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Abstract 

Background Genome-wide functional screening using the CRISPR-Cas9 system is a powerful tool to uncover tumor-
specific and common genetic dependencies across cancer cell lines. Current CRISPR-Cas9 knockout libraries, however, 
primarily target protein-coding genes. This limits functional genomics-based investigations of miRNA function.

Methods We designed a novel CRISPR-Cas9 knockout library (lentiG-miR) of 8107 distinct sgRNAs targeting a total 
of 1769 human miRNAs and benchmarked its single guide RNA (sgRNA) composition, predicted on- and off-target 
activity, and screening performance against previous libraries. Using a total of 45 human cancer cell lines, represent-
ing 16 different tumor entities, we performed negative selection screens to identify miRNA fitness genes. Fitness 
miRNAs in each cell line were scored using a combination of supervised and unsupervised essentiality classifiers. 
Common essential miRNAs across distinct cancer cell lines were determined using the 90th percentile method. 
For subsequent validation, we performed knockout experiments for selected common essential miRNAs in distinct 
cancer cell lines and gene expression profiling.

Results We found significantly lower off-target activity for protein-coding genes and a higher miRNA gene coverage 
for lentiG-miR as compared to previously described miRNA-targeting libraries, while preserving high on-target activity. 
A minor fraction of miRNAs displayed robust depletion of targeting sgRNAs, and we observed a high level of consist-
ency between redundant sgRNAs targeting the same miRNA gene. Across 45 human cancer cell lines, only 217 (12%) 
of all targeted human miRNAs scored as a fitness gene in at least one model, and fitness effects for most miRNAs were 
confined to small subsets of cell lines. In contrast, we identified 49 common essential miRNAs with a homogenous fit-
ness profile across the vast majority of all cell lines. Transcriptional profiling verified highly consistent gene expression 
changes in response to knockout of individual common essential miRNAs across a diverse set of cancer cell lines.

Conclusions Our study presents a miRNA-targeting CRISPR-Cas9 knockout library with high gene coverage and opti-
mized on- and off-target activities. Taking advantage of the lentiG-miR library, we define a catalogue of miRNA fitness 
genes in human cancer cell lines, providing the foundation for further investigation of miRNAs in human cancer.
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Background
Noncoding elements of the human genome have 
attracted increasing attention. Among other classes of 
noncoding RNAs defined thus far, miRNAs were initially 
identified in nematodes [1, 2] and were later shown to 
form a much larger class of small RNAs, which in part 
are highly conserved during evolution [3]. miRNAs are 
transcribed as longer RNA molecules containing at least 
one stem-loop region which are processed to result in a 
mature ~ 22 nucleotide regulatory RNA molecule. These 
mature miRNAs can interact with the majority of human 
protein-coding mRNAs [4], thereby shaping the gene 
expression profile on the posttranscriptional level.

Much of the knowledge on cellular functions of miR-
NAs comes from the systematic analysis of knockout 
studies in several model systems. Interestingly, early 
analyses in C. elegans have suggested a minor impact of 
miRNAs on cellular processes, as knockout experiments 
have revealed abnormal phenotypes for only a small 
fraction of miRNA mutants [5, 6]. However, effects of 
miRNA knockout in flies and mice are far more severe. 
In flies, the vast majority of knockout mutants show a 
relevant phenotype including shortened lifespan or even 
lethality, and this was seen for both single miRNA as well 
as miRNA cluster mutants [7]. Phenotypes for several 
mouse knockout strains are similarly severe and include 
a wide spectrum of mostly tissue-restricted abnormali-
ties [8–11]. Furthermore, different strategies for loss- and 
gain-of-function approaches including antisense oligo-
nucleotides and mimics have been used to reveal some 
of the functions of miRNAs mainly in cell culture sys-
tems [12–14]. Yet, miRNA knockdown approaches using 
established methodologies are cumbersome and less 
robust than overexpression strategies.

With the advent of the CRISPR-Cas9 system, genetic 
loss-of-function studies have become more efficient, 
and this approach has become the standard method for 
genome-wide knockout perturbation screens. System-
atic analyses of human cancer cell lines have enabled the 
robust identification of genes essential for cell growth and 
fitness in human cancer cell lines [15–18]. While these 
approaches were primarily intended to reveal tumor- or 
lineage-specific vulnerabilities, the high number of avail-
able screens has also been used to refine our knowledge 
of pan-essential genes which show strong depletion in 
the majority of cell lines during propagation. Currently 
available CRISPR-Cas9 knockout libraries almost exclu-
sively target protein-coding genes and functional genom-
ics-based investigations of the noncoding genome are 
relatively rare. The early genome-scale CRISPR knockout 
library version 2 (GeCKOv2) library contained sgRNAs 
targeting miRNAs [19], and a selectively miRNA-target-
ing CRISPR-Cas9 library has been described [20].

To facilitate the screening of miRNA function in 
human cells, we designed a miRNA-targeting CRISPR-
Cas9 knockout library and provide a detailed compari-
son to previous libraries capable of targeting miRNAs. 
We assessed the screening performance of this library 
and compared the results for a screen in HeLa cells to a 
previous miRNA-targeting CRISPR screen in the same 
cell line. We then performed miRNA fitness screens in 
45 human cancer cell lines, representing 16 distinct line-
ages, to define a set of common essential miRNAs. Our 
subsequent in silico network analyses and mRNA gene 
expression profiling allow to predict functionally relevant 
downstream targets of fitness miRNAs.

