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Abstract 

Background  Colorectal cancer (CRC) arises from complex interactions between host and environment, which 
include the gut and tissue microbiome. It is hypothesized that epigenetic regulation by gut microbiota is a fun-
damental interface by which commensal microbes dynamically influence intestinal biology. The aim of this study 
is to explore the interplay between gut and tissue microbiota and host DNA methylation in CRC.

Methods  Metagenomic sequencing of fecal samples was performed on matched CRC patients (n = 18) and healthy 
controls (n = 18). Additionally, tissue microbiome was profiled with 16S rRNA gene sequencing on tumor 
(n = 24) and tumor-adjacent normal (n = 24) tissues of CRC patients, while host DNA methylation was assessed 
through whole-genome bisulfite sequencing (WGBS) in a subset of 13 individuals.

Results  Our analysis revealed substantial alterations in the DNA methylome of CRC tissues compared to adja-
cent normal tissues. An extensive meta-analysis, incorporating publicly available and in-house data, identified 
significant shifts in microbial-derived methyl donor-related pathways between tumor and adjacent normal tissues. 
Of note, we observed a pronounced enrichment of microbial-associated CpGs within the promoter regions of genes 
in adjacent normal tissues, a phenomenon notably absent in tumor tissues. Furthermore, we established consistent 
and recurring associations between methylation patterns of tumor-related genes and specific bacterial taxa.

Conclusions  This study emphasizes the pivotal role of the gut microbiota and pathogenic bacteria in dynamically 
shaping DNA methylation patterns, impacting physiological homeostasis, and contributing to CRC tumorigenesis. 
These findings provide valuable insights into the intricate host-environment interactions in CRC development 
and offer potential avenues for therapeutic interventions in this disease.
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Background
Colorectal cancer (CRC) ranks among the leading causes 
of cancer-related death worldwide [1]. The development 
of CRC involves a complex interplay between genetic 
mutations, epigenetic alterations, and environmental 
factors [2, 3]. Commensal microbes interact closely with 
intestinal epithelial cells and serve as a crucial source of 
environmental stimuli that can profoundly shape host 
cellular function. Recent progress in sequencing and 
computational techniques has facilitated the exploration 
of the intricate role of gut microbiota in the context of 
colorectal cancer [4–6], and several recent studies have 
performed meta-analysis of gut microbiota from differ-
ent CRC cohorts and identified novel microbial biomark-
ers [7, 8].

DNA methylation is a prominent epigenetic modifica-
tion primarily occurring at CpG dinucleotides. It plays a 
pivotal role in a wide range of physiological and patho-
physiological processes by influencing protein binding 
and chromatin structure associated with tumor forma-
tion [9, 10]. Genome-wide hypomethylation was one of 
the first aberrant methylation events reported in CRC 
and constituted an early event in colorectal carcinogen-
esis [11, 12]. Disrupted DNA methylation patterns are 
closely linked to CRC, as they are associated with tran-
scriptional suppression of tumor-suppressor genes and 
activation of proto-oncogenes. For example, aberrant 
hypermethylation in promoter regions of key genes such 
as CDKN2A, MLH1, and APC serves as crucial mark-
ers promoting CRC progression [13, 14]. Despite these 
findings, the underlying mechanism behind altered DNA 
methylation patterns in tumor tissue remained largely 
elusive.

DNA methylation is orchestrated by enzymes termed 
methyltransferases, which utilize S-adenosyl L-methio-
nine (SAM) as an active methyl-group donor. The intri-
cacies of this process extend to methyl donors actively 
participating in one-carbon metabolism, encompass-
ing the folate and methionine cycles. DNA methylation 
deficits are postulated to stem from a broad reduction in 
one-carbon metabolites, the synthesis of which is contin-
gent upon microbial products originating from the gut 
[15].

A few studies have attempted to resolve the effects of 
the gut microbiome or specific microbial taxa on DNA 
methylation in colonic epithelial cells. Exposure to pro-
biotics or pathogenic bacteria contributed to differential 
DNA modification patterns in fetal and adult epithelial 
cells, potentially rendering them susceptible to or pro-
tected against various diseases [16]. Notably, in a porcine 
model, differential DNA methylation was observed in 
the colonic epithelium between two groups of pigs with 
variations in the total load and community structure of 

bacteria. Moreover, the postnatal gut microbiome has 
been implicated in guiding the postnatal epigenetic pro-
cesses [17]. Iradj et al. provided constitute evidence that 
the relative abundance of some bacterial taxa within the 
microbiota in CRC is significantly associated with meth-
ylation or demethylation of host genes in CRC cohort 
and germ-free mice model [18]. Xia et  al. conducted 
fecal microbiota transplant (FMT) experiments to con-
ventionalize germ-free (GF) mice and demonstrated that 
the reconstructed gut microbiota significantly increased 
DNA methylation at multiple CpG sites within tumor 
suppressor genes [19]. In the mouse model, Ihab et  al. 
suggested that microbiota-induced DNA methylation 
programming is necessary for intestinal homeostasis 
in  vivo [20]. Collectively, these researches highlight an 
essential link between the gut microbiome and the host-
cell methylome. However, the microbiome-methylome 
axis in CRC has not been systematically investigated.

In this study, we aimed to elucidate the intricate inter-
play between microbiota and DNA methylation of host 
cells in colorectal cancer (CRC) tissues and their cor-
responding adjacent normal tissues. To achieve this, we 
integrated metagenomic sequencing analysis and whole 
genome bisulfite sequencing (WGBS) analysis. Through 
our comprehensive approach, we identified potential 
protein-coding genes and noncoding RNAs that exhib-
ited epigenetic and differential regulation by specific taxa 
in both normal and tumor tissues. Our findings suggest 
that bacteria associated with CRC may have the ability to 
influence DNA methylation patterns in colonic epithelial 
cells, thereby exerting control over intestinal homeostasis 
or driving the development of intestinal tumorigenesis.

