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Abstract 

Background The clinical utility of genetic information for type 2 diabetes (T2D) prediction with polygenic scores 
(PGS) in ancestrally diverse, real-world US healthcare systems is unclear, especially for those at low clinical phenotypic 
risk for T2D.

Methods We tested the association of PGS with T2D incidence in patients followed within a primary care prac-
tice network over 16 years in four hypothetical scenarios that varied by clinical data availability (N = 14,712): (1) 
age and sex; (2) age, sex, body mass index (BMI), systolic blood pressure, and family history of T2D; (3) all variables 
in (2) and random glucose; and (4) all variables in (3), HDL, total cholesterol, and triglycerides, combined in a clini-
cal risk score (CRS). To determine whether genetic effects differed by baseline clinical risk, we tested for interaction 
with the CRS.

Results PGS was associated with incident T2D in all models. Adjusting for age and sex only, the Hazard Ratio (HR) 
per PGS standard deviation (SD) was 1.76 (95% CI 1.68, 1.84) and the HR of top 5% of PGS vs interquartile range 
(IQR) was 2.80 (2.39, 3.28). Adjusting for the CRS, the HR per SD was 1.48 (1.40, 1.57) and HR of the top 5% of PGS 
vs IQR was 2.09 (1.72, 2.55). Genetic effects differed by baseline clinical risk ((PGS-CRS interaction p = 0.05; CRS 
below the median: HR 1.60 (1.43, 1.79); CRS above the median: HR 1.45 (1.35, 1.55)).

Conclusions Genetic information can help identify high-risk patients even among those perceived to be low risk 
in a clinical evaluation.
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Background
More than a fifth of outpatient visits are for patients with 
diabetes, largely type two diabetes (T2D), placing a heavy 
burden on US healthcare systems [1, 2]. Identifying indi-
viduals with elevated risk for T2D is crucial to channel 
resources towards those most likely to benefit from inter-
ventions that prevent or delay T2D and its complications 
[3]. To assess clinical risk factors for T2D (e.g., family 
history of T2D, obesity, hypertension, hyperlipidemia), 
clinicians perform a clinical evaluation and order fasting 
laboratory (lab) tests (e.g., fasting glucose and lipid panel) 
[4, 5]. However, patients who do not engage frequently 
with the healthcare system or are perceived to be low risk 
at a routine health maintenance exam may not have regu-
lar lab testing or follow-up visits, limiting accurate risk 
estimation.

Genetic information, if available, could improve T2D 
prediction among patients lacking measured clinical risk 
factors [6]. Genome-wide association studies (GWAS) 
have identified hundreds of unique loci associated with 
T2D [7], the results of which can be used to calculate 
polygenic scores (PGS) that model genetic risk indepen-
dently of established clinical risk factors including family 
history [8, 9]. Previous work has evaluated how PGS can 
be used within healthcare systems [6, 10], but analyses 
have been largely cross-sectional in biobanks of mostly 
European ancestry, limiting the generalizability of results 
to a more ancestrally and medically diverse US healthcare 
system. While PGS have been shown to only modestly 
improve prediction over traditional clinical risk factors 
[11, 12], the long-term prediction of T2D by PGS in clini-
cal scenarios that vary in clinical information availability 
in medical records has not been well studied.

In a large academic primary care physician (PCP) net-
work affiliated with Mass General Hospital (MGH) [13, 14], 
some patients had volunteered to be genotyped in the Mass 
General Brigham (MGB) Biobank. We hypothesized that 
PGS constructed from their genetic data would be associ-
ated with incident T2D over a follow-up period of up to 
16 years even after adjusting for clinical risk factors avail-
able in their electronic health records (EHR). We further 
hypothesize that PGS would have the most added predic-
tive value in patients with sparse baseline clinical data at 
the time of their initial clinical encounter (i.e., risk factors 
such as random glucose have not been measured or cap-
tured in the EHR).

We constructed four nested cohorts based on hypo-
thetical scenarios by which a patients with genetic data 
might interact with the healthcare system: (1) a person 
registered themselves as a patient and provided demo-
graphic data; (2) a patient had a visit with a healthcare 
provider during which their weight, height, and blood 
pressure were measured and a medical history was taken; 

(3) a patient had a random glucose measured from a 
basic lab panel in addition to having a visit with a health-
care provider; (4) a lipid panel, which usually requires the 
patient to fast overnight, was also performed enabling 
calculation of the Framingham T2D clinical risk score 
(CRS) [15]. We generated Cox models adjusted for base-
line clinical variables in each of these scenarios and eval-
uated improvements to T2D incidence prediction when 
including PGS. We then performed stratified analyses by 
age, body mass index (BMI), random glucose, and CRS to 
evaluate the additional prediction information of PGS for 
patients that would be considered “lower risk” or “higher 
risk” at baseline.