Methods
Generation of the lentiG‑miR library and comparison 
to previous miRNA‑targeting CRISPR‑Cas9 libraries
The miRNA-targeting CRISPR-Cas9 knockout library 
lentiG-miR was generated using an algorithm from the 
Broad Institute [21, 22]. Throughout the manuscript, 
miRNA genes are referred to by their official HUGO 
Gene Nomenclature Committee symbol. For mature 
miRNAs, we follow the nomenclature from miRbase [23], 
omitting the species prefix as the manuscript only refers 
to human miRNAs (e.g., miR-483-5p and miR-483-3p). 
Briefly, a list of current miRNA targets was downloaded 
from the Ensembl BioMart in August 2020 [24], contain-
ing 1926 total unique miRNA IDs. Additionally, specific 
stem-loop sequences (n = 1917; miRbase v22) for the cur-
rent set of miRNAs were obtained. Candidate Cas9-NGG 
PAM sequences were identified using design and scoring 
principles as described [21]. Valid, specific stem-loop tar-
geting sgRNAs were preferred as candidates for the list of 
1926 miRNAs, while attempting to reach a total of 5 sgR-
NAs per miRNA. Due to the relative length of miRNA 
transcripts and sequence homology, 1769 of the 1926 
miRNAs were targetable with at least one valid sgRNA, 
with 1414 miRNAs reaching the quota of five sgRNAs. 
We included high specificity sgRNAs predicted to have 
either zero matches in the genome (non-targeting), 
exactly one match for common essential protein-coding 
genes, including spliceosomal, transcription factor, and 
ribosomal proteins, or random intergenic locations (one-
intergenic). While miRNA stem-loop sequences served 
as input for the generation of all miRNA-targeting librar-
ies investigated in this study, the design criteria used to 
generate these libraries differ substantially. Selection of 
sgRNAs in GeCKOv2 was not guided by a specific on-
target efficacy prediction model but included minimiza-
tion of off-target activity employing a specificity analysis 
(MIT score) [25]. LX-miR generation included on-target 
modeling (Azimuth) [21] and employed off-target assess-
ment using the MIT score. For lentiG-miR, we used a 
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newer release of Azimuth (Azimuth 2.0), and employed 
cutting frequency determination (CFD) as a model to 
minimize sgRNA off-target activity [21]. Comparisons 
across libraries targeting miRNAs were performed using 
Azimuth 2.0 and off-target CFD metrics. Additionally, 
these metrics were further used to compare functional 
screening performance of lentiG-miR and LX-miR librar-
ies in HeLa cells on the basis of sgRNA depletion profiles 
as generated by our analysis pipeline described below.

Cell lines
The following cell lines were used in this study and cul-
tivated in the indicated media: D425, LN229, LNZ308, 
LN18, T98G, MCF7, HT1080, Huh7, HeLa, BEN-MEN, 
SK-N-BE, and SY5Y (DMEM supplemented with 10% v/v 
FCS); BT12, CHLA259, TC32, TC71, and Rh30 (IMDM 
supplemented with 20% FCS, 1 × ITS (insulin, transferrin, 
selenium)); A204, G401, HCT116, and HT29 (McCoy’s 
supplemented with 10% FCS); RKO and HepG2 (MEM 
supplemented with 20% FCS, pyruvate, GlutaMAX); 
CHLA06 (DMEM/F12 supplemented with B27, EGF, 
FGF, GlutaMAX, HEPES); MDA-MB-453 (Leibovitz’s 
L-15 supplemented with 10% FCS); GS-2 and GS-9 
(neurobasal supplemented with B27, EGF, FGF); BT16, 
DAOY, Jurkat, HL60, THP1, KM-H2, JVM2, JVM3, 
H1048, PC9, MON, TFK1, MELJUSO, SK-Mel-30, A375, 
Mel1617, DU145, NCI-N87, HCC1143, and MKN45 
(RPMI supplemented with 10% FCS). All cells where 
either authenticated prior to screening by profiling highly 
polymorphic short tandem repeat (STR) loci and com-
parison to database profiles or determined to be unique 
by lack of match to any STR profile. No rodent cells could 
be detected in any human cell line as assessed by lack of 
detection of mitochondrial sequences from Mus muscu-
lus, Rattus norvegicus, Cricetulus auratus, and Cricetulus 
griseus. Cell lines obtained from ATCC or DSMZ directly 
prior to screening were not authenticated. All cell lines 
were regularly tested for mycoplasma contamination.

Generation of Cas9‑expressing cancer cell lines
Cells were transduced with a lentivirus coding for Cas9 
(Addgene #52,962) in 12well plates by spinfection in the 
presence of polybrene (4  μg   ml−1). Blasticidin selection 
was started 24 h after transduction and kept for 5 days. 
After selection, Cas9 expression was verified by western 
blot.

CRISPR screens using lentiG‑miR
Per replicate, a total of 15 ×  106 cells was transduced 
with an appropriate volume of the lentiviral-packaged 
lentiG-miR library to achieve a 30% transduction effi-
ciency (> 500 × library coverage, where coverage refers 
to the ratio of cell number to library size). The volume 

was determined for each cell line individually using a 
titration of the library and assessing the fraction of sur-
viving cells after 5 days of puromycin selection as com-
pared to cells without selection. Transductions were 
performed in technical triplicates. Transduction effi-
ciency for each screen replicate was assessed using an 
in-line assay after 5 days of selection. Median transduc-
tion rate across all cell lines was 33%. Cells were passaged 
for a total of 3 weeks after viral transduction, keeping a 
minimum 500 × library coverage at each split. Approxi-
mately 15 ×  106 cells were collected, pelleted, and stored 
at – 80 °C at the end of the screens. Genomic DNA was 
extracted from the cells using QIAamp DNA Blood Midi 
kits. PCR amplification and Illumina sequencing were 
performed as previously described [21].

Low‑level CRISPR screen analysis
sgRNA library reads were demultiplexed and matched 
to the library reference using PoolQ (v3.3.1) [26]. Raw 
read counts from CRISPR-Cas9 screens can be found 
at figshare [27].  We determined the fraction of library-
matched reads for each replicate and excluded all repli-
cates (total of three replicates) with a fraction of matched 
reads of less than 60% and a total number of less than 
what is needed for a theoretical library average cover-
age of 100 reads per library construct. Sequencing of the 
library plasmid DNA was also performed to be used as 
reference and checked for sufficient sequencing depth. 
Furthermore, cumulative percentages of sgRNA read 
counts from all screen replicates were compared to the 
plasmid DNA. Screen replicate reproducibility was 
assessed using two complementary approaches. First, 
we calculated the Pearson correlation coefficient (PCC) 
between replicates after pre-filtering and excluding both 
common essential protein-coding controls as well as 
miRNAs that showed no fitness effect in any of our can-
cer cell lines, as suggested previously [15]. Second, we 
employed within-vs-between context replicate correla-
tion scoring (WBC score) as previously described [28] 
both on the level of normal  log2 fold changes (LFC) as 
well as differential fitness scores (dLFC) as measured by 
the deviation of the gene-wise consensus fitness effects.