Methods
Patient recruitment and informed consent
Adults aged 18 years and older identified as candidates 
for surgical intervention for colorectal cancer were 
recruited voluntarily from the Third Affiliated Hos-
pital of Nanjing Medical University, located in Nan-
jing, China. Exclusion criteria encompassed recent 
administration of chemotherapy, radiation therapy, or 
antibiotics within the 14 days preceding enrollment, 
leading to the inclusion of 24 subjects (Additional 
file  2: Table  S1). Tumor specimens, along with adja-
cent normal tissues situated 2 to 3 cm away from the 
tumor (referred to as AN), were collected during sur-
gical resection procedures conducted at the Depart-
ment of General Surgery. The samples were isolated 
and snap-frozen in liquid nitrogen immediately, and all 
samples were stored at − 80 °C before use. Feces were 
collected at the hospital. The feces were collected in a 
10-mL sterile container and delivered immediately at 
low temperatures. The frozen feces were shipped using 
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dry ice overnight to Nanjing Medical University. Once 
received, fecal samples were divided into three parts 
of 200 mg and stored at − 80 °C until extraction. All 
subjects were given written informed consent to par-
ticipate in the study. The study was approved by the 
research ethics committee at the Third Affiliated Hos-
pital, Nanjing Medical University (2018-SR-24).

Tissue bacterial DNA extraction, sequencing, and sequence 
processing
DNA extraction and library preparation on colon tis-
sue (tumor and normal-adjacent) were performed using 
a bacterial DNA extraction kit (IndiSpin Pathogen Kit) 
following the manufacturer’s recommendation, which 
is designed for the extraction of pathogen nucleic acids 
(viral RNA and DNA, and bacterial DNA) from animal 
whole blood, serum, plasma, other body fluids, swabs, 
washes, and tissue. PCR was performed to produce V4 
regions of the 16S rRNA gene using the conserved prim-
ers 515F (5′-GTG​CCA​GCMGCC​GCG​GTAA-3′) and 
806R (5′-GGA​CTA​CHVGGG​TWT​CTAAT-3′), and no 
template DNA reaction was used as a negative control. 
Polymerase chain reaction (PCR) products were purified 
using the GeneJET Gel Extraction Kit (Thermo Scien-
tific, USA). Following the manufacturer’s recommenda-
tion, libraries were generated using the Illumina TruSeq 
DNA PCR-Free Library Preparation Kit (Illumina, USA). 
A total of 24 tumors and 24 matched adjacent normal tis-
sue microbiome libraries were quantified for sequencing. 
Then the PCR fragments were sequenced in the Illumina 
NovaSeq platform (Novogene, China). In addition, to 
account for external contamination sources, we applied 
a blank control of microbial DNA-free water that run 
alongside the biological samples.

Bioinformatics analysis of 16S rRNA gene amplicons 
was performed by Qiime2 (version 2020.8.0) [21]. Briefly, 
fastq reads were processed by the dada2 program, and 
dada2 denoise-paired commands were used to delete the 
low-quality ones. Dada2 generates unique features that 
could be compared between different studies. The taxon-
omy of these features was assigned to the Silva reference 
database (version 138) [22] classifier with 99% similarity. 
The taxa with a relative abundance > 0.0001 in more than 
10% of samples were retained at each taxonomic level. 
Determination of alpha and beta diversities was con-
ducted by R packages vegan.

The functional capacity of the gut microbial community 
was imputed using PICRUSt2 from the original microbial 
abundance. Predicted functional genes were categorized 
into MetaCyc Enzyme Consortium (EC) pathways.

Linear discriminant analysis (LDA) effect size (LEfSe) 
algorithm with an α < 0.05 and LDA score > 2 (on a log10 

scale) was applied to identify the enriched and significant 
bacteria and bacterial functions. P-values were corrected 
from 10,000 random permutations.

Shotgun sequencing for metagenomics
Feces from 18 patients and 18 healthy control sam-
ples were subjected to shotgun sequencing. Sequence 
libraries were generated using NEBNext® Ultra™ DNA 
Library Prep Kit for Illumina (NEB, USA). The libraries 
were sequenced on the Illumina Novaseq 6000 platform 
(insert size 350 bp, read length 150 bp) at the Novogene 
Bioinformatics Technology Co., Ltd. (Tianjin, China). 
Raw sequence reads were trimmed using Trimmomatic 
v0.39 to remove adapters and low-quality regions. Con-
taminating human reads were removed using Bowtie2 
v2.4.2 against GRCh38. The taxonomic composition was 
profiled using the default parameters of MetaPhlAn3 
v3.0.9 [23]. Functional potential profiling of microbial 
communities was performed by HUMAnN3 [24] using 
pangenomes annotated with UniRef90 on all species 
detectable per sample with MetaPhlAn3. Linear discrimi-
nant analysis (LDA) effect size (LEfSe) algorithm with an 
α < 0.05 and LDA score > 2 (on a log10 scale) was applied 
to identify the enriched and significant bacteria and bac-
terial functions. P-values were corrected from 10,000 
random permutations.

Meta‑analysis of microbial pathways
Meta-analysis on the pathways was performed on the 
collection of publicly available metagenomic datasets 
(Additional file  2: Table  S2) and 16S rRNA datasets 
(Additional file  2: Table  S3). The pathway abundance 
table of metagenomic data was obtained from public 
datasets provided by Beghini et  al. [24]. The pathway 
and enzymatic functions abundance table of 16S rRNA 
datasets were generated by processing the raw fastq data 
downloaded from the NCBI database with the pipeline 
described above. The meta-analysis was conducted based 
on the abundance table. Briefly, relative abundances of 
pathways were arcsine-square-root transformed, and 
Cohen’s D was computed by the escalc function in the 
R package “metafor” to model random effects. I2 statis-
tics and FDR were used for quantifying study heteroge-
neity and assessing their statistical significance (I2 < 50%, 
FDR < 0.05).

WGBS library construction, sequencing
Genomic DNA was purified using TIANamp Genomic 
DNA kit (TIANGEN, DP304) for further detection. 
Genome integrity was assessed by 1% agarose gel electro-
phoresis. The purity of DNA was evaluated using a K5500 
spectrophotometer to ensure that the OD260/OD280 
ratio of DNA was in the range of 1.8∼2.0. The Qubit® 
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3.0 Fluorometer (Life Technologies, USA) was used for 
the quantitation of DNA using the highly sensitive and 
accurate fluorescence-based Qubit ® quantitation assays. 
Thirteen pairs of quantified biospecies from the tumor 
and AN tissues were selected for library construction. 
One-microgram qualified genomic DNA from each sam-
ple was used to construct the library.

