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Abstract 

Background Gut dysbiosis has been linked with both HIV infection and diabetes, but its interplay with metabolic 
and inflammatory responses in diabetes, particularly in the context of HIV infection, remains unclear.

Methods We first conducted a cross‑sectional association analysis to characterize the gut microbial, circulat‑
ing metabolite, and immune/inflammatory protein features associated with diabetes in up to 493 women (~ 146 
with prevalent diabetes with 69.9% HIV +) of the Women’s Interagency HIV Study. Prospective analyses were then con‑
ducted to determine associations of identified metabolites with incident diabetes over 12 years of follow‑up in 694 
participants (391 women from WIHS and 303 men from the Multicenter AIDS Cohort Study; 166 incident cases were 
recorded) with and without HIV infection. Mediation analyses were conducted to explore whether gut bacteria–dia‑
betes associations are explained by altered metabolites and proteins.

Results Seven gut bacterial genera were identified to be associated with diabetes (FDR‑q <  0.1), with positive asso‑
ciations for Shigella, Escherichia, Megasphaera, and Lactobacillus, and inverse associations for Adlercreutzia, Ruminococ-
cus, and Intestinibacter. Importantly, the associations of most species, especially Adlercreutzia and Ruminococcus, were 
largely independent of antidiabetic medications use. Meanwhile, 18 proteins and 76 metabolites, including 3 microbi‑
ally derived metabolites (trimethylamine N‑oxide, phenylacetylglutamine (PAGln), imidazolepropionic acid (IMP)), 50 
lipids (e.g., diradylglycerols (DGs) and triradylglycerols (TGs)) and 23 non‑lipid metabolites, were associated with dia‑
betes (FDR‑q <  0.1), with the majority showing positive associations and more than half of them (59/76) associated 
with incident diabetes. In mediation analyses, several proteins, especially interleukin‑18 receptor 1 and osteoprote‑
gerin, IMP and PAGln partially mediate the observed bacterial genera–diabetes associations, particularly for those 
of Adlercreutzia and Escherichia. Many diabetes‑associated metabolites and proteins were altered in HIV, but no effect 
modification on their associations with diabetes was observed by HIV.

Conclusion Among individuals with and without HIV, multiple gut bacterial genera, blood metabolites, and pro‑
inflammatory proteins were associated with diabetes. The observed mediated effects by metabolites and proteins 
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Background
Diabetes, mainly type 2 diabetes, is a prevailing metabolic 
disorder, posing a significant public health challenge 
worldwide. People living with human immunodeficiency 
virus (HIV) infection (PLWH) are at high risk of meta-
bolic diseases, including diabetes, possibly due to the 
chronic inflammation and persistent immune activation 
induced by HIV infection and the long-term antiretro-
viral therapy (ART) [1]. Characterizing modifiable risk 
factors of diabetes beyond traditional risk factors is thus 
essential to the diabetes prevention and management in 
this susceptible population.

Emerging evidence suggests that gut dysbiosis may 
play a critical role in the development of diabetes [2–4]. 
Both our pilot study and other prior work have reported 
altered microbiota composition associated with some 
metabolic disorders, such as metabolic syndrome [5], 
prediabetes [6], and diabetes [7] among PLWH. However, 
these previous studies were limited by relatively small 
sample sizes, and characteristics of gut dysbiosis asso-
ciated with diabetes in the context of HIV infection are 
not fully understood. How and through which molecu-
lar mechanisms gut dysbiosis may contribute to diabetes 
in HIV infection remains largely unclear. Evidence from 
experimental settings has suggested that gut microbi-
ota may affect the host metabolic health through direct 
modulation of host immunity/inflammation responses 
[2, 4, 8], as well as by producing microbial-derived bio-
molecules especially those play a role in modulation of 
host metabolism, inflammation, and immune activation 
(e.g., indoles, short-chain fatty acids [SCFAs], secondary 
bile acids) [9, 10]. Given that alterations in gut micro-
bial taxonomic composition (e.g., the loss of beneficial 
microbes and enriched pathobionts) and related micro-
bial functionalities, as well as disrupted inflammation 
and immune activation homeostasis, have been noted in 
HIV infection [11–14], we thus hypothesized that among 
PLWH or population at high risk for HIV infection, gut 
dysbiosis is associated with diabetes, which is partially 
explained by metabolic-inflammatory perturbations.

To test this hypothesis, we leveraged multi-omics data 
from the Women’s Interagency HIV Study (WIHS) and 
the Multicenter AIDS Cohort Study (MACS), two well-
characterized cohorts of both PLWH and demographi-
cally and socioeconomically similar people without HIV 
infection in US, to first identify gut microbial taxonomic 

features, circulating metabolites, immune and inflam-
matory proteins associated with diabetes, and then to 
explore the potential mediating roles of metabolites and 
inflammatory proteins in the observed gut microbiota–
diabetes relationship.