Correction for gene‑independent effects
CRISPRcleanR was downloaded from GitHub [29] and 
used to normalize sgRNA counts for each screen repli-
cate by scaling to the total number of reads per replicate. 
To run CRISPRcleanR, we built alignment informa-
tion for the lentiG-miR and the LX-miR libraries. Each 
screen replicate was run separately to first correct  log2 
fold changes for gene-independent DNA cutting effects. 
These data were used to re-calculate corrected normal-
ized read counts. To inspect the variation induced by 
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the CRISPRcleanR correction, we both inspected sgRNA 
distributions of defined control sgRNA sets as well as 
checked for potential correction of sgRNA-level  log2 fold 
changes for regions with known copy number ampli-
fication for cell lines included in GDSC1000 database 
[30] or elsewhere [31]. We compared this unsupervised 
approach to the supervised CERES algorithm [32] for 
three cell lines (HT29, A375, and TC32) with available 
copy number data. Ranked lists of sgRNAs based on the 
correction by either CRISPRcleanR or CERES were com-
pared using a rank-biased overlap approach (RBO) [33]. 
RBO analyses were performed at different sgRNA depths 
(top 50 to 400 sgRNAs), while tuning the top weighted-
ness using the value p of the formula so that the top 30 
corrected sgRNAs contribute 92.89% to the final RBO 
score.

Supervised assessment of screening performance
First, we assessed screen quality by analyzing the behav-
ior of control sgRNAs targeting either common essential 
protein-coding genes or intergenic regions within the 
lentiG-miR library using precision-recall (PR) curves. 
To do that, we used the ccr.PRRC_Curve function within 
CRISPRcleanR yielding precision and recall in calling 
essential sgRNAs. Second, we applied both replicate- 
(null-normalized mean difference (NNMD) and Cohen’s 
D) and cell line-level quality metrics (F measure) to eval-
uate screening performance [34, 35]. We calculated the F 
measure as the harmonic mean of precision and recall (as 
calculated by the pr function of BAGEL2 [36]) at Bayes-
ian factor five or the nearest Bayesian factor but greater 
than five. Direct correlation of both NNMD and Cohen’s 
D with the F measure revealed two outlier cell lines 
with poor quality (Jurkat and MDA-MB453) that were 
excluded from further analyses. While H1048 cells also 
scored at relatively poor F measure < 0.7, this line scored 
well on Cohen’s D and was included for further analysis.

Comparison of miRNA screen data with Project Achilles
The “CRISPRGeneEffect” file from DepMap_public_23Q2 
[37] was used to obtain  log2 fold change (LFC) data for all 
genes from screening 1095 human cancer cell lines with 
the Avana library, scaled for the median LFC of internal 
common essential protein-coding genes to be − 1 and 
median LFC of known non-essential protein-coding genes 
to be 0. Screening data for miRNA screens were scaled 
similarly by the median LFC of internal common essen-
tial protein-coding genes and intergenic controls. For 
each cell line and screen, each gene with a LFC <  − 0.5 was 
defined as an essential gene, and the fraction of essential 
genes for each cell line was determined. To generate null 
distributions for both libraries, we repeated this process 

for either known non-essential protein-coding genes [38] 
(Avana) or intergenic controls binned by genomic location 
(lentiG-miR).

Scoring cell line‑level fitness miRNAs
Corrected sgRNA-level LFCs derived from CRISPR-
cleanR were used as input for the BAGEL2 algorithm [35] 
to perform a supervised gene essentiality analysis. To this 
end, we provided distributions of sgRNA-level LFCs for 
both predefined protein-coding common essentials as 
well as negative control sgRNAs (intergenics). Gene-level 
Bayesian factors were generated using the bf function of 
the BAGEL2 implementation. Corresponding recall, pre-
cision, and FDR metrics for the ranked list of Bayesian 
factors were calculated using the pr function. In addition, 
sgRNA-level corrected read counts derived from CRIS-
PRcleanR were used as input for the MAGeCK RRA [39] 
algorithm to perform calling of gene essentiality using the 
MAGeCK Python package (version 0.5.9.5) [40]. A list 
of intergenic control sgRNA read counts was provided 
to aid in the calculation of depletion and enrichment 
events by permutation testing in a semi-supervised man-
ner. Importantly, we defined –norm-method none in the 
MAGeCK test command as these counts were already 
normalized during the CRISPRcleanR process. Finally, for 
each cell line, we defined a list of fitness miRNAs as the 
overlap of genes that were considered as being essential 
according to both algorithms at FDR < 10%.

Identification of common essential miRNAs
We here used the fitness percentile method to iden-
tify common essential miRNAs (CEGs) in our set of 
45 human cancer cell lines screens. This unsupervised 
approach follows the basic intuition that if a gene is 
ubiquitously important for cell viability, it should fall in 
the top n depleted genes in at least 90% of all cell lines, 
assuming that this gene might not be top depleted in 
the remaining cell lines due to technical variation. Most 
genes will show little to no depletion in the 90th per-
centile of least dependent cell lines, while CEGs will 
still show considerable depletion in the remaining least 
dependent lines. We used four distinct variants (average, 
fixed, AUC, slope) of this method implemented in the 
CoRe package [41] for initial analyses. For the final set 
of CEGs, we used miRNA genes identified by the most 
stringent variant of the fitness percentile method (aver-
age). For visualization purposes, we determined non-
essential miRNAs, i.e., miRNAs that do not show any 
fitness effect across human cancer cell lines, as the top-
ranking miRNAs with the smallest LFC deviation from 
the median of intergenic controls.
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Generation of miRNA knockout cell lines
Selected sgRNAs from the lentiG-miR library targeting 
MIR483, MIR663A, or an intergenic region were cloned 
into the lentiCRISPRv2 plasmid (Addgene #52961) 
according to the resource information on Addgene. 
Lentiviral particles were generated in HEK293FT cells 
according to a standard protocol. Parental cell lines were 
transduced with lentiviral particles from empty lentiC-
RISPRv2 or the plasmid containing distinct sgRNAs 
using spinfection. Cells were selected for 5  days using 
puromycin at empirically determined concentrations. In 
order to rule out potential off-targeting of the here inves-
tigated sgRNAs, the following assumptions were made: 
in general, we hypothesized that erroneous depletion of 
sgRNAs targeting CEGs might be due to either (I) copy 
number gain of the corresponding genomic region and 
gene-independent cell responses due to DNA damage or 
(II) off-target activity resulting in knockout of protein-
coding common essential genes. It is very unlikely that 
the majority or all of the here investigated 45 cell lines 
harbor a similar copy number gain at a defined genomic 
region, and gene-independent effects were accounted 
for during screen analyses (CRISPRcleanR, see above), 
thus ruling out copy number gain as cause for potentially 
erroneous detection of CFGs. To rule out potential off-
target activity of sgRNAs for MIR483 and MIR663A on 
protein-coding common essential genes, we determined 
protein-coding off-targets for these sgRNAs using CRIS-
PRoff [42], considering all regions with up to three mis-
matches. Potential targeting and downstream knockout 
of these off-targets was investigated using transcriptomic 
analyses (see below), and downregulated genes were 
cross-referenced with the list of cancer common essential 
genes from the Dependency Map [17].