Eighty microliters of genomic DNA spiked with 
unmethylated lambda DNA was fragmented into 300 
bp, followed by terminal repairing and A ligation. The 
DNA bisulfite conversion was performed using EZ DNA 
Methylation-Gold™ Kit (Zymo Research, Irvine, CA, 
USA). Then, the KAPA HiFi DNA Polymerase was used 
to amplify uracil-containing DNA. Next, the concentra-
tion of the WGBS library was quantified using a Qubit 
3.0 fluorometer (Life Technologies, Carlsbad, CA, USA). 
The insert size was checked by Agilent 2100 Bioanalyzer, 
and the concentration of library was assessed by Ste-
pOnePlusTM Real-Time PCR system library. The quali-
fied library with a concentration of more than 10mM 
was used for sequencing. Finally, the WGBS library was 
sequenced on an Illumina Novaseq 6000 sequencer as 
paired-end 150-bp reads by Annoroad (Annoroad, Bei-
jing, China).

WGBS data processing
Program fastp was used to generate sequence quality 
reports and to trim low-quality bases and the adapter 
sequences to obtain high-quality reads. Then, the cleaned 
data for each sample were processed by Bismark software 
(0.14.5) [25], including alignment to GRCh38.p12, de-
duplication, and base-level methylation calling. Detection 
of differentially methylated loci (DML) and differentially 
methylated regions (DMR) was applied using an R pack-
age (DSS, R version 4.1.1) [26]. CpG loci with a depth 
greater than 10 × were retained for analysis. Smoothing 
with a window size of 500 bp was applied to estimate 
mean methylation levels as recommended by the DSS 
User Guide. The DMLs were defined as a methylation dif-
ference greater than 20% and q value < 0.05. Regions with 
an average methylation difference greater than 20% and q 
value < 0.05 were defined as DMRs.

Process of TCGA methylation and microbiome data
Illumina Human Methylation 450 Beadchip (450 K array) 
of TCGA-CRC cohort was downloaded from The Cancer 
Genome Atlas (TCGA) database (https://​tcga-​data.​nci.​
nih.​gov/​tcga/). Forty-five patients with matched meth-
ylation data from the tumor and adjacent normal tis-
sues were retained for analysis. R package ChAMP was 
applied to process the level 3 methylation data. First, data 
were cleaned and normalized. Then, the differentially 
methylated CpG sites (DML) and regions (DMR) were 

identified with default parameters. Enrichment analysis 
for the differentially methylated genes was performed 
with R package missMethyl [27] to control the “probe-
number bias” for each gene.

The microbial abundance profile (count data) was pro-
vided by Poore et al. [28], where they re-examined treat-
ment-naïve whole genome and transcriptome sequencing 
from the TCGA samples for microbial reads and quanti-
fied the microbial abundances.

Association analysis
We performed a lasso penalized regression to identify 
associations between individual DML and gut microbial 
taxa, followed by a stability selection to select robust 
associations using the methods described by Priya et.al 
[29]. We implemented a locus-wise model using the 
methylation level for loci as dependent variables and 
abundances of microbiome taxa as predictor variables to 
identify microbial taxa (CLR-transformed) or functions 
that are correlated with a DML. Briefly, the variable selec-
tion was performed by the lasso regression using shrink-
age or regularization, picking only a few taxa associated 
with a host gene methylation. R package “hdi” (version 
0.1–7) was used to perform the estimation of confidence 
intervals and hypothesis testing in high-dimensional and 
sparse settings. Moreover, the multiple hypothesis testing 
was corrected with Benjamini-Hochberg (FDR) method. 
To account for other factors that can influence host gene 
methylation or microbial composition, covariates in the 
predictor matrix for gender (male or female), age, and 
disease subtype of CRC (COAD or READ) were included 
in the model.

Next, the R package “stabs” (version 0.6–3) was used 
to perform stability selection. Finally, an intersection 
was performed between associations identified by the 
lasso model described above (FDR < 0.1) and associations 
identified by stability selection here. We filtered out any 
significant and stability-selected methylation-gender, 
methylation-age, and methylation–disease subtype asso-
ciations from the results to retain significant and stabil-
ity-selected host methylation–microbe associations at 
FDR < 0.1.

Results
Altered bacteria and bacterial methyl donor‑related 
functions in gut microbiome of CRC​
Metagenomic sequencing was performed for fecal sam-
ples from 18 CRC patients and 18 healthy controls (HC) 
(Additional file 1: Fig. S1A). Alpha diversity indexes indi-
cating community richness, diversity, and evenness were 
assessed via Richness, Shannon, Simpson, Pielou, Chao, 
and ACE indexes. No statistically significant changes in 
α diversity were observed in the comparison between 

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
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CRC and HCs (Additional file  1: Fig. S2). Partial Least 
Squares Discriminant Analysis (PLS-DA) analyses were 
performed to evaluate β diversity. Overall fecal micro-
biome community of CRC patients was different from 
that of HCs as indicated by PLS-DA analysis (Fig.  1A). 
The comparison of relative species abundance between 
HCs and CRC patients revealed the enrichment of sev-
eral previously reported species associated with CRC in 
CRC fecal samples, such as Fusobacterium nucleatum 
(LDA = 2.5, adjusted p = 0.044) and Bacteroides the-
taiotaomicron patients (LDA = 4.2, adjusted p = 0.012) 
(Fig.  1B, Additional file  2: Table  S4). Furthermore, the 
investigation of microbial functions associated with CRC 
identified 35 bacterial pathways that met our criteria 
(LDA > 2, α < 0.05) (Fig.  1C, Additional file  2: Table  S5). 
Notably, multiple pathways related to methionine metab-
olism were prominently observed (Fig. 1C, highlighted in 
red). For instance, the COBALSYN − PWY (adenosylco-
balamin salvage from cobinamide I, LDA = 3.8, adjusted 
p = 0.004) exhibits enrichment in the HCs. Adenosyl-
cobalamin, also recognized as coenzyme B12, acts as a 
coenzyme, enabling the transfer of methyl groups during 
the synthesis of methionine. Nevertheless, the pathways 
associated with tetrahydrofolate biosynthesis, including 
both the super pathway of tetrahydrofolate biosynthesis 
(LDA = 3.1, adjusted p = 0.007) and the super pathway 
of tetrahydrofolate biosynthesis and salvage (LDA = 3.2, 
adjusted p = 0.008), exhibited notable over-representation 
in colorectal cancer (CRC) samples. Tetrahydrofolate, 
along with its derivatives collectively termed folates, 
serves as indispensable cofactors in one-carbon metabo-
lism. These molecular entities play a pivotal role in trans-
porting and donating C1-units, which are crucial for the 
synthesis of methionine and various other metabolites.