Methods
Study aim, design and setting
We sought to evaluate the longitudinal predictive per-
formance of T2D PGS for incident T2D by creating 
simulated scenarios that varied in depth of clinical data 
availability at the time of each patient’s initial clinical 
encounter in the MGH PCP network. We extracted two 
decades of clinical data for 284,602 patients who had 
received primary care through the network from an EHR 
repository including outpatient, emergency department, 
and inpatient visits. Patients were eligible to be in the 
study cohort if they had at least two clinical encounters 
between January 1, 2000, and December 31, 2020, and 
available genetic data through the MGB Biobank (N = 
15,355). The MGB Biobank is a large biorepository with 
genetic data for over 50K participants aged 18 years or 
older who had been recruited from affiliated hospitals, 
clinics, or cohorts or provided electronic informed con-
sent [16]. After excluding patients with a T2D diagnosis 
before or within 6 months of their first encounter, 14,712 
patients remained for downstream analysis. The MGB 
institutional review board approved the study.

Clinical characteristics of participants
Sociodemographic variables included baseline age, self-
reported race/ethnicity, educational attainment, and gen-
der. Baseline clinical diagnoses for coronary heart failure, 
peripheral vascular disease, proteinuria, and hyperten-
sion (HTN) were defined with ICD-10 code-based algo-
rithms between January 1, 2000, and up to 6 months 
after the initial encounter. T2D [17], coronary artery 
disease (CAD), and chronic kidney disease (CKD) dura-
tion at baseline was calculated from the diagnosis date 
to the date of the initial encounter. Mean lab values were 
extracted between 18 months before the initial encoun-
ter and 6 months after the initial encounter. For BMI, we 
used any available BMI measured during the follow-up 
period as repeated measurements exhibited low vari-
ability (median standard deviation of BMI: 0.95) and very 
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few BMI measurements were available in that two-year 
window.

Calculation of T2D CRS
We implemented the Framingham T2D CRS, compris-
ing age, sex, parental history of T2D, BMI, systolic blood 
pressure (SBP), high-density lipoprotein (HDL), total 
cholesterol, triglyceride, fasting glucose, and waist cir-
cumference [15]. We used family history as a proxy for 
parental history. As waist circumference and fasting sta-
tus for glucose were not available, both variables were 
set as constants in the CRS, and random glucose was 
included as an independent variable. The CRS was then 
log-transformed to be normally distributed, and stand-
ardized. The full CRS implemented can be found in the 
Supplementary Methods (Additional file 1).

Outcome
The start of observation time was January 1, 2000, or 6 
months after the first clinical encounter if it occurred 
after January 1, 2000. Incidence of T2D was defined 
with ICD-10 code-based algorithms (Additional file  2: 
Table S1) during the observation time and right-censored 
at initial disease occurrence or the last clinical encounter 
before December 15, 2021.

Genotyping data preparation
Genotypes were measured using either the Illumina 
Multi-Ethnic Genotyping Array (MEGA) or the Illu-
mina Global Screening Array (GSA). We accessed MEGA 
genotyping data for 36K participants and GSA genotyp-
ing data for 18K participants from the MGB Biobank 
then processed by batch. Briefly, the quality control steps 
included filtering out variants based on minor allele fre-
quency (MAF) levels (< 5%), missingness (> 0.05), gen-
otyping batch bias (P < 5 ×  10−5), and Hardy-Weinberg 
equilibrium (P < 1 ×  10−10) and palindromic single nucle-
otide variants (AT or CG). Individuals were also removed 
if their self-reported sex did not match their genetic sex 
or if they had a high ratio of heterozygote variants. These 
clean datasets were phased using Shapeit4, imputed using 
the TOPMed r2 reference panel, then union merged. 
Quality control, phasing, and imputation steps were not 
stratified by self-reported race subgroups except for vari-
ant filtering based on Hardy-Weinberg equilibrium and 
participant filtering based on heterozygosity.

To calculate Principal Components (PCs) and genetic 
ancestry probabilities for individuals in MGB Biobank, 
we first created an intersection of common (MAF > 5%, 
genotyping rate > 0.95%), independent (R2 < 0.1) variants 
from both the HGDP/1000G dataset and MGB Biobank. 
Next, PCs were calculated among the HGDP/1000G 
dataset and MGB Biobank was projected into this PC 

space. Genetic ancestry probabilities were calculated 
using a random forest classification model, trained on 
PCs and continental ancestry data from HGDP/1000G 
and applied to MGB Biobank. In our analysis, we 
assigned an individual to a continental ancestry if that 
genetic ancestry probability was > 0.5.

Calculation of T2D PGS
We selected large GWAS meta-analyses for our traits of 
interest of which full summary statistics were available 
for the calculation of PGS. For T2D we meta-analyzed the 
published MVP/DIAMANTE meta-analyses results with 
T2D GWAS from the FINNGEN Biobank r6 [18, 19]. 
Genome-wide PGS were calculated using PRScs with the 
provided EUR 1000G HapMap3 LD reference files [20]. 
Posterior weights from PRScs were used to calculate the 
PGS in the MGB biobank with the PLINK --score func-
tion. To account for PGS variability in our multi-ances-
try cohort, we implemented a modified PGS adjustment 
strategy based on previously published methods [10, 21]. 
Briefly, we fitted a linear model of each disease-specific 
PGS against genetic ancestry probabilities. Adjusted PGS 
were calculated as the residual between the predicted 
and actual PGS in the entire dataset.

