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Abstract 

Background  Previous studies have identified a diverse group of microbial taxa that differ between patients 
with multiple sclerosis (MS) and the healthy population. However, interpreting findings on MS-associated microbiota 
is challenging, as there is no true consensus. It is unclear whether there is gut microbiota commonly altered in MS 
across studies.

Methods  To answer this, we performed a meta-analysis based on the 16S rRNA gene sequencing data from seven 
geographically and technically diverse studies comprising a total of 524 adult subjects (257 MS and 267 healthy 
controls). Analysis was conducted for each individual study after reprocessing the data and also by combining all data 
together. The blocked Wilcoxon rank-sum test and linear mixed-effects regression were used to identify differences 
in microbial composition and diversity between MS and healthy controls. Network analysis was conducted to identify 
bacterial correlations. A leave-one-out sensitivity analysis was performed to ensure the robustness of the findings.

Results  The microbiome community structure was significantly different between studies. Re-analysis of data 
from individual studies revealed a lower relative abundance of Prevotella in MS across studies, compared to controls. 
Meta-analysis found that although alpha and beta diversity did not differ between MS and controls, a higher abun-
dance of Actinomyces and a lower abundance of Faecalibacterium were reproducibly associated with MS. Additionally, 
network analysis revealed that the recognized negative Bacteroides-Prevotella correlation in controls was disrupted 
in patients with MS.

Conclusions  Our meta-analysis identified common gut microbiota associated with MS across geographically 
and technically diverse studies.
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Background
Multiple sclerosis (MS) is a complex autoimmune disease 
of the central nervous system affecting 2.8 million peo-
ple worldwide. Advances in microbiome research have 
identified the gut microbiome as a significant player in 
MS [1]. A number of case-control studies have demon-
strated different degrees of gut microbiota alterations 
in patients with MS, regardless of ethnicity or disease 
duration [2–17]. These include depletion or enrichment 
of specific bacteria at different taxonomical levels, dif-
ferences of overall microbial community structure, and, 
less commonly, differences in alpha and beta diversity. In 
addition, patients treated with disease modifying thera-
pies, such as glatiramer acetate (GA) and dimethyl fuma-
rate (DMF), displayed distinct microbiota composition 
compared to non-treated patients [3].

The microbiome difference, either specific taxa or 
gut microbiota diversity between patients with MS and 
healthy controls, has been inconsistent across studies. 
This is not surprising, given that analyses can be affected 
by many technical and biological factors. DNA extrac-
tion, regions of 16S rRNA gene sequencing, downstream 
data processing pipeline, and sequencing platform can all 
contribute to the observed discordance [18]. In addition, 
a small sample size is likely to cause false positive/nega-
tive discoveries and poor reproducibility from lack of sta-
tistical power [19]. Moreover, findings of gut microbiota 
differences are challenging to interpret, as different taxo-
nomical levels have been used to express results. Con-
sequently, the fundamental question of whether there 
is common MS-associated gut microbiota that could be 
utilized as a biomarker for MS has not been resolved. To 
increase the robustness of the microbiota biomarker dis-
covery in MS, a meta-analysis leveraging existing studies 
is highly desirable.

The goal of our study is to understand the degrees of 
microbiota variation across MS studies and determine 
whether there is any common MS-related microbiota 
using publicly available datasets. We were able to obtain 
raw 16S rRNA gene sequences of the gut microbiota from 
524 participants (257 MS and 267 controls) and relevant 
clinical data in seven case-control microbiota studies 
conducted across different countries from 2008 to 2020. 
After consistent data reprocessing, we determined MS-
related gut microbiota by analyzing each study separately 
and then jointly. We identified common MS-related 
microbiota across geographically (US and Asia) and tech-
nically diverse studies.

Methods
Study inclusion, exclusion, and data acquisition
We identified gut microbiota studies in patients with MS 
from 2008 to 2020 in PubMed with key words (multiple 

sclerosis) AND (human) AND ((microbiota) OR (micro-
biome)) AND ((gut) OR (intestine)). Pediatric-onset MS, 
animal studies, non-sequencing-based microbiota stud-
ies, and review papers were filtered out from our collec-
tion. We retrieved raw sequencing data through accession 
numbers provided in the publications and downloaded 
meta data directly from publications if available or indi-
rectly through communication with the authors. This 
led to seven case-control microbiome studies using 16S 
rRNA gene sequencing for our data analysis (Additional 
file  1: Fig. S1). Demographic categories (sex, age, Body 
mass index (BMI)), group (MS/control), PubMed unique 
identifier (PMID) and sample size of each study, country 
origins, DNA extraction kit, sequencing region of the 
16S rRNA gene, and sequencing platforms were sum-
marized in Additional file 2: Table S1. For patients with 
relapsing-remitting MS, information on disease status 
(active or remission) and disease treatment, including 
disease modifying therapy (DMT), immunosuppressants 
(in Zeng’s study [11] from China), or any other MS drug 
treatments (Zeng’s study only) at the time of stool col-
lection was obtained from published paper or directly 
provided by authors. In two studies (Chen and Zeng) [5, 
11], stool samples were considered from an active status 
if they were collected within a month of a relapse; other-
wise, they were considered a remission status. No treat-
ment was defined as no MS related treatment for at least 
3 months prior to stool collections in four studies [2, 4, 6, 
7]. Details on treatment and disease activity in each study 
can be found in Additional file 2: Table S2.