Methods
Study design and population
The WIHS was a multicenter longitudinal study started 
in 1993 and designed to investigate the long-term, nat-
ural, treated history, and progression of HIV infection 
in women [15]. The MACS was a prospective study 
originally founded in 1984 and focused on the natural 
and treated histories of HIV infection in men [16]. The 
WIHS and MACS used similar study designs and meth-
ods, recruited both PLWH and HIV-negative people with 
similar demographical and socioeconomical status and 
high-risk behaviors for HIV infection, and were merged 
to form the MACS-WIHS Combined Cohort Study in 
the beginning of 2019 [17]. In the present investigation, 
we included 563 women who provided stool samples 
from three sites (Bronx, Brooklyn, and Chicago) dur-
ing core visits at 6-month intervals from 2017 to 2019 in 
WIHS [18, 19]. Among them, 493 women had shotgun 
metagenomics profiled, 434 had plasma metabolomics 
profiled, and 428 had serum immune/inflammatory pro-
teins. Among 426 participants with all these three omics 
data, 396 (~ 93%) had the omics data measured on bio-
specimens collected at the same visits and 12 had data 
matched within 1 year (i.e., ≤ 2 visits). To examine the 
prospective relationship between plasma metabolites 
and incident diabetes, we included 694 participants (391 
women from WIHS and 303 men from MACS; 166 inci-
dent cases were recorded over a median follow-up of 12.6 
years) who were free of diabetes and with metabolomic 
and lipidomic data at a baseline visit (2004–2006) [20, 
21]. An overview of study design and sample selection of 
the present study is shown in Fig S1.

Gut metagenomics profiling
In this study, only participants from WIHS provided fecal 
samples for gut metagenomics profiling. Fecal samples 
were collected using a home-based self-collection kit that 
was distributed to each participant at a core WIHS visits 
as previously described [18, 19]. Metagenomic sequenc-
ing was performed on DNA extracted from fecal samples 

in genera–diabetes associations highlighted the potential involvement of inflammatory and metabolic perturbations 
in the link between gut dysbiosis and diabetes in the context of HIV infection.
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using a shallow-coverage method of shotgun sequencing-
based Illumina NovaSeq platform [19]. De-multiplexing 
was applied to generate per-sample FASTQ data, which 
was further trimmed to remove low-quality bases with a 
25 or less PHRED quality score using prinseq-lite 0.20.4 
(https:// edwar ds. sdsu. edu/ cgibin/ prins eq/ prins eq. cgi). 
After quality control, FASTQ data were then concat-
enated and aligned to the NCBI RefSeq representative 
prokaryotic genome collection using the SHOGUN pipe-
line (https:// github. com/ knigh ts- lab/ SHOGUN), through 
which reads were labeled with NCBI taxonomic annota-
tion at the species level.

Plasma metabolomics profiling
Metabolomics profiling was performed on plasma sam-
ples using hydrophilic interaction liquid chromatog-
raphy/positive ion mode (HILIC-pos for water soluble 
metabolites) and reversed-phase C8 chromatography/
positive ion mode mass spectrometry (C8-pos for lipo-
soluble metabolites) at the Broad Institute Metabolomics 
Platform (Cambridge, Massachusetts) as previously 
described [21]. In this study, we included 378 metabolites 
(211 lipids and 167 nonlipids) with detection rate > 75% 
in cross-sectional analyses of prevalent diabetes involv-
ing women from WIHS and 325 metabolites (211 lipids 
and 114 nonlipids) in the prospective analyses of incident 
diabetes involving both women from WIHS and men 
from MACS. Levels of metabolites below detection were 
replaced by one half of the minimum detected values.

Assessment of inflammatory proteins
A set of inflammation-related proteins were quantified 
in serum among 428 women from WIHS using the Olink 
Inflammation panel (92 proteins, Olink Bioscience, Upp-
sala, Sweden). Data of targeted proteins is presented as 
normalized protein expression (NPX) values with the unit 
at log2 scale. We included 74 proteins detected in > 75% 
of samples and with average coefficient of variance (CV, 
%) < 10% (intra-assay CV = 4%, inter-assay CV = 9%). Lev-
els of proteins below detection were replaced by one half 
of the square root of the limit of detection.

Ascertainment of HIV infection, diabetes, and other 
covariates
Data on sociodemographic, behavioral, and clinical char-
acteristics, including laboratory testing, were collected 
following standardized protocols [15, 16, 21]. Medica-
tion histories including use of antihypertensive, lipid-
lowering, and antidiabetic medications were collected 
with standardized interviewer-administered question-
naires. HIV serostatus was ascertained by enzyme-linked 
immunosorbent assay and confirmed by Western 
blot. Other HIV-related parameters included serum 

CD4 + cell counts, HIV RNA viral load, and current use 
of ART drugs. Diabetes was defined as fasting plasma 
glucose ≥ 126 mg/dL, random plasma glucose ≥ 200 mg/
dL, HbA1c ≥ 6.5%, or self-report use of antidiabetic med-
ications in line with our previous work [21]. In the pro-
spective analysis, participants who were free of diabetes 
at baseline but developed diabetes during follow-up were 
defined as incident diabetes cases.