Primary statistical analyses
We tested the association of PGS with T2D incidence in 
Cox models adjusted for the available clinical variables in 
each scenario, including all participants in the primary 
analysis regardless of ancestry, and corrected for 10 PCs 
in all models to account for population stratification. As a 
sensitivity analysis, we converted the PGS into a categori-
cal variable to compare individuals of high genetic risk 
based on a percentile cutoff to those of average genetic 
risk based on the interquartile range (IQR) within each 
scenario. We explored three different high-risk cut-
offs: 5%, a less stringent 10%, and a more stringent 2% 
which has been suggested for T2D [22]. For purposes of 
model comparison, we chose 5% as the primary analysis 
due to being a middle ground between high genetic risk 
and sample size drop offs when selecting a cutoff value. 
Kaplan-Meier curves and Cox models were generated 
using the lifelines package in Python [23]. The estimated 
probability of incident T2D was calculated as the pre-
dicted probability of developing T2D during the follow-
up time. Logistic regression models were fit with T2D 
developed during the follow-up as the response variable 
and all available clinical risk factors of a specific scenario, 
the T2D PGS, and the first 10 PCs as predictor variables. 
These were the same predictor variables used in the com-
bined clinical and PGS Cox models. Models were trained 
then applied on all participants within a scenario. Tertiles 
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of PGS were defined among participants within each 
scenario.

We calculated the change in model performance using 
the c-index [24] upon adding PGS to several clinical base 
models: scenario 1 age and sex; scenario 2 age, sex, family 
history of T2D, BMI, and systolic blood pressure (SBP); 
scenario 3 age, sex, family history of T2D, BMI, SBP, and 
random glucose; scenario 4 age, sex, family history of 
T2D, BMI, SBP, HDL, total cholesterol, and triglycerides 
combined into a clinical risk score (CRS) and random 
glucose as an independent variable. We evaluated the 
performance of the full CRS in our models using the pre-
computed, published weights for each individual variable 
from the Framingham T2D CRS [15]. Full formulas for 
the cox models used in each scenario can be found in the 
Supplementary Methods (Additional file 1).

In a sensitivity analysis, we created separate models 
built on individual variables without using pre-computed 
CRS weights in our complete cases. In another sensitiv-
ity analysis, we imputed missing lab values (max of 8% 
total missing) for individuals missing only one lab (HDL, 
cholesterol, triglycerides, or glucose) using multivariate 
feature imputation, imputing missing values using pre-
dictions modelled on all available clinical risk factors.

For scenario 2, scenario 3, and the imputation sensi-
tivity analysis in scenario 4, BMI values were log-trans-
formed to be normally distributed. Outlying BMI values, 
defined as those with a log BMI value more than 4 stand-
ard deviations away from the mean log BMI value, were 
also removed. For scenario 3 and all scenario 4 analyses, 
glucose was double log-transformed to be normally dis-
tributed. For scenario 3 and the imputation sensitivity 
analysis in scenario 4, triglycerides were log-transformed.

Stratified statistical analyses
For each scenario, we tested for significant statistical inter-
action between the PGS and the clinical variable avail-
able in each scenario that was most associated with T2D, 
adjusting for all available variables per scenario. We then 
stratified our analyses by the clinical variable available in 
each scenario that was most associated with T2D. For sce-
nario 1, we tested for an interaction between PGS and a 
binary age cutoff, and stratified by the recommended age 
cutoff from the ADA and CDC to commence screening 
for T2D at routine health examinations [25, 26], 40 years. 
For scenario 2, we tested for an interaction between PGS 
and log-transformed BMI and stratified by the median 
BMI of our dataset (27.5 kg/m2). For scenario 3, we tested 
for an interaction between PGS and double log-trans-
formed random glucose and stratified by a random glu-
cose cutoff of 100 mg/dL (threshold for impaired fasting 
glucose, presuming blood tests were drawn fasting). For 
scenario 4, we tested for an interaction between PGS and 

log-transformed CRS and stratified by the median CRS 
value.

PGS prediction of CKD and CAD as T2D‑related 
complications
As CKD and CAD are two leading causes of death in 
people with T2D [27, 28], we tested whether PGS can 
improve prediction of incident CAD and CKD over CRS. 
For CKD we used the SCORED CRS, which required age, 
sex, and diagnoses of anemia, HTN, T2D, CHD, conges-
tive heart failure, peripheral vascular disease, and pro-
teinuria diagnoses [29]. The equation used to calculate 
the CKD CRS can be found in the Supplementary Meth-
ods (Additional file  1). For CAD we used the Framing-
ham CAD CRS, which required age, sex, smoking, total 
cholesterol, HDL measurements, SBP, and HTN treat-
ment [30]. We used HTN diagnosis as a substitute for 
HTN treatment. The equation used to calculate the CAD 
CRS can be found in the Supplementary Methods (Addi-
tional file 1).

We considered two scenarios for these analyses: (1) a 
clinical visit without labs and (2) a clinical visit with labs. 
For CAD, the clinical variables in each scenario were (1) 
age, sex, smoking status, and SBP and (2) age, sex, smok-
ing status, SBP, HDL, and total cholesterol combined into 
a CRS. The Cox model formulas used for CAD incidence 
can be found in the Supplementary Methods (Additional 
file  1). For CKD, the clinical variables per model (1) 
age, sex, diagnosis history, SBP, diastolic blood pressure 
(DBP), weight, and HTN, and (2) the risk factors from 
(1) and anemia status determined by hemoglobin count 
combined into a CRS. The Cox model formulas used 
for CKD incidence can be found in the Supplementary 
Methods (Additional file 1).

