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Abstract 

Background  Gastric cancer is the fifth most common cancer type. Most patients are diagnosed at advanced stages 
with poor prognosis. A non-invasive assay for the detection of early-stage gastric cancer is highly desirable for reduc-
ing associated mortality.

Methods  We collected a prospective study cohort of 110 stage I–II gastric cancer patients and 139 non-cancer individ-
uals. We performed whole-genome sequencing with plasma samples and profiled four types of cell-free DNA (cfDNA) 
characteristics, fragment size pattern, copy number variation, nucleosome coverage pattern, and single nucleotide 
substitution. With these differential profiles, we developed an ensemble model to detect gastric cancer signals. Further, 
we validated the assay in an in-house first validation cohort of 73 gastric cancer patients and 94 non-cancer individuals 
and an independent second validation cohort of 47 gastric cancer patients and 49 non-cancer individuals. Additionally, 
we evaluated the assay in a hypothetical 100,000 screening population by Monte Carlo simulation.

Results  Our cfDNA-based assay could distinguish early-stage gastric cancer from non-cancer at an AUROC of 0.962 
(95% CI: 0.942–0.982) in the study cohort, 0.972 (95% CI: 0.953–0.992) in the first validation cohort and 0.937 (95% 
CI: 0.890–0.983) in the second validation cohort. The model reached a specificity of 92.1% (128/139) and a sensitivity 
of 88.2% (97/110) in the study cohort. In the first validation cohort, 91.5% (86/94) of non-cancer individuals and 91.8% 
(67/73) of gastric cancer patients were correctly identified. In the second validation cohort, 89.8% (44/49) of non-
cancer individuals and 87.2% (41/47) of gastric cancer patients were accurately classified.

Conclusions  We introduced a liquid biopsy assay using multiple dimensions of cfDNA characteristics that could 
accurately identify early-stage gastric cancer from non-cancerous conditions. As a cost-effective non-invasive 
approach, it may provide population-wide benefits for the early detection of gastric cancer.

Trial registration  This study was registered on ClinicalTrials.gov under the identifier NCT05269056 on March 7, 2022.

Keywords  Liquid biopsy, Cell-free DNA, Early detection, Gastric cancer, Fragmentomics

†Pengfei Yu, Ping Chen and Min Wu have contributed equally to this work.

*Correspondence:
Dan Su
sudan@zjcc.org.cn
Xiangdong Cheng
abdsurg@163.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13073-024-01352-1&domain=pdf


Page 2 of 14Yu et al. Genome Medicine           (2024) 16:79 

Background
Gastric cancer is the third leading cause of cancer-asso-
ciated mortality worldwide [1]. Patients diagnosed at 
early stages have a favorable prognosis, highlighting the 
clinical significance of the early detection for reducing 
gastric cancer-associated mortality. The current stand-
ard screening modality, endoscopic surveillance accom-
panied by pathological examination of tissue biopsies, 
is limited to high-risk populations due to its invasive-
ness and high cost. Therefore, as a cost-effective and 
non-invasive assay, cell-free DNA (cfDNA)-based liquid 
biopsy may be more suitable for regular screening and 
holds the potential for detecting early-stage diseases.

Multiple aspects of cfDNA characteristics have been 
shown to harbor signals of circulating tumor DNA 
(ctDNA) in various cancer types. For example, cancer 
patients tend to have more fragmented circulating DNA 
with shorter lengths [2]. Therefore, a left-shifted cfDNA 
fragment size distribution may indicate the presence of 
ctDNA-shedding tumors. The cfDNA fragment cover-
age could be altered by epigenetic regulations in tissues 
[3]. Consequently, the altered cfDNA fragment coverage 
patterns at transcription start sites may reflect aberrant 
gene expression levels in cancers [4]. Additionally, the 
copy number variations inferred from cfDNA data also 
have been shown to correspond with those in tissues [5]. 
Abnormal copy number losses and gains in cfDNA may 
be contributed by tumor cells. More recently, mutational 
signatures in cfDNA have been found to be sensitive 
enough to detect cancer [6]. Despite promising evidence 
for these cfDNA features as potential biomarkers to iden-
tify cancers, none have been previously evaluated in an 
early-stage gastric cancer study.

In this study, we prospectively collected a cohort of 249 
participants, among which 110 were pathologically con-
firmed with stage I–II gastric cancer and 139 with non-
cancerous conditions. A plasma sample was collected 
from each patient before standard screening modali-
ties for gastric cancer. We performed whole-genome 
sequencing with plasma samples and investigated four 
types of cfDNA profiles, fragment size pattern (FSP), 
copy number variation (CNV), nucleosome coverage 
pattern (NCP), and single nucleotide substitution (SNS). 
We depicted the differences between gastric cancer and 
non-cancer groups and developed an ensemble model 
using all four types of cfDNA profiles to infer the prob-
ability of cancer for each sample. We later collected two 
validation cohorts to validate the model’s capability in 
identifying early-stage gastric cancer. The first validation 
cohort was from the same center, but temporally sepa-
rated from the study cohort, including 73 stage I–II gas-
tric cancer patients and 94 non-cancer individuals. The 
second was from an independent center, consisting of 

47 stage I–II gastric cancer patients and 49 non-cancer 
individuals. Through these efforts, we hope to provide 
a cfDNA-based liquid biopsy framework that could be 
implemented in the clinic for the early detection of gas-
tric cancer.

Methods
Study population and samples
The study cohort consisted of 110 patients with patholog-
ically confirmed gastric cancer and 139 participants with 
non-cancerous conditions enrolled at Zhejiang Cancer 
Hospital (Hangzhou, China) between October 1st, 2021, 
and May 30th, 2022. Following the completion of training 
cohort enrollment, a separate validation cohort compris-
ing 73 gastric cancer patients and 94 non-cancer individ-
uals was collected at the same site from June 1st, 2022, to 
October 31st, 2022 (Additional file 1: Fig. S1). All partici-
pants provided written informed consent. Each partici-
pant had a peripheral blood sample (~ 10  ml) collected 
before other screening tests for gastric cancer, including 
gastroscopy, CT scans, and blood tests of tumor mark-
ers. Plasma was isolated from blood samples within 4 h. 
cfDNA was then extracted within 72 h and stored at – 80 
℃ for further cfDNA sequencing. All processes were con-
ducted in Zhejiang Cancer Hospital (Hangzhou, China). 
Both cohorts followed the same protocols for partici-
pant enrollment and sample preparations, except that 31 
samples collected between September 2022 and October 
2022 were processed with a new automated liquid han-
dling platform.

