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Abstract 

Background Polygenic prediction studies in continental Africans are scarce. Africa’s genetic and environmental 
diversity pose a challenge that limits the generalizability of polygenic risk scores (PRS) for body mass index (BMI) 
within the continent. Studies to understand the factors that affect PRS variability within Africa are required.

Methods Using the first multi-ancestry genome-wide association study (GWAS) meta-analysis for BMI involving 
continental Africans, we derived a multi-ancestry PRS and compared its performance to a European ancestry-specific 
PRS in continental Africans (AWI-Gen study) and a European cohort (Estonian Biobank). We then evaluated the factors 
affecting the performance of the PRS in Africans which included fine-mapping resolution, allele frequencies, linkage 
disequilibrium patterns, and PRS-environment interactions.

Results Polygenic prediction of BMI in continental Africans is poor compared to that in European ancestry indi-
viduals. However, we show that the multi-ancestry PRS is more predictive than the European ancestry-specific PRS 
due to its improved fine-mapping resolution. We noted regional variation in polygenic prediction across Africa’s 
East, South, and West regions, which was driven by a complex interplay of the PRS with environmental factors, such 
as physical activity, smoking, alcohol intake, and socioeconomic status.

Conclusions Our findings highlight the role of gene-environment interactions in PRS prediction variability in Africa. 
PRS methods that correct for these interactions, coupled with the increased representation of Africans in GWAS, may 
improve PRS prediction in Africa.
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Background
Obesity is increasing globally. In 2020, one-third of the 
global population was estimated to be overweight or 
obese [1]. It is predicted that, by 2030, if drastic meas-
ures are not taken to curtail this burden, the prevalence 
of obesity will reach 50% [1]. African populations have 
not been spared: they account for 77% of low-middle-
income countries that carry 80% of the obesity burden 
[2]. Evidence from twin studies suggests that body mass 
index (BMI) heritability is 40–70% [3] and genome-wide 
association studies (GWAS) have identified hundreds 
of contributing loci [4]. However, the largest GWAS of 
BMI have predominantly been undertaken in popula-
tions of European and East Asian ancestry [4–6]. More 
recent, smaller-scale GWAS undertaken in other ances-
try groups, including the African Partnership of Chronic 
Disease Research network in continental Africa, have not 
yielded additional novel BMI loci, presumably due to low 
power [7, 8]. Multi-ancestry meta-analysis of BMI GWAS 
enhances the discovery of loci contributing to obesity 
across populations and improves the opportunities for 
localizing the causal variants driving association signals 
at these loci by taking advantage of the differences in the 
structure of linkage disequilibrium (LD) between diverse 
ancestry groups [9, 10]

The underrepresentation of continental Africans in 
global genomic studies of complex traits increases the 
risk of Africa being left behind in genomic-driven pre-
cision medicine efforts, further worsening global health 
disparities [11]. Polygenic risk scores (PRS) enhance risk 
stratification, essential for precision medicine efforts. 
However, the transferability of PRS derived from Euro-
pean ancestry GWAS to other ancestry groups, including 
Africans and African Americans, is often poor owing to 
differences in allele frequencies, LD structure, and envi-
ronmental factors [11, 12]. Other multi-ancestry studies, 
such as the Million Veteran Program and the All of Us 
initiative, are now increasing the representation of Afri-
can Americans in GWAS [13]. However, due to impor-
tant genetic differences between continental Africans and 
admixed African Americans [14], greater representation 
of the former in genetic studies is necessary to enhance 
prediction.

Little is known about the factors contributing to BMI 
PRS prediction variability in Africa. Although genetic 
diversity has been noted as a contributing factor through 
simulation studies in Uganda, it is unclear how differ-
ences in allele frequencies, LD patterns, and gene-envi-
ronment factors affect the portability of the PRS within 
other West, East, and South regions of Africa [15]. In 
view of resource limitations in Africa, understanding 
these parameters might help in developing tools that 
improve the generalizability of PRS in Africa, thereby 

enhancing its utilization in future precision medicine 
efforts. Therefore, in this study, we have assembled previ-
ously published GWAS of BMI across multiple ancestry 
groups to compute a multi-ancestry PRS that was used to 
assess the factors that affect the generalizability of poly-
genic prediction of BMI in continental Africans.