Using the PRScs method, we constructed CKD and 
CAD PGS with the summary statistics from the CKD 
Gen Consortium [31], and Nelson et  al. of UK Biobank 
SOFT CAD GWAS with CARDIoGRAMplusC4D 1000 
Genomes-based GWAS and the Myocardial Infarction 
Genetics and CARDIoGRAM [32]. We then generated 
incidence models using the pertinent clinical variables 
from their respective CRS available by T2D status.

Results
We compared the demographic characteristics of geno-
typed patients in the PCP network (N = 15,355), non-
genotyped patients (N = 269,247) in the network, and 
genotyped patients in the MGB biobank but not in the 
network (N = 38,107; Additional file 2: Table S2). Patients 
with genetic data within the PCP network had a higher 
proportion of T2D, higher proportion of self-reported 
non-Hispanic white individuals, and higher educational 
attainment compared to patients without genetic data 
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and patients with genetic data but not in the network. 
The characteristics of genotyped patients in the PCP net-
work were similar to those of the genotyped patients in 
the PCP network after excluded patients with T2D before 
the start date (N = 14,712).

Patients included in scenarios 3 and 4 with a greater 
number of clinical risk factors available for analysis at 
baseline were on average older, had a higher proportion 
of comorbidities, and a smaller proportion of current 
smokers compared with patients included in scenario 1 
and scenario 2. Other baseline characteristics were simi-
lar across scenarios (Table 1).

Kaplan-Meier curves demonstrated full separation 
of PGS tertiles among all patients and in the subset of 
patients of European ancestry, who are most genetically 
similar to the cohorts used to derive the T2D PGS (Addi-
tional file 3: Fig. S1A, S1B). However, among the patients 
not of European ancestry, we observed poorer separation 
of PGS tertiles possibly due to both smaller sample sizes 
and allele frequency differences in this heterogeneous 
population (Additional file  3: Fig. S1C). Adjusting T2D 
PGS by genetic ancestry probabilities (see the “Meth-
ods” section) improved separation of PGS tertiles for this 
group (Additional file 3: Fig. S1D, S1E, and S1F), and cor-
rected bias caused by PGS distribution differences across 
genetic ancestries; thus, residualized, ancestry-adjusted 
PGS were used in all subsequent analyses and all patients 
were analyzed as a single cohort.

T2D PGS was associated with incident T2D and had 
similar HR in all scenarios adjusting only for PCs (sce-
nario 1 HR per SD of PGS: 1.67 (95% CI 1.59–1.74, p = 
1.5 ×  10−104) (Fig.  1A, Additional file  2: Table  S3). The 
association was preserved even after adjusting for clini-
cal variables available in each of the scenarios. Predic-
tive performance improved in every scenario when 
adding PGS to the clinical risk variables model (LRT, P < 
0.001) (Fig. 1A, Additional file 2: Table S3, Table 2). The 
improvement was most appreciable in scenario 1 with 
only age, sex, and PCs in the base model. The adjusted 
HR was 1.76 per SD of the PGS (95% CI 1.68–1.84; P = 
1.1 ×  10−124; c-index improvement: 0.065; Additional 
file 2: Table S3) and the adjusted HR of the top 5% of the 
PGS compared to the IQR was 2.80 (95% CI 2.39-3.28; 
P = 1.3 ×  10−37; Table 2). In scenario 4, with more clini-
cal variables in the base model, the adjusted HR was 1.48 
per SD of the PGS (95% CI 1.40–1.57; P = 2.0 ×  10−39; 
c-index improvement over base model: 0.01; Additional 
file 2: Table S3) and the adjusted HR of the top 5% of the 
PGS compared to the IQR was 2.09 (95% CI 1.72–2.55; P 
= 1.7 ×  10−13; Table 2). The performance of the PGS was 
lower among the patients of non-European ancestries 
(Additional file 2: Table S3) likely because the PGS were 
derived from meta-analyses summary statistics with an 

overrepresentation of European descent. We conducted 
two sensitivity analyses for the clinical base model in 
scenario 4. First, we performed multiple imputation for 
missing lab values (< 8% missing). Second, we used the 
individual clinical variables without combining them in a 
CRS. The improvement of the c-index when adding PGS 
to the base clinical model was similar when using mul-
tiple imputation and when using individual clinical vari-
ables instead of the CRS (Additional file 2: Table S3).