miRNA network analyses
We used miRNet 2.0 to determine genes regulated by 
core fitness miRNAs [43]. miRBase IDs for all known 
mature miRNAs from common essential miRNA genes 
were uploaded to miRNet 2.0. Potential mRNA tar-
get genes were determined using miRTarBase v8.0 [44]. 
A hypergeometric test was employed to calculate the 
overrepresentation of functional annotations within tar-
get genes, based on the universe provided by miRNet 
(n = 16944) and the gene sets from KEGG, REACTOME, 
or GO databases. In order to identify significantly 
enriched subnetworks, we employed the InfoMap algo-
rithm [45]. Functional annotation analyses for subnet-
work genes were performed using a hypergeometric test.

mRNA sequencing and downstream analyses
Total RNA from four distinct human cancer cell lines 
(MCF7, HT29, HL60, and PC9) for MIR483/MIR663A 

knockout or lentiCRISPRv2 empty control was isolated 
using a RNeasy Mini kit. Total RNA was subjected to 
library preparation using the NEBNext Ultra II Direc-
tional RNA library Prep kit. Sequencing was performed 
on a NovaSeq 6000 machine.  Raw sequencing data  has 
been deposited at GEO [46]. Raw sequencing data (fastq 
files) were analyzed using the nf-core/rnaseq pipeline 
v3.12.0 [47]. A detailed QC report for all sequencing 
runs can be found at GitHub [48]. Briefly, the pipeline 
included trimming of reads (Trim Galore! v0.6.4) [49], 
alignment to the GRCh37 genome (STAR vSTAR_2.6.1d) 
[50], and feature quantification (featureCounts v1.6.4) 
[51]. Differential gene expression analyses were per-
formed using DESeq2 v1.38.3 [52]. Only genes with a 
minimum normalized count of 10 in at least 3 samples 
were considered for downstream analyses. Sample simi-
larity was investigated using hierarchical clustering based 
on Pearson correlation coefficients or principal compo-
nent analyses considering the first three components. 
Differentially expressed genes were calculated using 
pairwise comparisons of miRNA knockout cells and the 
corresponding empty control employing Wald statistics, 
considering significance at a LFC ≥ 1 and Padj ≤ 0.05. 
To test gene expression changes over several conditions 
at once, we employed a likelihood ratio test (LRT) con-
sidering genes at Padj ≤ 0.01, while regressing out gene 
expression changes due to differing cellular backgrounds. 
In order to group LRT genes by their expression changes 
across control, sgMIR483, and sgMIR663A cells, we per-
formed a divisive hierarchical clustering approach using 
the degPatterns function of the DEGreport package 
v1.34.0 [53]. For all functional analyses, we used the clus-
terProfiler package v4.6.2 [54]. Predefined lists of genes 
were analyzed using an overrepresentation approach 
using the enricher function with the indicated gene set 
databases. Additionally, we performed gene set enrich-
ment analyses based on the KEGG database using gene 
lists ranked LFCs from the indicated comparisons.

Results
Generation and validation of lentiG‑miR for miRNA 
knockout studies
We designed a CRISPR-Cas9 library targeting stem-loop 
sequences of miRNAs (lentiG-miR), aiming to maxi-
mize total miRNA coverage and on-target efficacy while 
minimizing off-target activity, with an initial quota of 5 
sgRNAs per miRNA (Fig. 1A). The final library contains 
8107 sgRNAs targeting 1769 human miRNAs (Additional 
File 1: Table S1). Not all miRNA genes had 5 or more dif-
ferent sgRNA site options with the minimally acceptable 
predicted on- and off-target profiles. In the final design, 
1414, 135, 102, 71, and 47 miRNAs are targeted by five, 
four, three, two, and one sgRNA, respectively, so that 93% 
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of miRNA genes were covered by at least three sgRNAs. 
For negative controls, we included a set of non-targeting 
sgRNAs that had no detected target sites in the human 
genome and another set of sgRNAs that each targeted 

only a single site within an intergenic non-coding region. 
For validation purposes and supervised identification of 
fitness miRNA genes, we also included a set of sgRNAs 
targeting known pan-essential protein-coding genes 