Methods
Cohorts and Biobanks used for the BMI GWAS
We assembled GWAS of BMI across diverse ancestry 
groups that were imputed to the 1000 Genomes Pro-
ject or Haplotype Reference Consortium reference pan-
els from the UK Biobank (UKBB), Biobank Japan (BBJ), 
the African Partnership for Chronic Disease Research 
(APCDR), Network and the Population Architecture and 
Genetic Epidemiology (PAGE) study. BMI was inverse 
rank normalized in all the studies considered for the 
meta-analysis. These discovery studies and the two target 
data sets AWIGen and EstBB are briefly described below.

Full details of BMI GWAS analyses in the UKBB have 
been previously reported [16]. The UKBB is a large-scale 
biomedical database comprised of half a million UK par-
ticipants with de-identified genetic and health informa-
tion. For our study, we considered 456,422 individuals of 
European ancestry. Imputation was performed using the 
1000 Genomes Project (Phase 3) reference panel, result-
ing in 8,531,416 variants after excluding those with minor 
allele frequency (MAF) < 0.01 and missingness of > 0.1. 
Genetic association analysis was undertaken using Fast-
GWAS in which linear mixed models were fitted for 
inverse rank normalized BMI residuals while adjusting 
for age,  age2, and sex. The random effect for the genetic 
relationship was included to account for population 
structure and relatedness. These summary statistics are 
accessible through this link (https:// yangl ab. westl ake. 
edu. cn/ data/ ukb_ fastg wa/ imp/ pheno/ 21001) [16].

The Biobank Japan (BBJ) is a prospective genome 
biobank that recruited participants from 12 medi-
cal institutions in Japan. BBJ GWAS of BMI comprised 
158,284 individuals of East Asian ancestry [6]. Imputa-
tion was conducted using East Asian populations in the 
1000 Genomes Project (Phase 3) as a reference, and after 
quality control, there were 6,108,953 SNPs. Residuals fit-
ted for BMI while adjusting for age,  age2, and sex were 
transformed using the inverse rank normalization. Lin-
ear models were then fitted for the allele dosages while 
adjusting for the first 10PCs using mach2qtl. Summary 
statistics were accessed from the Japan Biobank via this 
link (https:// ftp. ebi. ac. uk/ pub/ datab ases/ gwas/ summa ry_ 
stati stics/ GCST0 04001 GCST0 05000/ GCST0 04904/) [6].

The APCDR Network conducted a meta-analysis of 
GWAS summary statistics from the Uganda, Durban 
Diabetes Study (DDS), Durban Diabetes Case–Control 

https://yanglab.westlake.edu.cn/data/ukb_fastgwa/imp/pheno/21001
https://yanglab.westlake.edu.cn/data/ukb_fastgwa/imp/pheno/21001
https://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST004001GCST005000/GCST004904/
https://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST004001GCST005000/GCST004904/
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Study (DDC), and AADM cohorts in 14,126 individuals 
for multiple traits, including BMI [7]. Imputation was 
performed using a merged reference panel of the whole-
genome sequences from the African Genome Variation 
Project, Uganda sequences, and the 1000 Genomes Pro-
ject (Phase 3). An imputation info filtering threshold of 
0.3 and a minimum MAF of 0.5% were applied, resulting 
in 24,423,923 SNPs after quality control. Before meta-
analysis, the inverse rank normalized residuals of BMI 
were fitted in linear mixed models while adjusting for 
age, age.2, and sex. The Han-Eskin random effects meta-
analysis approach implemented in METASOFT (RE2) 
was used to aggregate summary statistics from these four 
cohorts. The summary statistics are accessible at (https:// 
ftp. ebi. ac. uk/ pub/ datab ases/ gwas/ summa ry_ stati stics/ 
GCST0 09001 GCST0 10000/ GCST0 09057/) [7].

The PAGE study recruited individuals of diverse ances-
tries who reside in the USA [8]. In this study, 22,216 His-
panics/Latinos, 17,299 African Americans, 4680 Asians, 
3940 Native Hawaiians, 652 Native Americans, and 1052 
individuals of other ancestries, totaling 49,839 partici-
pants were enrolled. Imputation was conducted using 
the 1000 Genomes Project (Phase 3) reference panel, 
and SNPs with an imputation information score > 0.4 
(39,723,562) were included in the analysis. Linear mixed 
models for the inverse rank normalized residuals for BMI 
were fitted while adjusting for 10PCs in a joint analysis 
of all the individuals of varied ancestries. The summary 
statistics were accessed from the GWAS catalog (https:// 
ftp. ebi. ac. uk/ pub/ datab ases/ gwas/ summa ry_ stati stics/ 
GCST0 08001 GCST0 09000/ GCST0 08025/) [8].