We also explored how different PGS thresholds of risk 
associate with incident T2D in each scenario in addi-
tion to using a top 5% cutoff, including a top 10% cut-
off and top 2% cutoff. When adding the PGS on top of 
clinical risk factors available in scenario 1 (age, sex, and 
PCs), the adjusted HR of the top 10% compared to the 
IQR was 2.52 (95% CI: 2.23–2.85, P: 6.6 ×  10−49, c-index 
improvement over base model: 0.034; Additional file  2: 
Table  S4) and the adjusted HR of the top 2% compared 
to the IQR was 3.52 (95% CI: 2.84–4.37; P: 4.9 ×  10−30; 
c-index improvement over base model: 0.021; Additional 
file 2: Table S4). In scenario 4 when adjusting for the T2D 
CRS, random glucose, and PCs, the adjusted HR of the 
top 10% of the PGS compared to the IQR was 1.98 (95% 
CI 1.70–2.31; P = 1.9 ×  10−18; c-index improvement over 
base model: 0.003; Additional file  2: Table  S4) and the 
adjusted HR of the top 2% of the PGS compared to the 
IQR was 2.55 (95% CI 1.94–3.36; P = 1.8 ×  10−11; c-index 
improvement over base model: 0.002; Additional file  2: 
Table S4).

We found statistical interaction (Pinteraction < 0.05), 
between T2D PGS and the clinical risk factor most asso-
ciated with incident T2D in scenarios 1, 2, and 3 (i.e., 
age, BMI, and random glucose), and a borderline inter-
action between T2D CRS and PGS in scenario 4 (Pinterac-

tion = 0.053), motivating stratified analyses by clinical risk 
factors (Additional file  2: Table  S5). The PGS estimates 
were larger among individuals age < 40 years (HR 1.88; 
95% CI 1.66–2.13; n = 4407; c-index = 0.73) vs. age ≥ 40 
years (HR 1.74; 95% CI 1.65–1.82; n = 10,305; c-index = 
0.70) (Additional file 2: Table S5), among individuals with 
BMI <27.5 kg/m2 (HR 1.78, 95% CI 1.62–1.97; n = 6930; 
c-index = 0.78) vs. BMI ≥ 27.5 kg/m2 (HR 1.65, 95% CI 
1.56–1.74; n = 6740; c-index = 0.73) (Additional file  2: 
Table S5), among individuals with glucose < 100 mg/dL 
(HR 1.59; 95% CI 1.46–1.74; n = 6903; c-index = 0.79) 
vs. glucose > 100 mg/dL (HR 1.48; 95% CI 1.38–1.58; n 
= 2964; c-index = 0.77) (Additional file 2: Table S5), and 
with T2D CRS < median (HR 1.60; 95% CI 1.43–1.79; n 
= 3665; c-index = 0.82) vs. > median (HR 1.45; 95% CI 
1.35–1.55; n = 3666; c-index = 0.78) (Additional file  2: 
Table S5).

In addition to hazard ratios, we also calculated each 
patient’s estimated probability of incident T2D in each 
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scenario. Patients with an age < 40 years in the highest 
PGS tertile had higher estimated probability (median esti-
mated probability: 10.1% (IQR 6.9%, 15.3%)) compared to 

patients with an age ≥ 40 years in the lowest PGS tertile 
(median estimated probability: 7.2% (IQR 5.0%, 10.2%)) 
(Figs. 2E and 3A). Patients with BMI < 27.5 kg/m2 in the 

Table 1 Patient characteristics in the MGH primary care physician network with genetic data by scenario

Follow-up time was calculated as the length of time between the first diagnosis of diabetes and either January 1, 2000, or a patient’s first clinical encounter into the 
PCP. Data was left-censored to remove participants with a diagnosis of T2D before their start date. Only complete cases for all clinical risk factors included in each 
scenario were used in the primary analyses. Clinical risk factors at the time of first encounter in each scenario are as follows: scenario 1 age, sex; scenario 2 age, sex, 
BMI, family history of T2D, systolic blood pressure; scenario 3 age, sex, BMI, family history of T2D, systolic blood pressure, random glucose; scenario 4 age, sex, BMI, 
family history of T2D, systolic blood pressure, triglycerides, total cholesterol, and HDL combined into a clinical risk score and random glucose

Scenario 1 Scenario 2 Scenario 3 Scenario 4

n 14,712 13,670 9867 7331

Age, mean (SD) 48.9 (15.7) 48.9 (15.4) 51.3 (14.6) 53.9 (13.2)

Female, n (%) 7965 (54.1%) 7430 (54.4%) 5124 (51.9%) 3480 (47.5%)

Current smokers, n (%) 902 (6.1%) 766 (5.2%) 554 (3.8%) 352 (2.4%)

Self-Reported Race

 White, n (%) 12,697 (86.3%) 11,814 (86.4%) 8592 (87.1%) 6511 (88.8%)

 Black/African American, n (%) 525 (3.6%) 492 (3.6%) 373 (3.8%) 267 (3.6%)

 Asian, n (%) 330 (2.2%) 293 (2.1%) 187 (1.9%) 119 (1.6%)

 Other/unknown, n (%) 1160 (7.9%) 1071 (7.8%) 715 (7.2%) 434 (5.9%)

Self-Reported Ethnicity

 Hispanic, n (%) 227 (1.5%) 185 (1.4%) 123 (1.2%) 80 (1.1%)

 Non-Hispanic, n (%) 12,407 (84.3%) 11,502 (84.1%) 8294 (84.1%) 6139 (83.7%)

 Other/unknown, n (%) 2078 (14.4%) 1983 (14.5%) 1450 (14.7%) 1112 (15.2%)

Genetic ancestry

 EUR, n (%) 12,508 (85.0%) 11,639 (85.1%) 8450 (85.6%) 6406 (87.4%)

