicate that the rare splicing aberrations 
predicted from the genome can contribute to identifying 
potential driver genes in hematologic malignancies.

Overall, 15% of the AbSplice predictions (1049 out 
of 7089, Fig.  3C) were also called as splicing outliers 
by FRASER, which is lower but not far off the claimed 
precision of AbSplice at the cutoff we used (predicted 
precision cutoff = 0.2). This proportion of FRASER splic-
ing outliers was much larger using AbSplice than when 
using VEP splice-related rare variants (1.2%, 1504 out 
of 121,256, Fig.  3C). Among those 1049 gene-sample 
pairs common to AbSplice and FRASER, the enrich-
ment for CGC hematologic tumor suppressor genes was 
substantially stronger than when considering AbSplice 
predictions or FRASER calls separately (Fig.  3D). We 
also found significantly high enrichments for VEP 
splice-related rare variants and AbSplice variants among 
splicing outliers (Methods, Figure S15  and S16). As an 
example of an event both predicted by AbSplice and 
called by FRASER, we showcase CD79A, a well-known 
oncogene frequently affected by somatic mutations in 
hematologic malignancies [54, 88–90]. We discovered 
splicing outliers of CD79A in samples MZL_3758 and 
LPL_0664, resulting in a truncation of 18 amino acids 
at the beginning of the 5th exon (Fig.  3E). AbSplice 
predicted that a rare 45-base-pair deletion spanning 
the acceptor site (NM_001783.4:c.568-2_610del) to be 
splice-affecting (AbSplice score = 0.36, Fig.  3F, Figure 
S17). This deletion, which was exclusively found in these 
two samples, is very likely the cause of this aberrant 
splicing event. Notably, similar deletions in the 4th and 
5th exon of CD79A have been observed in diffuse large 
B-cell lymphoma, which has been shown to impact the 
ITAM signaling modules [88].

In summary, variants predicted to cause aberrant splic-
ing by AbSplice and splicing outliers called by FRASER in 
transcriptomic data showed global enrichment for driver 
genes and proved invaluable in pinpointing affected 
driver genes in individual samples.

(See figure on next page.)
Fig. 3  Transcriptomic splicing outliers and genomic splice-affecting variants are enriched for hematologic malignancy driver genes. A Enrichment 
for CGC hematologic tumor suppressor genes among all genes called by FRASER and at most three significant genes per sample that were called 
aberrantly spliced from RNA-seq (FRASER). The genes are stratified by the number of samples in which a gene is called as a splicing outlier. Numbers 
of the genes and their nominal significance from the Fisher test are labeled at the top of the bars. Error bars of the odds ratio (95% confidence 
intervals) are shown where the Fisher’s test is significant. B As in A among splice-affecting variants (AbSplice). C Overlap of splice-affecting variants, 
VEP splice-related variants, and splicing outliers on the sample-gene level. D As in A among splice-affecting variants with corresponding splicing 
outliers. E Junction counts (split reads) against total junction coverage (exon–intron or intron–exon spanning reads) of the displayed intron. 
The displayed intron of the CD79A only shows aberrant splicing in samples MZL_3758 and LPL_0664. F Sashimi plots showing RNA-seq read 
coverage (y-axis) and the numbers of split reads spanning an intron indicated on the exon-connecting line for two aberrant splicing events. Two 
case samples using a unique splice-site in CD79A 5th exon acceptor site and one control sample are displayed. The rare splice-affecting deletion 
(NM_001783.4:c.568-2_610del) predicted by AbSplice, which existed exclusively in the two case samples, is shown as black bars
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All our results from splice-affecting variants, expression 
outliers, splicing outliers, and recurrent mutational patterns 
aggregated by disease entities are provided (Availability of 

data and materials). This constitutes a comprehensive cen-
sus detailing genomic and transcriptomic aberrations across 
3760 hematologic malignancy samples.

Fig. 3  (See legend on previous page.)
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Integration of rare genomic and transcriptomic aberrations 
improves hematologic malignancy driver gene prediction
We next trained models to predict driver genes based 
on genomic and transcriptomic features, including the 
seven IntOGen tools, AbSplice, OUTRIDER, NB-act, 
and FRASER. We used the complete dataset on the one 
hand and used the dataset stratified by 14 study groups 
on the other hand (Table 1). As ground truth, we consid-
ered the 322 CGC hematologic malignancy driver genes 
complemented with 55 additional curated hematologic 
panel genes (Methods). We further filtered the variants 
provided to the IntOGen pipeline based on variant allele 
frequency and sequencing depth, as this led to improved 
performance (“unmatched_filter_3”, Methods, Figure 
S18). Moreover, we compared the performance of logis-
tic regression, random forest, XGboost, and a fully con-
nected neural network using fivefold cross-validation 
(Methods). We chose random forest as the final method 
as it showed the highest average precision based on the 
complete dataset (average precision 23%, Figure S19).