To further validate the findings of the dysregulation of 
methionine metabolism in CRC, we conducted a meta-
analysis using fecal metagenomic datasets from 10 pub-
lic CRC cohorts [30] (Additional file 1: Fig. S1B). The top 
20 differential represented pathways between CRC and 
normal biopsies are presented in Fig. 1D. Consistent with 
our cohort analysis, we observed a significant alteration 
in methionine metabolism-related pathways. Particularly, 
the S-adenosyl-L-methionine cycle I pathway, where the 
S-adenosyl-L-homocysteine is recycled back to SAM, 
was reduced in CRC fecal samples across the cohorts 

(Fig. 1E). These findings further strengthen the evidence 
for dysregulated methyl donor-related pathways in CRC 
compared with HCs.

Altered methionine metabolism in tumor tissue 
microbiome
To explore the microenvironment regarding microbi-
ome in tumor tissues directly, we conducted microbiome 
profiling using 16S rRNA gene amplicon sequencing in 
24 pairs of tumor and adjacent normal (AN) biospecies 
(Additional file 1: Fig. S1C). There are 1008 ASVs, which 
are annotated to 171 bacterial genera and 146 species, 
passed our criteria (> 0.0001 in more than 10% of sam-
ples). The paired analysis revealed differences in micro-
bial structure and composition between tumor and AN 
tissues of CRC patients (Fig.  2A–C). Though the alpha 
diversity remained comparable between tumor and 
AN tissues (Additional file  1: Fig. S3), significant dis-
similarities were observed in β-diversity (Fig. 2A) as well 
as microbial abundance at multiple taxonomic levels 
(Fig. 2B, C). Bacteria that were reported to be associated 
with CRC, such as Parabacteroides (LDA = 3.7, adjusted 
p = 0.030), Alistipes (LDA = 3.0, adjusted p = 0.002), and 
Ruminococcus (LDA = 3.1, adjusted p = 0.039), were sig-
nificantly enriched genera in tumor tissues (Additional 
file  2: Table  S6). Furthermore, Clostridium hathewayi 
(LDA = 2.7, adjusted p = 0.049), a newly recognized CRC 
pathogen [31], showed  a significant over-representation 
in tumor tissues.

To further investigate the functional implications of 
the altered microbiota in CRC, we utilized PICRUSt2 
to predict MetaCyc pathways and enzymatic functions 
of the microbiome. Specifically, we discerned notable 
significant enrichment of functions and pathways asso-
ciated with methionine metabolism (Additional file  2: 
Table  S7-8). For instance, “Adenosylmethionine decar-
boxylase” (LDA = 2.8, adjusted p = 0.010) and pathways 
related to L-methionine biosynthesis (L-methionine 
biosynthesis I: LDA = 2.3, adjusted p = 0.047; super-
pathway of L-methionine biosynthesis: LDA = 2.4, 
adjusted p = 0.040; superpathway of L-lysine, L-thre-
onine, and L-methionine biosynthesis I: LDA = 2.3, 
adjusted p = 0.049) were prominently enriched in the 
AN tissues, as depicted in Fig. 2D, E. Adenosylmethio-
nine decarboxylase catalyzes the conversion of SAM 

(See figure on next page.)
Fig. 1  The fecal microbiome in CRC patients and healthy controls. A β diversity (based on Bray–Curtis distances) evaluated by PLS-DA analysis. 
B Differential bacterial species between CRC and healthy controls (HC). C Differential bacterial pathways between CRC and HCs (pathways 
with LDA score > 3 are presented). Pathways related to methionine metabolism are highlighted in red. D The top 20 differential pathways identified 
by a meta-analysis based on the fecal microbiome of CRC and HCs derived from 10 public cohorts. E Forest plot of the S-adenosyl-L-methionine 
cycle I pathway
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Fig. 1  (See legend on previous page.)
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to S-adenosyl methioninamine, playing a pivotal role 
in the methionine salvage cycle. In agreement with 
the analysis of gut microbiota, these findings further 

highlight the potential involvement of methionine 
metabolism in maintaining normal DNA methylation 
patterns in colonic tissues.
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Fig. 2  The overview of the microbiome in tumor and adjacent normal tissues. A β diversity (based on BrayCurtis distances) evaluated by PCoA 
analysis. B, C The differential taxa between CRC and AN tissues at genus (B) and species (C) level. D, E The differential microbial enzymatic functions 
(D) and MetaCyc pathways (pathways with LDA score > 2.5 are presented) (E) between tumor and AN tissues. F, G Forest plot of the associations 
between the relative abundance of L-methionine biosynthesis III pathway (F) and Methionine synthase function (G)
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Next, to strengthen our findings, we performed a meta-
analysis by incorporating our data with four additional 
16S rRNA sequencing datasets from CRC and matched 
AN tissues (Additional file 1: Fig. S1D). The analysis was 
based on the predicted MetaCyc pathways and Enzyme 
Commission (EC) classifications. We noted an enrich-
ment of the L-methionine biosynthesis III pathway in 
the tumor samples, whereas the methionine synthase 
displayed enrichment in the adjacent normal samples, as 
illustrated in Fig. 2F, G. These findings underscore a sub-
stantial alteration in methionine metabolism between the 
tumor and adjacent normal tissues.