 AFR, n (%) 520 (3.5%) 489 (3.6%) 377 (3.8%) 269 (3.7%)

 AMR, n (%) 1003 (6.8%) 924 (6.8%) 627 (6.4%) 357 (4.9%)

 ASIAN, n (%) 357 (2.4%) 316 (2.3%) 202 (2.0%) 134 (1.8%)

 Other, n (%) 324 (2,2%) 302 (2.2%) 211 (2.1%) 165 (2.3%)

Highest educational attainment

 High school, n (%) 3364 (22.9%) 3113 (22.8%) 2357 (23.9%) 1683 (23.0%)

 Undergraduate, n (%) 6378 (43.4%) 5956 (43.6%) 4134 (41.9%) 3045 (41.5%)

 Graduate, n (%) 2195 (14.9%) 2088 (15.3%) 1458 (14.8%) 1106 (15.1%)

 Other/unknown, n (%) 2775 (18.9%) 2513 (18.4%) 1918 (19.4%) 1497 (20.4%)

Diagnoses at baseline

 Coronary artery disease, n (%) 713 (4.8%) 627 (4.6%) 573 (5.8%) 531 (7.2%)

 Chronic kidney disease, n (%) 376 (2.6%) 321 (2.3%) 301 (3.1%) 264 (3.6%)

 Hypertension, n (%) 3247 (22.1%) 3046 (22.3%) 2793 (28.3%) 2410 (32.9%)

 Chronic heart failure, n (%) 207 (1.4%) 177 (1.3%) 162 (1.6%) 126 (1.7%)

 Peripheral vascular disease, n (%) 136 (0.9%) 115 (0.8%) 103 (1.0%) 78 (1.1%)

Family history of T2D, n (%) 581 (3.9%) 555 (4.1%) 413 (4.2%) 309 (4.2%)

Family history of CAD, n (%) 4319 (29.4%) 4109 (30.1%) 3018 (30.6%) 2330 (31.8%)

Incident diabetes during follow-up, n (%) 1908 (13.0%) 1800 (13.2%) 1487 (15.1%) 1265 (17.3%)

Max follow-up time (years) 15.9 15.9 15.9 15.9

BMI, mean (SD) 28.3 (5.7) 28.5 (5.7) 28.7 (5.6)

Systolic blood pressure, mean (SD) 125.7 (11.8) 126.6 (11.7) 127.6 (11.3)

Diastolic blood pressure, mean (SD) 75.0 (6.7) 74.9 (6.6) 74.9 (6.5)

Random glucose, mean (SD) 97.2 (22.9) 96.9 (22.0)

Total cholesterol, mean (SD) 189.9 (35.9)

HDL, mean (SD) 56.5 (17.1)

Triglyceride, mean (SD) 128.2 (86.6)
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Fig. 1 Association of T2D PGS with incident T2D with and without adjustment for clinical variables. In all four scenarios of clinical data availability, 
the T2D PGS provide additional predictive information on top of clinical risk factors based on T2D PGS HR adjusted for clinical risk factors (T2D 
PGS adjusted HR of 1.75 in scenario 1, 1.68 in scenario 2, 1.54 in scenario 3, and 1.47 in scenario 4) and c-index improvements of including T2D 
PGS in clinical risk models. These benefits are largest in scenarios of minimal data availability and is true both among (A) the total cohort and (B) 
participants of non-European ancestry only. Clinical risk factors in each scenario are as follows: scenario 1 age, sex; scenario 2 age, sex, BMI, family 
history of T2D, systolic blood pressure; scenario 3 age, sex, BMI, family history of T2D, systolic blood pressure, random glucose; scenario 4 age, sex, 
BMI, family history of T2D, systolic blood pressure, triglycerides, total cholesterol, and HDL combined into a clinical risk score and random glucose
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highest PGS tertile had similar estimated probability 
(median estimated probability: 8.7% (IQR 4.6%, 15.7%)) to 
patients with BMI >27.5 kg/m2 in the lowest PGS tertile 
(median estimated probability: 8.3% (IQR 4.6%, 14.0%)) 
(Figs. 2F and 3B). Individuals with age ≥ 40 years or BMI 
≥ 27.5 kg/m2 in the highest PGS tertile had a greater than 
25% chance of developing T2D during the follow-up 
period.

Individuals with glucose < 100 mg/dL had lower esti-
mated probability in all three PGS tertiles (lowest PGS 
tertile: 3.0% median estimated probability (IQR 1.3%, 
5.9%); highest PGS tertile: 9.9% median estimated prob-
ability (IQR 4.6%, 18.7%)) compared to those with glu-
cose ≥ 100 mg/dL (lowest PGS tertile: 13.2% median 
estimated probability (IQR 6.5%, 24.7%); highest PGS 
tertile: 34.2% median estimated probability (IQR 20.0%, 
56.4%)) (Figs.  2G and 3C). Similarly, individuals below 
the median CRS had similar or lower risk across all three 
PGS tertiles (lowest tertile: 3.3% median estimated prob-
ability (IQR 1.8%, 5.8%); highest tertile: 10.3% median 
estimated probability (IQR 5.9%, 18.1%)) compared to 

patients above the median CRS (lowest PGS tertile: 9.8% 
median estimated probability (IQR 6.0%, 17.0%); high-
est PGS tertile: 28.6% median estimated probability (IQR 
18.1%, 47.3%)) (Figs. 2H and 3D).