Using the complete dataset, we found that the genomic 
and transcriptomic features exhibited complementary 
predictive value for hematologic malignancy driver genes 
(Fig.  4A, B, Figure S20-S21). Specifically, integrating 
AbSplice variant effect predictions significantly enhanced 
the genomic-based model trained on the seven IntOGen 
tools. Moreover, we found that the transcriptomic fea-
tures further significantly improved the model (Fig. 4B). 
These findings underscore the relevance of incorporat-
ing aberrant expression and splicing analyses to predict 
driver genes. We also explored models that include com-
plementary features from external datasets. Specifically, 
we incorporated co-essentiality modules from DepMap 
[59] and a 256-dimensional functional gene embed-
ding that integrates protein–protein interactions (PPI), 
genome-wide deletion screen results from the DepMap 
project, co-expression from bulk RNA-seq and single-cell 
RNA-seq compendia [60] (see Methods). This resulted in 
an enhancement of overall performance (average preci-
sion increased from 23 to 36%, Figure S22, Table S11 and 
S12). However, the inclusion of external data blurred 
the differences between disease entities and introduced 
predictions solely based on external gene functional evi-
dence (Figure S23-S25). Given our focus on hematologic 
driver genes specifically, as opposed to cancer in general, 
and in order to highlight the added value of our data-
set, we focussed on the model that does not incorporate 
external data in the following.

Among the 100 top-ranked genes, 63 were known from 
the ground truth, vastly greater than expectation (odds 
ratio = 106.3, P = 1.6 × 10−84, Fisher test; Fig.  4C, Table 
S13). These enrichments for well-known driver genes 
demonstrated the reliability of the model predictions. 

Four genes, CDNKN1B, EIF3E, HLA-A, and IL6ST, are 
CGC driver genes that have not been annotated as hema-
tologic yet, indicating a broader role for those. Further-
more, 18 of these genes are targets of known, approved 
drugs (Fig. 4D, Table S14). Despite TTN being known to 
be false positive in mutational recurrence analysis as a 
long gene, the remaining genes were categorized as can-
didate drivers whose role remains to be further assessed.

In line with the results on the complete dataset, our 
integrative model outperformed IntOGen and Mut-
SigCV—a driver gene predictor based on mutation 
frequency across all study groups (Figure S26). The study-
group-wise models allowed further insights into disease-
entity specificities (Fig. 4D, Table S15). Clustering the 100 
top-ranked genes according to their study-group pre-
dicted probabilities revealed various disease entity spe-
cificities. Cluster 3 consisted of genes that exhibited high 
predicted probabilities across all disease entities. While 
TP53 is a well-known pan-cancer tumor suppressor, we 
acknowledge that ANKRD36, ANKRD36C, and UBC may 
warrant further scrutiny as potential artifacts in global 
analysis [91]. Clusters 1 and 2 comprised genes that 
scored highly specifically in myeloid disease entities, such 
as ASXL1 and SRSF2 [9, 92]. Conversely, the genes in the 
remaining clusters were associated with specific disease 
entities. Notable examples include NOTCH1, PHF6, and 
FBXW7, which are well-acknowledged for their role in 
T-cell leukemia, as well as BRAF, which was exclusively 
predicted in the hairy-cell group, in accordance with its 
recognized function as a marker for HCL [10, 93–95].