A second validation cohort consisting of cfDNA sam-
ples of 47 gastric cancer patients and 49 non-cancer 
individuals was retrospectively collected from an inde-
pendent center, Ningbo No.2 Hospital (Ningbo, China). 
Cases in the Biobank were first filtered using the same 
inclusion and exclusion criteria as the study cohort. 
Stratified random selection was then performed to 
ensure that the demographic distributions (age, sex, post-
surgical stage, tumor location, Lauren’s classification, and 
non-cancerous disease status) of this validation cohort 
mirrored those of the study cohort. Sample preparations 
followed the same protocols as the study cohort.

The study was approved by the institutional review 
board of Zhejiang Cancer Hospital and performed in 
accordance with the principles of the Declaration of 
Helsinki.

Cohort inclusion and exclusion criteria
Participants meeting the following criteria were consid-
ered eligible for enrollment: (1) individuals aged between 
18 and 85 years old; (2) individuals without a prior his-
tory of cancer; (3) individuals with a plasma sample that 
was collected before initial screening tests and passed 
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QC; and (4) individuals who provided informed con-
sent. Eligible individuals were assigned to the appropriate 
group if they further met the following criteria: (1) gastric 
cancer group: individuals who were pathologically con-
firmed with gastric adenocarcinomas by biopsies without 
concomitant malignancies and received curative surger-
ies for gastric cancer; and (2) non-cancer group: indi-
viduals who showed no signs of cancers based on routine 
physical examinations, including blood tests, ultrasound 
and CT, and no sign of gastric cancer from gastric can-
cer-specific screening tests. The size of the non-cancer 
group was controlled to match the gastric cancer group.

Participants meeting any of the following criteria were 
excluded from the gastric cancer group: (1) individu-
als who were pathologically diagnosed with stage III/IV 
gastric cancer; (2) individuals who withdrew informed 
consent; and (3) individuals whose sequencing data 
failed QC.

Participants meeting any of the following criteria were 
excluded from the non-cancer group: (1) individuals 
with significant chronic diseases of other systems, such 
as severe cardiovascular diseases, uncontrolled diabetes, 
hypertension, and infectious diseases; (2) Individuals 
who had abnormal results of tumor marker (CEA, CA19-
9, CA125, PSA, AFP, etc.) examinations within the past 
year; (3) individuals who withdrew informed consent; 
and (4) individuals whose sequencing data failed QC.

Sample and sequencing library preparations
Peripheral blood samples were first centrifuged at 
16,000 × at 4 °C for 10 min to aliquot plasma and serum 
separately. Circulating cell-free DNA (cfDNA) was 
isolated from 2 to 4  mL of plasma using the QIAamp 
Circulating Nucleic Acid Kit (Qiagen), following the 
manufacturer’s protocols. The concentrations of isolated 
cfDNA were examined using Qubit dsDNA HS Assay Kit 
(Thermo Fisher Scientific). cfDNA libraries for whole-
genome sequencing (WGS) were prepared using the 
KAPA Hyper Prep Kit (KAPA Biosystems) according to 
the manufacturer’s protocol. In brief, 5–10 ng of cfDNA 
per sample was subjected to end-repairing, A-tailing, and 
ligation with adapters sequentially. The Hamilton Micro-
lab STAR automated liquid handling platform (Hamilton 
Company) (hereafter denoted as Platform 1) was used for 
the automated pipeline operations. For 31 samples in the 
first validation cohort that were collected between Sep-
tember 2022 and October 2022, the Beckman Biomek i7 
automated liquid handling platform (Beckman) (hereaf-
ter denoted as Platform 2) was used. The libraries were 
quantified using the KAPA SYBR FAST qPCR Master 
Mix (KAPA Biosystems).

Low‑coverage whole‑genome sequencing and alignment
Whole-genome libraries were sequenced using 100-bp 
paired-end runs on the NovaSeq platforms (Illumina) at 
8X coverage per genome according to the manufacturer’s 
instructions. Trimmomatic [7] was used for FASTQ file 
quality control. The Picard toolkit was used to remove 
PCR duplicates (http://​broad​insti​tute.​github.​io/​picard/). 
Qualified reads were then aligned to the human refer-
ence genome (GRCh37/UCSC hg19) using the Burrows–
Wheeler Aligner (BWA) [8]. To mitigate potential biases 
introduced by varying sequencing depths among sam-
ples, all plasma samples were down-sampled to a uniform 
coverage of 5 × .

Whole‑genome sequencing features
Fragment size pattern
The extraction of fragment size features was adapted 
from the method introduced by D. Mathios et al. [9]. A 
non-parametric method for fragment-level adjustment 
for GC content and library size was first performed. We 
tiled the reference genome into non-overlapping 5-Mb 
bins and preserved a total of 541 bins with an average GC 
content ≥ 0.3 and an average mappability ≥ 0.9. We then 
computed the adjusted number of short (100–150  bp) 
and long (151–220 bp) fragments in each bin and stand-
ardized the numbers to have mean zero and unit stand-
ard deviation across all bins.

Copy number variation
The ichorCNA tool was used to profile copy number 
variations as described by Wan et al. [10]. The reference 
genome was tiled into non-overlapping 1-Mb bins, total-
ing 2475 bins. The depth of each bin was used to compare 
against the software baseline and compute the log2 ratio.