For the prediction of incident CAD and CKD, both 
CAD PGS and CKD PGS modestly improved model per-
formance over their respective CRS in people with and 
without T2D (Additional file 2: Table S6).

Discussion
The incorporation of genetic information in the clini-
cian’s toolbox promises to improve disease risk predic-
tion and inform individualized health recommendations, 
preventive strategies, and medical decisions [33]. Yet, 
genetic liability, modeled by PGS, has been criticized as 
having minimal contributions to risk prediction beyond 
traditional clinical risk factors [12, 34]. We designed four 
hypothetical scenarios to mimic real-world clinical set-
tings that varied in clinical information availability, and 
tested whether PGS could add value to longitudinal risk 
prediction of T2D in an ancestrally and medically diverse 

Table 2 Association of polygenic scores as a categorical variable (top 5% vs IQR) with incident T2D

Longitudinal models were constructed with either clinical variables included in each scenario, polygenic scores (PGS) only, or both the clinical variables and PGS in a 
combined model. PGS were converted into a categorical value differentiating participants in the top 5% of the PGS compared to those in the interquartile range (IQR) 
of the PGS. Clinical risk factors in each scenario are as follows: scenario 1 age, sex; scenario 2 age, sex, BMI, family history of T2D, SBP; scenario 3 age, sex, BMI, family 
history of T2D, SBP, random glucose; scenario 4 age, sex, BMI, family history of T2D, SBP, triglycerides, total cholesterol, and HDL combined into a clinical risk score 
(CRS) and random glucose. We reported the concordance index (C-index), hazard ratio (HR) for the PGS for being in the top 5% compared to the IQR of the PGS or CRS 
per standard deviation depending on if they are included in the model, and the log-likelihood ratio test (LRT) p-value from comparing the difference in performance 
between the combined clinical and PGS model with the clinical variables only model

Scenario 1 Scenario 2 Scenario 3 Scenario 4

n of T2D cases (n in top 5%, n in IQR) 1073 (199, 874) 1002 (184,818) 827 (152, 675) 712 (132, 580)

Total n (n in top 5%, n in IQR) 8092 (736, 7356) 7518 (684, 6834) 5427 (494, 4933) 4032 (367, 3665)

Clinical variables only model
 C-index 0.675 0.752 0.816 0.801

 CRS HR (CI) (p-val) 1.71 (1.56–1.88) (1.6e−29)

PGS only model
 C-index 0.608 0.607 0.603 0.608

 PGS HR (CI) (p-val) 2.43 (2.08–2.85) (1.0e−28) 2.40 (2.04–2.83) (7.1e−26) 2.43 (2.03–2.91) (3.5e−22) 2.58 (2.13–3.14) (7.3e−22)

Combined clinical and PGS model
 C-index 0.702 0.769 0.822 0.803

 CRS HR (CI) (p-val) 1.71 (1.56–1.88) (6.6e−29)

 PGS HR (CI) (p-val) 2.80 (2.39–3.28) (1.3e−37) 2.65 (2.25–3.12) (3.3e−31) 2.40 (2.0–2.88) (4.9e−21) 2.09 (1.72–2.55) (1.7e−13)

C‑index improvement 0.027 0.017 0.006 0.002

LRT p‑value 8.77E−31 6.12E−26 5.44E−18 7.09E−12

(See figure on next page.)
Fig. 2 Kaplan-Meier curves with and without stratification by baseline clinical risk factors. T2D PGS tertiles show strong separation of T2D onset 
in (A) scenario 1, (B) scenario 2, (C) scenario 3, and (D) scenario 4. In each scenario, the multivariate log-rank test was P < 0.0001. T2D PGS tertiles 
further stratify risk over available clinical risk factors at each scenario, including (E) an age cutoff of 40 years in scenario 1, (F) a BMI cutoff of 27.5 
kg/m2 in scenario 2, (G) a random glucose of 100 mg/dL in scenario 3, and (H) the median T2D CRS in scenario 4. In each stratification analysis 
per scenario, the multivariate log-rank test was P < 0.0001
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Fig. 2 (See legend on previous page.)
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patient population with up to 16 years of follow-up time 
in a PCP network. We showed that PGS significantly 
improved model performance over available clinical risk 
factors in all scenarios, with the largest improvements in 
scenarios with minimal clinical risk factors available. In 
settings where only age and sex were considered, patients 
in the top 5% of the T2D PGS had an almost threefold 
risk of developing T2D compared to those in the IQR 
and patients in the top 2% had a 3.5-fold risk. In contrast 
when additionally considering BMI, SBP, family history of 
T2D, triglycerides, total cholesterol, HDL, and random 
glucose, those in the 5% had double the risk relative to 
the IQR of the T2D PGS for developing T2D while those 
in the top 2% had a 2.5-fold risk for developing T2D. 
Even when considering individuals of high genetic risk as 
being in the top  10th percentile, these individuals had a 
2.5-fold risk of developing T2D in scenarios adjusting for 
age and sex and a near twofold risk in scenarios including 
all available T2D clinical risk factors.