Among the candidate genes, we identified several 
promising genes whose roles in hematologic malignan-
cies are yet to be established. Our analysis predicted 
SORL1 as a candidate driver in multiple study groups, 
including myelodysplastic neoplasm (precursor of AML), 
B-cell precursor ALL, and a study group comprising 
T-cell non-Hodgkin lymphoma and T-cell acute lymph-
oblastic leukemia. Consistent with these observations, 
SORL1 was found to be expressed on the leukemic cell 
surface and released into plasma in AML and ALL, with 
its level decreasing during remission [96]. EIF4G1 stood 
out as another interesting candidate driver in AML and 
lymphoid entities, supported by previous analyses sug-
gesting that EIF4G1 is involved in cell survival in AML 
as a downstream target of MYCN, a known oncogene in 
neuroblastoma [97]. We also found TCP1 to be predicted 
in mastocytosis and B-cell precursor-ALL, whose high 
expression has been associated with AML drug resistance 
and poor survival through the activation of AKT/mTOR 
signaling [98]. A fourth exciting candidate, ATXN1, was 
predicted as a candidate driver in multiple disease enti-
ties. Its important paralog ATXN1L is known as a novel 
regulator of hematopoietic stem cell quiescence [99]. 
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Fig. 4  Rare genomic and transcriptomic aberrations add value to hematologic malignancy driver gene prediction on top of methods detecting 
mutational recurrence. A Individual features and the corresponding model’s performances (measured by average precision) using a random 
forest classifier. B Order as in A for cumulative features. The performance constantly improved when adding additional features. Asterisks denote 
nominal significance from the Wilcoxon test. C Numbers of genes in each category among the top 100 predicted genes when using all features 
and the complete dataset. Reported hematologic malignancy driver genes are the genes listed in either CGC hematologic malignancy driver genes 
or hematologic panel genes. Reported cancer driver genes are the genes documented by CGC. The rest of the genes are categorized as candidate 
hematologic malignancy driver genes. D The heatmap shows the predicted driver gene probability per gene (rows) and study group (columns) 
relative to the column-wise maximum value. Myeloid and lymphoid entities clustered due to the shared hematologic malignancy driver gene 
profiles (bottom track). The barplot shows the predicted probabilities from the model trained on the complete dataset. Bar colors as in C 



Page 14 of 21Cao et al. Genome Medicine           (2024) 16:70 

Overall, our predictions based on 3760 tumor genomes 
and transcriptomes reveal promising hematologic malig-
nancy driver candidates.

Our analysis is based on variants that include both 
somatic and rare germline variants, as these are hard to 
distinguish in the absence of matched control samples. 
A large fraction of germline variants is not necessarily 
a disadvantage for identifying driver genes, as they can 
encompass rare cancer-predisposing variants that would 
be discarded by a matched-control analysis. Moreover, 
somatic variants often include a large fraction of pas-
senger variants that do not contribute to oncogenesis. 
Remarkably, the performances for calling CGC genes 
using each of the seven IntOGen tools in our dataset 
were similar to the performance reported by the IntO-
Gen authors on TCGA for which matched control sam-
ples were available and thus allowed for trustable somatic 
variant calling (Figure S27, for disease entities with simi-
lar sample sizes). Although the disease entities differ, this 
analysis shows that our filtered variants are comparably 
predictive for cancer gene detection by cohort-wise gene-
level enrichment approaches like IntOGen.

Outlier clustering identifies LRP1B as a potential marker 
in HCL‑V and related B‑cell malignancies
In addition to our global driver gene prediction analysis, 
we performed a detailed investigation into each disease 
entity, examining its association with expression outliers, 
splicing outliers, and variants predicted to cause aberrant 
splicing. Overall, we found 2716 significant associations 
between 11,273 genes and 24 disease entities (Table S16, 
Benjamini–Hochberg false discovery rate < 0.05, one-
sided Fisher test). Focusing on activation outliers and 
annotated cancer driver genes, we found 43 associations 
between 37 CGC cancer driver genes and 12 disease enti-
ties (Fig. 5A). Some associations were already described 
in the literature (Table S17). For example, we confirmed 
that the transcription factors TLX1 and TLX3 were asso-
ciated with T-cell acute lymphoblastic leukemia, in line 
with previous reports [100, 101]. In addition, other stud-
ies mentioned the role of HOXA11, PREX2, and RET in 
AML [102–104]. However, several associations have not 
yet been reported, including overexpression of WNK2 in 
high-grade B-cell lymphoma, of FAT4 in multiple mye-
loma, and of LRP1B in hairy cell leukemia (HCL), hairy 
cell leukemia variant (HCL-V), and marginal zone lym-
phoma (MZL).

Remarkably, LRP1B was associated with very rare 
entities. LRP1B, or Low-Density Lipoprotein Receptor-
related protein 1B, is a frequently altered gene in multiple 
cancer types, but its exact role remains unclear [105]. In 
total, we found 24 samples (0.6% of all 3760 samples) with 
aberrantly high expressions of LRP1B. Thereof 21 were 