The AWIGen study recruited participants from four 
African countries that are representative of the East, 
West, and South regions of Africa [17]. Imputation was 
performed on the cleaned dataset (with 1,729,661 SNPs 
and 10,903 individuals, that remained after quality con-
trol, which included the removal of closely related indi-
viduals) using the Sanger Imputation Server and the 
African Genome Resources as reference panel. We 
selected EAGLE2 for pre-phasing and the default PBWT 
algorithm was used for imputation. After imputation, 
poorly imputed SNPs with info scores less than 0.6, MAF 
less than 0.01, and HWE P-value less than 0.00001 were 
excluded. The final QC-ed imputed data had 13.98  M 
SNPs.

The Estonian Biobank (EstBB) is made up of volun-
teers resident in Estonia [18, 19]. A total of 136,421 
individuals were genotyped using the Illumina Global 
Screening Arrays (GSAs) and we imputed the dataset to 
an Estonian reference created from the whole-genome 
sequence data of 2244 participants Individuals with 
BMI values 12 > BMI > 65 were removed, quality con-
trol, which included the removal of related individuals 

was performed resulting in 84,578 individuals remaining 
for analysis. For this analysis, the ESTBB target data set 
was randomly split into validation (N = 8456) and test-
ing (N = 76,096) datasets and then utilized in the PRS 
computation.

Assessment of lifestyle factors in AWI‑Gen
Lifestyle factors were captured using questionnaires in 
AWI-Gen [17, 19]. Physical Activity was captured using 
the Global Physical Activity Questionnaire (GPAQ). 
Smoking status was categorized as never and ever 
smoked. The sum of household assets was used as a proxy 
of socioeconomic status. Alcohol use was categorized as; 
never consumed, current non-problematic consumer, 
current problematic consumer, or former consumer 
[20]. Problematic drinkers were defined as those who 
answered two of the following responses based on the 
CAGE (cut-annoyed-guilty-eye) questionnaire [21]: Have 
you ever felt that you should cut down on your drink-
ing? Have people annoyed you by criticizing your drink-
ing? Have you ever felt bad or guilty about your drinking? 
Have you ever had an alcoholic drink first thing in the 
morning to steady your nerves, or get rid of a hangover? 
In the past year, did you ever have 6 or more alcoholic 
drinks in a single morning, afternoon, or night?

Multi‑ancestry meta‑analysis
We aggregated GWAS summary statistics from the 
UKBB, BBJ, APCDR Network, and PAGE study using 
the fixed-effects inverse-variance weighted meta-analy-
sis implemented in METASOFT to generate our multi-
ancestry meta-analysis discovery dataset. Notably, we 
applied double genomic control to control for popula-
tion structure. The square roots of the LDSC intercepts 
from the UKBB and Japan Biobank were multiplied with 
the standard errors of the individual studies for single 
genomic control. In view that PAGE is a multi-ancestry, 
it was not plausible to obtain an LDSC intercept repre-
sentative of diversity. An initial run of the meta-analysis 
was run using the LDSC-corrected summary statistics. 
Double genomic controls were then implemented using 
the lambda from this initial analysis in the subsequent 
meta-analysis to correct for population structure. Over-
all, our meta-analysis included 678,671 individuals and 
21,338,816 biallelic SNPs, each reported in at least two or 
more studies.

Associated locus definition in GWAS from UKBB 
and multi‑ancestry meta‑analysis
We selected lead SNPs attaining genome-wide signifi-
cant evidence of association (p < 5 ×  10−8) in the two 
discovery datasets — (1) UKBB (European only) and 

https://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST009001GCST010000/GCST009057/
https://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST009001GCST010000/GCST009057/
https://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST009001GCST010000/GCST009057/
https://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST008001GCST009000/GCST008025/
https://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST008001GCST009000/GCST008025/
https://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST008001GCST009000/GCST008025/
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(2) multi-ancestry meta-analysis — that were separated 
by at least 1 Mb. Loci were then defined by the flanking 
genomic interval mapping 1 Mb up and downstream of 
lead SNPs.

Fine mapping
We performed fine-mapping to identify potential causal 
variants driving BMI association signals for each locus 
attaining genome-wide significance in the multi-ancestry 
meta-analysis using a Bayesian  approach23. The Bayes’ 
factor (BF) for the ith SNP was computed as.