Data processing of 16S rRNA sequences
Raw sequences from each study were processed sepa-
rately using the DADA2 pipeline to generate the taxo-
nomic profile  [20]. In brief, primers were trimmed by 
trimmomatic (V.38) [21], and paired reads were merged 
by fastq_mergepairs of VSEARCH (V2.4.3) [22] with 
default parameters. Bases with quality score lower than 
20 were trimmed using Filter and Trim function with pre-
determined parameters “trimLeft” and “truncLen.” Reads 
shorter than truncLen after trimming were filtered out. 
The resulting reads were subjected to chimera removal 
and then taxonomic classification. “Silva_v138” was used 
as the reference database for taxonomic classification. 
Samples with less than 1000 reads were removed from 
downstream analysis. All downstream statistical analyses 
were performed at the genus level. OTUs or ASVs level 
analyses are not feasible as the microbiota data was gen-
erated from different regions of the 16S rRNA gene.

Re‑analysis of the microbiota data for individual studies
To determine the microbiota difference between MS 
and controls, we compared alpha diversity (richness and 
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Shannon diversity), beta diversity (Bray-Curtis dissimi-
larity), and specific genera between the two groups for 
each reprocessed individual study. Wilcoxon rank-sum 
tests were used to compare the statistical difference of 
alpha and beta diversity between MS and controls. To 
visualize differences in overall microbial community 
structure, principal component analysis (PCA) was con-
ducted using relative abundance data after centered log-
ratio transformation using the “Compositions” package 
in R. To determine if the microbiota differed at the global 
level between MS and controls, we conducted permuta-
tional multivariate analysis of variance (PERMANOVA) 
using the “vegan” package, followed by dispersion test 
with “disper” function in “vegan” to assess homogeneity 
of dispersion in MS and the controls.

Differential taxa identification is sensitive to analyti-
cal approaches [23]. We applied both non-parametric 
Wilcoxon rank-sum test and DESeq2 differential abun-
dance test based on the negative binomial distribution, to 
identify specific genera that differed statistically between 
MS and controls. The relative abundance was used for 
Wilcoxon rank-sum test and raw counts were used for 
DESeq2 analysis. Adjusted p-values with a false discov-
ery rate (FDR) of <  0.05 were considered as statistically 
significant. Significant genera identified by DESeq2 can 
be driven by one or two outlier values, which can lead 
to potentially high false positive rate [24]. We manually 
inspected the results by plotting raw data and removed 
results that were driven by one or two outlier values, as 
we have done previously [25]. The final differential genera 
were reported by combining results (union) from both 
the Wilcoxon rank-sum test and DSEseq2 test.

Microbiota variation across all studies
To view microbiota variation across studies, PCA analy-
sis was conducted using data from all studies in the same 
fashion as done for the single study analysis. Using the 
PERMANOVA model and Bray-Curtis dissimilarity, we 
calculated the microbiota variance introduced by sev-
eral individual factors, including group (MS vs controls), 
study (seven studies treated as a categorical variable), 
geographical location, DNA extraction kits, sequencing 
platform, and sequencing region. The variance explained 
by each factor was calculated independently of other 
factors and should therefore be considered the variance 
explainable by that variable.

Meta‑analysis
A blocked Wilcoxon method was performed based on 
a previous microbiota meta-analysis given non-Gauss-
ian distribution of the microbiota data while control-
ling for major confounding variables [26]. Two-group 
alpha and beta diversity comparisons were conducted 

using blocked Wilcoxon rank-sum test by controlling the 
“study” factor and using the “coin” package in R [26]. To 
identify statistically relevant differential genera between 
MS and controls, we performed blocked Wilcoxon rank-
sum test by controlling the “study” factor for any genera 
that were present in more than 50% of participants in 
either MS group or control group. We also applied lin-
ear mixed-effects regression for the same genera after log 
transformation of the relative abundance [27], with group 
(MS/control) as fixed effect and study as random effect, 
using “nlme” package. We chose to control the “study” 
factor as our analysis showed it was the most predomi-
nant factor driving the microbiota variation across all 
combined studies. Residual analysis was conducted to 
validate the appropriateness of the linear mixed-effects 
regression model. The final differential genera were 
reported by combining results (union) from both blocked 
Wilcoxon rank-sum test and linear mixed-effects regres-
sion. To determine effects of disease status and treatment 
on the gut microbiota characteristics within MS, we per-
formed blocked Wilcoxon test and linear mixed-effects 
regression tests in a similar fashion as the combined 
meta-analysis. Adjusted p-values with a FDR of <  0.1 
were considered as statistically significant.