Nucleosome coverage pattern
The cfDNA fragmentation coverage patterns at transcrip-
tion start sites (TSSs) were reported to be associated 
with epigenetic regulation. Therefore, cfDNA coverage 
patterns at certain TSS regions may aid the detection 
of cancer. The selection of TSSs and profiling of related 
nucleosome coverage patterns followed the method 
described by Doebley et al. [4]. We used the GTRD data-
base (v 21.12, https://​gtrd.​biouml.​org/​downl​oads/​21.​
12/​chip-​seq/) [11] to select transcription factors (TFs) 
with more than 10,000 highly mappable sites. TFs falling 
beyond a list of TFs with known binding sites in the CIS-
BP database (v2.00, http://​cisbp.​ccbr.​utoro​nto.​ca/​bulk.​
php) [12] were excluded. A total of 854 TFs were finally 
selected. For each TF, we selected 10,000 mappable sites 
with the highest peak counts for the analyses of coverage 
patterns.

http://broadinstitute.github.io/picard/
https://gtrd.biouml.org/downloads/21.12/chip-seq/
https://gtrd.biouml.org/downloads/21.12/chip-seq/
http://cisbp.ccbr.utoronto.ca/bulk.php
http://cisbp.ccbr.utoronto.ca/bulk.php
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To profile the nucleosome coverage pattern of a TF, 
we first extracted all reads of lengths between 100 
and 220  bp in a window (− 5 kbp to + 5 kbp) around 
each binding site of the TF. For each read, we assigned 
a weight of the reciprocal of its GC bias. For each site, 
we split it into 15-bp bins and summed the weights of all 
reads whose midpoints fall within each bin, generating a 
GC-corrected midpoint coverage profile. For each TF, we 
averaged the midpoint coverage profiles of all its binding 
sites and normalized the 10-kbp window coverages to a 
mean of 1. The resulting coverage curve along the 10 kb 
window was then smoothed using a Savitzky-Golay filter 
with a window length of 150 bp and a polynomial order 
of 3 to generate the final coverage profile of the TF.

We extracted three features to quantify the coverage 
profile of each of the 854 selected TFs: (1) the mean cov-
erage of the region flanking 1 kbp upstream and 1 kbp 
downstream of the center; (2) the coverage at the center; 
and (3) the amplitude of coverage peaks surrounding the 
center by a fast Fourier transform.

Single nucleotide substitution signature
The single nucleotide substitution (SNS) signatures were 
derived from six types: C > A, C > G, C > T, T > A, T > C, 
and T > G. Taking into account one upstream and one 
downstream adjacent base, a total of 6 × 4 × 4 = 96 com-
binations were involved. The relative abundance of each 
combination was calculated and denoted as the signature. 
The processes were adapted from the method developed 
by Wan et al. [6].

Raw FASTQ files were first trimmed and aligned to 
the hg19 genome, and duplicate reads were removed 
before sorting and indexing into BAM files by SAM-
tools (version 1.9) [13]. The average sequencing depth 
was calculated from the BAM files. Reads of alternative 
alignment or template length > 300  bp were excluded. 
Repeat or low-complexity regions were masked before 
further analyses. GC bias metrics were calculated using 
Picard (version 2.19.0, http://​broad​insti​tute.​github.​io/​
picard/) with a bin size of 400  bp, and the average GC 
profile, which were later used to normalize the mutation 
counts by the GC content of each read, were determined 
by LOESS smoothing method. Paired reads with only 1 
mismatch with reference genome were retained, and 
BCFtools (version 1.9) [14] mpileup were used along with 
multiallelic-caller to call SNS mutations from reads that 
met the following criteria: base quality ≥ 30 and mapping 
quality ≥ 60. InDels were not included. The identified 
mutations were annotated by ANNOVAR (version 2016–
04-25) using RefSeq and dbSNP [15]. SNP sites were 
then filtered out from the SNS variants to minimize the 
influence of germline mutations. Clonal hematopoiesis 
of indeterminate potential (CHIP) mutations was filtered 

out using an in-house list of frequent CHIP mutations 
generated from a normal pool of 1000 healthy individu-
als. The filtered SNS variants were categorized into the 96 
types as described above. Counts of each type were cal-
culated and normalized based on the mean sequencing 
depth.

To further reduce the effects of potential noises from 
various sources in healthy populations, a baseline con-
trol was built from an internal sample pool of 300 healthy 
individuals. The 96-SNS signatures of each healthy 
control were generated through the same processes as 
described above. The baseline was set as the mean value 
over the 300 controls for each SNS signature. The final 
SNS signatures of a test sample were calculated as the 
raw signature values subtracting the baseline values.

Machine learning and cross‑validation analyses
We built a two-layer machine learning classifier for the 
malignant nodules and benign ones. The first-layer mod-
ule took one type of the features (FSP, NCP, CNV, SNS) 
as the input. For each feature type, the module iterated 
through four algorithms, elastic-net logistic regression 
(GLM), extreme gradient boosting (XGBoost), random 
forest (RF), and neural network (NN). Hyperparameter 
tuning was conducted using random search across a list 
of candidate values for each algorithm. These processes 
resulted in the generation of over 200 models. From 
this pool, we identified five algorithm-hyperparame-
ter combinations that yielded the highest classification 
area under the receiver operator characteristic curve 
(AUROC) metrics, without consideration for the under-
lying algorithms. These top-performing combinations 
were selected as the first-layer 20 base models (4 fea-
ture types X 5 best algorithm-hyperparameter combina-
tions = 20 base models) for later second-layer stacking.

The second-layer module stacked the 20 base models 
with algorithm iteration (GLM, XGBoost, and RF) and 
hyperparameter tuning, also generating over 100 can-
didate algorithm-hyperparameter combinations. From 
these combinations, five stacked models with the best 
AUROC metrics were saved. The prediction scores from 
these five models were averaged to generate the final 
outputs of the classifier. In the study cohort, the classi-
fier was evaluated through fivefold cross-validations. For 
the validation cohort, the models were fitted using the 
full study cohort and then used to predict the validation 
samples.

Rank‑based variable importance
The default variable importance from different machine 
learning algorithms had different magnitudes and thus 
could not be merged. Our assay stacked models of mul-
tiple algorithms for each feature type. To evaluate the 

http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/


Page 5 of 14Yu et al. Genome Medicine           (2024) 16:79 	

relative importance of feature variables across these 
models, we used their ranks in the default variable 
importance in each base model, which were of no mag-
nitude. For each base model, we assigned a rank score for 
25 variables of the highest default importance from 25 to 
1. All variables ranked beyond 25th would be assigned 
a uniform score of 1. Each base model was assigned a 
weight score based on its rank in the second-layer model. 
For the ensemble model, 20 base models were stacked. 
The weight scores thus ranged from 20 for the most 
important base model to 1 for the least. The rank scores 
of a variable in different base models were then aver-
aged with the weights. Within each feature type, the rela-
tive rank-based importance of a variable was calculated 
as its weighted average rank score, standardized to the 
max score of this feature type. This ensures that the most 
important variable has a relative importance value of 1.