Statisticalanalysis
The Analysis of Composition of Microbiome-II 
(ANCOM-II) [22] method that accounts for struc-
tural zeros was used to identify gut bacteria associated 
with prevalent diabetes among 493 women in WIHS. 
ANCOM-II was conducted at both the genus (n =  97) 
and species (n =  203) levels with predominant bacterial 
taxa (relative abundance > 0.01% and prevalence > 10%) 
included, while adjusting for age, study site, race/eth-
nicity, household annual income, education, smoking, 
alcohol consumption, HIV serostatus, and antibiotic 
use within 4 weeks of stool sample collection. The false 
discovery rate (FDR) using the Benjamini–Hochberg 
method was controlled at 0.1, and the threshold of iden-
tifying significant microbiota taxa in ANCOM-II was set 
at 0.6, which refers to ratio of the tested taxon to at least 
60% of the other taxa detected to be significantly associ-
ated with diabetes. The associations of identified gut bac-
terial taxa (centered log-ratio transformed, CLR) with 
prevalent diabetes were further examined using logistic 
regression with the adjustment of the same set of covari-
ates. Additionally, differences in bacterial α-diversity at 
the species level (observed, Chao1, Shannon, and Simp-
son diversity indices) between women with and without 
diabetes were tested by the Kruskal–Wallis test. Associa-
tion between β diversity (Bray–Curtis dissimilarity) and 
diabetes was tested using the permutational multivariate 
analysis of variance (PERMANOVA, n =  9999 permuta-
tions) [23].

The cross-sectional associations of serum proteins (N =  
428, inverse normal transformed (INT)) and metabolites 
(N =  434, INT) with prevalent diabetes in WIHS women 
were assessed using logistic regression models adjusted 
for age, study site, race/ethnicity, household annual 
income, education, smoking, HIV serostatus, and fasting 
status. The false discovery rate was controlled at 0.1. For 
the identified proteins, we conducted sparse partial least 
square discriminant analysis (sPLS-DA) [24] to examine 
their performance in classifying participants with and 
without diabetes. In addition, we used Cox proportional 
hazards models to examine prospective associations of 
identified metabolites with incident diabetes among 694 
women and men who were free of diabetes at baseline, 
adjusting for sex and the same set of covariates in the 
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aforementioned cross-sectional analysis. Analyses were 
also conducted in women and men separately and results 
were then combined by meta-analysis to test potential 
sex differences in metabolite–incident diabetes associa-
tions. To reduce the dimension of the diabetes-associated 
metabolites, the weighted correlation network analysis 
(WGCNA) [25] was applied to identify metabolite mod-
ules for downstream analysis.

After omics-wide association analyses, we conducted 
partial correlation analyses, adjusting for the covari-
ates listed above, to assess the interrelationship among 
identified diabetes-associated gut bacteria, proteins, and 
metabolites. By using the “cmest” function from the R 
CMAverse package [26], mediation analyses were con-
ducted to investigate whether associations between gut 
bacteria and diabetes were partially mediated by altera-
tions in circulating metabolites and proteins. Details 
about this mediation analysis were provided in the Sup-
plementary Methods.

To test the robustness of our results for omics–dia-
betes associations, we further adjusted for a set of dia-
betes-related factors, including body mass index (BMI), 
triglycerides, systolic blood pressure (SBP), high-density 
lipoprotein cholesterol (HDL-C), and use of lipid lower-
ing and antihypertensive medications. Given that diabe-
tes treatments (e.g., metformin) have been linked with 
gut microbiota composition [27–29], we further con-
ducted a “drug deconfounding” analysis [28, 29] using 
a recently introduced two-step pipeline to examine 
whether the identified gut microbiota–diabetes asso-
ciations were confounded by antidiabetic medications. 
A brief introduction to this “drug deconfounding” analy-
sis is provided in the Supplementary Methods. Strati-
fied analyses on the associations between the identified 
omics features and diabetes were also conducted by HIV 
serostatus. To test potential effect modification by HIV 
serostatus, we included a product term with omics fea-
tures in the regression models. Differences in the levels 
of identified diabetes-associated omics features between 
women with and without HIV infection were also com-
pared using analysis of covariance (ANCOVA). To fur-
ther integrate HIV infection, gut dysbiosis, and metabolic 
and inflammatory perturbation with diabetes, we con-
ducted in parallel omics wide association analyses to 
characterize omics features associated with HIV infec-
tion and evaluate their associations with diabetes.

In the above association analyses, all omics features 
were standardized into Z-scores after the original trans-
formation (CLR for microbial features and INT for 
metabolites/proteins) to improve the comparability of 
each feature in association with diabetes. All analyses 
were conducted using R 3.4. Statistical significance was 
set at 0.05 (two-tailed) unless otherwise stated.

Results
Population characteristics
As shown in Table S1, up to 493 women, including 336 
living with HIV, with a mean age of 53.2 years, were 
included in the cross-sectional, omics-wide association 
analysis of prevalent diabetes. Approximately 91% of 
women living with HIV reported receiving ART drugs 
within 6 months at the time of stool samples collection 
and nearly 73.5% had undetectable HIV viral load. Com-
pared to women without diabetes, women with diabetes 
tended to be older and had an unfavorable profile of car-
diometabolic traits and higher proportion of antihyper-
tensive and lipid lowering medication use.