Random forest classification
We chose random forest (RF) classifier for MS and con-
trol classification as RF was reported to perform well for 
microbiota data [28]. We performed classification using 
three different strategies with “randomForest” package in 
R. First, we used the microbiota data from each study to 
train RF model and assess the performance of the classi-
fier on the other 6 studies separately. Second, we used six 
combined data sets as a training set, and tested one left-
out data set. Third, we randomly selected 3/4 of microbi-
ota data from the seven combined datasets as the training 
set and the remaining 1/4 as the test set. For each type 
of classification, we tuned parameters “mtry” and “ntree” 
to achieve optimal model accuracy. The model with rela-
tively highest accuracy (see Additional file 2: Table S3 for 
details of each classifier) would be chosen as the classifier. 
The accuracy of model itself was evaluated by the con-
fusion matrix. The prediction performance of the model 
was evaluated by areas of under the receiver operating 
characteristic (ROC) curve (AUC).

Network analysis
We computed correlations between bacterial genera 
within MS/control group separately using SparCC in 
“SpiecEasi” package. Bootstrap method was used to cal-
culate the p-values of the correlations with 1000 boot-
strap samples. Correlations with values larger than 0.2 
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and adjusted p-value less than 0.05 were used to con-
struct the network.

Sensitivity analysis
We conducted a sensitivity analysis to evaluate the 
robustness of the results obtained from the combined 
analysis of the seven studies. The main approach involves 
systematically excluding one study at a time and re-ana-
lyzing the data with the remaining six studies (the leave-
one-out approach). This process is repeated for each of 
the seven studies in turn. We maintained the same analy-
sis approach in the sensitivity analysis as analyzing all 
seven studies. The results were summarized and com-
pared with the current findings. In network analysis part, 
we compared network structures by using functions in 
“igraph” package in R.

Results
Microbiota datasets overview
Seven studies included in our analysis have heterogene-
ous geographical locations, as five studies are from dif-
ferent states of the USA, one from China and one from 
Japan. Females accounted for a large proportion of 
the participants, reflecting MS epidemiology in which 
women are more affected than men. Most patients with 
MS were RRMS (253/257 =  98.44%). Among all RRMS 
patients whose disease status was available, 19.41% 
(40/206) had active disease (see Methods). Among all 
RRMS whose treatment information was available, 
72.22% (169/234) received no treatment at the time of 
stool sample collection. The rest were treated with dis-
ease modifying therapy or immune suppressant (see 
Additional file 2: Table S1 for details).

The gut microbiota in the seven studies was character-
ized using stool specimens. DNA extractions were pri-
marily performed using PowerSoil DNA extraction kits. 
Qiagen and home-kits were employed by Zeng’s et al. and 
Miyake’s et al., respectively. All sequences were generated 
from Illumina platforms, except the study by Miyake and 
colleagues that utilized Roche 454 sequencing. 16S rRNA 
gene sequencing was conducted by targeting different 
16S rRNA gene regions such as V1-2, V1-3, V3-4, V3-5 
and V4 regions (Table 1).

Identification of common MS‑associated microbiota 
by re‑analysis of each individual study
We first re-analyzed data from each individual study 
to evaluate differences in the microbial composition 
between MS and controls and identified common and 
unique MS-associated microbiota across all studies. PER-
MANOVA analysis showed that the global gut microbiota 
profile was significantly different between MS and con-
trols in 5 out of 7 studies (Fig. 1a). However, the variance 

explained by group (case/control) was low, ranging from 
0.6 to 6%. Lower alpha diversity including richness and 
Shannon diversity in MS (versus controls) was identified 
in Ni Choileain’s study (Wilcoxon rank-sum test, p = 0.01 
for Shannon diversity and p = 0.011 for richness). By con-
trast, richness was significantly higher in MS than con-
trols in Chen’s study (p = 0.03). There was no statistically 
significant difference in alpha diversity between MS and 
controls in the other five studies (Fig. 1a). Beta-diversity 
measured by Bray-Curtis dissimilarity was significantly 
higher in MS compared to controls from four studies, 
lower in two studies, and not statistically different in one 
study. This data suggests there are no consistent alpha or 
beta diversity differences between MS and controls.