We detected T2D PGS interactions with age, BMI, ran-
dom glucose, and CRS, suggesting that genetic effects 
were larger in younger and leaner individuals with 

normoglycemia that have yet to accumulate T2D-related 
comorbidities [35]. The probability of developing T2D 
during follow-up in patients with low baseline clinical 
risk but high genetic risk was similar to those with high 
baseline clinical risk. Additionally, patients with a high 
glucose or CRS and high PGS had a 20% higher chance 
of developing T2D compared to those with a low PGS. 
An efficient use of healthcare resources could include tar-
geted screening and preventive interventions in patients 
with both high clinical and genetic risk. Furthermore, as 
many clinical risk factors, unlike genetics, are modifiable, 
patients identified to have high clinical risk despite low 
genetic risk are probably more likely to benefit from risk 
factor modifications.

Our work is closely aligned with the mission of the 
Electronic Medical Records and Genomics (eMERGE) 
network [36], which aims to improve the combined use 
of both genetic and EHR data in informing healthcare 
decisions. We approached the issue of incorporating PGS 
and EHR data by considering the degree of data sparsity 
at the time of the initial encounter in the healthcare sys-
tem, a common scenario in real-world clinical practice 

Fig. 3 Estimated probability of T2D incidence over 16 years by T2D PGS and clinical risk factors. Patients with low clinical and low genetic risk 
for T2D have the lowest estimated probability for developing T2D relative to patients with high clinical and high genetic risk. Patients with high 
clinical risk and low genetic risk also have similar estimated probability for developing T2D compared to patients with low clinical risk and high 
genetic risk in (A) scenario 1, (B) scenario 2, (C) scenario 3, and (D) scenario 4
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yet understudied in previous work. Patients lacking clini-
cal data in the EHR are likely to be younger with few or 
no established comorbidities, or less engaged in pre-
ventive care. As genetic effects were found to be largest 
when only demographics were considered, PGS could 
be a powerful tool for encouraging individuals with high 
genetic risk to undergo a clinical risk assessment.

Our study has limitations. Since the PCP network was 
not a closed system, incident cases could be missed when 
patients leave the network. Capture of these cases would 
still be possible if they had returned to the network dur-
ing the follow-up time, though the date of capture could 
be after the actual date of diagnosis, extending the obser-
vation time, and biasing our results towards the null. 
Conversely, we recognize possible contamination by type 
1 diabetes being captured by the T2D algorithm, though 
an overwhelming majority of adult-onset diabetes is type 
2. Due to small sample sizes, models generated with the 
T2D PGS as a categorical variable considering high-risk 
individuals as being in the top 2% may be underpow-
ered, though we still observe higher hazard ratios of the 
PGS, and significant clinical risk factor model improve-
ments, compared to high-risk cutoffs of 5% and 10%. 
Furthermore, we compared these high-risk individuals to 
the IQR as a measure of the effect of being high-genetic 
risk for T2D relative to being of average genetic risk for 
T2D. This choice of reference group could be more inter-
pretable to both patients and clinicians, though further 
work is required to test the impact of this reference in 
clinical settings. As waist-to-hip ratio and fasting status 
for glucose were not captured in EHR, we were unable 
to include these variables in the T2D CRS. Neverthe-
less, our study more closely reflects the accuracy and 
granularity of clinical information captured by EHR. The 
Framingham T2D CRS was derived from a non-Hispanic 
White cohort, which may be less accurate in racially/
ethnically diverse populations. While we successfully 
modeled genetic risk in an ancestrally diverse cohort pri-
mary care network, most participants were of European 
ancestry and the PGS performed worse in patients with 
less than 50% European genetic ancestry. Despite this, we 
observed the same trend of improved predictive perfor-
mance when PGS was added to base models composed 
of only traditional risk factors among patients that were 
not of European ancestry, indicating that study findings 
are likely still applicable to more racially and ethnically 
diverse US-based healthcare systems with longitudinal 
care. We also acknowledge that patients with existing 
genetic data in the biobank may not be fully representa-
tive of the patients in the network, highlighting the 
importance of ensuring that access to genetic information 
is equitably distributed throughout a healthcare system 
to avoid exacerbating disparities of care of minoritized or 

marginalized groups that are already disproportionately 
affected by T2D. We recognize that improvements to the 
transferability of PGS and replication in other healthcare 
systems is necessary to properly evaluate the clinical util-
ity of PGS among diverse populations.

Conclusion
With the growing literature on the predictive accuracy of 
PGS in diverse populations and the increasing availability 
of genetic information in healthcare systems, it is becom-
ing crucial to identify when and how PGS can be used in 
clinical settings. We considered a range of scenarios that 
varied in clinical information availability to evaluate the 
role of polygenic risk in T2D prediction in primary care. 
The utility of PGS for the purpose of identifying high-risk 
individuals was greatest among those with sparse clini-
cal data and those that were younger, leaner, had few or 
no established cardiometabolic comorbidities, and may 
be perceived to have low clinical risk following a clinical 
evaluation. Considering genetic risk in healthcare sys-
tems provides an additional opportunity to engage high-
risk patients in preventive strategies and deploy precision 
medicine approaches in diabetes care.
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