Gut microbiota and diabetes
We found a significant difference in β-diversity (PMER-
ANOVA, P = 0.01) but not in α-diversity between women 
with and without diabetes (Fig.  1A). ANCOM-II at the 
genus level identified 7 out of 97 predominant bacteria 
genera associated with diabetes (FDR-q < 0.1), including 
4 Firmicutes genera (i.e., Intestinibacter, Ruminococcus, 
Megasphaera, and Lactobacillus), 2 Proteobacteria gen-
era (i.e., Shigella and Escherichia), and 1 Actinobacteria 
genus (Adlercreutzia) (Fig. 1B and Table S2). Specifically, 
Adlercreutzia, Intestinibacter, and Ruminococcus were 
inversely associated with diabetes, whereas Shigella, 
Escherichia, Megasphaera, and Lactobacillus exhibited 
positive associations with diabetes (Fig.  1C). We identi-
fied 20 common species (relative abundance > 0.01% and 
prevalence > 5%) within these 7 genera and found that 
most species within the same genus showed generally 
consistent associations with diabetes (Fig.  1C). Consist-
ently, species within the same genus were positively cor-
related with each other (Fig S2). We also found strong 
positive correlations between members of Shigella and 
Escherichia, the two bacteria in the Enterobacteriaceae 
family, at both the genus and species levels. ANCOM-II 
at the species levels only identified one additional species 
that was associated with diabetes, Eubacterium_eligens, 
which does not belong to any of these 7 genera (Fig S3). 
Given these observations, we thus focused on the identi-
fied diabetes-associated genera in the following analyses.

Further adjustment of major diabetes-related meta-
bolic traits (BMI, triglycerides, HDL, and SBP) and use of 
antihypertensive and lipid-lowering medications did not 
substantially change the associations of these bacterial 
genera with diabetes (Table S3). The “drug deconfound-
ing” analysis suggested that associations of Intestinibac-
ter and Escherichia with diabetes might be confounded 
by antidiabetic medication use (Fig S4A). For example, 
women with treated diabetes had significantly higher 
abundance of Escherichia compared to women without 
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Fig. 1 Gut microbiota composition and prevalent diabetes (N = 493). A Differences in alpha and beta diversities of gut microbiota at the species 
level between women with and without diabetes. The Wilcoxon rank test was used for the comparison of alpha diversity (observe, Chao1, Shannon, 
and Simpson indices). Bray–Curtis dissimilarity was used to calculate beta diversity, which was represented by the first two components of principal 
coordinates analysis (PCoA). Difference in beta diversity across diabetes status was tested using permutational multivariate analysis of variance 
(PERMANOVA with 9999 permutations). B ANCOM‑II results of the 97 predominant gut bacteria genera. Genera marked as triangles were those 
associated with diabetes with FDR‑q < 0.1 at threshold of 0.60 (i.e., the ratio of genera to at least 60% of the other taxa is detected to be significantly 
associated with diabetes). Color refers to phyla and sizes refer to W values in ANCOM‑II. The prefixes of “g.” and “s.” refer to the taxa at genus 
and species levels, respectively. C Associations (odds ratio (ORs) and 95% confidential intervals (CIs)) of identified gut bacteria genera and affiliated 
species with diabetes (top panel) and the percentages of species within selected genera (bottom panel). Species presented in ≥5% of samples 
with a relative abundance ≥0.01% were included. Estimates in B and C were adjusted for age at visit, study site, race/ethnicity, household annual 
income, education, smoking, alcohol consumption, HIV serostatus, and antibiotics use within the 4 weeks of stool sample collections
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diabetes and those with untreated diabetes, whereas 
abundance of this genus was similar between women 
without diabetes and those with untreated diabetes (Fig 
S4B). A similar pattern was found for Shigella (Fig S4B).

Serum inflammatory proteins and diabetes
After multivariable adjustment (see “  Methods”), we 
found 18 out of 74 proteins associated with prevalent dia-
betes (FDR-q < 0.1), with inverse associations for T cell 
surface glycoprotein CD6 isoform (CD6), C-X-C motif 
chemokine 10 (CXCL10), and tumor necrosis factor 
(ligand) superfamily, member 12 (TWEAK), and posi-
tive associations for the remaining 15 proteins (Fig.2A). 
Interleukin-18 receptor 1 (IL-18R1) showed the strong-
est positive association with diabetes (OR =  2.09 [95%CI: 
1.61, 2.73] per SD increase), while TWEAK showed 
the strongest inverse association with diabetes (OR =  
0.70 [95%CI: 0.56, 0.89]). Associations of these 18 pro-
teins with diabetes did not change appreciably when we 
adjusted for diabetes-related metabolic traits and use of 
anti-hypertensive and lipid-lowering medications (Table 
S4). Using sPLS-DA, we found that the first two com-
ponents of these identified 18 proteins generally had a 
good performance in diabetes classification (AUC = 0.77, 
P < 0.001).

Partial correlation analysis revealed a cluster of seven 
proteins (hepatocyte growth factor (HGF), macrophage 
colony-stimulating factor 1 (CSF-1), osteoprotegerin 
(OPG), IL-18R1, vascular endothelial growth factor 
A (VEGFA), glial cell line-derived neurotrophic fac-
tor (GDNF), and IL6) that were highly intercorrelated 
(Fig.  2C) and all positively associated with diabetes 
(Fig.  2A). These clustered 7 proteins also showed some 
weak-to-moderate positive correlations with the remain-
ing 11 proteins, including 3 proteins that were inversely 
associated with diabetes (CD6, CXCL10, and TWEAK). 
However, correlation among these 11 remaining proteins 
were comparatively weak.