Simulation for estimating assay performance 
in a screening population
To assess and compare the performance of gastroscopy 
and our cfDNA-based assay in a hypothetical screening 
population of 100,000 individuals, we used Monte Carlo 
simulations to capture the uncertainty of parameters 
such as the sensitivity, specificity, participant compli-
ance rate, and gastric cancer prevalence. These param-
eters were sampled with prior distributions centered on 
empirical estimates obtained from published large-scale 
studies and this study. The method was adapted from a 
published study by Mathios et al. [16].

Hamashima et al. reported a sensitivity of 88.6% (95% 
CI: 69.8–97.6%) and a specificity of 85.1% (95% CI: 
84.3–85.9%) for gastroscopy from 7388 screenings [17]. 
With the R package epiR (version 1.0–14, https://​fvas.​
unime​lb.​edu.​au/​resea​rch/​groups/​veter​inary-​epide​miolo​
gy-​melbo​urne), we assumed that the prior distributions 
for the sensitivity and specificity of gastroscopy were 
Beta(22,3.7) and Beta(6000,1051), respectively. From the 
performance metrics of our cfDNA-based assay in the 
validation cohort (sensitivity: 91.8%, 95% CI: 83.2–96.2%; 
specificity: 94.5%, 95% CI: 84.1–95.6%), we assumed 
the respective prior distributions as Beta(67,6) and 
Beta(86,8).

Zeng et al. reported a populational compliance rate of 
43.8% for gastroscopic screenings from a multi-center 
trial of 230,583 subjects [18]. Therefore, the prior 
model for gastroscopy compliance rate was Beta(43.8, 
56.2). For non-invasive cfDNA-based tests, the com-
pliance rate was conservatively estimated at 80.0%, 
leading to an assumed prior distribution of Beta(80.0, 
20.0). The study also provided a populational gastric 
cancer prevalence of 0.8%. Thus, for a given screening 

population (N), the number of gastric cancer cases may 
be estimated with a distribution of Binomial(0.8%, N).

With all these priors, we conducted the Monte Carlo 
simulation as follows:

1.	 Sampled the probabilities of compliance rates (C) 
from the prior beta distributions described above:

Cendo ~ Beta(43.8, 56.2)
CctDNA ~ Beta(80, 20)

2.	 Simulated the number of individuals that completed 
the tests (N) in the 100,000 screening cohort from 
binomial distributions with the probabilities of com-
pliance rates (C):

Nendo ~ Binomial(Cendo, 100,000)
NctDNA ~ Binomial(CctDNA, 100,000)

3.	 Simulated the number of gastric cancer cases (S) in 
the participants from binomial distributions with the 
populational gastric cancer prevalence (0.8%):

Sendo ~ Binomial(0.008, Nendo)
SctDNA ~ Binomial(0.008, NctDNA)

4.	 Sampled the sensitivity (SE) and specificity (SP) from 
the prior beta distributions described above:

SEendo ~ Beta(22, 3.7)
SEctDNA ~ Beta(67, 6)
SPendo ~ Beta(6000, 1051)
SPctDNA ~ Beta(86, 8)

5.	 Simulated the number of true positive (TP) and true 
negative (TP) incidences from binomial distribu-
tions:

TPendo ~ Binomial(SEendo, Sendo)
TPctDNA ~ Binomial(SEctDNA, SctDNA)
TNendo ~ Binomial(SPendo, Nendo − Sendo)
TNctDNA ~ Binomial(SPctDNA, NctDNA − SctDNA)

6.	 With true positive incidences (TP), true negative 
incidences (TN), total gastric cancer cases (S), and 
total testing cases (N), we were able to calculate the 
negative prediction value NPV = TN/(TN + S − TP) 
and false negative rate FNR = (S − TP)/N.

We ran the simulation for 10,000 iterations and 
obtained the posterior distributions of the performance 
metrics, which allowed for comparisons between the 

https://fvas.unimelb.edu.au/research/groups/veterinary-epidemiology-melbourne
https://fvas.unimelb.edu.au/research/groups/veterinary-epidemiology-melbourne
https://fvas.unimelb.edu.au/research/groups/veterinary-epidemiology-melbourne
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two methodologies in a large hypothetical population 
with stochastic effects considered.

Gastric tumor location
The locations of gastric tumors were divided into three 
groups: proximal, middle, and distal. The proximal group 
included the cardia and fundus zones. The middle group 
included the stomach body regions. The distal group 
included the incisura angularis and pyloric antrum 
zones.

Outcomes and timelines
This observatory study was registered on ClinicalTrials.
gov under the identifier NCT05269056 on March 7, 2022. 
The primary outcome measure of the registered trial is 
the AUROC metric for differentiating stage I/II gastric 
cancer patients and non-cancer individuals using the 
cfDNA-based assay. The secondary outcome measures 
are the sensitivity and specificity of the assay.

The enrollment dates of the first and last participants 
in the study cohort were October 1st, 2021, and May 
30th, 2022, respectively. The enrollment dates of the first 
and last participants in the first validation cohort were 
June 3rd, 2022, and October 31st, 2022, respectively. The 
model construction and assessment of results in the 
study cohort started on July 1st, 2022, after the comple-
tion of data collection of the study cohort. The assess-
ment of results in the validation cohort started on 
December 1st, 2022.

Statistical analysis
The comparison of continuous numeric data was done 
using the Wilcoxon test. The comparison of proportions 
between groups was done using Fisher’s exact test. The 
trend of continuous numeric data across ordered groups 
was assessed using the Jonckheere trend test. A two-
sided P value of less than 0.05 was considered significant 
for all tests unless otherwise indicated. All statistical 
analyses were performed in R (v4.0.2).