The association between fecal and tissue microbiome 
in CRC​
A pivotal debate within microbiome research concerns 
the correlation between gut microbiota composition in 
feces and that in tissues [32, 33]. We investigated this 
relationship by examining the association between the 
fecal microbiome of colorectal cancer (CRC) patients and 
the tissue microbiome derived from both tumor and AN 
tissues (Additional file 1: Fig. S1E). At the genus level, the 
richness of the fecal microbiome did not exhibit any dis-
cernible association with that of the tissue microbiome 
for either tumor or AN tissues (Fig.  3A). However, the 
Shannon index, which measures both the richness and 
evenness of the microbiome was significantly higher in 
tissue samples (Fig.  3B). Beta diversity analysis revealed 
that the microbiome of fecal samples is distinct from 
that of tissue samples (Fig.  3C), and the distance from 
fecal microbiome to tumor microbiome is marginally sig-
nificantly higher than that to AN microbiome (Fig. 3D). 
Therefore, these data seem to indicate that microbiota 
analysis in feces can be considered only a partial repre-
sentation of the colorectal tissue microbiota.

A taxa-wise correlation analysis between fecal and 
tissue microbiome revealed few significant associations 
(Additional file  2: Table  S9). For example, the abun-
dance of Eikenella is significantly correlated between 
fecal and tissue. Eikenella is a common inhabitant of 
the oral cavity and the intestinal and genital tracts, and 
a part of mucosal microbiota. It is considered to be an 
opportunistic pathogen leading to various infections. 
Next, we further assessed the congruence in microbial 
functions between the fecal and tissue microbiomes. 
Remarkably, we observed positive correlations in the 
abundance of 23 pathways between the fecal microbi-
ome and tumor tissue microbiome. Likewise, 12 path-
ways displayed positive correlations between the fecal 
microbiome and AN tissue microbiome. These asso-
ciations encompassed 13 pathways specific to tumor 

tissues, 12 shared pathways between both tumor and 
AN tissues, and 2 pathways exclusive to tumor tissues 
(Fig. 3E). This intriguing finding suggests that the func-
tional attributes of fecal bacteria might partially reflect 
those of the tumor tissue. For instance, the L-glutamate 
degradation VIII pathway in fecal samples exhibited a 
robust correlation with the same pathway in tumor tis-
sues, while this correlation was not observed in AN 
tissues (Fig. 3F). Notably, the meta-analysis conducted 
using publicly available fecal microbiome data indi-
cated a significant increase in the L-glutamate degrada-
tion VIII pathway among tumor samples (Fig. 1D). This 
line of evidence suggests that specific functions within 
the fecal microbiome may indeed mirror those within 
CRC tumor tissues. This finding aligns with the per-
spective that insights gained from fecal samples could 
inform conclusions regarding the metabolic and func-
tional profiles of the intestinal microbiota within the 
tumor microenvironment [34, 35].

Distinct DNA methylation profiles in CRC tumor 
and adjacent normal tissues
Genome-wide analysis of DNA methylation was per-
formed using whole-genome bisulfite sequencing 
(WGBS) on 13 CRC tissue biopsies and their corre-
sponding adjacent normal colonic tissue biopsies (AN) 
(Additional file 1: Fig. S1C). The CRC tissues exhibited 
a significantly lower overall methylation level compared 
to the matched AN tissues, as illustrated in Fig.  4A. 
Principal component analysis (PCA) analysis showed 
a sharp difference in the methylation profile between 
the tumor and AN tissues (Fig. 4B). These findings were 
further validated through additional analysis using 45 
paired tumor and AN tissues from the TCGA-CRC 
cohort, as shown in Fig. 4C, D.

To comprehensively investigate the genome-wide 
differential methylation patterns, we identified dif-
ferentially methylated loci (DML) and regions (DMR). 
These regions were classified as either hypermethyl-
ated or hypomethylated based on an absolute average 
methylation difference (delta) of > 0.2 between CRC and 
AN tissues, representing a 20% change in methylation 
levels. A total of 210,171 hypomethylated regions and 
1210 hypermethylated regions in CRC were identified. 
Notably, the promoter regions were highly hypometh-
ylated, as demonstrated in Fig.  4E and F. Moreover, 
functional enrichment analysis revealed that the differ-
entially methylated genes were enriched in functions of 
G-protein coupled receptor signaling pathway and ion 
transport (Fig.  4G), consistent with the analysis based 
on TCGA-CRC cohort data (Additional file 1: Fig. S4A).
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Microbial‑promoter methylation association was disturbed 
in the tumors tissues
To gain insight into the interplay between the microbiota 
and DNA methylation in colorectal cancer (CRC) tissues, 
we examined the association between microbial abun-
dance and host methylation levels. Firstly, we performed 
a comprehensive analysis that involved correlating the 
abundance of bacterial taxa at both the genus and spe-
cies levels with the overall methylation levels in both the 
host tumor and adjacent normal (AN) tissues. The results 
of this analysis, as visually represented in Fig. 5A, clearly 
demonstrate that the abundance of bacteria genera and 
species associated with global CpG methylation levels 
exhibited notable distinctions between tumor and AN 
tissues. This intriguing finding suggests that the micro-
bial composition and its influence on DNA methylation 
may vary significantly between tumor tissues and the AN 
tissues in the context of colorectal cancer.

Subsequently, we explored associations between indi-
vidual host CpG loci and bacterial taxa. We employed 
a lasso penalized regression model to identify specific 
microbial taxa whose abundance was correlated with the 
methylation levels of CpG loci across the entire genome 
(Additional file 1: Fig. S1F). These models were fitted in 
a loci-wise manner, with the methylation level of each 
host CpG loci as the dependent variable and the abun-
dances of microbial taxa as predictor variables. To iden-
tify robust associations, a stability selection methodology 
described by Priya et al. was utilized [29]. Consequently, 
we identified 2212 significant and stability-selected host 
CpG methylation-bacteria associations in tumor tissues 
and 1200 such associations in AN tissues of the TCGA-
CRC cohort (Additional file 1: Fig. S1G, Fig. S5B-C).