We next tested individual genera differences between 
MS and controls within each project using Wilcoxon 
rank-sum tests and Deseq2 analysis. Genera with a rela-
tive abundance of > 0.1%, in either MS or controls, were 
tested. This analysis revealed that all seven studies had at 
least 1 genus that differed in relative abundance in MS 
vs controls after multiple testing adjustment with FDR 
controlled at 0.05. Twenty-five genera were significantly 
different between MS and controls in at least two sepa-
rate studies (Fig. 1b). Among the 25 genera, 17 of them 
(17/25  =  68.0%) were either consistently increased or 
decreased in MS patients in at least two studies. Of inter-
est, the relative abundance of Prevotella in MS patients 
was decreased in all seven studies and was statistically 
significant in four (Cantoni, Chen, Miyake, and Zeng) 
which had participants from the USA, Japan, and China. 
This result suggests that the decreased relative abun-
dance of Prevotella is a common feature in MS patients 
and it is independent of geographical locations.

The analysis also revealed that three genera Faecalibac-
terium, Lachnospira, and Megamonas from the Clostridia 
class were significantly decreased in MS patients from 
three studies. Six genera were significantly decreased in 
MS from two studies. Difference between MS and con-
trols was also reflected by increases of seven genera in 
two studies. Interestingly, a closer examination at the 
taxonomy of seventeen genera that consistently dif-
fered between MS and controls revealed 64.7% (11/17) 
belonged to the Clostridia class. Furthermore, all seven 
studies had at least one genus from the Clostridia class 
that differed significantly between MS and controls.

Taken together, re-analyses of the seven studies individ-
ually indicated that MS and controls had distinct micro-
biota profiles, but differences in alpha and beta diversity 
were not consistently found across studies. Decreases of 
relative abundance of Prevotella and dysbiosis of genera 
from the Clostridia class were commonly associated with 
MS.
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Major factors driving microbiota variation across studies
To identify microbiota differences between MS and con-
trols in the seven studies combined, we first examined 
the microbial compositions and distribution patterns 
among studies. We showed the relative abundance and 
prevalence of all 652 genera identified in seven studies 
(Fig.  2a). One hundred and twenty-two genera (19.0%) 
were detected in all 7 studies, and the relative abundance 
of these 122 genera accounted for 86.2% of the total 
abundance in all 7 studies. Strikingly, 38.1% of the genera 
were detected in one single study. The relative abundance 
of the dominant genera demonstrated high inter-study 
variation.

A PCA plot was used to visualize sample clustering 
patterns by studies. As shown in Fig.  2b, PC1 and PC2 
accounted for 13.0% variance of the microbiota. Chen, 
Jangi, and Miyake’s studies were distinct from each other 
and the rest of the studies along PC1 and PC2 (Fig. 2b). 
Kruskal-Wallis test further supported statistical differ-
ence among studies at PC1 and PC2 (p < 0.001 for both 
PC1 and PC2). Additional testing showed studies were 
all significantly different along PC3 to PC10 (all p < 
0.001). Notably, Miyake’s study showed the least disper-
sion (inter-subject variation) compared to the rest of the 
studies.

Variance analysis using PERMANOVA showed that 
the study variable accounted for 19.17% of total micro-
biota variance (Fig. 2c). Other technical variables, such as 
sequencing region, geographical location, DNA extrac-
tion kit, and sequencing platforms, also contributed to 
microbiota variations ranging from 4.9 to 14.5%, with 

statistical significance (p = 0.001) (Fig.  2c, Additional 
file 1: Fig. S2-S4). However, these variables were likely to 
have overlapping contributions to the microbiota varia-
tion. For example, Miyake’s study was conducted in Japan 
using an in-house DNA extraction kit and V12 sequenc-
ing on a Roche 454 sequencing platform. We also tested 
the variance contributed by available biological vari-
ables such as group (MS vs control) and sex. We found 
disease group had a minimal influence (0.6%) on the 
overall microbiota variation and had no effect on PC1. 
However, disease group was significantly different in PC2 
after controlling for the study effect (Fig. 2b, blocked Wil-
coxon test, p = 0.0002), as well as in PC5 (p = 0.01) and 
PC10 (p = 0.002), but the differences or effect sizes were 
small. Together, these data suggest that the “study” fac-
tor has a predominant effect in driving heterogeneity of 
the microbiota composition. Study effect should be con-
trolled when identifying disease-associated microbiota 
by meta-analysis.