Fig. 1 Generation and validation of a novel CRISPR-Cas9 knockout library targeting human miRNAs. A Schematic overview illustrating 
the generation of a miRNA-targeting CRISPR-Cas9 knockout library and major steps of the bioinformatic pipeline to identify miRNA fitness genes. 
B Precision-recall (PR) curve analyses to validate screening performance of the lentiG-miR library as compared to the Avana library in HT29 
and LNZ308 cells. Calculated areas under the PR curve (AUC-PR) are indicated. C Distribution of sgRNA LFCs for the top 20 most depleted miRNAs 
(≥ 3 sgRNAs per gene) and common essential protein-coding genes in HT29 cells. Median and interquartile range (IQR) of sgRNA LFCs for each 
gene are shown. D Venn diagram illustrating the overlap of fitness miRNAs in HT29 and LNZ308 cells. E Cumulative percentage of sgRNAs targeting 
common miRNA genes across three CRISPR-Cas9 libraries in relation to their off-target sites. F Venn diagram showing the overlap of fitness miRNAs 
in HeLa cells as determined by the LX-miR or the lentiG-miR library. Percentages in brackets indicate coverage of respective miRNA fitness genes 
in the counterpart library. G sgRNA depletion from LX-miR (top) or lentiG-miR (bottom) libraries in HeLa cells in relation to the number of off-target 
sites in the human genome. sgRNAs were ranked by LFC and binned by decile. The red dashed line illustrates the mean number of protein-coding 
off-target sites across all bins. H Distribution of the number of off-target sites in protein-coding regions (CFD > 0.2) of sgRNAs targeting 
either non-depleted miRNAs or miRNAs determined to be essential in only the LX-miR or only the lentiG-miR screen (uniquely depleted). Data are 
shown as box plots with boxes showing 25th to 75th percentile and whiskers extending to the 10th and 90th percentile (G, H). Statistics are derived 
from a SuperExactTest (D, F), t tests with Holm-Bonferroni correction (G), and a Kruskal–Wallis test with Dunn’s correction (H)
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[16]. To assess the general screening performance of this 
library and to develop a suitable analysis pipeline, we first 
screened a small number of well-annotated cancer cell 
line models including HT29 and LNZ308 cells, using a 
library coverage of 500 cells-per-sgRNA per replicate in 
triplicate. Employing a pipeline provided by the CRIS-
PRcleanR package [30] proved to effectively normalize 
sgRNA read counts and correct for gene-independent 
effects associated with amplified genomic regions (Addi-
tional File 2: Fig. S1 A-E). Of note, we compared the 
sgRNA LFC correction using this unsupervised approach 
to the correction employed by the supervised CERES 
algorithm [32] in several cell models and found that the 
copy number (CN) corrections were similar (Additional 
File 2: Fig. S1 F,G), suggesting that CRISPRcleanR can 
successfully correct for CN bias in screens performed 
with a low-density knockout library such as lentiG-miR.

Screens for HT29 and LNZ308 cells showed good 
performance in discriminating common essential pro-
tein-coding genes from intergenic controls as judged by 
precision-recall curve analyses, recapitulating data from 
the Avana library used in the Cancer Dependency Map 
(DepMap) [37] for these cell lines (Fig. 1B) and indicating 
good overall screen quality. Of note, a number of miR-
NAs showed robust depletion of targeting sgRNAs, and 
we observed a high level of consistency among redundant 
sgRNAs targeting these miRNAs (Fig.  1C; Additional 
File 2: Fig. S2 A). We next identified fitness miRNAs in 
each cell line using a combination of supervised Bayesian 
analysis of gene essentiality (BAGEL2) [35] and a semi-
supervised model-based analysis of CRISPR-Cas9 knock-
out screens with robust ranking aggregation (MAGeCK 
RRA) [39] classification approaches. Defining fitness 
miRNAs as genes being identified at a false discovery 
rate (FDR) of < 10%, both algorithms showed a highly sig-
nificant overlap of essentiality profiles for both cell lines 
(Additional File 2: Fig. S2 B). As expected in analogy to 
knockout screens for protein-coding genes [15], we iden-
tified both shared miRNA fitness genes as well as cell 
line-associated dependencies in HT29 and LNZ308 cells 
(Fig.  1D). Furthermore, a large proportion of targeted 
miRNAs are weakly expressed or unexpressed in HT29 
cells [55], and the miRNA targets that scored as essen-
tial were strongly skewed towards the expressed miRNAs 
(Additional File 2: Fig. S2 C). Together, the same-target 
consistency across sgRNAs and the skew of depletion hits 
towards the expressed miRNAs provide evidence that 
screens with lentiG-miR are able to discern functionally-
relevant miRNAs.

We next aimed to compare miRNA gene coverage, 
sgRNA composition, and screening performance of the 
lentiG-miR library to previously described miRNA-tar-
geting libraries, i.e., GeCKOv2 and LX-miR [19, 20]. All 

libraries target highly overlapping sets of miRNA genes, 
with lentiG-miR targeting an additional 59 or 172 miR-
NAs compared to GeCKOv2 or LX-miR, respectively 
(Additional File 2: Fig. S3 A). However, a major differ-
ence among these libraries is the selection of sgRNA 
sequences used to target miRNA genes, owing to differ-
ent sgRNA prediction models used during library design 
(see the “Methods” section for details of design criteria). 
Among miRNA genes covered by all libraries (n = 1292), 
64% and 40% of sgRNAs selected for lentiG-miR are 
distinct from those in GeCKOv2 and LX-miR, respec-
tively. Direct comparison of sgRNAs from these libraries 
using established on-target efficacy and off-target activ-
ity models [21] showed higher distributions of on-target 
scores for both miRNA-selective libraries as compared 
to GeCKOv2, with LX-miR scoring best across all three 
libraries (Additional File 2: Fig. S3 B). With respect to 
the predicted off-target activity, many potential sgRNA 
options were found to have better predicted off-target 
profiles [21] than those used in the older libraries, so that 
lentiG-miR by design has a superior predicted off-target 
profile than those previous libraries (Fig. 1E; Additional 
File 2: Fig. S3 C).

We next screened HeLa cells with the lentiG-miR 
library and directly compared the results to a previ-
ous screen in HeLa cells with the LX-miR library [20]. 
Of note, while some miRNA fitness genes were shared 
across the screens with both libraries (n = 34), we iden-
tified many more unique miRNA dependencies for the 
LX-miR library (n = 436) than for lentiG-miR (n = 34) 
using our bioinformatic pipeline (Fig. 1F). We next inves-
tigated a potential correlation of off-target activity and 
sgRNA depletion for both screens. The most strongly 
depleted sgRNAs in the LX-miR screen presented a sig-
nificantly higher number of predicted off-targets than the 
less depleted sgRNAs, while we did not detect a similar 
correlation for the lentiG-miR library (Fig.  1G). Simi-
larly, in the HeLa_LX-miR screen, considering only the 
sgRNAs that targeted hit miRNAs unique to that screen 
versus the HeLa_lentiG-miR screen, those sgRNAs had 
significantly higher predicted off-target activity than the 
sgRNAs that targeted the non-hit miRNAs in that screen 
(Fig. 1H). The distributions of predicted off-target activ-
ity in the HeLa_lentiG-miR screen were similar for sgR-
NAs targeting unique hits versus those targeting non-hit 
miRNAs. Of note, while lower on-target scores might 
predict less sensitivity in detecting fitness miRNAs for 
lentiG-miR, we did not observe a diminished compe-
tence in detecting shared fitness miRNAs in the HeLa_
lentiG-miR screen as assessed by depletion of sgRNAs 
unique for the lentiG-miR library (Additional File 2: Fig. 
S3 D). Together, our data suggest lower off-target activ-
ity for sgRNAs in lentiG-miR as compared to a previously 
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described miRNA-targeting library in negative selection 
screens. This, combined with the addition of 172 miRNA 
targets and the inclusion of a diverse set of control sgR-
NAs, represents advantages for the systematic investiga-
tion of miRNA function with CRISPR loss-of-function 
screens.