In this expression, Ki denotes the number of stud-
ies reporting summary statistics for the ith SNP, and 
Zi =

βi
SE(βi)

 , where βi denotes the effect size, and SE ( βi) 
is the corresponding standard error for the ith SNP. We 
then calculate the posterior probability, πi , that the ith 
SNP is driving the association signal at a locus by.

where the summation in the denominator is of all SNPs 
at the locus. The 99% credible set for the locus was com-
puted by ranking all SNPs according to their posterior 
probability πi from the highest to the lowest until their 

BFi = exp
Z2
i − log(Ki)

2
.

πi =
BFi

∑

j BF j
,

cumulative posterior probability reached or exceeded 
0.99. We conducted fine-mapping using association sum-
mary statistics from the multi-ancestry meta-analysis in 
the UKBB (European ancestry-specific).

Polygenic score prediction in AWI‑Gen and the Estonian 
Biobank (EstBB)
The PRSice 2 software implemented the clumping and 
threshold approach for developing PRS. Summary sta-
tistics from the UKBB and multi-ancestry meta-analysis 
were used as “base” datasets, while AWI-Gen (10,900 
participants) genotype data were used as the “target” 
dataset. The optimal parameters (clumping distance 
and LD) were determined by computing the PRS in the 
combined dataset at various combinations of clump-
ing distance and LD (Table  S4). This target dataset was 
randomly split into validation (N = 1059) and testing 
(N = 9809) datasets while ensuring representation by sex 
and regions of Africa (Fig. 1, Table S1). A clumping dis-
tance of 250 kb and r2 of 0.8 where the optimal param-
eters in AWI-Gen were used to develop the PRS in the 
testing dataset whilst adjusting for age, sex, and 10 prin-
cipal components. The best PRS was selected based on 
the BMI variance explained (see Fig. S1)in the AWI-Gen 
validation dataset and was used to compute PRS deciles. 
We used the same procedure to evaluate the performance 
of the multi-ancestry PRS and UKBB PRS in European 
ancestry participants from EstBB. The EstBB target data 

Fig. 1 The schematic diagram for the UKBB and MAMA discovery data sets that were used to train the UKBB, MAMA, in the Estonian Biobank 
and AWI-Gen target data set. The MAMA discovery data was used for the computation of the South and West PRS
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set was randomly split into validation (N = 8456) and 
testing (N = 76,096) datasets and similar PRS computa-
tion parameters were used as had been done in AWI-
Gen. Using the same discovery datasets, we trained a 
PRS using the PRSCSx with the combinations of APCDR, 
UKBB, and BBJ. We compared this with a PRS trained 
without the African population (APCDR). In the PRSCx 
analysis, we used the ancestry-specific GWAS summary 
statistics with the 1000G references. We evaluated the 
best linear combination of the training dataset and then 
evaluated its predictive in the test dataset.

Interaction of multi‑ancestry PRS with sex and lifestyle 
variables
Boxplots were constructed to show differences in BMI 
distribution by sex in the AWI-Gen test dataset. Analy-
sis of variance, stratified by sex, was then performed to 
compare the mean difference in BMI across the deciles 
of the multi-ancestry PRS. Linear models were used to 
test the interaction of the multi-ancestry PRS with physi-
cal activity, socioeconomic status, smoking status, and 
alcohol status while correcting for age, sex, and principal 
components.

PRS prediction across regions of continental Africa
We split the target dataset from AWI-Gen according to 
geographic region: South (N = 5270), West (N = 3870), 
and East (N = 1760). Boxplots were constructed to illus-
trate the distribution of BMI in each region. Then the 
multi-ancestry PRS prediction was evaluated separately 
in these three data sets using PRSice while adjusting for 
age, sex, and residual population structure using five 
principal components. PRS predictivity was indicated as 
incremental variance (full model with PRS − null model 
without the PRS). The distribution of physical activity 
patterns was evaluated across the African regions using 
boxplots. The interaction of the multi-ancestry PRS and 
physical activity in the AWI-Gen validation data set was 
explored using linear models that correct age, sex, and 
five principal components in the analysis. An interaction 
plot was computed using the interactions package in R.