Plasma metabolites and diabetes
We first conducted a cross-sectional metabolome wide 
association analysis in 434 WIHS women and identified 
132 (FDR-q < 0.1) out of 378 metabolites associated with 
diabetes (Fig.  3A). Among these 132 metabolites, 115 
were available in a prospective dataset of women and men 
in the WIHS and MACS (N =  694, including 166 incident 
diabetes cases over a median follow-up of 12.6 years). We 
then conducted a prospective analysis and found that 59 
(50 lipid species and 9 nonlipid metabolites) out of 115 
metabolites were associated with incident diabetes (FDR-
q < 0.10) (Fig.  3A and B). Separate analyses in women 
(WIHS) and men (MACS) revealed that the associations 
of the majority of these 59 metabolites with incident 

diabetes were comparable between sexes (cohorts) (Fig 
S5), and combined results from women and men by 
meta-analysis were very similar to those from the anal-
yses in the overall sample (Table S5). Together with the 
17 metabolites that were not available in the prospective 
dataset, a total of 76 metabolites, including 50 lipids and 
26 nonlipid metabolites, were considered as diabetes-
associated metabolites in the present study (Fig. 3A).

In line with our previous findings [21], we found that 
lipid species belonging to diradylglycerols (DGs, n =  12) 
and triradylglycerols (TGs, n =  20), together with two 
carnitines (CAR 5:0 and CAR 4:0), were positively associ-
ated with prevalent diabetes, whereas cholesterol esters 
(CEs, n =  5) and phospholipids belonging to phosphati-
dylethanolamines (PEs, n =  5), phosphatidylcholines 
(PCs, n =  7), and one lyso-phosphatidylcholines (LPC 
18:2) exhibited inverse associations with diabetes (Fig. 3C 
and Table S4). Correlation analysis revealed that these 50 
lipids were highly intercorrelated (Fig S6) and clustered 
into 4 modules in WGCNA models (Fig S7), which were 
then included in the following analyses to reduce the 
dimensionality of diabetes-associated lipids. As expected, 
lipid modules characterized by high levels of DGs and/
or TGs (i.e., lipid modules 1, 3, and 4) were positively 
associated with diabetes, whereas a lipid module char-
acterized by high levels of PCs and PEs (lipid module 2) 
was inversely associated with diabetes (Fig.  4 and Table 
S4). Regarding the 26 nonlipid metabolites, 3 metabo-
lites (glycine, homoarginine, and sphinganine) were 
inversely associated with diabetes, whereas positive asso-
ciations with diabetes were found for the remaining 18 
metabolites, including 3 microbial metabolites (trimeth-
ylamine N-oxide (TMAO) [30], phenylacetylglutamine 
(PAGln) [31], and imidazolepropionic acid (IMP) [32]), 3 
branched-chain amino acids (BCAAs: valine, leucine, and 
isoleucine) and 1 related metabolite (N-Acetylleucine), 8 
non-essential amino acids and related metabolites (e.g., 
glutamic acid and alanine), and 6 xenobiotics (e.g., xan-
thopterin). After further adjusting for diabetes-related 
metabolic traits, the associations of these metabolites/
lipid modules with prevalent diabetes were largely atten-
uated, especially for lipids and lipid modules, though 
most of the associations remained statistically significant 
(Table S4).

Gut microbiota, circulating metabolites, proteins, 
and diabetes
Partial correlation analysis revealed that the identi-
fied diabetes-associated bacteria genera were correlated 
with multiple diabetes-associated metabolites, lipid 
modules and proteins (FDR-q < 0.1) (Fig.  4 and Fig S8). 
Overall, Ruminococcus and Adlercreutzia, two genera 
inversely associated with diabetes, tended to be inversely 
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correlated with metabolites and lipids modules and pro-
teins that were positively associated with diabetes. By 
contrast, an overall opposite pattern with respect to the 

correlations with metabolites, lipid modules and proteins 
were found for the 4 genera (Megasphaera, Lactobacillus, 
Shigella, and Escherichia) that were positively associated 
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with diabetes (Fig. 4). In particular, 6 out of 7 diabetes-
associated genera (Intestinibacter, Megasphaera, Shigella, 
Escherichia, Ruminococcus, and Adlercreutzia) were cor-
related with IMP (FDR-q < 0.1), with inverse associations 
for Ruminococcus and Adlercreutzia and positive asso-
ciation for other 4 bacterial genera. In addition, Rumino-
coccus and Intestinibacter were inversely correlated with 
PAGln (FDR-q <  0.1).