Identification of common essential miRNAs in 45 human 
cancer cell lines using lentiG‑miR
We next aimed to identify miRNAs required for cancer 
cell fitness across a wide range of cancer cell models, 
i.e., miRNAs that are common essential independent 
from the cellular background and tumor entity. To this 
end, we performed 141 CRISPR-Cas9 fitness screens in 
47 human cancer cell lines, targeting 1769 miRNAs cov-
ered by the lentiG-miR library. Quality control analyses 
based on sgRNA read counts led to the exclusion of three 
replicates with insufficient coverage (< 100 × coverage). 
All remaining screen replicates exhibited clear changes 
in sgRNA abundance in all remaining replicate screens 
as compared to the reference plasmid accompanied by 
a strong depletion of common essential protein-coding 
genes (Additional File 2: Fig. S4 A-E). Additional repli-
cate- and cell line-level quality metrics led to the exclu-
sion of low-quality screens for two cell lines (Additional 
File 2: Fig. S4 F,G). The final data set included a total of 
133 screens showing high replicate reproducibility of 
miRNA-targeting sgRNA effects (Additional File 2: Fig. 
S4 H,I), and these screens represent 45 cancer cell lines 
across 16 lineages (Fig.  2A). Screen data from these 45 
cell lines demonstrated high precision in classifying 
essential and non-essential controls (Fig.  2B, and Addi-
tional File 2: Fig. S4 J). Of note, screening performance 
did not seem to be biased by technical factors (Additional 
File 2: Fig. S5).

Making use of this larger screen cohort, we first aimed 
to give a more detailed analysis of potentially confound-
ing factors influencing the screening performance of len-
tiG-miR with regard to the genomic location of targeted 
miRNAs. In fact, 62% of targeted miRNAs lie within 
the genomic region of protein-coding genes (Additional 
File 2: Fig. S6 A), and we hypothesized that the overlap-
ping host genes might influence the screening effects of 
those intragenic miRNAs. A direct correlation of miRNA 
knockout effects with their corresponding protein-cod-
ing host gene effect provided evidence for a potential 
bias, in particular for miRNAs that reside within exons 
of host genes previously classified as common essential 
(Additional File 2: Fig. S6 B). Further substantiating this 
notion, we found that a fraction of intragenic miRNAs 
within exons of common essential protein-coding host 
genes showed strong depletion across all 45 cancer cell 

lines (Additional File 2: Fig. S6 C,D). In order to mini-
mize potential false positive hits, we therefore excluded 
all miRNAs in exons of common essential protein-coding 
genes (n = 21) from further analyses.

To next compare our miRNA screening data to knock-
out screens of protein-coding genes, we analyzed both 
DepMap data across a total of 1095 cancer cell lines as 
well as our miRNA screening cohort for fitness effects, 
considering the gene depletion effect scaled by nega-
tive and positive controls included within the respective 
libraries and a cutoff LFC of <  − 0.5 (see the “Methods” 
section). Using this metric, an average of 10% of pro-
tein-coding genes demonstrated a viability effect in any 
of 1095 cancer cell lines within DepMap, and 64% of all 
coding genes in the genome constituted a potential fit-
ness gene in at least one cell line (Fig. 2C). In comparison, 
an average of only 3% of miRNA genes demonstrated a 
viability effect in any cell line from our data set, and only 
17% of all miRNAs in the genome represented a fitness 
gene in at least one cell line. This may suggest that the 
relative frequency of fitness genes per cell line is lower 
for miRNAs than previously observed for protein-coding 
genes, but of course this difference might also reflect dif-
ferences in efficacy of the CRISPR targeting of miRNA as 
compared to coding genes.

Taking the intersection of well-correlated BAGEL2 
and MAGeCK RRA fitness calls (Additional File 2: Fig. 
S7 A; Additional File 3), we identified a median of 57 
fitness miRNA genes in each cell line at a statistically 
robust threshold (FDR < 10% for both algorithms), with 
an average recall of 91% for essential control genes. In 
total, 217 (12%) of all targeted miRNAs induced a sig-
nificant fitness effect in at least one cell line, and the 
majority of these fitness miRNAs (85%) represented a 
genetic dependency in fewer than 50% of all tested cell 
lines (Fig.  2D; Additional File 2: Fig. S7 B). We next 
employed the 90th percentile method to define com-
mon essential miRNAs (miRNA CEGs) across human 
cancer cell lines. This method relies on quantitative 
descriptors of fitness (i.e., rank of gene depletion in 
each cell line) in order to perform an unsupervised 
analysis, and we implemented and compared four dis-
tinct ranking criteria [41] for this approach (Additional 
File 2: Fig. S7 C). Using the most stringent ranking 
metric (average), we identified a total of 49 miRNA 
CEGs across 45 cancer cell lines (Fig.  2E,F; Addi-
tional File 2: Fig. S7 D,E; Additional File 4). Of those, 
31 (63%) miRNAs scored as essential in more than 
50% of all cell lines (Additional file  2: Fig. S7 F). Fur-
thermore, the magnitude of depletion of miRNA CEGs 
was well-correlated with the magnitude of depletion 
of protein-coding common essential genes (Fig.  2G). 



Page 9 of 14Merk et al. Genome Medicine           (2024) 16:82  

Together, we conclude that a small subset of miRNAs 
present genetic dependencies in a highly heterogenous 
manner across distinct tumor cell lines. Similar to 

protein-coding genes [15], only a fraction of those miR-
NAs (i.e., miRNA CEGs) present a fitness effect in the 
majority or even all cell lines (Fig. 2H).