Results
Cohort overview
This study enrolled a training cohort of 249 individuals 
at Zhejiang Cancer Hospital, China, between October 
1st, 2021, and May 30th, 2022. Over two fifths (44.2%, 
110/249) of them were pathologically confirmed with 
gastric cancer. The remaining 139 (55.8%, 139/249) had 
normal results of endoscopy-based screenings for gas-
tric cancer (Fig. 1). Patients with gastric cancer on aver-
age were 0.8  years older than non-cancer individuals 
(58.1 ± 11.0 vs. 57.3 ± 10.3). Most participants were male, 
making up 56.4% (62/110) and 59.0% (82/139) of the 
gastric cancer and non-cancer group, respectively. The 
majority of gastric cancer patients were at stage I (77.3%, 
85/110). Gastric tumors at distal locations such as the 
pylorus and antrum were easier to detect via gastroscopy, 
which comprised 60.9% (67/110) of the cancer group. 
On the contrary, only 10.9% (12/110) were composed of 
proximal tumors. More intestinal types of gastric cancer 
(45.4%, 50/110) by Lauren’s criteria were included than 

Fig. 1  Overview of study and cfDNA profiles. Flowchart illustrating the cohort inclusion, model construction and model validation
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the diffuse (31.8%, 35/110) and mixed (22.7%, 25/110) 
types. Among non-cancer participants, about 10.1% 
(14/139) had gastric diseases (Table  1; Additional file  2: 
Table S1).

A validation cohort consisting of 73 gastric cancer 
patients (43.7%) and 94 non-cancer individuals (56.3%) 
was separately collected at the same site following the 
completion of training cohort enrollment, between June 
1st, 2022, and October 31st, 2022. The mean age of gas-
tric cancer patients (59.3 ± 10.4) was 1.4  years greater 
than that of non-cancer participants (57.9 ± 10.9). 67.1% 
(49/73) of gastric cancer patients and 57.4% (54/94) of 
non-cancer individuals were male. Similarly to the train-
ing cohort, over three quarters (76.7%, 56/73) of gastric 

cancer were stage I diseases. Similarly, the proportions 
of gastric tumors at distal and middle regions were also 
63.0% (46/73) and 27.4% (20/73), respectively. A differ-
ence from the training cohort was that patients with dif-
fuse-type gastric cancer (41.1%, 30/73) were slightly more 
than those with the intestinal type (38.4%, 28/73). As 
for the control group, a small number of non-cancerous 
gastric diseases were also included (9.6%, 9/94) (Table 1; 
Additional file 2: Table S1).

A second independent validation cohort consisting 
of 47 gastric cancer patients (49.0%) and 49 non-cancer 
individuals (51.0%) was retrospectively collected from 
Ningbo No.2 Hospital. The mean age of gastric cancer 
patients (57.2 ± 8.6) was 1.1  years greater than that of 

Table 1  Participant demography

Clinicopathological characteristics of participants in the study and validation cohorts

Cohort Study (n = 249) Validation (n = 167) 2nd Validation (n = 96)

Cancer
(n = 110)

Non-cancer
(n = 139)

Cancer
(n = 73)

Non-cancer
(n = 94)

Cancer
(n = 47)

Non-cancer
(n = 49)

Age
  Median (min–max) 58.0 (26.0–80.0) 58.0 (27.0–85.0) 60.0 (30.0–76.0) 59.0 (27.0–84.0) 57.0 (43.0–82.0) 58.0 (40.0–74.0)

  Mean ± SD 58.1 ± 11.0 57.3 ± 10.3 59.3 ± 10.4 57.9 ± 10.9 57.2 ± 8.6 58.3 ± 7.9

Sex
  Female 48 (43.6%) 57 (41.0%) 24 (32.9%) 40 (42.5%) 23 (48.9%) 23 (46.9%)

  Male 62 (56.4%) 82 (59.0%) 49 (67.1%) 54 (57.4%) 24 (51.1%) 26 (53.1%)

Postsurgical stage
  I 85 (77.3%) / 56 (76.7%) / 35 (74.5%) /

  II 25 (22.7%) / 17 (23.3%) / 12 (25.5%) /

T stage
  1 85 (77.3%) / 48 (65.8%) / 41 (87.2%) /

  2 13 (11.8%) / 16 (21.9%) / 4 (8.5%) /

  3 10 (9.1%) / 4 (5.5%) / 2 (4.3%) /

  4 2 (1.8%) / 5 (6.8%) / 0 (0.0%) /

N stage
  0 86 (78.2%) / 59 (80.8%) / 37 (78.7%) /

  1 16 (14.5%) / 10 (13.7%) / 8 (17.0%) /

  2 7 (6.4%) / 1 (1.4%) / 2 (4.3%) /

  3 1 (0.9%) / 3 (4.1%) / 0 (0.0%) /

Location
  Proximal 12 (10.9%) / 7 (9.6%) / 6 (12.8%) /

  Middle 31 (28.2%) / 20 (27.4%) / 12 (25.5%) /

  Distal 67 (60.9%) / 46 (63.0%) / 29 (61.7%) /

Lauren classification
  Diffuse 35 (31.8%) / 30 (41.1%) / 14 (29.8%) /

  Intestinal 50 (45.4%) / 28 (38.4%) / 16 (34.0%) /

  Mixed 25 (22.7%) / 15 (20.5%) / 17 (36.2%) /

Disease
  Healthy / 125 (89.9%) / 85 (90.4%) / 44 (89.8%)

  Disease / 14 (10.1%) / 9 (9.6%) / 5 (10.2%)
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non-cancer individuals (58.3 ± 7.9). Around half of both 
groups were males (51.1%, 24/47 of cancer patients and 
53.1%, 26/49 of non-cancer individuals). A similar pro-
portion (74.5%, 35/47) of gastric cancer was diagnosed 
at stage I. The majority (61.7%, 29/47) of gastric tumors 
were located at distal regions. Three subtypes of gastric 
cancer by Lauren’s criteria each made up approximately 
one third of the cancer group. In the non-cancer group, 
10.2% (5/49) of the participants had non-cancerous gas-
tric diseases (Table 1; Additional file 2: Table S1).

Cell‑free DNA profiles
We collected a plasma sample from each patient during 
the initial visit before conducting other screening tests 
for gastric cancer. Whole genome sequencing was per-
formed to profile cell-free DNA (cfDNA) characteristics. 
We examined four types of cfDNA mutation and frag-
mentation-related characteristics (Methods).