To test whether the associations between identified 
bacterial genera and diabetes can be partially explained 
by alterations in the identified diabetes-associated 
metabolites and proteins, we conducted conditional 
analysis and mediation analysis. Herein, we focused on 
metabolites, lipid modules, and proteins that have con-
cordant associations with both diabetes and bacteria 
genera (FDR-q <  0.1, Table S 6). In conditional analyses, 
associations between bacteria genera and diabetes were 
generally attenuated when selected metabolites and 
proteins were included in the models (Fig.  5A). Media-
tion analysis revealed that the selected multiple nonlipid 
metabolites, lipid modules, and proteins collectively 
mediated a considerable proportion of the associations of 
6 genera (Intestinibacter (proportion of mediated effect 
for multiple mediators =  24.89%), Megasphaera (27.09%), 
Ruminococcus (30.96%), Shigella (34.78%), Adlercreut-
zia (43.52%), and Escherichia (67.12%), all P < 0.01) with 

diabetes. Notably, associations of Ruminococcus, Adler-
creutzia, and Escherichia with diabetes were mediated 
considerably by multiple inflammatory proteins led by 
OPG, IL-18R1, and HGF (Fig. 5A and B). IMP appeared 
to partially mediate the associations of the most identi-
fied genera with diabetes (mediated proportion ranges 
from 7.5 to 22.3%), though some of mediated effects 
were nominally significant (Fig. 5A). In addition, PAGln 
significantly mediated 13.9% of the inverse association 
between Intestinibacter and diabetes (Fig. 5A). The inter-
relationship among identified diabetes-associated bacte-
ria, proteins, and metabolites were shown in Fig. 5C.

In addition, we also examined correlations of these 
omics features with glycemic traits and found that 
metabolites (e.g., alanine and DMGV) or proteins (e.g., 
OSM, IL-18R1, and HGF) significantly mediated the 
observed gut bacteria and diabetes associations were 
generally associated with examined glycemic traits in the 
same direction of their association with diabetes (Fig S9).

HIV infection and diabetes‑associated omics features
Stratified analyses by HIV serostatus showed generally 
similar associations between identified omics features 
and diabetes among women with and without HIV (Table 
S7). We then compared levels of the diabetes-associated 
omics features between women with and without HIV 
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and found that multiple lipids belonging to DGs/TGs, 
nonlipids metabolites (e.g., IMP, PAGln, ureidopropi-
onic acid, xanthopterin, 4-aminohippuric acid, N4-ace-
tylcytidine, 4-acetamidobutanoic acid, glycocholic acid, 
and homocitrulline), and proteins (GDNF and leuke-
mia inhibitory factor receptor (LIF-R)) that were posi-
tively associated with diabetes were significantly higher 
among women with HIV, especially those with detect-
able HIV RNA viral load (> 20 copies/mL) as compared 
with women without HIV (Table S8). In addition, several 

metabolites that were inversely associated with diabetes 
(e.g., homoarginine and lipids belonging to PCs/PEs/
CEs) were lower in women with HIV compared with 
those without HIV (Table S8). However, abundances of 
identified diabetes-associated genera were similar among 
women with and without HIV (Table S8).

Omics-wide associations identified 11 bacterial 
genera (Fig. 6A), 20 proteins (Fig. 6B), and 30 metab-
olites (Fig. 6C) significantly associated with HIV infec-
tion (Fig.  6 and Table S9, FDR-q <  0.1). Of note, the 
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majority of identified metabolites and bacteria gen-
era had concordant associations with HIV infection 
and prevalent diabetes (i.e., metabolites positively/
inversely associated with HIV infection were also 
positively/inversely associated with diabetes (Fig S10), 
including two bacteria (e.g., Lanchoclostridum and 
Faecalibacterium) and 11 nonlipids metabolites exhib-
iting significant associations with diabetes (Fig. 6A and 
C). In addition, we found two proteins significantly 
associated with both HIV and diabetes in the same 
direction (Fig.  6B), but many of these identified HIV-
associated proteins were not associated with diabetes.

Discussion
In the present study, among PLWH and demographically 
and socioeconomically similar individuals without HIV 
infection, we characterized multi-omics features associ-
ated with prevalent diabetes, including 7 gut bacterial 
genera, 18 immune and pro-inflammatory proteins, and 
76 metabolites. More than half of metabolites associ-
ated with prevalent diabetes were confirmed to be asso-
ciated with incident diabetes over a median follow-up of 
12 years in a prospective cohort. Moreover, several pro-
teins, especially IL-18R1 and OPG, and microbial derived 
metabolites, including IMP and PAGln, significantly 
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mediated the associations between identified gut bacteria 
and diabetes, both individually and in combination.

Our findings on the observed altered gut microbiota 
composition associated with diabetes are generally con-
sistent with findings among general (i.e., non-HIV) pop-
ulations, including the positive associations of Shigella 
[2–4, 33], Escherichia [2–4, 33], Lactobacillus [2–4, 33], 
and Megasphaera [34], and the negative associations 
of Ruminococcus [2–4, 33] and Aldercreutzia [4, 35]. 
Despite these consistencies, concerns over the potential 
confounding by antidiabetic treatments, especially met-
formin use, in characterizing diabetes-related gut micro-
biota have been raised [27–29, 36, 37]. Our results also 
indicated that associations of Escherichia, Intestinibacter, 
and possibly Shigella, with diabetes might be partially 
attributed to the effects of antidiabetic medication use. 
However, some evidence suggests that these gut bacteria 
may still play a role in host metabolic health and diseases 
[33, 38]. For example, Intestinibacter might be benefi-
cial to host lipid and glucose metabolism and intestinal 
barrier integrity through its production of biomolecules 
such as branched SCFAs (isobutyrate and isovalerate) 
[39, 40].