Polygenic prediction of BMI in the West and South regions 
of Africa
We used the multi-ancestry meta-analysis as a discovery 
dataset to develop South and West region-specific PRS 
as they had the largest difference in prediction compared 
to the East as shown in Fig.  4. The optimal parameters 
(clumping distance and LD) were determined by com-
puting the PRS separately in the East and South datasets 
at various combinations of clumping distance and LD 

(Table  S5–S6). We split the South target dataset ran-
domly into validation and testing datasets and then did 
the same for the West target dataset. A clumping distance 
of 250 kb and r2 of 0.8, the optimal parameters (Fig. S1), 
in AWIGen were used to develop the PRS in each testing 
dataset whilst adjusting for age, sex, and principal com-
ponents. The best region-specific PRS was then selected 
based on BMI incremental variance explained (full model 
with PRS − null model without the PRS) in the region-
matched validation dataset. We also tested the South 
African-specific PRS in the West African testing dataset 
and the West African-specific PRS in the South African 
testing dataset (Table S4–S6). We calculated the Pearson 
correlation coefficient between South and Western allele 
frequencies for SNPs in the South and West region-spe-
cific PRS. We also plotted LD r2 against physical distance 
in West and South Africa for the same SNPs.

Results
We aggregated previously published GWAS sum-
mary statistics for BMI with high-density imputation 
in 678,545 individuals from multiple ancestry groups 
through inverse variance weighted, fixed-effects multi-
ancestry meta-analysis (Methods). We considered 
21,338,816 biallelic single nucleotide polymorphisms 
(SNPs), each reported in at least two studies. In the 
multi-ancestry meta-analysis, we identified 5 loci attain-
ing genome-wide significance (p < 5 ×  10−8), defined by 
lead SNPs separated by at least 1MbWe then assessed 
whether the localization of putative causal variants 
driving associations at the 576 BMI loci improved by 
leveraging differences in the structure of LD between 
populations contributing to the multi-ancestry meta-
analysis. We constructed 99% credible sets of SNPs for 
each locus based on association summary statistics from 
the multi-ancestry meta-analysis and the UKBB (Fig. 2). 
The median 99% credible set size was 58 in the UKBB 
but just 32 in the multi-ancestry meta-analysis. Further-
more, the 99% credible set was resolved to a single SNP 
at 16 loci in the multi-ancestry meta-analysis, compared 
to just nine loci in the UKBB. These results highlight the 
improved fine-mapping resolution of BMI association 
signals offered by the diverse ancestry groups contribut-
ing to the multi-ancestry meta-analysis.

Given the improved fine-mapping resolution afforded 
by the multi-ancestry meta-analysis, we hypothe-
sized that multi-ancestry PRS would have greater pre-
dictive power when applied in continental African 
populations from AWI-Gen than PRS derived from the 
European ancestry-specific UKBB. The multi-ances-
try PRS was more strongly associated with BMI and 
explained a greater proportion of the trait variance in 
AWI-Gen (p = 8.31 ×  10−28, 0.93%) than the UKBB PRS 
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(p = 1.59 ×  10−16, 0.54%) (Fig.  3, Table  S1). Furthermore, 
the difference in mean BMI of individuals in the first 
decile compared to those in the tenth decile was more 
than two-fold greater for the multi-ancestry PRS (5.92 kg/
m2) than for the UKBB PRS (2.86  kg/m2). To evalu-
ate the generalizability of these findings to other ances-
try groups, we repeated our analysis using BMI GWAS 
in 84,552 individuals of European ancestry in the Esto-
nian Biobank (EstBB). We observed marginally greater 
BMI trait variance explained by the multi-ancestry PRS 
(p <  10−300, 6.72%) than the UKBB PRS (p <  10−300, 6.25%). 
These polygenic predictions in Europeans were seven-
fold greater than those in continental Africans, indicating 
that the multi-ancestry PRS still needs a greater repre-
sentation of continental Africans to enhance polygenic 
prediction. This is evidenced in the PRSCSx analysis, 
which showed a marked improvement in the predic-
tion of BMI trait variance when the African populations 
(p = 9.47 ×  10−22, 0.71% from p = 1.42 ×  10−14, 0.45%) were 
added to the European and Asian discovery datasets in 
the development of the PRS as shown in Fig. 3B.

In view of the difference in the distribution of BMI 
between sexes in African populations (Fig. 4), we evalu-
ated the predictive power of the multi-ancestry PRS in 

men and women from the AWI-Gen study. We observed 
a strong interaction of the PRS with sex (p = 1.4 ×  10−66, 
Table S7), such that the difference in mean BMI between 
the first and tenth deciles was more than threefold 
greater in women (8.68 kg/m2) than in men (2.63 kg/m2). 
In sex-stratified analysis, the BMI trait variance explained 
by the multi-ancestry PRS was larger in women (1.09%, 
p = 3.8 ×  10−20) than in men (0.86%, p = 4.8 ×  10−10).