The gastric cancer group showed genome-wide vari-
ations in the coverage of both long fragments (150–
220 bp) and short fragments (100–149 bp). The coverage, 
however, appeared stable across non-cancer individuals 
(Fig.  2A; Additional file  1: Fig. S2). In specific regions, 
such as chromosomal arms 1q, 4q, and 8q [19], gastric 
cancer patients tended to have greater coverage, which 
may be contributed, in part, by frequent copy number 
amplifications (Fig. 2A, B). Diffuse-type gastric carcino-
mas are associated with more stable genomic profiles, 
whereas the intestinal type tend to show more copy num-
ber alterations [20, 21]. The CNV profiles of intestinal 
type gastric cancer in our cohort also showed greater 
variations compared to the diffuse type (Additional file 1: 
Fig. S3). Coverage at transcription start sites (TSSs) was 
reported to be negatively associated with respective gene 
expression levels. We compared the coverages at 854 TSS 
regions, among which 218 showed significant differences 

Fig. 2  Cell-free DNA profiles. Cell-free DNA characteristics of cancer and non-cancer samples. A Normalized long fragment (150–220 bp) coverage 
values in 541 5-Mb bins over chromosomes of cancer and non-cancer samples. B CNV log2 ratio values in 2475 1-Mb bins over chromosomes 
of cancer and non-cancer samples. C P values of the comparisons of relative central coverage values between the cancer and non-cancer groups 
by Wilcoxon tests. Each bar represents the transformed P values of a transcription start site. Bars were in a descending order by height. The dotted 
line denotes the threshold for statistical significance (P < 0.05). D Mean proportions of each type of single nucleotide substitutions of cancer 
and non-cancer samples. Single nucleotide substitutions with significant between-group differences in mean proportions were included (P < 0.05 
by Wilcoxon test). All 110 gastric cancer and 139 non-cancer samples in the study cohort were included in the analyses
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between cancer and non-cancer groups. At most of these 
regions (89.0%, 194/218), the gastric cancer samples had 
lower central coverage, indicating higher expression lev-
els. The expressions of genes such as HMGA1, ZNF362, 
and ZNF577, which are regulated in gastric cancer, were 
confirmed through RNA-seq data from the oncoDB 
database [22] (Fig.  2C). The gastric cancer group also 
exhibited different patterns of mutational signatures. We 
compared the proportions of 96 types of single-nucle-
otide substitutions (SNS). 29.2% (28/96) of them had 
higher proportions in the cancer group (Fig. 2D). These 
differential cfDNA profiles showed the potential to be 
applied to distinguishing gastric cancer and non-cancer-
ous conditions.

Model performance in study and validation cohorts
We developed a machine learning model using these 
differential cfDNA profiles to distinguish an individual 
with or without gastric cancer (Methods). The model 
was fit and tuned with five-fold cross-validations in the 
study cohort and independently evaluated in the valida-
tion cohort (Fig. 1). Using one type of cfDNA feature, the 
model was able to binarily classify gastric cancer patients 
and non-cancer individuals with AUROC metrics rang-
ing from 0.841 to 0.912 in the study cohort, from 0.854 to 
0.937 in the 1st validation cohort, from 0.802 to 0.900 in 
the 2nd validation cohort (Additional file 1: Fig. S4; Addi-
tional file 2: Table S2). We further combined four types 
of cfDNA features and constructed an ensemble model. 
The performance of the ensemble model exceeded those 
of models with only one feature type. The AUROC met-
rics reached 0.962 (95% CI: 0.942 – 0.982) in the study 
cohort, 0.972 (95% CI:0.953 – 0.992) in the 1st valida-
tion cohort, and 0.937 (95% CI: 0.890 – 0.983) in the 2nd 
validation cohort (Fig.  3A). We determined a threshold 
of 0.715 that maximized the Youden’s index in the study 
cohort. The ensemble model achieved a specificity of 
92.1% (128/139) and a sensitivity of 88.2% (97/110) in the 
study cohort. With this threshold, we correctly identi-
fied 91.5% (86/94) of non-cancer individuals and 91.8% 
(67/73) of gastric cancer patients in the 1st validation 
cohort, as well as 89.8% (44/49) of non-cancer individu-
als and 87.2% (41/47) of gastric cancer patients in the 2nd 
validation cohorts (Fig. 3B; Additional file 2: Table S3).

All three cohorts included patients with non-cancer-
ous gastric diseases. Their prediction scores were sig-
nificantly higher than those of healthy individuals (study 
cohort: 0.398 vs. 0.248, P = 0.021; 1st validation cohort: 
0.472 vs. 0.152, P = 4.863 × 10−5; 2nd validation cohort: 
0.427 vs. 0.339, P = 0.199) (Fig. 3C). Among gastric can-
cer patients, the prediction scores showed a trend to 
increase with pathological stages. In the study cohort, the 
mean prediction scores increased from 0.892 for stage I 

patients to 0.923 for stage II. The sensitivity was similar 
between the two groups (stage I: 88.2%, 75/85; stage II: 
88.0%, 22/25). In the 1st validation cohort, the mean pre-
diction scores increased from 0.921 for stage I patients to 
0.941 for stage II. The sensitivity also increased with the 
stage (stage I: 91.1%, 51/56; stage II: 94.1%, 16/17). The 
2nd validation cohort manifested a stronger increasing 
trend of prediction scores with pathological stages. The 
mean prediction scores increased from 0.853 for stage I 
to 0.906 for stage II. The sensitivity increased from 85.3% 
(30/35) for stage I and 91.7% (11/12) for stage II (Fig. 3D; 
Additional file 2: Table S3).

We further examined the prediction scores in other 
clinicopathological subgroups. The scores did not signifi-
cantly differ between male and female individuals in both 
gastric cancer and non-cancer groups across all three 
cohorts (Additional file  1: Fig. S5, S8A). Gastric cancer 
of different types by the Lauren classification had similar 
prediction scores. The mixed type in the study cohort had 
a slightly lower mean score (0.867) than those of the dif-
fuse and intestinal types (0.910 and 0.907, respectively). 
The trend was not observed in either validation cohort. In 
the 1st validation cohort, three subtypes showed almost 
equal mean scores (0.926, 0.928, and 0.922 for disuse, 
intestinal, and mixed subtypes, respectively) (Additional 
file 1: Fig. S6A). In the 2nd validation cohort, the mixed 
subtype displayed a higher mean score (0.884) than the 
other two (0.850 and 0.863) (Additional file 1: Fig. S8B). 
Gastric tumors in proximal locations such as the cardia 
and fundus were more difficult to detect via conventional 
gastroscopy than in other locations. Our cfDNA-based 
assay, however, correctly identified all cases with proxi-
mal gastric tumors in all three cohorts (study: 12/12, 1st 
validation: 7/7, 2nd validation: 6/6) (Additional file 1: Fig. 
S6B, S8C). Patients with lymph node metastasis tended 
to have higher mean scores than those without in both 
validation cohorts (Additional file 1: Fig. S6C, S8D; Addi-
tional file 2: Table S3).