In searching for potential mechanisms underlying the 
observed association between gut bacteria and diabetes, 
our results suggested that alterations in several circulat-
ing immune and proinflammatory proteins, especially 
IL-18R1 and OPG, might play a role. Notably, IL-18R1 
is the receptor of proinflammatory cytokine IL-18, and 
overproduction of IL-18 has been noted as a proxy bio-
marker for overall inflammation and immune activa-
tion in HIV infection [41] and metabolic-inflammatory 
diseases (e.g., diabetes [42] and non-alcoholic fatty liver 
diseases (NAFLD) [43]). Moreover, hyperactive of IL-18/
IL-18R1 signaling in intestinal epithelial cells has been 
linked to pathologic breakdown of intestinal mucosal 
barrier and gut dysbiosis [44]. The observed inverse asso-
ciations of Ruminococcus and Adlercreutzia with IL-18R1 
and diabetes thus might be related to the potential anti-
inflammatory effects of these two bacteria given their 
functionalities in generating biomolecules with immu-
nomodulation and inflammation suppressive effects 
(e.g., SCFAs from Ruminococcus species [45]; equol, an 
isoflavandiol estrogen, from Adlercreutzia  [46]). Regard-
ing OPG, it is known as an osteoclastogensis inhibi-
tory factor, playing a critical role in bone metabolism 
through inhibiting the receptor activator of nuclear fac-
tor kappa-B (RANK)/RANK ligand (RANKL) pathway 
[47]. The interaction between RANK/RANKL/OPG axis 
and gut microbiota has been documented in osteopo-
rosis [48–50], a common bone disorder coexisting with 
diabetes [51]. In line with our observations, overproduc-
tion of OPG has been associated with diabetes [52, 53] 

and metabolic dysfunction-associated [54] or non-alco-
holic fatty liver disease [55]. This adds support that OPG 
signaling might be involved in the relationship between 
gut dysbiosis and metabolic complications beyond bone 
metabolism.

Our results also revealed that another five proteins 
(HGF, CD6, fibroblast growth factor 21 (FGF-21), LIF-R, 
and OSM) might mediate the associations of gut bacte-
ria with diabetes. Of note, the contributions of HGF [56] 
and OSM [57] to insulin resistance and glucose impair-
ment in obesity and diabetes have reported, and elevated 
levels of LIF-R have been noted in hepatic steatosis and 
MAFLD-associated gut dysbiosis ( [54]). However, the 
relationships between the other two proteins and dia-
betes remain controversial, especially for FGF21 [58]. 
While increased circulating FGF-21 levels was linked to 
elevated risk of diabetes [59], null results were reported 
in Mendelian Randomization investigations [60]. FGF-
21 was report to enhance skeletal muscle glucose uptake 
[61] and protect lipid disruption and nonalcoholic steato-
hepatitis [60, 62], even in a clinical trial [63]. These data 
suggest that the increased circulating FGF21 in diabetes 
might be a compensatory mechanism to hyperglycemia 
or hyperlipidemia [61], echoed with observations regard-
ing the elevated FGF21 levels in HIV infection [64]. More 
studies are required to reveal how these proteins and 
their interplay with gut microbiota contribute to diabe-
tes and related metabolic complications. In addition, we 
found serval proteins associated with diabetes, including 
those previously reported (e.g., VEGFA [65], TWEAK 
[66], CXCL10 [67], and CXCL6 [68]), which were gen-
erally not associated with the identified diabetes-related 
gut bacteria, indicating that their associations with dia-
betes might not be related to the detected gut dysbiosis 
in our study.

Beside proteins, our results also suggested that altera-
tions in metabolites, especially those microbial-derived, 
such as IMP and PAGln, might partially mediate the 
observed associations between gut bacteria and dia-
betes. Indeed, IMP is a well-characterized microbial 
metabolite generated from histidine catabolism [32] and 
has been linked to pathogenesis of impaired glucose 
metabolism and insulin resistance [32, 69]. In line with 
our results, increased abundances of many members in 
Ruminococcus and Adlercreutzia genera were associ-
ated with reduced IMP level [70], whereas Escherichia, 
Intestinibacter, and members in Veillonellaceae family 
(e.g., Megasphaera) were positively associated with IMP 
levels [70] as these bacteria harbor the urocanate reduc-
tases required for IMP production [32]. Similarly, PAGln 
is a microbiota derived metabolite from phenylalanine 
catabolism [31], originally being characterized as a risk 
factor of cardiovascular diseases [31, 71], and also has 
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been linked to impaired glucose metabolism and diabe-
tes [72]. Aligning with our observations, previous studies 
have demonstrated that the abundances of Ruminococ-
cus and Intestinibacter species were inversely associated 
with blood PAGln [70]. Of note, the potential proinflam-
matory properties of IMP and PAGln have been docu-
mented in previous studies [31, 32, 69], and consistently, 
we also observed positive associations between these 
two microbial metabolites and multiple proinflamma-
tory proteins (e.g., IL6 and IL17-A/C in Fig S  8). These 
findings further support the potential mediation effects 
of these metabolites and proinflammatory proteins in 
combination linking gut dysbiosis and diabetes. Addi-
tionally, our mediation analyses indicated that a lipid 
module characterized by high DGs but low CEs and sev-
eral metabolites (e.g., alanine, dimethylguanidino valeric 
acid (DMGV), and xanthopterin) might partially explain 
the inverse associations of Ruminococcus and Intestini-
bacter with diabetes, and the positive association of Shi-
gella with diabetes. However, whether and how the gut 
microbiota modulates the lipids (e.g., diradylglycerols 
and cholesterol esters) [73] and xenobiotics [74] remain 
to be further elucidated.