Finally, given that AWI-Gen includes individuals from 
three regions of Africa, we investigated the performance 
of the multi-ancestry PRS across these different regions. 
We observed a significant interaction of the PRS with 
regions in Africa (East, West, and South) (p = 6.3 ×  10−7) 
and noted that the PRS explained more BMI variance in 
South Africa (1.58%; 2.8 ×  10−21) than West Africa (0.53%; 
1.2 ×  10−5). Such differences in performance could arise 
because of intra-region differences in genetic variation 
(allele frequency and LD patterns) and/or environment 
(lifestyle factors). Using the multi-ancestry meta-analy-
sis, we first trained and validated region-specific PRS in 
West Africa and South Africa (Methods, Fig. 4, Table S2 
and S3). For SNPs selected in each region-specific PRS, 
we observed a strong correlation in allele frequen-
cies between West Africa and South Africa (r = 0.99, 

Fig. 2 Fine-mapping plot comparing 99% credible set sizes (on  log10 scale) at loci attaining genome-wide significance (P < 5 ×  10−8) in the UKBB 
(European ancestry-specific) and multi-ancestry meta-analysis (MAMA). Most loci are above the y = x line, indicating more refined fine mapping 
in the multi-ancestry meta-analysis compared to the UKBB
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p < 2.2 ×  10−16) and noted a similarity in the extent of LD 
in both regions. Regardless of the region where the PRS 
was developed, the PRS in South Africa explained greater 
BMI trait variance than in West Africa (Fig. 4), possibly 
due to interactions with lifestyle factors that vary between 
regions as shown in Figs.  5 and 6, Tables S7–S12. We 

observed a significant interaction of the multi-ancestry 
PRS with levels of physical activity (pint = 0.018), socioec-
onomic status (pint = 1.32 ×  10−3), alcohol status (never vs 
problematic consumer) (pint = 2.76 ×  10−8), and smoking 
status (pint = 1.64 ×  10−14), which might be contributing to 
the variability in polygenic prediction in Africa.

Fig. 3 PRS prediction in African and European populations. A Difference in mean BMI between PRS deciles (reference is the first decile) 
in the AWI-Gen target dataset for PRS derived from the MAMA and UKBB. B BMI predictions of the following PRSs, MAMA, UKBB, PRSCSx computed 
from Africans (APCDR), East Asians (BBJ), and Europeans (UKBB)), together with PRSCSx computed from East Asians and Europeans (UKBB, BBJ) 
in the AWI-Gen target data set. C Difference in mean BMI between PRS deciles (reference is the first decile) in the Estonian Biobank (EstBB) target 
dataset for PRS derived from the multi-ancestry meta-analysis and UKBB. D BMI predictions of the multi-ancestry and UKBB-derived PRS in the EstBB 
target data
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Discussion
We set out to understand the factors affecting the poly-
genic prediction of BMI and its variability across Afri-
can regions. Our work shows that polygenic prediction 
is still low in African compared to European cohorts 
due to the limited representation of continental Africans 
in discovery GWAS. The multi-ancestry PRS was port-
able in Africa due to its enhancement of fine-mapping 

resolution. Sex differences in BMI distributions were also 
noted, with larger differences between the first and tenth 
decile in women compared to men. Gene-environment 
interactions were noted to have a larger effect on the gen-
eralizability of the PRS within the regions of Africa com-
pared to allele frequencies and LD patterns of the SNPs 
in the PRS.

Fig. 4 Genetic differences and region-specific PRS in regions of Africa. A Correlation of effect allele frequencies of the SNPs from the South Africa 
PRS in South and West Africa. B Extent of LD of SNPs from the South African PRS in South and West Africa. C BMI variance is explained by the South 
African PRS in South Africa and West Africa. D Correlation of effect allele frequencies of the West African PRS in South and West Africa. E Extent of LD 
of SNPs from the West African PRS in South and West Africa. F BMI variance is explained by the West African PRS in West Africa and South Africa
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The PRS prediction of the multi-ancestry PRS was 7.2-
fold less in a continental African cohort compared to a 
European cohort (0.93% vs 6.72% trait variance explained, 
respectively). Similarly, Martin et al. also reported a 4.5-
fold difference in the prediction of the European PRS in 
Europeans vs African Americans [12]. Given that our 
multi-ancestry PRS comprised 70% Europeans, this might 
have contributed to the low predictivity in continental 
Africans. Adding the Africans enhanced prediction to the 