Identification of common MS‑associated microbiota 
by meta‑analysis
We next combined the data matrix from all 7 studies and 
performed a meta-analysis using a blocked Wilcoxon 
rank-sum test with “study” factor as a blocking factor. We 
also performed a linear mixed regression analysis with 
group as fix effect and study as random effect. Consist-
ent with the individual studies, our meta-analysis found 
no significant differences in alpha diversity between 
MS and controls by blocked Wilcoxon test. Beta diver-
sity, as measured by Bray-Curtis dissimilarity, was also 

Fig. 1  Common microbiota revealed by individual study analysis. a Summary of microbiota analysis at the microbial community level for each 
study. Significant differences are demonstrated by different colors. The sizes of the circles represent scale of -log10 p-value. b Genera that are 
significantly different in MS vs controls by Wilcoxon rank-sum test or DESeq2 test. Significant genera identified in at least two studies are shown 
in descending order from top to bottom by its shared frequency. For each individual study, the sizes of the circles represent mean relative 
abundance of the genera, and the colors of the circles represent statistically higher (blue) or lower (orange) of the relative abundance of the genera 
in MS, compared to controls. Taxonomy at the class level for each genus is indicated on the class column. Different shapes in the class column 
indicate the abundance of the genera are consistently (triangles) and inconsistently (circles) higher or lower in MS in at least two studies, compared 
to controls
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not different between the two groups (Fig. 3a). Sensitiv-
ity analysis using the leave-one-out method for affirmed 
these results, demonstrating robustness of our findings.

Fifteen genera were significantly different between MS 
and controls as shown by either blocked Wilcoxon test 
or linear mixed regression analysis in the meta-analysis 
(Fig.  3b). Seven of the fifteen genera were also identi-
fied from the individual studies as being consistently 
increased (UBA1819, unclassified Lachnospiraceae and 
Flavonifractor) and decreased (Prevotella, Faecalibac-
terium, Lachnospira, Megamonas) in MS patients in at 
least two studies (Fig.  1b). We also identified eight new 

genera associated with MS that were not identified by 
individual study analysis. These included Clostridium 
innocuum group, Eubacterium fissicatena group, Actino-
myces, Agathobacter, Erysipelatoclostridium, Flavobacte-
rium, Lachnospiraceae ND3007 group, and Streptococcus. 
Six of the eight newly identified genera were increased 
in MS compared to controls. Notably, more than half of 
the genera identified by meta-analysis belonged to the 
Clostridia class. This is consistent with the findings of 
our individual study.

Sensitivity analysis of differential taxa revealed sig-
nificant variability attributed to the two Asian cohorts. 

Fig. 2  Microbiota variation across all studies. a Abundance and prevalence of 652 genera identified in 7 studies. Left Y-axis shows number 
of studies that detect a given genus (frequency); right Y-axis represents the relative abundance of each genus in a study. Several relatively high 
abundant genera are labeled in the plot. b Principal component analysis of samples from all seven studies based on Bray-Curtis distance; different 
studies are color-coded and group (MS vs controls) is indicated by different shapes. Boxplots at the bottom and at the right show PC1 and PC2 
loadings for different studies or group (MS vs controls). Studies are significantly different in both PC1 and PC2 (p < 0.001). Group (MS and controls) 
is significantly different in PC2 after controlling for study effect (p = 0.0002). c Percent of variance that is significantly contributed by each factor
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Removing a US study could still replicate 73.33 to 100% 
of the differential taxa identified from the seven studies. 
However, when an Asian study was omitted, only 26.67% 
(Miyake) and 20% (Zeng) of the taxa in Fig.  3b were 
maintained. Notably, despite variations driven by spe-
cific studies, the genera Actinomyces and Faecalibacte-
rium were consistently identified in every iteration of the 
leave-one-out analysis, indicating a stable trend (Fig. 3c). 
Together, our meta-analysis suggests there are reproduc-
ible MS-associated microbiota alterations across studies.

Disruption of Bacteroides‑Prevotella correlative network 
in MS
Because the gut microbiota forms a complex interactive 
network through cooperation/competition which col-
lectively affects host health and diseases [29], we tested 
the hypothesis that this microbiota interaction net-
work is disrupted in MS patients. Using SparCC [30], 

we identified nine positive correlations that were shared 
between MS and controls (Fig.  4a, b), suggesting these 
interactions may be fundamental structures of the micro-
biota network that are resilient to changes related to MS. 
For example, the most abundant genus, Bacteroides, was 
positively correlated with Alistipes and Parabacteroides, 
and Blautia was positively correlated with Bifidobac-
terium [31]. We identified 13 (Fig.  4c) and 16 (Fig.  4d) 
unique correlations in control and MS, respectively. Of 
the 13 unique correlations identified in controls, the 
negative correlation between Bacteroides and Prevotella 
that were highly abundant genera in our dataset (Fig. 2a) 
was the strongest (Fig.  4c) This strong negative correla-
tion appears to be a fundamental characteristic of the 
microbiota in the gut of healthy adults [32, 33]. How-
ever, this correlation was completely lost in patients with 
MS (Fig. 4d). In MS, Bacteroides formed a new correla-
tion network, as indicated by a positive correlation with 