Fig. 2 Identification of common fitness miRNAs in human cancer cell lines. A Donut chart illustrating all cell lines in the final analysis set grouped 
by lineage (inner ring) and cancer type (outer ring). B PR curve analyses on the basis of classifying predefined sets of essential and non-essential 
sgRNAs. C Tukey boxplot showing the fractions of depleted protein-coding/known non-essential genes in any of 1095 cell lines of the DepMap 
as well as depleted miRNAs/intergenic controls in any of 45 cell lines screened with lentiG-miR. Dashed horizontal lines illustrate the median 
fraction of depleted protein-coding/miRNA genes across the corresponding cell lines. D Distribution of fitness miRNAs and their number 
of dependent cell lines as defined by a combination of BAGEL2 and MAGeCK RRA analyses (FDR < 10%). E Distribution of average gene rank 
positions for cell lines falling at least in the 90th percentile of least dependent lines. The local minimum of a Gaussian kernel density estimate used 
to classify common essential miRNAs is shown. F Dependency ranks of exemplary genes classified as common essential (RPL10, MIR708, MIR663A) 
or non-essential (MIR628) and in relation to the 90th percentile. G Average gene-level LFCs for common essential protein-coding (essential controls) 
and miRNAs genes. Values for intergenic controls are shown as well. Tukey boxplot illustrates differences in median LFCs for above mentioned 
subsets of genes. H Distribution of dependency scores for selected miRNAs across 45 human cancer cell lines including means for all miRNA 
across all cell lines (mean), all intergenics across all cell lines (intergenic), selected common essential protein-coding genes, and selected miRNAs 
with the smallest LFC deviation from the median of intergenics (non-essential miRNAs) as controls. Distributions for selected selectively essential 
and common essential miRNAs are shown. Dashed lines indicate the median of intergenics (blue) or common essential protein-coding genes (red) 
across all cell lines. Vertical rug lines indicate individual cell lines
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Gene network analyses for common essential miRNAs 
and functional annotation
Next, we set out to investigate potential gene networks 
regulated by miRNAs CEGs in human cancer cell lines, 
initially focusing on 31 miRNA CEGs which are essential 
in at least 50% of investigated cell lines (Additional file 2: 
Fig. S7 F). First, we mapped predicted miRNA-target 
interactions [56] for 31 distinct mature miRNAs result-
ing from these 31 miRNA CEGs and performed ontology 
analyses. Many of the resulting annotations were asso-
ciated with fundamental processes such as transcrip-
tion and cell cycle regulation but also included a wide 
array of pathways such as p53 as well as growth factor 
and cytokine signaling (Fig. 3A). Further network-based 
interrogation of miRNA-target interactions revealed a 
strong overlap of mRNA targets for distinct miRNAs but 
also showed functional enrichment in overrepresented 
subnetworks (Fig. 3B), indicating that subsets of miRNA 
CEGs act collectively to perform a biological function. 
However, due to the large number of predicted mRNA 
targets for miRNA CEGs, it does not seem surprising to 
identify a large number of enriched ontologies including 
potentially essential cellular processes, warranting fur-
ther investigation of downstream effectors for individual 
CFGs.

We reasoned that miRNA CEGs fulfill similar func-
tions as negative regulators of gene expression regard-
less of the cellular context. Thus, we analyzed in more 
detail the role of two selected miRNA CEGs, MIR483 
and MIR663A, as both of these genes have been widely 
recognized to act as oncogenic miRNAs [57–60]. We 
generated knockout clones for these two miRNAs in 
a total of four distinct human cancer cell lines (HL60, 
HT29, MCF7, PC9), representing a heterogenous group 
of tumor entities prevalent in humans (acute myeloid 
leukemia, colorectal adenocarcinoma, breast adenocar-
cinoma, and lung adenocarcinoma, respectively), and 
performed mRNA sequencing. As expected, overall dif-
ferences in gene expression profiles were mainly driven 
by cell line identity (Additional File 2: Fig. S8 A,B). 
Within each cell line, miRNA knockout cells presented 
distinct gene expression profiles with a median of 653 
and 1255 significantly deregulated genes in MIR483 
and MIR663A knockout cells, respectively (Additional 
File 2: Fig. S8 C,D; Additional file 5), with the majority 
of genes being upregulated by miRNA knockout (70% 
on average across cell lines and contrasts). Surpris-
ingly, only a small subset of predicted mRNA targets 
for mature miR-483-5p/3p or miR-663a showed altered 
gene expression profiles, and we observed both upreg-
ulation and downregulation for these subsets of genes 

(Additional File 2: Fig. S8 E). Among the most consist-
ent changes, we observed strong and robust upregu-
lation of the cell cycle inhibitor CDKN1A upon loss 
of MIR663A in solid tumor cell lines, indicating that 
deregulation of the cell cycle might be mechanistically 
associated with some miRNA CEGs. Of note, expres-
sion of predicted off-targets for both sgRNAs was 
unchanged, ruling out erroneous targeting of poten-
tially interfering interactors such as common essen-
tial protein-coding genes (Additional File 2: Fig. S8 F). 
Functionally, overrepresentation and gene set enrich-
ment analyses revealed a common increase in cytokine 
signaling and apoptosis-related genes as a result of 
miRNA knockout, while annotations associated with 
active cell cycling such as transcription, translation, 
and energy metabolism were significantly impaired 
(Fig. 3C, D). Overall, we observed a highly homogenous 
response both across cell lines for the same miRNA 
knockout as well as across distinct miRNA knockout 
conditions (Additional File 2: Fig. S8 G), and this was 
particularly evident for cell lines from solid tumors 
which are transcriptionally more similar as compared 
to the leukemia cell line.

These data indicated that MIR483 and MIR663A to 
some degree have similar target profiles or overlap-
ping downstream mechanisms involved in maintain-
ing cell fitness. To nominate genes commonly regulated 
by these two miRNAs, we performed a likelihood ratio 
test, controlling for gene expression differences asso-
ciated with cell line identity, and performed divisive 
hierarchical clustering. We found four groups in total 
that had differing effects across our conditions, with 
one group (LRT_group1) composed of genes that are 
commonly upregulated upon loss of either MIR483 or 
MIR663A, suggesting that these might represent direct 
or indirect targets of those miRNAs (Fig. 3E; Additional 
File 2: Fig. S8 H). A minor number of genes also showed 
common downregulation (LRT_group2 and LRT_
group3), and only a small subset of genes had differing 
effects upon loss of MIR483 or MIR663A. As suggested 
by our analyses before, genes commonly upregulated 
were associated primarily with cytokine signaling path-
ways and active apoptosis, while downregulated genes 
supported a mechanism where loss of either of both 
miRNAs leads to an impairment of cell cycle progres-
sion in human cancer cell lines (Fig. 3F). Together, our 
data provide evidence that miRNA CEGs are involved 
in the regulation of fundamental cellular processes 
shared across cellular contexts, and in part this might 
be mediated by overlapping functional properties of 
distinct miRNAs.