PRSCSx analysis. Though the prediction of the PRSCSx 
approach was lower compared to the multi-ancestry PRS 
as the prior is limited to HapMap SNPs which might 
not fully capture the genetic diversity in Africa. Thus, 
more representation of Africans in GWAS is required to 
enhance PRS prediction in Africa. Nonetheless, the multi-
ancestry PRS enhanced the fine-mapping resolution, 
which enables the use of variants more causally associated 
with the trait in PRS development.

Fig. 5 BMI distribution and PRS prediction in regions of Africa. A BMI distribution in men and women in the AWI-Gen study. B Difference in mean 
BMI of PRS deciles (reference is the first decile) in men and women in the target AWI-Gen dataset. C Distribution of BMI across West, East, and South 
regions of Africa. D Comparisons of the polygenic prediction of the multi-ancestry PRS in the West, East, and South regions of Africa. E Distribution 
of physical activity across the West, East, and South regions in Africa. F Interaction of the multi-ancestry PRS with physical activity in the AWI-Gen 
study
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Notably, the differences in BMI between the first and 
last PRS deciles were more than threefold greater in 
women than in men. Thereby suggesting that the sex 
differences in BMI in Africans might be partly attrib-
uted to genetic factors. However, more studies evalu-
ating the differences in heritability using sex-stratified 
GWAS in continental Africans are necessary. None-
theless, future studies using deep phenotyping of the 

participants in the tails of the PRS distribution using a 
recall-by-genotype design can unravel the causal fac-
tors that may help explain the sex differences in BMI 
[22].

The generalizability of the multi-ancestry PRS within 
Africa was affected more by gene-environment inter-
actions as opposed to the differences in allele fre-
quencies and LD patterns. We noted an interaction of 
the PRS with lifestyle factors such as physical activity, 

Fig. 6 A Alcohol status and frequency (count) in regions of Africa in the AWI-Gen study. B Interaction of Alcohol status and multi-ancestry PRS 
in men and women in the target AWI-Gen dataset. C Smoking status and frequency (count) across West, East, and South regions of Africa. D 
Interaction of the multi-ancestry PRS with smoking status in the AWI-Gen study. E Distribution of socioeconomic status across the West, East, 
and South regions in Africa. F Interaction of the multi-ancestry PRS with socioeconomic status in the AWI-Gen study
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socioeconomic status, smoking status, and alcohol sta-
tus. Prior studies have reported similar interactions 
between the BMI PRS and socioeconomic status [23, 
24] However, there are other lifestyle factors such as 
diet that we did not evaluate in this study which have 
been noted to interact with the PRS of BMI in Europe-
ans [25]. Considering that lifestyle factors are challeng-
ing to measure objectively in resource-limited settings 
such as Africa. PRS tools that correct for variants that 
interact with these lifestyle factors need to be developed 
through approaches such as heterogeneity analysis of 
variance and identification of variance quantitative trait 
loci that are known to be candidate gene-interacting 
variants [26]. These approaches will need to include 
fine-mapping approaches that seek to ensure gene-
environmental interactions with causal variants are 
not limited by gene-dependence bias [27]. Hierarchical 
symbolic regression approaches can be applied on these 
parameters to understand their contribution to the vari-
ability of PRS prediction [28]. This might help enhance 
the generalizability of the PRS in African populations.

Conclusion
Our work demonstrates the improved transferability 
of multi-ancestry PRS over PRS derived from Euro-
pean ancestry GWAS for predicting BMI in popula-
tions from continental Africa. This may be driven by 
the refined localization of causal variants. Regional vari-
ability across Africa in polygenic prediction performance 
likely reflects genetic interactions with lifestyle factors 
that vary between populations, as we demonstrated that 
allele frequencies and LD patterns around associated 
variants were similar across African regions. Despite the 
improved performance of the multi-ancestry PRS, poly-
genic prediction of BMI in individuals from continental 
Africa remains low. The limited representation of con-
tinental African populations in genetic studies of com-
plex human traits and diseases requires urgent attention 
to ensure Africans can benefit from precision medicine 
efforts.
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