Fig. 3  Common microbiota revealed by meta-analysis. a Alpha and beta diversity in MS and controls. Diversity is not statistically different 
between MS and controls (p = 0.72 for Bray-Curtis dissimilarity; p = 0.57 for richness; p = 0.63 for Shannon diversity). b Significantly different 
genera between MS and controls identified by meta-analysis. Fifteen genera are significantly different between MS and controls after controlling 
for the “study” factor. Mean and standard error for each genus are illustrated. Class level taxonomy for each genus is indicated next to the genus. c 
Results of leave-one-out sensitivity analysis
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Lachnoclostridium and negative correlations with five 
other genera.

To test the reliability of the network findings, we con-
structed networks within MS group or control group 
using leave-one-out sensitivity analysis. Rand index 
was used to assess the similarities of network structures 
between the network generated from any six studies with 
the network generated from the seven studies combined. 
The rand values ranged from 0.77 to 0.90, indicating that 
network structures are similar and supporting the robust-
ness of our findings (Additional file 2: Table S4). Notably, 
the relationship between Bacteroides and Prevotella are 
consistently maintained in the control and MS groups 
(Additional file 1: Fig. S5-S11). Taken together, our find-
ings suggest that the normal microbe-microbe correla-
tion network is substantially disrupted and replaced by 
new correlations in patients with MS.

Classification of MS and control using the gut microbiota
To test the potential of using the gut microbiota to dif-
ferentiate MS from controls, we trained RF models using 

each of the seven data sets and evaluated the accuracy of 
the classifiers (Additional file  1: Fig. S12a blue diagonal 
from top left to bottom right). For each classifier built 
based on one study, we tested the prediction perfor-
mance for the other six datasets (Additional file  1: Fig. 
S12a, off-diagonal values). We found that the accuracy of 
the models (as measured based on confusion table) was 
generally low and varied widely, ranging from 0.48 to 
0.72 (diagonal from top left to bottom right). Prediction 
performance (as measured by AUC) using these clas-
sifiers also varied widely, from 0.40 to 0.84. However, it 
is notable that the microbiota classifier from five stud-
ies (Cantoni, Chen, Cekanaviciute, Ni Choileain, and 
Zeng) provided a prediction performance for Miyake’s 
study, with AUCs more than 0.65. Interestingly, predic-
tion using the microbiota data from Zeng’s study led to 
AUCs above 0.8 for Miyake’s study (AUC = 0.84) and vice 
versa (AUC =  0.83). To investigate whether the higher 
prediction performance observed between Miyake’s and 
Zeng’s studies (two Asian cohorts) was attributed to 
similar microbiome composition, we calculated pairwise 

Fig. 4  Disruption of Bacteroides-Prevotella correlative network in MS. The network is constructed using correlations with p-value less than 0.05 
and correlation coefficient larger than 0.2. Red lines represent positive correlations and blue lines represent negative correlations; The width of line 
varies by absolute value of correlation coefficient, and the nodes size represents relative abundance of genera. a, b Correlations shared between MS 
and controls. Nine positive correlations are shared in MS (a) and controls (b). c Correlations that are unique in controls. d Correlations that are 
unique in MS
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beta-diversity across all studies. The microbiome simi-
larity between Miyake’s and Zeng’s studies was not 
more pronounced compared to others (Additional file 1: 
Fig. S13). However, taxa of importance that differenti-
ate MS from controls in both Miyake’s and Zeng’s stud-
ies, identified through the RF analysis, exhibited a 40% 
overlap. Taxa of importance that differentiate MS from 
controls in other studies in the RF analysis showed only 
a 20–30% overlap with Miyake’s study. This suggests 
that distinguishing taxa, rather than similarity of overall 
microbiome composition, is crucial for achieving good 
predictability between the two Asian cohorts.

We next trained RF classifiers using data from a com-
bination of six of the studies and tested their prediction 
performance on the remaining dataset. Training with a 
large sample size did not achieve higher prediction AUCs 
in the remaining dataset, with the exception of Miyake’s 
study (Additional file 1: Fig. S12b). Lastly, we built a RF 
classifier using three quarters of all the data from the 
seven studies and then tested its prediction perfor-
mance of the remaining data (Additional file 1: Fig. S12c). 
This approach yielded an AUC of 0.67. Taken together, 
machine learning based on the gut microbiota profile 
has potential to differentiate MS from controls, but the 
prediction performance needs to be improved before any 
clinical application.