Page 11 of 14Merk et al. Genome Medicine           (2024) 16:82  

Discussion
Here, we present lentiG-miR, a sgRNA library for 
CRISPR-Cas9 knockout studies of human miRNAs, and 

we assess its performance in comparison to previously 
described libraries targeting miRNA genes. We demon-
strate that lentiG-miR presents advantages over older 

Fig. 3 Gene network analyses for core fitness miRNAs. A Gene ontology analysis for all predicted protein-coding targets of common essential 
miRNAs using the KEGG, REACTOME, and gene ontology biological process (GO-BP) reference databases. B miRNA-centric interaction network 
for common essential miRNAs and predicted protein-coding target genes. This analysis was restricted to 31 common essential miRNAs determined 
to be essential in at least 50% of cell lines. Significantly enriched subnetworks were identified using the InfoMap module explorer in miRNET, 
and functional annotations according to GO-BP are summarized for selected subnetwork. C Dot plots illustrating gene ontology analyses results 
for genes upregulated by either loss of MIR483 or MIR663A in four distinct tumor cell lines. D Gene set enrichment analyses using the KEGG 
database for the effect of loss of MIR483 or MIR663A across all four cancer cell models. Selected enriched (red) or depleted (blue) gene sets 
for both miRNAs are shown. All gene sets score at Padj < 0.01. E A likelihood ratio test (LRT) was performed to identify genes affected by either loss 
of MIR483 or MIR663A across all four cancer cell line models, regressing out gene expression differences due to different cell line backgrounds 
(cutoff Padj < 0.01). Genes were grouped according to their expression changes in the empty, sgMIR483, and sgMIR663A conditions using a divisive 
hierarchical clustering approach. F Dot plots showing a maximum of the top five enriched gene ontologies in distinct LRT gene groups. Statistics 
are derived from a hypergeometric distribution (A, C, D, F) and a likelihood ratio test (E). Correction for multiple testing for all statistical approaches 
was performed using the Benjamini–Hochberg method
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libraries in terms of on- and off-target activity metrics 
and overall miRNA gene coverage. We use the lentiG-
miR library in a pan-cancer approach to define a set of 
common essential miRNAs in human cancer cell lines, 
advancing our insight on miRNA involvement in con-
served essential processes in human cells.

Our results highlight the utility of the lentiG-miR 
library for effective interrogation of miRNA gene func-
tion via loss-of-function screening. Direct comparison 
of sgRNA metrics as well as screening performance sug-
gests that sgRNAs from lentiG-miR have a lower degree 
of protein-coding off-targets and therefore likely a lower 
number of erroneously detected screening hits as com-
pared to previous miRNA-targeting libraries, a difference 
which we attribute to improved sgRNA design criteria 
[21, 22]. Inclusion of targeting and non-targeting control 
sgRNAs represents a further advantage over previous 
libraries to aid in the validation of screening performance 
as well as the supervised detection of fitness miRNAs. At 
the same time, lentiG-miR retains a relatively small size 
which should enable screening procedures in difficult-
to-grow model systems which are limited in cell num-
ber and therefore library coverage capacity. While our 
data suggest that CRISPRcleanR can effectively correct 
for gene-independent effects in screens performed with 
the low density lentiG-miR library, usage of supervised 
algorithms such as CERES might also be considered for 
future studies, especially for the identification of context-
specific essential miRNAs. Furthermore, while lentiG-
miR presents a favorable on-target to off-target balance 
over older libraries, further validation of the specificity 
and the effects of genome editing on the gene-level will 
be necessary on a case-by-case basis.

Making use of the lentiG-miR library, we here aimed 
to give a systematic functional annotation of miRNAs in 
the context of cellular fitness. To this end, our work pro-
vides a resource of fitness-associated miRNAs covering 
the vast majority of currently annotated human miRNAs. 
These common essential miRNAs and their correspond-
ing target transcripts show a potential involvement of 
fitness miRNAs in a wide array of fundamental cellular 
processes such as cell cycle regulation and transcrip-
tion. Additionally, our knockout studies for MIR483 and 
MIR663A highlight a potential role of miRNA-mediated 
cytokine suppression as one potential mechanism con-
tributing to cell fitness. miRNAs are known to regulate 
cytokines such as members of the tumor necrosis factor 
or interleukin family directly or by interfering with down-
stream pathways such as NF-κB [61, 62]. Furthermore, 
depending on the cellular context, it has been suggested 
that miRNAs act as potent cytokine repressors [63, 64]. 
In addition, some miRNAs might be directly involved in 
regulation of cell cycle progression as suggested by our 

finding that MIR663A likely inhibits the cell cycle inhibi-
tor CDKN1A across distinct tumor lineages. Function-
ally, both MIR483 and MIR663A have been shown to 
suppress apoptosis in cancer cells [58, 65], and this might 
also be related to the phenotype observed in our study. 
Further work will be necessary to delineate the exact 
mechanism of miRNA-mediated cytokine suppression, 
how it contributes to cellular fitness, and whether this is 
a phenomenon specific to cancer cells or also applies to 
non-malignant cells.

Conclusions
The experimental and analytical approaches described 
in this study illustrate a method to uncover miRNA fit-
ness genes in human cancer cell lines, providing insight 
into the integration of non-coding genes in essential cel-
lular processes. The lentiG-miR CRISPR-Cas9 knockout 
library provides advantages over previous libraries with 
regard to miRNA gene coverage and balancing of pre-
dicted on-target and off-target activity, while providing 
a diverse set of high-confidence reference sgRNAs for 
screen validation and analysis at small library size. Thus, 
the lentiG-miR library should prove useful for further 
investigation of context-specific miRNA functions, and 
our set of miRNA CEGs might serve as a reference data 
set to filter out broadly cytotoxic candidates.
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