Previous studies have indicated that specific micro-
bial taxa can regulate the promoter methylation of indi-
vidual host genes, thereby influencing gene expression 
[19]. Hence, we annotated the microbial-associated CpG 
loci to genomic regions. Using the total probes as back-
ground, we observed an enrichment of microbial-associ-
ated CpGs in promoter-associated regions, including the 
“TSS200,” “TSS1500,” “1st exon,” and “5′ UTR” region, 
but a depletion in the gene body and 3′ UTR region in 
the AN tissues. Strikingly, this enrichment was absent 
in the tumor tissues (Fig. 5B). These findings indicated a 

disturbance of microbial-promoter methylation regula-
tion in the tumor microenvironment.

Microbes regulate methylation level of promoter regions
Next, we focused on the association between microbes 
and promoter CpG loci, uncovering 27 and 41 associa-
tions between microbial taxa and CpG loci in the AN 
and tumor tissues in our cohort, respectively (Fig.  5C, 
D). Notably, in the AN tissues, we observed multiple 
associations between the health-beneficial bacteria and 
gene methylation (Fig.  5C). For instance, Faecalibacte-
rium prausnitzii, which is known for its abundance in 
the healthy human microbiota and depletion in various 
intestinal disorders, including CRC [36–38], was asso-
ciated with the methylation of PPFIA2, NR3C1, and 
EXO1. Particularly, the methylation of the EXO1 pro-
moter showed a positive association with the abundance 
of both F. prausnitzii and genus Faecalibacterium. EXO1 
is involved in checkpoint progression and several DNA-
repair pathways [39], and its deregulation is commonly 
observed in tumors [40, 41]. Analysis of TCGA data also 
revealed significantly increased EXO1 expression in colo-
rectal tumors (Additional file  1: Fig. S5). Furthermore, 
Blautia obeum, a potential probiotic known to affect 
the composition of intestinal microbiota and inhibit the 
colonization and proliferation of pathogenic bacteria [42, 
43], exhibited a strong negative association with multi-
ple methylated loci (chr7:55963861, chr7:55963871and 
chr7:55963874) within NIPSNAP2 promoter. NIP-
SNAP2 is a mitochondrial membrane protein acting as 
a mitophagy receptor, the defective mitophagy has been 
increasingly associated with various diseases, includ-
ing CRC [44]. These examples suggested a possible role 
of certain beneficial bacteria in maintaining normal cell 
functions through epigenetic regulation of gene expres-
sion in normal tissues.

In contrast, in the tumor tissues, we observed a greater 
number of associations involving potential opportunistic 
pathogenic bacteria (Fig.  5D). For instance, Bacteroides 
fragilis (B. fragilis) showed a positive association with 
C1D methylation, while Clostridium neonatale was posi-
tively associated with UNC5D promoter methylation. 
Impressively, Clostridium hathewayi, a recently identi-
fied pathogenic bacteria in CRC [19, 31], exhibited an 

Fig. 4  The overview of DNA methylation profile in tumor and adjacent normal (AN) tissues. A The pair-wise comparison of the overall 
methylation level of the CRC tissues and its matched adjacent normal tissues. B PCA plot discriminated the tumor and AN tissues. C The average 
methylation level of TCGA CRC tumor and normal biospecies. D PCA plot discriminated the tumor and AN tissues in TCGA-CRC cohort. E 
Distribution of significantly hypo-methylated and hyper-methylated regions in a genomic region. F The heatmap of differentially methylated loci 
within promoter regions. G Functional enrichment of differentially methylated genes

(See figure on next page.)
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association with the promoter methylation of SLC24A5 
and ADHFE1.

Noncoding RNAs (ncRNAs) play a crucial role in gene 
expression regulation and are associated with various 
biological processes, including tumorigenesis in mam-
mals. Dynamic DNA methylation patterns of ncRNAs 
have been reported during human embryonic develop-
ment and disease progression [45–47]. WGBS identi-
fied a couple of methylation loci within the promoter 
of noncoding RNAs. In our analysis, we examined the 

association between noncoding RNA promoter methyla-
tion and tissue microbes, identifying 47 and 51 associa-
tions in AN and tumor tissues, respectively (Additional 
file  1: Fig. S7A-B). Notably, the methylation level of 
CCAT1, a well-known lncRNA involved in multiple 
tumors, including CRC [48], exhibited a negative associa-
tion with Bacteroides ovatus in tumor tissues and a posi-
tive association with Veillonella parvulain AN tissues.

Furthermore, we observed associations between the 
methylation of different sets of small nucleolar RNAs 

correlation
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(snoRNAs) and tissue microbiota in AN and tumor tis-
sues (Additional file 1: Fig. S6A-B). snoRNAs are a group 
of regulatory RNAs mainly located in the nucleolus and 
guide the acquisition of 2′-O-methylation and pseudo-
uridylation modify on ribosomal RNA (rRNA) and small 
nuclear RNA (snRNA). One of the two main families of 
snoRNAs, the C/D snoRNA genes, have been shown to 
be controlled by genomic imprinting [49]. Emerging evi-
dence has demonstrated the significant roles of snoR-
NAs in cancer [50, 51]. For example, methylation of C/D 
snoRNA genes SNORD113-7 and SNORD114-1 showed 
associations with the abundance of Prevotella stercorea 
and Morganella morganii in the AN tissues. In tumor 
tissues, SNORD114-1 methylation was associated with 
Thermomonas fusca and Psychrobacter marincola abun-
dance. Additional associations were observed between 
Parabacteroides gordonii and SNORD113-7, as well as 
between Bacteroides ovatus and SNORD114-23.

Collectively, our results highlight the potential involve-
ment of microbial influences in the regulation of DNA 
methylation at gene promoter regions as well as non-
coding RNAs. Moreover, the differential associations in 
the AN and tumor tissues implicate a distinct impact of 
microbial composition on the epigenetic landscape in 
these two contexts.