Association of the gut microbiota with disease status 
and treatment in MS patients
We next explored whether the composition of the micro-
biota is associated with clinical characteristics of MS. 
Among all 253 patients with RRMS, information on 
disease status and disease treatment was available for 
207 patients and 234 patients, respectively. NO CIS and 
PPMS patients were included in this analysis. Alpha and 
beta diversity and specific taxa were not significantly dif-
ferent between 40 active cases and 166 remission cases 
after controlling for the study variable (Additional file 1: 
Fig. S14a). Sixty-five patients received different therapies 
including DMT Copaxone (n = 15), interferon beta (n = 
32), and immunosuppressive agents azathioprine (n = 
5), mycophenolate mofetil (n = 2), methotrexate (n = 2), 
Tysabri (n = 5), and others (n = 4). One hundred sixty-
nine patients did not receive any treatment at the time 
of stool collection. There were no significant differences 
in alpha and beta diversity as well as relative abundance 
between non-treated patients and treated patients after 
FDR adjustment (Additional file 1: Fig. S14b).

Discussion
Over the past several years, around 100 different bacterial 
taxa have been reported to be associated with MS across 
different studies [2–17]. Our work reconciles discordant 

findings in previous studies and establishes a generalized 
and common gut microbiome pattern in patients with 
MS across geographically and technically diverse studies.

A recent report from the International Multiple Scle-
rosis Microbiome Study (iMSMS) based on a large multi-
center dataset of MS patients and household healthy 
control (HHC) subjects has provided the most compre-
hensive microbiome data analysis in MS to date  [34]. 
Comparison of findings between iMSMS and our meta-
analysis has revealed several common insights: (1) 
geography has a more dominant effect on microbial com-
position than disease diagnosis (Fig.  2c). (2) No signifi-
cant difference was detected in alpha diversity between 
MS and healthy controls (Fig. 3a). (3) While directional-
ity (negative vs positive) of correlation was not reported 
in the iMSMS study, it identified unique presence of 
Bacteroides and Prevotella species in the microbiome 
network in healthy controls. (4) Despite many differ-
ences in MS-associated taxa, the relative abundance of 
Faecalibacterium was found to be decreased in MS 
patients compared to healthy controls (Fig.  3c) in both 
studies. The different MS-associated taxa between our 
study and iMSMS can be due to numerous known or 
unknown factors that influence microbiome variation, 
as we have demonstrated in Fig.  2c. For example, MS-
associated taxa identified by iMSMS study were based 
on shallow whole genome shotgun sequencing. While it 
avoids amplification bias from 16S rRNA gene sequenc-
ing, it may not capture important rare taxa that can be 
detected by 16S rRNA gene sequencing (i.e., Actino-
myces, Flavonifractor, etc., in Fig.  3). In addition to sex 
bias, using household control may decrease sensitivity of 
detecting MS-associated microbiome because individu-
als from the same household tend to share gut microbes, 
and a shared microbe may still influence MS develop-
ment in genetically predisposed individuals. Our meta-
analysis of previous highly cited microbiome studies in 
MS and non-household healthy controls across diverse of 
locations from USA and Asia provides a complementary 
view of the microbiome in MS to the iMSMS study. The 
share findings from the two large MS microbiome analy-
ses derived from different study designs and research 
approaches provided robust evidence on microbiome 
markers in MS patients.

One major discordance between our findings and 
those from the iMSMS study is the absence of treatment-
associated taxa in our study. It is worth noting that many 
treatment-associated taxa identified in the iMSMS study 
were derived from a comparison between treated MS 
patients and their household controls, and only a few taxa 
were significantly different between treated and non-
treated MS patients. Before p-value adjustment, we also 
identified several taxa that differentiated treated from 
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non-treated MS patients, but they were no longer sig-
nificant after FDR adjustment. Due to the relatively small 
sample size, we did not perform a comparison between 
specific DMT treatments and non-treated MS.

Our analysis identified several important MS-associ-
ated taxa. Prevotella, one of the most abundant genus in 
the healthy gut [35], was decreased in patients with MS 
in re-analysis of seven individual studies, suggesting that 
alteration in Prevotella plays a key role in the disease. 
Indeed, Prevotella histicola has been shown to suppress 
a Th17-mediated autoimmune response and improve 
disease course in a mouse model of MS, experimental 
autoimmune encephalomyelitis (EAE) [36]. However, 
increased relative abundance of Prevotella copri has also 
been associated with higher inflammation in patients 
with rheumatoid arthritis, indicating that the immu-
nomodulatory role of Prevotella may be context depend-
ent and/or specific to Prevotella species. Prevotella and 
Bacteroides are two common enterotypes identified in 
healthy human populations [35, 37]. Our study revealed 
the loss of negative correlation between Prevotella and 
Bacteroides in MS patients, which is likely due to signifi-
cant reduction of Prevotella in MS patients. This further 
led to a different microbiome interactive network in MS.