To evaluate the representativeness of the validation 
cohort, we refitted the model with the 1st validation 
cohort and performed the prediction on the original 
study cohort reversely. The 1st validation cohort con-
tained 31 samples processed with a different automated 
liquid handling platform (Methods), which could be one 
of the possible explanations for their relatively higher pre-
diction scores (Additional file 1: Fig. S9; Additional file 2: 
Table S1, S4). To avoid the potential influence of Platform 
2, we employed only samples processed with Platform 1, 
comprising 47 gastric cancer and 89 non-cancer samples 
from the 1st validation cohort, as the training set to refit 
the model (hereafter denoted as the reverse model). The 
reverse model showed inferior performance on the test-
ing set (original study cohort) than on the training set 
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(original 1st validation cohort) (AUROC: 0.918 vs. 0.951; 
sensitivity: 79.1%, 87/110 vs. 85.1%, 40/47; specificity: 
87.1%, 121/139 vs. 91.0%, 81/89). This suggested that the 

training set may be less representative of the testing set 
or that the sample size of the training set (N = 136) may 
not be large enough for the model to comprehensively 

Fig. 3  Model performance in study and validation cohorts. Performance of the cfDNA-based assay in distinguishing gastric cancer 
and non-cancerous conditions in study and validation cohorts. A Receiver operating characteristic curves of the model in the study and validation 
cohorts. B Prediction scores of gastric cancer and non-cancer samples in the study (left panel), 1st validation (mid panel), and 2nd validation (right 
panel) cohorts. C Prediction scores of healthy participants and patients with chronic atrophic gastritis and chronic non-atrophic gastritis in the study 
(left panel), 1st validation (mid panel), and 2nd validation (right panel) cohorts. D Prediction scores of gastric cancer patients grouped by pathological 
stages in the study (left panel), 1st validation (mid panel), and 2nd validation (right panel) cohorts. Dotted horizontal lines denote the threshold 
at 92.1% specificity in the study cohort. Abbreviations: AUROC, area under receiver operating characteristic curve; CI, confidence interval; CAG, 
chronic atrophic gastritis; CNAG, chronic non-atrophic gastritis
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learn cancer signal-related cfDNA characteristics. None-
theless, the reverse model exhibited equivalent classifica-
tion efficacy in the testing set and 2nd validation cohort 
(AUROC: 0.918 vs. 0.916; sensitivity: 79.1%, 87/110 
vs. 80.9%, 38/47; specificity: 87.1%, 121/139 vs. 85.7%, 
42/49), indicating that the 2nd validation cohort may be 
well representative of the study cohort, especially on gas-
tric cancer samples, for which the pathological stages, 
lesion locations, and Lauren subtypes were matched 
(Table 1; Additional file 2: Table S1, S5).

Model performance in a hypothetical large population
To evaluate our cfDNA-based assay and conventional 
gastroscopy at a population scale, we used Monte 
Carlo simulations to assess the performance metrics 
in a theoretical population of 100,000 high-risk indi-
viduals. We modeled the sensitivity and specificity of 
our cfDNA-based assay and gastroscopy at prior dis-
tributions centered at empirical estimates from our 
validation cohort and a gastroscopy screening cohort 
[17], respectively (Fig.  4A). Based on statistics from 
a multi-center gastric cancer screening trial in China 
[18], we estimated that the prevalence of gastric cancer 
in the theoretical population would be 0.8% and that 
the overall compliance rate for gastroscopy would be 

43.8%. Considering previous reports that blood tests 
typically achieve adherence rates of 80–90% [23, 24] 
and our experience in clinical practice, we conserva-
tively assumed that an average of 80% of the screen-
ing population would complete our tests. With these 
priors, the Monte Carlo simulations revealed that gas-
troscopy may on average detect 299 (95% CI: 268–334) 
gastric cancer cases. Our cfDNA-based assay could 
potentially identify 587 (95% CI: 542–634) cases, 
almost twice as many as the number by gastroscopy 
(Fig. 4B). The false negative rate meanwhile could also 
be nearly halved with our approach (0.066%) com-
pared to gastroscopy (0.116%) (Fig.  4C). Additionally, 
our assay could also improve the accuracy of negative 
testing results — increasing the negative prediction 
values from an average of 99.86% to 99.93% (Fig. 4D). 
These results suggest that our cfDNA-based assay may 
provide population-wide benefits for gastric cancer 
screening. Nonetheless, it is important to note that 
the conclusions drawn from the in silico comparisons 
between our cfDNA-based assay and gastroscopy are 
preliminary and of very limited clinical significance. 
Large heterogenous prospective cohorts in the real 
world are required for systemic comparisons of novel 
and conventional methods.

Fig. 4  Comparing the cfDNA-based assay and endoscopy in populational gastric cancer screening. In silico comparisons of the cfDNA-based 
assay and endoscopy screening in a large hypothetical population. A Sensitivity and specificity values sampled from prior distributions centered 
on empirical estimates for 10,000 iterations. B–D The predictive distributions of true positive incidences (B), false negative rates (C), and negative 
prediction values (D) of two methods in a hypothetical 100,000 screening population from 10,000 iterations of simulation. The center line 
in the boxplots represents the median, the upper bound represents the third quantile, and the lower bound represents the first quantile. The upper 
and lower whisker demotes respective maximum and minimum values of the data that is within 1.5 times the interquartile range. Abbreviation: 
endo, endoscopy
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Discussion
In this study, we introduced a cfDNA-based liquid 
biopsy assay capable of accurately identifying patients 
with early-stage gastric cancer from non-cancer indi-
viduals. Both the study and validation cohorts included 
only early-stage (stage I–II) gastric cancer patients, 
which are typically challenging for conventional screen-
ing modalities to detect. Despite this, our assay achieved 
an AUROC of 0.962 (95% CI: 0.942–0.982) in the study 
cohort, 0.972 (95% CI:0.953–0.992) in the first validation 
cohort, and 0.937 (95% CI: 0.890–0.983) in the second 
validation cohort.