Tumor bacteria recurrently associated with host gene 
methylation
We proceeded to examine the recurrent association 
between microbes and promoter CpG methylation levels 
both in the TCGA-CRC cohort and our own data, reveal-
ing five genera that exhibited consistent associations 
with host promoter CpG methylation levels in tumor tis-
sues. These genera include Fusobacterium, Stenotropho-
monas, Bacteroides, Ralstonia, and Clostridium (Fig. 6A). 
Conversely, the abundance of Sutterrella, Dorea, Pseu-
domonas, Corynebacterium, and Prevotella was related 
to CpG methylation levels in the AN tissues across both 
datasets (Fig.  6B). Combining the gene methylation 
associated with these taxa in both TCGA-CRC and our 
datasets, we observed enrichment of MAPK cascade, 
ion transport, apoptotic process, and neuroactive ligand-
receptor interaction-related functions in microbial-asso-
ciated genes in tumor tissues (Fig.  6C). Conversely, in 
the AN tissues, genes were primarily enriched in carbo-
hydrate binding functions (Fig. 6D). Most of the involved 
species were annotated to be contributed to metabolism 
of folate and methionine (Additional file 2: Table S10).

Fusobacterium and Clostridium were well-known 
taxa associated with CRC progress. Xia et  al. reported 
the role of Fusobacterium nucleatum and Clostridium 
hathewayi in driving promoter hypermethylation of 
tumor suppressor genes (TSG) in colorectal cancer [19]. 

In our analysis, Fusobacterium abundance was posi-
tively associated with the methylation level of C5AR1 
promoter (cg10224107) in the TCGA-CRC cohort, and 
NT5E promoter (chr6:85449354) in our clinical samples. 
C5aR1 is a master regulator in colorectal tumorigen-
esis through immune modulation. C5a/C5aR1 signal-
ing recruits myeloid-derived suppressor cells (MDSCs) 
into the inflamed colorectum, impairing CD8+T cells 
and modulating the production of critical cytokines and 
chemokines, thereby initiating CRC [52]. NT5E (CD73) 
functions as an inhibitory immune checkpoint molecule, 
suppressing cellular immune responses [53]. The positive 
association between Fusobacterium abundance and high 
methylation levels of the C5AR1 promoter is consistent 
with the potential role of Fusobacterium nucleatum in 
modulating immune responses in tumors, such as creat-
ing a proinflammatory microenvironment conducive to 
colorectal neoplasia progression [54] and enhancing the 
efficacy of checkpoint inhibitor blockade therapy [55, 56]. 
Similarly, Clostridium abundance was associated with 
hypermethylation of TSGs, including NFATC1 in TCGA-
CRC cohort and UNC5D in our clinical samples. Steno-
trophomonas, an opportunistic pathogen with increased 
colonization/infection in cancer patients [57], exhibited 
extensive positive associations with the hypermethylation 
of genes, including multiple TSGs in CRC, such as ESR1, 
RASSF5, DIRAS1, CADM1, ST5, GJB2, FAM172A, and 
HIVEP3. These findings further support the notion that 
bacteria in tumor tissue regulate gene expression through 
modulating methylation of promoter regions.

Microbial pathways related to host gene methylation
In pursuit of a deeper understanding, we investigated the 
intricate connection between microbial pathways and the 
promoter methylation status of host genes (Fig.  7A, B). 
Notably, a heightened complexity in correlations emerged 
within adjacent normal (AN) tissues, as compared to 
tumor tissues. For instance, the “superpathway of UDP-
N-acetylglucosamine-derived O-antigen building blocks 
biosynthesis” exhibited associations with promoter 
methylation patterns across multiple genes, including 
C12orf45, GJD4, PNPLA8, MIR548X2, and LINC00380. 
Of significant interest, C12orf45 serves as a PAQosome 
cofactor, pivotal in facilitating the assembly of box C/D 
snoRNP [58]—an event observed to be elevated across 
various cancer types [59]. Equally noteworthy, the “coen-
zyme B biosynthesis” pathway demonstrated a positive 
correlation with NT5E promoter methylation. Impor-
tantly, several components of Coenzyme B, specifically 
B9 (Folate), B12, and B6, play a pivotal role in sustain-
ing the one-carbon transfer cycles, which are integral for 
providing methyl donors essential for protein and DNA 
methylation [60].
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As demonstrated above, an interrelation between 
bacterial functions within the fecal and tissue micro-
biome was established. Subsequently, we extended our 
analysis to explore associations between the abun-
dance of fecal microbial functions and DNA meth-
ylation within tumor tissues. The outcomes unveiled 
three instances of negative associations between path-
way abundance and gene promoter methylation levels 
(Additional file  2: Table  S11). These instances encom-
passed the L-glutamate degeneration VIII pathway and 
OR8G5, the L-rhamnose degradation I pathway and 
C1D, and the superpathway of pyrimidine nucleobases 

salvage and NPFFR2. Notably, the abundance of the 
L-glutamate degeneration VIII pathway exhibited a dis-
tinctive positive correlation between fecal and tumor 
tissue microbiome, as depicted in Fig.  3B. This obser-
vation is particularly pertinent in light of downstream 
products resulting from glutamate metabolism, which 
have been posited to regulate chromatin modifications, 
including the intricate ten-eleven translocation (TET)-
dependent DNA demethylation process [61–63]. Col-
lectively, these findings underscore the multifaceted 
ways through which the microbiome potentially influ-
ences host DNA methylation.
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Discussion
Our present study provides insights into the intricate 
interplay between methyl donor dynamics within the 
gut microbiome, host cell DNA methylation, and their 
implications in both normal and colorectal cancer (CRC) 
tissues. By conducting an exhaustive analysis of coupled 
DNA methylation and microbiome profiles from biop-
sies, encompassing samples from our clinical cohort and 
the TCGA dataset, we have unveiled noteworthy asso-
ciations and identified hitherto unknown links between 

bacteria associated with CRC and promoter methylation 
patterns of genes implicated in tumor development.