found within HCL-V, HCL, and MZL, where LRP1B-acti-
vated samples made up 44.8% (HCL-V), 7.4% (HCL), and 
4.2% (MZL) of each entity (Fig. 5B). The other three cases 
with high LRP1B expression were found within multi-
ple myeloma (MM), and no case was found in any of the 
other 20 entities. Among all LRP1B-activated samples, 
more than half of the cases (13 out of 24) were found in 
HCL-V patients, indicating that aberrant LRP1B expres-
sion might play an important role in HCL-V. While we 
observed a trend towards shorter overall survival (OS) of 
patients with LRP1B activation (Figure S28), this trend 
was not statistically significant, perhaps due to the low 
sample size (13 with LRP1B activation versus 16 without; 
median OS: 3.4 vs. 6.3 years; P = 0.45, two-sided log-rank 
test). The sample sizes were even lower for the other dis-
ease entities, hindering further statistical assessments 
(5 with LRP1B activation in HCL-V and 3 in MZL). We 
then evaluated LRP1B expression in an independent 
validation dataset of 42 samples. Consistent with obser-
vations made on our primary dataset, we detected 10 
LRP1B-activated samples in HCL-V (5/14; 36%) and HCL 
(5/28; 18%, Fig. 5C) in the validation dataset. Moreover, 
the RNA-seq coverage for both datasets showed that 
samples overexpressing LRP1B expressed a truncated 
isoform in the majority (32/34; 94%) of samples (22/24 
in the dataset; 10/10 in the validation dataset; Fig.  5D, 
Figure S29-S30). The two samples expressing full-length 
transcripts were both multiple myeloma, whose causes 
are yet to be understood. In the truncated isoform cases, 
LRP1B expression started at exon 13, thus lacking the 
first 636 amino acids of exon 1 to 12. Three start codons 
located within exon 13 could enable the start of transla-
tion using the canonical open reading frame. Assum-
ing this transcript is translated, it yields a truncated 
LRP1B protein starting from the middle of the second 
β-propeller domain (Fig. 5E). However, we could not pin-
point a genomic cause for the truncated isoform, as no 
single-nucleotide variants, short insertions or deletions, 
structural variants, or gene fusions involving LRP1B were 
found to be specific to the affected samples.

Discussion
The study of rare cancer aberrations is an emerging field 
that greatly benefits from the growing large-scale next-
generation sequencing [106, 107]. We have generated 
an extensive census of rare genomic and transcriptomic 
aberrations across 3760 patients spanning 24 hemato-
logic malignancy disease entities. This census is based 
on the largest collection of hematologic malignancy 
samples that have undergone WGS along with matched 
RNA-seq data, which also includes rare disease entities. 
We cannot share without access restrictions the exact 
variants, expression outliers, and splicing outliers at the 
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Fig. 5  Aberrant activation of LRP1B is predominant in HCL-V. A Disease entities (full names in Table 1) against aberrantly activated CGC genes, 
colored by odds ratio from Fisher test. B Percentage of LRP1B-activated samples in the four disease entities in which LRP1B activation occurred. 
Percentages of samples showing LPR1B activation (NB-act) and nominal significance from the one-sided Fisher test are labeled at the top. C 
Normalized counts of LRP1B-activated samples with regard to the different disease entities in the validation dataset. Percentages of samples 
showing LPR1B activation (Gaussian mixture clustering) are labeled at the top. D Transcriptomic coverage tracks showing different representative 
samples exhibiting LRP1B truncated isoforms (samples HCL-V_3036 dataset and HCL-V_19_Val validation dataset) and canonical isoform (sample 
MM_0496 dataset). For each track, the sample size annotation (n) refers to the number of LRP1B-activated samples with a similar RNA-seq coverage 
pattern. E Anticipated domain organization of truncated and canonical LRP1B (adapted from Príncipe et al. [105])
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sample level, as such data would compromise research 
participant privacy. Nevertheless, we publicly provide our 
census (Availability of data and materials) and have dem-
onstrated its utility. This census comprises frequencies 
of genes harboring variants predicted to cause aberrant 
splicing, expression outliers, and splicing outliers. All 
these categories were significantly enriched for known 
hematologic malignancy driver genes, highlighting their 
role as putative drivers in the corresponding samples. 
Notably, we have reaffirmed the well-established associa-
tions between transcription factors TLX1 and TLX3 with 
T-cell acute lymphoblastic leukemia, as well as HOXA11, 
PREX2, and RET with AML. Furthermore, we built pan-
leukemia and entity-specific driver gene predictors by 
integrating this data, which successfully recovered known 
drivers and yielded promising novel candidates.