Faecalibacterium is one of the most common health-
promoting bacteria identified from various studies [38]. 
In our study, Faecalibacterium was significantly lower 
in patients with MS than controls, and this finding was 
proved to be robust based on the sensitivity analysis. Like 
patients with MS, Faecalibacterium was found less abun-
dant patients with IBD [39] and different neurodegen-
erative disorders [40, 41], suggesting Faecalibacterium 
may modulate the immune responses in several different 
diseases.

In addition to Faecalibacterium, Actinomyces also 
showed a significant association with MS in the sensitiv-
ity analysis. Actinomyces is a genus commonly found in 
the oral cavity and gut. Although the current study could 
not determine its origin, we cannot rule out the possibil-
ity of an oral origin for Actinomyces. Similarly, Strepto-
coccus is a dominant genus in the oral cavity but also part 
of the normal microbiota in the intestinal tract. Strep-
tococcus was significantly increased in MS compared to 
controls, and it remained significant in most iterations 
of the sensitivity analysis. The presence of S. oralis and S. 
mitis, which are of oral origin, had been detected in the 
small intestine of RRMS patients [42]. Pathogenic Strep-
tococcus species in the gut have been associated with IBD 
[43] and colon cancer [44], and childhood Streptococcus 
infections have been investigated as a putative risk fac-
tor for MS [45]. Streptococcus pneumoniae infection is 
thought to aggravate EAE in a TLR2 dependent manner 
[46]. Ectopic gut colonization by oral bacteria along with 

Th17 cells migration from oral mucosa to the gut pro-
mote gut inflammation and colitis in mice [47]. Identifi-
cation of increased Streptococcus or Actinomyces in MS 
through our meta-analysis begs the questions whether 
there is an oral-gut microbiota connection in MS.

Our machine learning had only modest predictive 
power to differentiate MS vs healthy controls. However, 
the two Asian cohorts (Miyake and Zeng) exhibited 
greater predictability with each other. This observation 
was not due to similar microbiome compositions result-
ing from the proximity of geographical locations of the 
two studies. Instead, it is likely that the higher overlap 
of distinguishing taxa identified through RF analyses 
in both studies played an important role. In addition, 
because MS has a complex pathogenesis and etiology, 
besides increasing sample size to train the classifier, we 
believe that combining knowledge about the gut micro-
biota with clinical data and other OMICS data will add 
additional value to existing approaches to facilitate diag-
nosis, risk prediction, or prognosis of MS in future.

Our study has several limitations. Only seven cohort 
studies were included due to difficulty in obtaining 
sequencing data or complete clinical data from published 
works. Data sharing is crucial to validate findings and 
enables new discoveries, especially for studies related to 
rare diseases. Our analysis was also limited to genus level 
because different sequencing platforms and sequenc-
ing of different 16S rRNA gene regions preclude species 
level analysis across datasets. With more widespread 
use of whole genome shotgun sequencing and meta-
transcriptomic techniques, future meta-analyses may be 
able to incorporate species and strain level taxonomies. 
Lastly, a comprehensive analysis of the effect of disease 
status (remission/active) on the gut microbiota could 
not be performed due to a lack of detailed information 
on patients in the MS group across studies. The iMSMS 
study has shown that different DMTs have different 
effects on the microbiota composition [34]. We did not 
perform comparison of the microbiota changes in dif-
ferent DMTs as this will not be accurate and robust due 
to even smaller sample size for each specific treatment 
group.

Future studies with standardized sample collec-
tion, sample processing, sequencing approach, and 
data analysis procedures, as well as well-organized data 
management and sharing plan, will maximize utiliza-
tion of microbiome resource and strengthen microbi-
ome research in MS. In addition, longitudinal studies 
are highly warranted to better understand the dynamics 
of the microbiota over the clinical course and treatment 
course of MS.
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Conclusions
There are consistent microbial signatures associated with 
MS across studies. Prevotella is a significant biomarker in 
MS diagnosis in individual project analysis. Faecalibac-
terium and Actinomyces are associated with MS diagno-
sis in the meta-analysis. Furthermore, the correlation of 
Prevotella negatively related to Bacteroides is disrupted 
in MS in the network analysis.
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