A central discourse in the realm of microbiome 
research pertains to the interplay between gut micro-
biota composition within feces and that residing within 
tissues. In this context, we first embarked on an explo-
ration of this intricate relationship by investigating the 
association between the fecal microbiome of colorectal 
cancer (CRC) patients and the microbiome within both 
tumor and tumor-adjacent normal tissues (AN) tissues 

Fig. 7  Interactions between microbes and microbial pathways and host DNA methylation. A, B Microbial pathways associated with host gene 
methylation level in AN (A) and tumor (B) tissues
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to provide clues to guide the judicious selection of speci-
mens for subsequent analyses. Perhaps due to the small 
size of our sample, limited correlations were observed. 
For example, the L-glutamate degeneration VIII pathway 
abundance of the fecal microbiome was specially associ-
ated with that of tumor tissue. Glutamine has a versatile 
role in cell metabolism, participating in tricarboxylic acid 
(TCA) cycle supplementation and the biosynthesis of 
nucleotides, glutathione (GSH), as well as L-methionine 
biosynthesis. Extensive research has been conducted on 
glutamine metabolism in the intestine, demonstrating its 
ability to improve intestinal integrity, and the efficacy of 
glutamine supplementation has been tested in humans 
and animal models with intestinal diseases [64–66]. 
These results offered a glimpse into the potential of cer-
tain specific functional attributes within fecal bacteria to 
offer partial insights into the functional characteristics 
inherent to tumor tissues.

DNA methylation, a dynamic epigenetic modification, 
involves DNA methyltransferases (DNMTs) catalyz-
ing the addition of a methyl group to cytosine residues 
(5-hmC) in cytosine-guanine (CG) pairs, resulting in 
5-methylcytosine (5-mC). In contrast, TET enzymes 
facilitate the oxidation of 5-mC to 5-hmC, thereby con-
tributing to a balanced methylation profile in the human 
genome [67]. Previous investigations have predominantly 
focused on the influence of microbes on DNA methyla-
tion-related enzymes. For example, Xia et  al. reported 
that F. nucleatum and H. hathewayi activate the expres-
sion and activity of DNMT1 and DNMT3A, leading to 
the suppression of specific TSGs [19]. Another study by 
Ihab et  al. demonstrated the crucial role of TET2/3 in 
microbiota-induced demethylation using mouse models 
[20]. Strikingly, our analysis reveals no significant differ-
ential expression of DNMTs or TETs in CRC compared 
to matched normal tissues, as evident from the extensive 
TCGA database sample (Additional file 1: Fig. S7 and S8). 
This observation points towards the existence of enzyme-
independent mechanisms through which microbes mod-
ulate host cell DNA methylation. Intriguingly, our study 
underscores distinct patterns of methyl donor-related 
microbial pathways in tumor and normal tissues. This 
discovery underscores the multifaceted mechanisms 
through which the microbiome potentially exerts influ-
ence over host DNA methylation patterns. To be noticed, 
we also observed correlations between bacterial pathways 
related to DNA methylation-related enzymes and gene 
methylation. The L-glutamate degeneration VIII pathway 
abundance in fecal samples, which was indicated to be 
representative of that in the tumor tissues, was linked to 
promoter methylation of OR8G5. This observation posed 
the possibility to predict tumor tissue methylation by 
assessing fecal microbial functions.

To dissect the association between individual taxon 
and gene methylation, we made two efforts to minimize 
artificial associations. Firstly, we employed a combina-
tion of lasso penalized regression and stability selection 
to identify only a few taxa that were associated with host 
gene methylation. Secondly, considering the relatively 
small sample size of our data, we perform a parallel anal-
ysis on both our clinical samples and TCGA-CRC cohort 
to obtain recurrently identified associations. As a result, 
several taxa, including Fusobacterium, Stenotropho-
monas, Bacteroides, Ralstonia, and Clostridium, were 
found to be commonly associated with host promoter 
CpG methylation levels in tumor tissues, while Sutterre-
lla, Dorea, Pseudomonas, Corynebacterium, and Prevo-
tella exhibited associations in AN tissues. These findings 
imply that these bacteria may play essential roles in con-
trolling physical homeostasis and tumorigenesis in both 
normal and tumor tissues.

Previous studies have revealed the impact of microbi-
ota on the promoter methylation of protein-coding genes 
[19]. WGBS has provided insights into DNA methyla-
tion patterns within the promoters of noncoding RNAs 
(ncRNAs). ncRNAs are a type of heterogeneous tran-
script that lack protein-coding potential but possess 
the ability to regulate the expression of protein-coding 
genes [68]. Multiple studies have shown alterations in 
ncRNAs during pathogenic infection. For example, Yang 
et  al. reported differential transcription profiles of long 
noncoding RNAs in primary human brain microvascu-
lar endothelial cells in response to meningitic Escheri-
chia coli [69]. We have recently revealed that Salmonella 
typhimurium infection can increase the expression of 
LINC00152 through histone lactylation, promoting can-
cer cell invasion and migration [70]. In our analysis, we 
identified a couple of associations between taxa and 
ncRNA promoter methylation, including microRNAs 
(miRNAs), long noncoding RNAs (lncRNAs), and small 
nucleolar RNAs (snoRNAs). Furthermore, the microbial 
pathway-based analysis revealed the association between 
the microbial pathway with the methylation of C12orf45, 
a PAQosome cofactor that promotes the assembly of 
box C/D snoRNP [58]. Though the functions of a major-
ity of involving ncRNAs were not fully understood, our 
observation suggested a prevalent epigenetic connection 
between the microbiota and noncoding RNAs, particu-
larly snoRNAs.

Due to the lack of transcriptional data from matched 
samples, we were unable to demonstrate whether dif-
ferential methylation of promoter regions is being 
regulated by bacteria and modulating gene expression 
accordingly. Our current DNA methylation assays were 
conducted using tissue samples. However, it is crucial 
to acknowledge that epigenetics plays a pivotal role in 
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bridging the gap between genomics and cellular phe-
notype. Presently, single-cell epigenome sequencing, 
coupled with single-cell transcriptome sequencing, 
represents cutting-edge tools for unraveling the intri-
cacies of tissue, organ, cell, and molecular heterogene-
ity. Looking ahead, with the application of emerging 
single-cell epigenetics sequencing technologies and 
rigorous experimental validation, we anticipate a pro-
found dissection of the underlying epigenetic mecha-
nisms governing the interplay between bacteria and 
tumorigenesis.

Conclusions
In summary, our study reveals substantial shifts in 
microbial-derived methyl donor metabolism  in CRC, 
offering a comprehensive understanding of the micro-
biota-host DNA methylation interplay. Our findings 
spotlight the pivotal roles of both commensal and 
pathogenic bacteria, and their methyl donor-related 
pathways, in modulating DNA methylation to regulate 
physiological equilibrium and tumorigenesis.
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