Our assay utilized four types of cfDNA features, none 
of which has been tested in other gastric cancer studies 
focused on early detection. We showed that all four types 
of features embody signals of circulating tumor DNA. 
Beyond visualizing differences between groups, we devel-
oped a machine learning model to estimate the prob-
ability of cancer presence. Samples from gastric cancer 
patients of different pathological stages (stage I or II, N 
stage 0 or +) and Lauren classifications (diffuse or intes-
tinal type), and non-cancer individuals of different condi-
tions (with or without gastric disease) exhibited distinct 
cancer probability levels (Additional file  1: Fig. S5–S6, 
S8). These results suggest that our method may provide a 
reliable quantification of gastric cancer signals.

Our cohorts included only early-stage gastric cancer, 
some of which were located at the cardia and fundus 
regions. These tumors were relatively less prevalent in 
real-world populations and often could be of challenge 
for conventional gastroscopy to detect at early stages. 
Nonetheless, our cfDNA-based assay achieved high sen-
sitivity regardless of tumor locations. Of note, in all three 
cohorts, all gastric tumors at proximal locations (25/25) 
were correctly identified by our approach. Considering 
the non-invasiveness, accessibility, and cost-effective-
ness, it is likely that the compliance rate for our cfDNA-
based approach could be significantly higher than other 
conventional modalities in the real-world screening 
population. Through in silico simulations based on pre-
sumptions of ideal conditions, we estimated that our 
approach may have the potential to detect ~ 300 more 
gastric cancer cases than gastroscopy alone per 100,000 
high-risk individuals screened, which could be largely 
due to the advantages in patient compliance and assay 
robustness across tumor locations. However, we must 
emphasize that these estimations from virtual simula-
tions are preliminary and have limited clinical impact 
without real-world validations in a practice setting 
whereby compliance, sensitivity, and specificity could be 
rigorously assessed.

Our cohorts also included 23 participants with chronic 
gastritis, with 5 atrophic and 18 non-atrophic forms. In 

both validation cohorts, the chronic atrophic gastritis 
(CAG) group had a higher mean score (0.496 and 0.464) 
than that (0.463 and 0.279) of the chronic non-atrophic 
gastritis (CNAG) group, though lacking statistical sig-
nificance due to the small sample size (Additional file 2: 
Table S1).

Previous studies have evaluated cfDNA level as a bio-
marker for detecting gastric cancer, assessing treatment 
responses, and/or predicting the prognosis. Gastric can-
cer patients receiving different therapeutic modalities, 
such as curative resection [25], chemotherapy [26–28], 
targeted therapy [27], and immunotherapy [29], were 
enrolled in these studies. The quantitative indicators for 
cfDNA levels also diverged from the cfDNA concentra-
tion [25, 28], the Alu247/Alu115 ratio [26, 30], and the 
Alu81 copy number [31], to the total cfDNA copy num-
ber from qPCR [27]. Our cfDNA-based assay was pri-
marily designed for the early detection of gastric cancer. 
Therefore, our cohorts enrolled only stage I–II patients 
without prior cancer treatment, who were more likely 
to benefit from real-world population screenings. We 
employed multi-dimensional cfDNA characteristics pro-
filed from low-coverage whole-genome sequencing data 
to identify these early-stage gastric cancer patients from 
non-cancer individuals [32]. Compared to the sole indi-
cators of cfDNA levels in previous studies, the depth and 
breadth of our cfDNA features allowed for sensitive and 
stable detection of gastric cancer signals. Moreover, the 
combination of multiple dimensions of cfDNA profiles 
could help mitigate the effects of potential signal shifts 
and background noise. Our validation cohort, which was 
separately collected in a different time frame further vali-
dated the utility of the multi-dimensional cfDNA charac-
teristics and model framework in the early detection of 
gastric cancer. The sample sizes of both study and valida-
tion cohorts also enhanced the reliability of our assay.

This study is not without limitations. First, our cohorts 
consisted of only Asian participants. As differential 
genomic alterations have been known among popula-
tions, the generalizability of our model needs to be fur-
ther investigated in larger and more diverse cohorts. 
Second, the 1stvalidation cohort may be less representa-
tive of the study cohort and may contain potential batch 
effects introduced by different automated liquid handling 
platforms. Third, our in silico simulation was based on 
several presumptions of ideal conditions, which may dif-
fer in real-world screening scenarios. The relatively small 
sample size and lack of populational heterogeneity also 
impact the clinical significance of the simulation. Fourth, 
fragmentomic features used in our assay may lack suf-
ficient biological explanations for individual variables 
(Additional file 1: Fig. S7). Although multiple studies have 
reported the association of fragmentomic patterns and 
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epigenetic regulations [3], their biological significance for 
gastric cancer detection remains not fully understood. 
Finally, we are also unable to provide an objective com-
parison with other emerging liquid biopsy methods such 
as methylation-based inference due to the lack of meth-
ylation data.

For the 31 samples in the 1st validation cohort processed 
with Platform 2, despite showing relatively higher predic-
tion scores, 26 gastric cancer and 5 non-cancer samples in 
this set remained well differentiated, achieving an AUROC 
of 0.969 (95% CI: 0.903–1.000). At the predefined thresh-
old from the study cohort, this group still demonstrated a 
high sensitivity of 100.0% (26/26) and a moderate specific-
ity of 80.0% (4/5). Given the clear differentiation and small 
sample size of this set, we cannot rule out stochastic effects 
from the underlying factors for higher prediction scores. 
The potential association of Platform 2 with score eleva-
tion remains to be further investigated. Our medical diag-
nostic laboratory currently utilizes both automated liquid 
handling platforms. By gathering more samples from both 
platforms in parallel, we will be able to comprehensively 
assess the influence of different liquid handling operations 
on our assay. Should dataset shifts occur due to a change 
in platform, we plan to develop domain adaptation algo-
rithms to ensure our assay performs effectively and con-
sistently across different platforms.

In summary, we have provided evidence that multi-
dimensional cfDNA profiles can accurately identify 
gastric cancer. Our assay yielded stable and robust per-
formance in both a temporally separated validation 
cohort and an independent validation cohort.

Conclusions
In this study, we introduced a liquid biopsy assay employ-
ing four types of cfDNA profiles to accurately distin-
guish early-stage gastric cancer from non-cancerous 
conditions. The assay demonstrated robust performance 
across various subgroups, including different pathologi-
cal stages, Lauren classifications, and tumor locations. 
Its efficacy was validated in both internal and external 
cohorts.
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