One of our notable findings is the identification of 
LRP1B as a potential marker for a subgroup of HCL-V 
and related B-cell malignancies. In our RNA-seq sam-
ples, LRP1B expression was rarely detected, occurring in 
only approximately 1% of cases. However, it was highly 
expressed in some cases of MZL, HCL, and approxi-
mately 50% of HCL-V, which we confirmed in an inde-
pendent dataset. These three disease entities are mature 
B-cell malignancies and were previously regarded as 
separate entities in the revised 4th edition of the WHO 
classification of hematolymphoid tumors, distinguished 
based on immunophenotypic markers and molecular 
genetics [108]. HCL-V is typically resistant to conven-
tional HCL therapy and does not show the HCL-specific 
BRAF-V600E mutation. However, as HCL, HCL-V, and 
MZL arise from malignant mature B-cells showing simi-
lar morphology, clear discrimination using conventional 
diagnostic techniques is often not possible. Thus, in the 
recently published 5th edition of WHO classification, the 
term “HCL-V” has been removed, recognizing that the 
biology of this disease is unrelated to HCL [8]. Instead, 
these cases are now considered splenic B-cell lymphoma/
leukemia with prominent nucleoli (SBLPN), which also 
comprises rare cases of splenic MZL and B-prolympho-
cytic leukemia based on similar cytomorphological fea-
tures. SBLPN rather serves as a placeholder for those 
morphologically defined cases of B-cell lymphoma not 
being classifiable into biologically distinct entities based 
on current evidence-based knowledge. We observed 
a tendency for a worse prognosis for HCL-V samples 
expressing LRP1B, though larger sample size is needed 
to establish a statistical significance. Overall, our results 
suggest a potential subcategorization of HCL-V/SBLPN 
based on LRP1B expression, whose functional implica-
tions remain to be elucidated.
LRP1B, also known as Low-Density Lipoprotein Recep-

tor-related protein 1B, is broadly expressed in multiple 

normal tissues but not in blood or bone marrow [109–
111]. It plays a role in various biological processes such as 
angiogenesis, chemotaxis, proliferation, adhesion, apop-
tosis, endocytosis, immunity, host-virus interaction, and 
protein folding. Additionally, LRP1B is among the most 
frequently altered genes in human cancer overall [112–
117]. For tissues where LRP1B is normally expressed, 
LRP1B is often inactivated in cancer through several 
genetic and epigenetic mechanisms, making it a putative 
tumor suppressor gene. Overexpression of a truncated 
isoform of LRP1B in cells that normally do not express 
it, as we observed here, could play a role in oncogenesis 
by disrupting similar biological processes. Performing 
experiments on LRP1B is challenging. LRP1B is an exten-
sive gene spanning 1.9 million bases, featuring 91 exons 
and a canonical transcript length of 16.5 kb. It is techni-
cally challenging to perform overexpression of the tran-
script of this enormous length [118]. Moreover, primary 
patient cells would be needed for downregulation experi-
ments as LRP1B is not normally expressed in blood cells. 
Despite these challenges, our findings encourage further 
investigations to unravel the potential role of LRP1B in 
B-cell malignancies.

Our study has limitations: Our setting did not include 
matched control samples, preventing us from distin-
guishing somatic from rare germline variants. Although 
we found that working on this joint set of variants did 
not appear to hinder the performance of IntOGen for 
predicting cancer driver genes, we cannot delineate 
the contribution of somatic against rare germline vari-
ants to these cancers. Moreover, our approach is not 
geared towards retrieving common abnormalities and 
may underscore non-regulatory mutations. For exam-
ple, NPM1, one of the most frequently mutated genes 
in AML [119], was not prioritized. NPM1 was catego-
rized as a driver gene by two IntOGen tools but not by 
the other five. Pathogenic mutations of NPM1 act post-
translationally by affecting the cellular localization of the 
NPM1 protein. Not surprisingly, the transcriptome data 
of NPM1 were not informative. Consequently, NPM1 
was not prioritized by our driver gene prediction model. 
We have not characterized circulating DNA specifically, 
which has the potential to detect driver genes in hema-
tologic malignancies [120] because its applicability var-
ies within the different leukemia entities and is often 
limited due to its sensitivity [121]. Additionally, we did 
not include gene fusion and copy number variation calls, 
which are frequent causes of hematologic malignancies, 
into the driver gene prediction model, as we found them 
to have very high false positive rates during preliminary 
investigations. Moreover, we have purposely decided to 
restrict the input data of the driver gene prediction model 
to our dataset’s sole genomic and transcriptomic data to 
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provide to the community predictions unbiased by previ-
ous literature. Future work could integrate this resource 
as prior information on pathways or protein interaction 
networks or with complementary datasets to provide a 
refined landscape of genomic and transcriptomic aberra-
tions driving hematologic malignancies.

Conclusions
We established a unique and comprehensive census 
encompassing the genomic and transcriptomic land-
scape of 3760 hematologic malignancy samples, cover-
ing a wide range of disease entities. This comprehensive 
census can be leveraged to identify novel biomarkers, 
propose therapeutic decisions, and unravel the molecu-
lar underpinning of the heterogeneity of hematologic 
cancers.
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