It has been proposed that there might be a triad rela-
tionship among HIV infection, gut dysbiosis, and dia-
betes [7, 75]. Although the identified diabetes-related 
gut bacteria were not associated with HIV and their 
associations with diabetes tended to be independent 
of HIV serostatus in this study, our further omics-wide 
association analyses identified multiple gut bacterial 
associated with HIV infection, with concordant associ-
ations with diabetes (e.g., Lachnoclostridium was posi-
tively associated with both HIV infection and diabetes, 
while Faecalibactrium was inversely associated with 
both HIV infection and diabetes). These results corrob-
orate the idea that gut dysbiosis may be a crucial fac-
tor contributing to the compromised metabolic health 
in chronic HIV infection [7, 75]. Similarly, we also 
identified many metabolites and several proteins (e.g., 
SLAMF1: signaling lymphocytic activation molecule 
and IL-15RA: interleukin-15 receptor subunit alpha) 
associated with HIV infection and diabetes in the same 
direction. Furthermore, plasma levels of several pro-
teins (e.g., IL-18R1, IL-6, and OPG), lipids (e.g., DGs/
TGs), and nonlipid metabolites (e.g., 2-methylguano-
sine, xanthopterin, N4-acetylcytidine, glycocholic acid, 
PAGln, and IMP) that were positively associated with 
diabetes were elevated in PLWH in our and other stud-
ies [42, 76–78]. These observations collectively support 
the potential role of chronic inflammation/persistent 
immune activation and metabolic perturbations in 
bridging HIV infection with metabolic disorders [1].

Findings from this study have several implications. 
Modulation of the identified beneficial bacteria, such as 
Ruminococcus and Adlercreutzia, through supplementa-
tion or augmentation, could be explored as a potential 
intervention for diabetes prevention and management, 
especially among susceptible populations like PLWH 
given the observed anti-inflammatory properties of these 
bacteria in this study and existing literature [46, 79, 80]. 
As mechanisms of action for some microbial-derived 
metabolites become clearer, drugs inhibiting downstream 
signaling activation, such as deactivating or blocking 
p38gMAPK and mechanistic target of rapamycin com-
plex 1 (mTORC1) signaling for IMP [32] and adrener-
gic receptors for PAGln [31], could present a novel and 
effective approach for diabetes prevention and treatment. 
Additionally, the identification of proteins mediating 
the connections between gut bacteria and diabetes sup-
port the concept of tailoring anti-inflammatory therapy 
for metabolic diseases, especially in the context of HIV 
infection [75, 81] [82]. Notably, drugs targeting the IL-18/
IL-18R signaling axis, such as IL-18R antagonist or com-
ponents resembling naturally occurring IL-18 bind-
ing protein (IL-18BP) and anti-IL-18 antibodies, are in 
development and testing for diabetes related conditions, 
including hypertension and chronic kidney diseases [83–
85], as well as HIV infection [41]. Similarly, drugs like 
Denosumab targeting the RANKL/RANK/OPG pathway 
have been proposed as potential novel options for diabe-
tes treatment and glycemic control [86, 87].

The main strength of this study is that we leveraged 
multi-omics data in a cohort of PLWH with demographi-
cally and socioeconomically comparable HIV seronega-
tive participants. The validation of diabetes-associated 
metabolites with prospective analyses further solidifies 
our findings regarding the metabolic alterations in dia-
betes. Nevertheless, our study has several limitations. 
The nature of observation study limits causal inference, 
especially for the cross-sectional results of gut micro-
biota and proteins with diabetes. Findings need to be 
confirmed in prospective studies. Although we have 
carefully addressed the potential impacts of antidiabetic 
treatment on our results through “drug deconfounding” 
analysis, potential residual confounding related to var-
ied types of medication use may still exist. Meanwhile, 
some potential confounding factors such as diet that have 
been associated with both gut microbiota and diabetes 
were not well addressed in the present study due to the 
lack of these data. Furthermore, the presented study was 
limited in the depth and coverage of omics techniques, 
especially for metabolites and proteins, which might 
partially prevent us further examining known molecules 
and pathways (e.g., gut microbial indole metabolites from 
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tryptophan catabolism [20, 88]) as well as possibly novel 
ones, that are relevant to HIV infection and metabolic 
disorders. In addition, the relatively small number of 
HIV seronegative people limited our power to detect the 
effect modification by HIV infection. The associations of 
gut microbiota and serum proteins with diabetes were 
examined in women and need to be further validated in 
men and other HIV cohorts.

Conclusions
In the present multi-omics analysis among individuals 
with and without HIV infection, we identified multiple 
gut bacteria, including two potentially beneficial genera 
(Ruminococcus and Adlercreutzia), numerous circulat-
ing metabolites, and proinflammatory proteins associ-
ated with diabetes. The observed gut bacteria–diabetes 
associations were partially explained by some microbial 
metabolites and proinflammatory proteins, supporting 
the role of gut microbiota in regulating host metabolite 
profile and inflammation/immune activation which may 
contribute to the development of diabetes.
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